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THEORETICAL TECHNIQUES

Pyramid algorithms for perceptual organization

AZRIEL ROSENFELD
University of Maryland, College Park, Maryland

Multiresolution (or pyramid) approaches to computer vision provide the capability of rapidly
detecting and extracting global structures (features, regions, patterns, etc.) from an image. The
human visual system also is able to spontaneously (or preattentively) perceive various types of
global structure in visual input; this process is sometimes called perceptual organization. This
paper describes a set ofpyramid-based algorithms that can detect and extract these types of struc­
ture; included are algorithms for inferring three-dimensional information from images and for
processing time sequences of images. If implemented in parallel on cellular pyramid hardware,
these algorithms require processing times on the order of the logarithm of the image diameter.

During the past few years, there has been increasing
interest in the use of multiresolution (pyramid) image
representations in image analysis and computer vision.
Several research groups have designed or built image­
processing machines basedon this approach. A pyramid­
structured array of multiprocessors can perform many
typesof operations on an image (inputto the base of the
pyramid, one pixel per processor), in time proportional
to the log of the imagediameter. (For a recentcollection
of papers on pyramid methods in image processing and
analysis, see Rosenfeld, 1984.)

One of the most important potential applications of
pyramidmachines is the fast detection and extraction of
globalstructures (e.g., features, regions, patterns) in an
image, by rapidlycombining information collected from
many parts of the image. A number of pyramid-based
methods of extracting global imagestructureshave been
developed at the Center for Automation Research, and
others have been proposed, as described below.

The rapid detection of global structure in images is an
important, but not well-understood, capability of the hu­
man visual system. Humans tend to spontaneously (or
preattentively) perceive various typesof globalstructures
in their visual input; thisprocess is sometimes calledper­
ceptual organization. About 50 years ago, theGestalt psy­
chologists formulated a set of principles, or laws, that
describehowimageparts tendto group intoglobalstruc­
tures (Wertheimer, 1958). These include the laws of
similarity, proximity, goodcontinuation, andclosure. In
this paper, I will showhoweach of these typesof group­
ings can be detected using fast pyramid algorithms.

Fast detection of globalstructure in an imageseems to
be an essential component of real-time perception. Hu-
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mans are able to recognize objects in unexpected, com­
pleximages in I secor less, a periodof timeduring which
onlyon the order of 100neuralcomputational stepscould
have takenplace. Obviously, the humanvisualsystemis
highly parallel, but conventional parallelprocessing con­
ceptsare not powerful enoughto account for this perfor­
mance. For example, a humancan immediately detect a
long straight line in the visual field; since the line may
be several hundred retinal receptor cells (pixels) long,
conventional methods would require several hundred com­
putational steps, even on a two-dimensional parallel
machine, to extract the line from the input image.
Pyramid-style parallelism provides a muchfastermethod
of doing this. As shown below, a pyramid scheme can
extract long straight lines from an image in tens, rather
than hundreds, of steps. Schemes of this type seemto be
essential in achieving fast recognition of globalpatterns.
Such patterns cannot be reliably recognized using con­
junctionsof local features; some means of explicitly ex­
tracting global structures is needed. The techniques
described in this paper provide such a means.

The grouping algorithms discussed here are primarily
two-dimensional, but similar pyramid-based techniques
can be applied to the analysis of images of three­
dimensional scenes, or to time-varying images. These ex­
tensions will be briefly discussed at the end of the paper.

LAW OF SIMILARITY:
DETECTING BIMODALITY

According to the Gestalt law of similarity, if an image
consists of a mixture of two different types of local pat­
terns, the humanvisual systemcan group the patternsof
one type together and perceive them as a figure, while
perceiving the remaining patterns to be part of the back­
ground. On the other hand, a mixture of three types of
local patterns is hard to distinguish from a uniformdis-
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tribution of pattern types (Marr, 1982, p. 92). Apparently,
the human visual system can detect bimodality (of a local
property such as size or slope) and can segment an image
containing a bimodal population of local patterns (in the
sense that the two subpopulations can be perceived as dis­
tinct from one another); however, the human visual sys­
tem cannot easily handle multimodal distributions, and
tends to treat them as though they were uniform.

