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Abstract

Semantic segmentation of surgical instruments plays a criti-
cal role in computer-assisted surgery. However, specular re-
flection and scale variation of instruments are likely to occur
in the surgical environment, undesirably altering visual fea-
tures of instruments, such as color and shape. These issues
make semantic segmentation of surgical instruments more
challenging. In this paper, a novel network, Pyramid Atten-
tion Aggregation Network, is proposed to aggregate multi-
scale attentive features for surgical instruments. It contains
two critical modules: Double Attention Module and Pyra-
mid Upsampling Module. Specifically, the Double Attention
Module includes two attention blocks (i.e., position attention
block and channel attention block), which model semantic de-
pendencies between positions and channels by capturing joint
semantic information and global contexts, respectively. The
attentive features generated by the Double Attention Mod-
ule can distinguish target regions, contributing to solving the
specular reflection issue. Moreover, the Pyramid Upsampling
Module extracts local details and global contexts by aggre-
gating multi-scale attentive features. It learns the shape and
size features of surgical instruments in different receptive
fields and thus addresses the scale variation issue. The pro-
posed network achieves state-of-the-art performance on var-
ious datasets. It achieves a new record of 97.10% mean IOU
on Cata7. Besides, it comes first in the MICCAI EndoVis
Challenge 2017 with 9.90% increase on mean IOU.

Introduction
In recent years, significant progress has been witnessed in
minimally invasive robotic surgery and computer-assisted
microsurgery. Semantic segmentation of surgical instru-
ments, whose goal is to segment instruments and identify
corresponding categories, plays an essential role in assisted
surgery (Sarikaya, Corso, and Guru 2017). By segment-
ing the surgical instruments and estimating their poses, the
navigation and control for surgical robots can be assisted.
Also, this technology can give real-time warnings during
surgery and reduce the risk of surgery. Furthermore, seman-
tic segmentation of surgical instruments offers numerous au-
tomated solutions for post-surgery work, such as objective
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Figure 1: Difficulties in semantic segmentation for surgi-
cal instruments. (a) Specular Reflection: each column is the
same instrument but under different illustrations. As we can
see, under highlights, its appearance is white otherwise dark.
(b) Scale Variation: shape and size of the same instrument
are different due to poses and views.

assessment of surgical skills, surgical report generation, and
surgical workflow optimization (Sarikaya, Corso, and Guru
2017). These applications can improve the safety of surgery
and reduce the workload of doctors, which is significant for
clinical work.

However, semantic segmentation of surgical instruments
is very different from common segmentation tasks and faces
more difficulties. On the one hand, as shown in Figure 1(a),
surgery usually requires intense lighting conditions, which
leads to specular reflection and affects the appearance of
the surgical instruments. For example, the surgical instru-
ments are more white when illuminated. On the other hand,
since the surgical instrument is constantly moving during the
surgery, its size and shape are always changing, which is
shown in Figure 1(b). These two problems make the seman-
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tic segmentation of surgical instruments more challenging.

Recently, many methods have been proposed for semantic
segmentation of surgical instruments. A hybrid CNN-RNN
method (Attia et al. 2017) introduced Recurrent Neural Net-
work to capture the global context and expand the receptive
field, improving the feature representation. MF-TAPNet (Jin
et al. 2019) utilized the inherent temporal clues from the in-
strument motion to improve segmentation results. It inferred
a prior indicating the instrument’s location and shape via
optical flow. Another work (Qin et al. 2019) fused the pre-
diction of Convolutional Neural Network and the kinematic
pose information to boost segmentation accuracy. However,
those works mainly focus on fusing different forms of infor-
mation for higher segmentation accuracy while fails to ex-
plicitly deal with the specular reflection and scale variation,
limiting their performances.

To address the issues mentioned above, we rethink the
changes in visual features brought by these two challenges.
Specular reflection affects visual features such as color and
texture of surgical instruments. Thus, it is difficult for the
network to identify surgical instruments based on these fea-
tures directly. The network needs to infer the semantic fea-
tures of these regions from neighboring pixels based on
global contexts and semantic dependencies. Besides, the
scale variation of surgical instruments affects visual features
such as shape and size. Aggregation for multi-scale features
is conducive to capturing the shape and size features of sur-
gical instruments at different scales. To this end, the Pyra-
mid Attention Aggregation Network (PAANet) is proposed
to learn discriminative features for surgical instruments. The
proposed PAANet contains the Double Attention Module
(DAM) to model semantic dependencies between positions
and channels and the Pyramid Upsampling Module (PUM)
to aggregate multi-scale attentive features.