In a computer vision system, it is easy to compute the
histogram of values of a local image property and to de­
tect multiple peaks in the histogram (provided they do not
overlap). However, constructing a histogram is a some­
what slow process, because each of the distinct values
must be separately counted. (A simple pyramid algorithm
can be used to count the number of occurrences of any
one value in time proportional to the log of the image di­
ameter; however, in order to compute a complete k-valued
histogram, this algorithm must be repeated k times.) The
pyramid-based technique described here directly detects
bimodality, without computing a histogram. It is possi­
ble that a scheme of this type could serve as a model for
humans' bimodality detection ability.

This scheme is based on a simple pyramid structure in
which each cell at level h receives inputs from a block
of cells (its children) at level h-l. The image is initially
input to the base of the pyramid (level 0), and the given
local property is computed, wherever applicable, yield­
ing a (sparse) array of local property values.

Each cell at level 1 now examines the set of values in
its block of the level-O array, and finds the partition of
these values into two subsets that minimizes the variance
of each subset about its mean. (This partition is some­
times called the bimean [Dunn, Janos, & Rosenfeld,
1983].) Let the means of the subsets be p. and II, let the
sizes of the subsets be rand s, and let the standard devia­
tions be a and 7. The cell then computes the Fisher
distance

d == 1/,,-111 j-./a 2
+ 7

2

between the two subsets. A larger Fisher distance means
that the population of values in the cell's block is strongly
bimodal (the means are many standard deviations apart) ..
If the Fisher distance is not sufficientlylarge, the cell flags
itself as not bimodal.

Each cell on level 2 now examines the data computed
by its children on level 1. Suppose that all, or nearly all,
of the children have bimodal populations, say with means
and standard deviations /"., II., ••. , /"m, 11mand a1> 71> .•• ,

am, 7m' The cell finds the partition of the /"s and liS into
two subsets that minimizes the variance of each subset
about its mean. (The means of the subsets can be com­
puted as weighted averages from the /"S and liS and their
corresponding rs and ss; the variances can be computed
from the us, liS, rs, ss, as, and 7S.)

Finally, the cell estimates the Fisher distance for this
new partition and decides whether its combined popula­
tion of values is still bimodal. If several of the cell's chil­
dren do not have bimodal populations, the cell does not

carry out these computations, but simply flags itself as
not bimodal.

This process is repeated for the cells on levels 3, 4,
. . .. I suggest that bimodality is perceptually conspicu­
ous if a cell on a sufficiently high level (representing a
large block of the image) has a bimodal population.

Detection of anomalies can be regarded as a special case
of bimodality detection. If there is a unique value that
differs considerably from all the other values, it defines
a subpopulation that has high Fisher distance from the rest
of the population, so that we have strong bimodality.

In principle, this scheme could be generalized to de­
tect trimodality, ... , k-modality, ... , but the amount of
computation that the cells would need to perform would
grow rapidly with k. In any case, since this method is
based on repeatedly estimating the variances of the sub­
sets, it is not capable of fine discriminations between sub­
sets whose means are close together; thus, the method will
detect bimodality only when the means are very far apart
or when the variances are very small, and there would
be little value in attempting to detect k-modality for
k > 2. (In general, it would be oflittle value for the brain
to perform computations whose results would be so in­
accurate as to provide no useful information. If the brain
contains pyramid-like structures, they would not be per­
fectly regular, i.e., the image blocks seen by the cells
would neither be of equal sizes nor have equal degrees
of overlap. Thus, it would be pointless to attempt to use
them, e.g., for exact counting, but reasonable to use them
only for rough population size estimation.)

LAW OF PROXIMITY: DETECTING
COMPACT REGIONS

The Gestalt law of proximity states that local patterns
that lie close together tend to be grouped together as a
figure. For example, a dense cluster ofdots on a sparsely
dotted background is perceived as a figure. In this sec­
tion, perception of groupings that are compact, or blob­
like, is discussed. The detection of elongated, or ribbon­
like, figures (or parts of figures) probably involves other
processes, in addition to proximity-based grouping. This
perception will be discussed later in the paper.

Several pyramid-based methods of detecting compact
figures have been developed at our laboratory (Hong &
Rosenfeld, 1984; Hong & Shneier, 1984). A recently de­
veloped, simpler method (Gross, 1986) seems to yield
even better results: it is described below. As in the preced­
ing section, assume that the image is input to the base of
the pyramid and that the local property is first computed,
so that the input becomes an array (not necessarily sparse)
of local property values (e.g., gray levels).

Each cell on level 1 computes the mean and variance
of the values in its block, and this process is repeated at
levels 2, 3, .... (In this case, the variance of a cell at
any level can be computed directly from the means and
variances of its children, because the children's popula­
tion sizes are all equal [Burt, 1979].) Let P be a cell on



levelh, andlet Qil ... , Qk bethecellson levelh+1whose
blocksof the imagecontainP's block. Let (J bethe vari­
ance of P, and Til ... , r, be the variances of the Qs; let
the area of P' s blockbe s, and the areas of the Qs' blocks
be t. We call P a root node if Tilt, ... , Tklt are all signifi­
cantlyhigherthan (JIs. Intuitively, this willhappenif P's
block lies (mostly) within a homogeneous region of the
image(e.g., a regionwhosevaluesare independent sam­
ples of the samenormaldistribution), but the Qs' blocks
are too big to lie inside that region. (For low levels h,
if the image is noisy, this criterion will not be reliable,
because the TS may betoo variableto be goodestimates
of the variability of the region's population of values; but
for larger values of h, the estimates will be more reli­
able, and Tit will be smaller than ols [since t is larger
thans] if Q;'sblocklies insidethe region. Thus, for large
hs, the root nodes will represent maximal blocks of the
image that approximately coincide with homogeneous
regions.)!

The homogeneous regionsdetected in this way can be
extracted from the image by a top-down tree-growing
process such as the following: Take the root node P as
the rootof the tree. LetP' be a cell on somelevel i < h,
andlet Q:, ... , Q~ be the cellson level i+1 whose image
blocks overlap that of P'. Let Q' be that one of the Qs
having smallest Fisher distance from P'. Then make P'
a tree node if and only if Q' is a tree node. This process
is carried out for i = h - 1, h - 2, .... The leavesof the
tree at level 0 are the pixelsconstituting the region. (For
details on several variations of this tree-growing proce­
dure, see Gross, 1986.)

The region extracted from the image in this way is
necessarily compact, since it cannot contain pixels that
are far away from the original root node's block of the
image. (Indeed, at successive stages of the tree-growing
process, one can only add to the tree cells whose blocks
overlap that of P and then to cells whose blocksoverlap
theseblocks, and so on, wherethe sizesof the blocks are
exponentially decreasing.) Of course, parts of P's block
can be lost, sincesomeblocks that overlapP's blockwill
notmeetthecriterion for inclusion in thetree. At thelevels
immediately below h, it is likely that the cells whose
blocksare contained in P's block will nearlyall join the
tree, since they represent relatively large samples of the
same image region; thus, the union of these blocks will
define a solidregion. At still lowerlevels, the blocks may
no longer resemble that of P, due to noise, but if they
are near the centerof P's blockthey will haveno choice
but to join the tree, so that the region will remain solid.
Blocks near the edges of the region, however, will not
be forced to join the tree, so the tree-growing process will
be able to closely approximate the shape of the region.

Preliminary experiments (Gross, 1986) indicate thatthis
approach is quite effective at extracting compact
homogeneous regions from an image, even if they have
irregular shapes. In our laboratory, we plan to conduct
a more extensive series of experiments in which the ap-

PYRAMID ALGORITHMS IN VISION 597

proach is appliedto the detectionand extraction of vari­
oustypes ofhomogeneously textured regions (i.e., regions
having stationary distributions of the values of local
properties other thangray level). In a textured image, this
method willbe able to detectboth textureprimitives (i.e.,
pieces of the image having nearly constant gray levels)
and textured regions (i.e., clusters of these pieces); the
former shouldgive rise to root nodes at low levels, and
the latter to root nodes at higher levels. This approach
can alsobe generalized to nonstationary distributions; for
example, we canextract regionsover whichthe distribu­
tion of property values varies linearly, by least squares
fitting linear functions to the sets of property values in
each image block, and calling P a root node if the fits
to the Qs are all worsethan P's fit. (Recallthat whenthe
meanand standard deviation of a blockare computed, we
are least squares fitting a constant function to the values
in the block.)