Specifically, the Double Attention Module consists of po-
sition attention block and channel attention block. The po-
sition attention block captures joint semantic information
to model semantic dependencies between positions. The
channel attention block squeezes global information into a
channel-attention vector, which encodes the semantic de-
pendencies between channels. Their outputs are fused and
calibrated to generate attentive features. The attentive fea-
tures can boost the distinction between semantic features
and emphasize the target regions, contributing to addressing
specular reflection. Besides, the Double Attention Module
takes very little computational cost. Thus, it can be easily
inserted into other models to improve their performance.

The Pyramid Upsampling Module aggregates multi-scale
attentive features by performing pyramid upsampling and
concatenation. It captures local details from large-scale fea-
ture maps while captures global contexts from small-scale
feature maps, improving the feature representation. In this
way, the network can learn the shape and size features of
surgical instruments at different scales, helping to address
the scale variation issue. Besides, attentive features contain
rich semantic information. Due to the upsampling and skip
connection, the semantic information contained in attentive
feature maps at different scales is distinguishing. The aggre-
gation of multi-scale attentive features can integrate multi-

scale semantic information to supplement the information
lost during the delivery process, making the final predictions
more reliable.

The contributions of this work can be concluded as fol-
lows:

• The Double Attention Module captures semantic depen-
dencies between positions and channels to generate atten-
tive features. The attentive features can distinguish target
regions, contributing to solving the specular reflection is-
sue.

• The Pyramid Upsampling Module captures local details
and global contexts by aggregating multi-scale attentive
features. Also, it integrates multi-scale semantic informa-
tion to make predictions more reliable.

• The proposed network achieves state-of-the-art perfor-
mance on various datasets. It achieves a new record of
97.10% mean IOU on Cata7 and comes first in the MIC-
CAI EndoVis Challenge 2017 with 9.90% increase on
mean IOU.

Related Work

Semantic Segmentation of Surgical Instrument

Recently, Fully Convolutional Network (FCN) is widely
used in semantic segmentation of surgical instruments due
to their excellent performance on feature extraction. Some
work modified the architecture of the FCN to improve ac-
curacy (Laina et al. 2017; Shvets et al. 2018). For example,
ToolNet (Garcı́a-Peraza-Herrera et al. 2017) modified FCN-
8s by adding feature maps at different scales in a cascaded
fashion to acquire refined edge of surgical instruments. An-
other way is to introduce other methods such as optical flow
and recurrent neural network (RNN) to improve the perfor-
mance of FCN. For example, a work (Garcı́a-Peraza-Herrera
et al. 2016) applied optical flow to reduce computational
complexity and improve the performance of the network.
The hybrid CNN-RNN method (Attia et al. 2017) introduced
Recurrent Neural Network to capture the global context and
expand the receptive field, improving the feature representa-
tion. Drawing on this idea, the attention mechanism is intro-
duced to capture global contexts and semantic dependencies,
addressing the specular reflection issue.

Attention Used in Semantic Segmentation

The attention model focuses on key regions by mimicking
human attention mechanisms. Recently, it has been widely
used in semantic segmentation tasks. Attention mechanisms
include the position attention mechanism (Wang et al. 2018;
Chen et al. 2018b; Cao et al. 2019) and the channel atten-
tion mechanism (Hu, Shen, and Sun 2018; Li et al. 2018),
which model semantic dependencies between positions and
channels, respectively. Non-local block (Wang et al. 2018)
captured long-range dependencies in space without being
limited by distance, which contributes to scene understand-
ing. The Squeeze-and-Excitation block (Hu, Shen, and Sun
2018) captured global information to model semantic depen-
dencies between channels. To capture semantic information
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Figure 2: The architecture of Pyramid Attention Aggregation Network. It adopts an encoder-decoder architecture. ResNet-34
pre-trained on the ImageNet is adopted as an encoder. The decoder consists of Double Attention Module, Pyramid Upsampling
Module, and Deconvolution. The output of the PAANet is the same size as the original image.

between channels and positions simultaneously, some mod-
els fused these two attention mechanisms, such as Dual At-
tention Network (Fu et al. 2018) and Progressive Attention
Guidance Module (Zhang et al. 2018). These models show
that the attention mechanism contributes to improving the
feature representation.