A related approach can be used to extract compact
regions that are smoothly varying, but not necessarily
homogeneous (i.e., their spatial distribution of property
values doesnot globally fit a linear function). To do this,
P is called a root node if its pairs of adjacent children
(i.e., cells on level h-1 whose blocks are contained in
P's block) all have small Fisher distances (i.e., P con­
tains noedges) andif noneof theQs (onlevelh+1)whose
blockscontainPshavethis property. (If the values in P's
block vary smoothly, two adjacentchildren of P cannot
have a large Fisherdistance; theirvariances andthediffer­
ence betweentheir meanswill both be large if the varia­
tion is steepand smallif it is gradual.)Thentree-growing
methods similar to those describedabovecan be used to
extract the detected region.

LAW OF GOOD CONTINUATION:
DETECTING SMOOTH CURVES

Approaches analogous to those in the preceding sec­
tion can be used to detect and extract curves that are
smooth or thatare goodglobal fitsto givenfunctions (e.g.,
to straightlines). A local edge or curve detection opera­
tion is first applied to the image, and the resulting set of
feature points is input to the base of the pyramid.

To detectsmooth curves, each cell at level 1examines
its block of the image; if many of the feature points in
the blocklieon a smoothcurve, the cell recordsthe posi­
tions and slopesof the endpoints of the curve and stores
pointers to the feature points that constitute the curve.
Each cell at level 2 then examines the data providedby
its children at level 1. If many of the endpoint data are
consistent (i.e., they can be arranged in a sequence such
that successive endpoints closely agree in position and
slope),2 the level-2 cell records the positions and slopes
of the first and last endpoints and stores pointers to the
level-l cells that contributed the consistent data. This
processis repeated at levels3, 4, .... Thus, if the image
contains a long, smooth curve, some high-level cell will



598 ROSENFELD

contain its endpoint data and will also be the root of a
tree of pointers whose leaves are the feature points con­
stituting the curve.

This approach requires only a bounded amount of com­
putation by the cells at each level, and thus can be car­
ried out in O(log image diameter) time, even if the curve
is long. There are difficulties, however, if the image con­
tains several long, smooth curves, or a single curve that
doubles back on itself. In such cases, some of the cells
will detect more than one smooth curve and will need the
capacity to store several sets of endpoint data. In an early
implementation of this approach, the cells were given the
ability to store up to five sets of data (Hong, Shneier, Hart­
ley, & Rosenfeld, 1983). In any case, when a cell's ca­
pacity is exceeded, the cell no longer stores complete in­
formation about all the curves it sees; it stores only
statistics (including information about bimodality, anoma­
lies, etc.).

In general, for each stored curve (or for the ensemble
of curves, if there are too many to be stored individu­
ally), the cell should record not only endpoint data, but
also various global properties, such as average gray level
(or the averages ofthe adjacent gray levels on each side,
in the case of an edge), arc length, wiggliness (i.e., total
absolute curvature), and so forth. These properties can
be estimated by combining property values obtained from
the cells on the level below. It would also be useful to
fit straight lines (or possibly polynomials of degree higher
than 1) to the curves; this, too, can be done recursively,
based on the fits computed on the level below. As in the
previous section, the fit error measure should be divided
by the number of points being fitted. This reflects the in­
tuitive fact that the fit to a long piece of wiggly straight
line is better than the fit to a short piece.

This recursive fitting process can also be used to de­
tect corners, or angles, on a curve (Hartley & Rosenfeld,
1985). A cell detects an angle if two of its children con­
tain good straight line fits that have different slopes and
that approximately meet at a common endpoint. The closer
the fits, the smaller the slope difference need be for an
angle to be detected.