Aggregation of Multi-Scale Features

Several approaches aggregate multi-scale features to cap-
ture different scale objects. PSPNet (Zhao et al. 2017)
used spatial pyramid pooling to aggregate multi-scale fea-
tures. Atrous spatial pyramid pooling(ASPP) utilized di-
lated convolution with different rates to generate feature
maps with different receptive fields (Chen et al. 2018a;
Chen et al. 2017). DenseASPP (Yang et al. 2018) introduced
dense connections in ASPP to cover a larger scale range and
improve information flow. Based on these efforts, we can
see that the aggregation of multi-scale features contributes
to addressing the scale variation issue.

Pyramid Attention Aggregation Network

In this section, the architecture of the Pyramid Attention Ag-
gregation Network is first illustrated in Figure 2. Then, the
principle of the Double Attention Module is illustrated in de-
tail. Finally, how to aggregate multi-scale attentive features
by Pyramid Upsampling Module is described.

Double Attention Module

Double Attention Module contains two attention mecha-
nisms to model semantic dependencies between positions
and channels, whose architecture is depicted in Figure 3.
It consists of position attention block and channel attention
block, which models semantic dependencies between posi-
tions and channels, respectively. Their outputs are fused and
calibrated to improve the feature representation.

Position Attention Block In semantic segmentation task,
we hope that the network only focuses on the target region.
However, due to the specular reflection issue, it is difficult
for the network to locate surgical instruments. To address

this problem, the position attention block models seman-
tic dependencies between positions to boost the distinction
of semantic features and emphasize the target region. It is
based on a variant of low-rank bilinear pooling to aggre-
gate joint semantic information into a position-attention map
with only one channel. The position-attention map encodes
the semantic dependencies between positions to boost the
distinction of semantic features.

Bilinear models are often used to capture attentive fea-
tures (Chen et al. 2018b; Kim, Jun, and Zhang 2018). These
previous work (Kim et al. 2016; Yu et al. 2017) propose
low-rank bilinear pooling to approximate bilinear pooling by
matrix decomposition and Hadamard product, which signif-
icantly reduces computational cost. Also, it can learn joint
feature representation, modeling complex semantic depen-
dencies. It is illustrated in Eq.(1).

z = PT (UTx⊗ V T y) + b (1)

where ⊗ refers to Hadamard product. x ∈ RN and y ∈ RM

represent the input vector. z ∈ RC represents the output
vector. U ∈ RN×k and V ∈ RM×k are linear projections.
P ∈ Rk×C is used to control the length of the output. b ∈
RC is the bias vector.

In this paper, a variant of low-rank bilinear pooling is de-
veloped to generate a position-attention map, which is de-
scribed in Eq.(2). 1×1 convolutions are used for linear pro-
jection to replace matrices U and V . Non-linear activations
contribute to improving the feature representation of the net-
work (Kim et al. 2016). Therefore, ReLU is used to add non-
linear activations. Softmax is adopted to normalize the fea-
ture map. Sum pooling is adopted to adjust the dimension of
output, which corresponds to the matrix P in Eq.(1). Finally,
the position-attention map is transformed by 1×1 convolu-
tion.

The architecture of position attention block is shown in
Figure 3. To reduce computational cost and aggregate infor-
mation across channels, the dimension of the input feature
map is reduced to C/r by 1×1 convolution, where C is the
dimension of input. r can be selected according to the di-
mension of input. It is set to 2 in this work. x, y ∈ RC×W×H
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Figure 3: The architecture of the Double Attention Module. It consists of two attention blocks: position attention block and
channel attention block. The outputs of these two blocks are fused to generate the spatial attention map. Recalibration block is
applied to calibrate the spatial attention map and further extract semantic dependencies. ⊗ refers to the Hadamard product.

are the input feature maps, where H and W are the height of
and the width of the feature map respectively. In this paper,
we set x = y. Ap ∈ RW×H is the position-attention map.
U and V represent 1×1 convolution.

Ap = g[δ(Ux)⊗ f [δ(V y)]] + b (2)

where f denotes softmax function and g denotes sum pool-
ing. δ refers to ReLU function. Softmax is illustrated in fol-
lowing:

Sw,h
k =

eα
w,h

k

∑C/r
k=1

eα
w,h

k

(3)

where α refers to the input feature map. S represents the
output of softmax. w = 1, 2, ...,W and h = 1, 2, ..., H .
Sum pooling is described as follows:

Pw,h =
∑C/r

k=1

eβ
w,h

k (4)

where P refers to the output of sum pooling. P ∈ RW×H .
Due to the use of sum pooling and Hadamard product, the
computational cost of position attention block is very low.

Channel Attention Block Different channels correspond
to the various semantic response. Surgical instruments and
human tissues are often emphasized in different channels.
By utilizing semantic dependencies between channels, we
can emphasize specific semantic features and suppressing
useless ones. Besides, since the receptive field of the convo-
lution operation is local, the network cannot capture global
semantic features. This local feature representation leads to
poor semantic understanding. Thus, channel attention block
is designed to model semantic dependencies between chan-
nels and capture the global context. It is based on the global
average pooling.

The global average pooling aggregates global information
into an attentive vector that encodes the semantic dependen-
cies between the channels. Each element in the attention vec-
tor contains global information, contributing to expending
the receptive field. The global average pooling is described

in Eq.(5).

ak = ϕ(xk) =
1

W ×H

H∑

i=1

W∑

j=1

xk(i, j) (5)

where ϕ refers to the global average pooling. xk ∈
RW×H are the input feature maps. k = 1, 2, ..., C. Ac =
[a1, a2, ..., aC ] is the channel-attention vector. To further
capture the semantic relationship between channels, the
channel-attention vector is transformed by two 1×1 convo-
lutions with batch normalization and softmax.

Fusion of Attentive Features Existing work (Fu et al.
2018; Zhang et al. 2018) performs the position attention
mechanism and the channel attention mechanism separately.
Different from them, we fuse position-attention map and
channel-attention vector before calibration. In this way, we
can effectively use attentive information and avoid intro-
ducing interference. Position-attention map and channel-
attention vector are merged into a spatial attention map As

in the following way:

As(k,w, h) = Ap(w, h)×Ac(k) (6)

where k = 1, 2, ..., C, w = 1, 2, ...,W and h = 1, 2, ..., H .

Recalibration To further extract semantic dependencies
and improve the feature representation, the spatial atten-
tion map is calibrated. The calibration consists of two steps,
including semantic information calibration and nonlinear
transformation. First, the semantic information in the origi-
nal feature map is used to calibrate the spatial attention map,
which is shown in Eq.(7).

Âs = As ⊗ δ(θx) (7)

where θ denotes the 1×1 convolution. x is the input fea-
ture map. Then, to further capture the dependencies between
spatial pixels, 1×1 convolution with ReLU is performed to
transform the spatial attention map. In the experiment, we
found that recalibration is crucial. It can improve the perfor-
mance of the Double Attention Module.
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Figure 4: Pyramid Upsampling Module.

Advantages The proposed Double Attention Module is
based on a variant of low-rank bilinear pooling and global
average pooling to capture complex semantic dependencies.
It can significantly improve segmentation accuracy while
taking up very little computational cost. This is more ef-
ficient than the classic convolution operation. Moreover, it
can be plugged into other convolutional networks directly to
improve their performance.

Pyramid Upsampling Module

Since the surgical instrument is constantly moving during
the surgery, its scale and shape are always changing, mak-
ing segmentation more challenging. To address this issue,
the Pyramid Upsampling Module is proposed to aggregate
multi-scale attentive features. It captures local details from
large-scale feature maps while captures global contexts from
small-scale feature maps, improving the feature representa-
tion. Furthermore, attentive features contain rich semantic
information. Due to the upsampling and skip connection,
the semantic information contained in attentive feature maps
at different scales is distinguishing. Aggregating multi-scale
attentive features can integrate multi-scale semantic infor-
mation to supplement the information lost during the de-
livery process, making the final predictions more reliable.
The architecture of the Pyramid Upsampling Module is il-
lustrated in Figure 4.