LAW OF CLOSURE: DETECTING
BLOBS AND RIBBONS

Another pyramid-based approach to extracting regions
from an image is based on detecting parts of the image
that are surrounded by edges or curves. This approach
can be used to extract ribbon-like as well as blob-like (i.e.,
compact) regions.

One begins by detecting edges or curves in the input
image and inputting the resulting set of feature points to
the base of the pyramid. One then passes this informa­
tion up through the pyramid, condensing and summariz­
ing it at each stage (e.g., by straight line fitting, as in the
preceding section). The cells at each level also examine
their neighboring cells (e.g., in a 5 x 5 neighborhood) and
check whether they are locally (nearly) surrounded by

lines that run approximately broadside to them, and in
the case of edge data, that have consistent contrasts (i.e.,
their dark sides all face inward or all face outward). If
a cell discovers that these conditions are satisfied, it has
detected a blob.

An early implementation of this blob-detection scheme
is described by Hong and Shneier (1984). A nonpyramid
implementation, which detected blobs by searching out
from each pixel in a set of directions, up to a distance
equal to the maximum expected blob radius, is described
by Minor and Sklansky (1981). The pyramid approach
has the advantage that it requires only local searches; blobs
of any size will become locally detectable at some level
of the pyramid.

The edge-based approach to blob detection may bemore
perceptually plausible than the function fitting scheme
described earlier. In the absence of edges, a region may
look uniformly bright even when its brightness varies sub­
stantially from one side to another, due to shading. This
suggests that the visual system cannot easily determine
the slope, for example, of a linear fit to the brightness
data. Conversely, suppose a region is surrounded by
pseudoedges at which there is a local brightness change,
but the change smooths out away from the edges in either
direction, so that the regions inside and outside the edges
actually have the same uniform brightness, except near
the edges. In this situation, the region on the dark side
of the edges looks uniformly darker than the region on
the bright side, even though the brightnesses of the regions
are actually the same. This phenomenon is known as the
Craik-O'Brien-Cornsweet illusion (Cornsweet, 1970). It
suggests that the visual system assigns a brightness to a
region based on the local brightnesses along the edges sur­
rounding the region, rather than by fitting a function
globally to all of the gray levels in the region.

Hong and Shneier (1984) described a relatively com­
plicated scheme for extracting and "coloring in" a blob
detected using the edge-based approach. Another way of
defining the precise boundaries of the blob is to project
its surrounding edges downward through the pyramid, one
level at a time, and at each level to locally adjust them
so as to maximize the gray level gradient magnitude along
the edges. However, if this simple method of edge adjust­
ment is used, noise at the lower levels of the pyramid will
cause the edges to break up, since they are not constrained
to becontinuous (Rosenfeld, Thurston, & Lee, 1972). Bet­
ter results are obtained if one starts with a connected
region (the union of the pixels surrounded by the edges),
projects it downward through the pyramid, and at each
step, adjusts its border by adjoining or deleting pixels in
such a way as to maximize the contrast around the border.
This method constrains the border to remain continuous
and yields good region delineations, even for noisy im­
ages (Baugher & Rosenfeld, 1986).

An edge- or curve-based pyramid technique can also
be used to extract ribbon-like regions from an image.
Here, too, one begins by inputting the feature (edge or
curve) points to the base of the pyramid, and by perform-



ing repeated, for example, straight line fitting at succes­
sivelyhigherlevels. The cellsat each level alsoexamine
their neighborhoods (e.g., 5x5) and look for anti­
symmetric pairs of edges located on opposite sides of them
(i.e., pairsof edges suchthat the givencell is on the dark
sideof bothedges,or on the lightsideof both). In effect,
thisprocess detects smoothed localsymmetries (Brady &
Asada, 1984) at each level of the pyramid. Whena cell
detects sucha configuration, it storesthe estimated posi­
tionandorientation of the localaxisof symmetry, as well
as the distance and anglebetween the pair of edges. The
latter information defines a linear fit to the width func­
tion defined by the pair of edges. Cells on higher levels
can thenlinkpiecesof symmetry axisintosmooth curves
along which the width function varies smoothly, by a
straightforward generalization of the methods described
in the preceding section. (Global functions, such as
straight lines, canalsobe fitted to theaxesandto thewidth
function, if desired.) Such a smooth curvedefines a gener­
alizedribbon. Bystoring linksbetween theaxissegments
and their associated edge segments, the edgesof the rib­
bon can be found and projected downward through the
pyramid so that the ribboncan be extractedfromthe im­
age, using the methods described in the previous
paragraph.

EXTENSIONS TO THREE-DIMENSIONAL
AND TIME-VARYING SCENES

In thepreceding sections, I have, for simplicity, treated
the image data two-dimensionally, without reference to
the fact that the underlying scene may be three­
dimensional or that the imagemay be part of a time se­
quence. However, theapproach can alsobeapplied to in­
fer three-dimensional scene information from an image
and to analyze optical flow in a sequence of images.

Global nonlinear variations in thegraylevelof a region
may be an indication that the region is the image of a
curved surface. Some work has been done using global
function fitting to the image gray levels to detectspecific
typesof surfaces in a scene (Bolle & Cooper, 1984). This
type of computation could be efficiently implemented
using pyramid techniques, suchas thosedescribed earlier.
Similarly, global variations (linear or nonlinear) in the
sizesand spacings of textureelements over a region can
serve as an indication that the region is the image of a
slanted or curved surface. Thus, the function fitting
methods described earlier in this papercan serve as aids
in the computation of surfaceshapefromshading or tex­
ture, or from both.

The function fitting methods can be applied to vector­
valued as well as to scalar-valued data; for example, they
can be applied to color data. If one is given a time se­
quence of images, andcan estimate a set of displacement
vectors relating points in one imageto those in the next,
onecan alsoapply the function fitting approach to detect
global patterns in the resulting (possibly sparse) optical
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flow field. This approach has been successfully used to
segment noisy synthetic optical flow fields into regions
representing differenttypesof motions, including trans­
lation, planarrotation, and scalechange (Hartley, 1985).
It should alsobe applicable to realdata.Theglobal group­
ingof pixelshaving common velocity vectorswascalled
the law of common fate by the Gestaltists.

It should bepointed out, in conclusion, thatthepyramid
techniques described in thispaperare quite different from
the ways in which pyramids havebeen usedby other in­
vestigators (see, e.g., Rosenfeld, 1984). Pyramids are
oftenusedto generate a set of bandpass-filtered, sampled
versions of an image. At the Center for Automation
Research, the use of pyramids is quitedifferent; theyare
employed for model fitting rather than for filtering.

SUMMARY

The concepts outlined in this paper constitute a basic
contribution to the methodology of vision systems design.
Thisapproach makes use of thepyramid cellular architec­
ture to rapidly compute global information aboutan im­
age in a recursive fashion, but its main contribution lies
in the nature of the computations that are performed,
which involve model fitting ratherthanfiltering. Thefol­
lowing are someof the keyaspects of the approach: (1) It
provides a unified method of detecting various types of
global patterns by bottom-up recursive fitting of low-order
polynomial models to the data. (2) It provides a method
of delineating the detected patterns by top-down recur­
siverefinement of the fitted data. (3) It allows for the de­
tection of more complex types of global patternsby ap­
plying local feature detection processes to the fitted
models. (4) The methods canbe applied to graylevel sur­
faces, to edges or curves, or to vector-valued data such
asdisparity or optical flow fields. Thetransition fromlocal
to global-from pixel arrays to descriptive data
structures-has traditionally been a major point of dis­
continuity in vision systems. The approach described in
thispaperoffersthe promise of making thisdiscontinuity
much less abrupt.
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NOTES

1. Many variations of this simple root node selectioncriterion can
be formulated, basedon differentassumptions about the distribution of
local property values in the image.

2. Overallmeasures of the goodcontinuation between twocurveends
can be definedin terms of the total bending energy of the minimum­
energy curve joining the ends.