Specifically, the Pyramid Upsampling Module performs
pyramid upsampling and concatenation to aggregates multi-
scale attentive features. To reduce the computational cost
and aggregate semantic information across channels, 1×1
convolution is used to reduce the dimension of feature maps
to N/4. N refers to the dimension of the maximum feature
map. Then, small-scale feature maps are directly upsampled
to the same size as the input image via bilinear interpolation.
Finally, these feature maps are concatenated as pyramid fea-
tures. Due to containing rich semantic information at differ-
ent scales, pyramid features are conducive to addressing the
scale variation issue. The number of scales and the dimen-
sion of small-scale features can be modified. The choice of

these parameters depends on the architecture of the network.
Pyramid Upsampling Module is described in Eq.(8). The

input is attentive feature maps generated by Double Atten-
tion Module. xk represents the k-th layer attentive feature
map.

x = H([f2k(x0), f2k−1(x1), ..., f21(xk−1)]) (8)

where f2k denotes the 1×1 convolution and the 2k× upsam-
pling, shown in Figure 4. H(·) refers to concatenation. In
this way, the Pyramid Upsampling Module aggregates multi-
scale features and integrates multi-scale semantic informa-
tion.

Experiments And Results

The proposed PAANet is evaluated on the Cata7 dataset and
the MICCAI EndoVis 2017 dataset. It achieves a new record
of 97.10% mIOU on Cata7 and comes first in the MICCAI
EndoVis Challenge 2017 with 9.90% increase on mIOU.

Dataset

Cata7 Cata7 is a cataract surgical instrument dataset for
semantic segmentation. It contains 2500 frames with a reso-
lution of 1920×1080, which contains 1800 frames for train-
ing and 700 frames for the test. These images are split from
7 cataract surgery videos. There are 10 types of surgical in-
struments in Cata7.

MICCAI EndoVis 2017 Dataset EndoVis 2017 is from
the MICCAI Endovis Challenge 2017 (Allan et al. 2019).
This dataset is acquired from a Vinci Xi robot. It contains
3000 images with a resolution of 1280×1024, including
1800 images for training and 1200 images for the test. There
are 7 types of surgical instruments in EndoVis 2017.

Loss Function

To solve the class imbalance problem, we use a hybrid loss
that consists of cross entropy and Jaccard (Iglovikov and
Shvets 2018). As shown in Eq.(9), it merges cross entropy
and Jaccard in a new way. Cross entropy is often used for se-
mantic segmentation. However, due to the class imbalance,
pixels will be misclassified into classes which contain more
samples. Jaccard estimates the similarity between the pre-
diction and the ground truth. It is not affected by the class
imbalance issue. This hybrid loss retains this property of
Jaccard, contributing to solving the class imbalance issue.

Loss = E − α log(J), α ∈ [0, 1] (9)

where E refers to cross entropy and J refers to Jaccard. α is
a weight coefficient that balances cross entropy and Jaccard.
After many experiments, α is set to 0.3 because the loss has
the best performance at this time.

Experimental Details

Our network is implemented in PyTorch. Adam is used as
an optimizer. The batch size is 8. To prevent overfitting, a
strategy of changing learning rates is used in training. The
initial learning rate is multiplied by 0.8 every 30 iterations.
The initial learning rate is 6× 10−6 on Cata7 and 3× 10−5
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on EndoVis 2017. Due to limited computing resources, each
image in Cata7 is resized to 960×544 pixels and the image
in Endovis 2017 is resized to 640×512 pixels.

Transfer learning is adopted in our work. ResNet-34 used
in the encoder is pre-trained on the ImageNet, which speeds
up network convergence and improves segmentation ac-
curacy. Besides, data augmentation is applied to improve
sample diversity. Random rotation, shift, and flip are per-
formed on original samples to generate new samples. The
Intersection-Over-Union(IOU) and Dice are selected as the
evaluation metric.

Results on Cata7

Ablation Study for Double Attention Module Double
Attention Module (DAM) captures semantic dependencies
between positions and channels to generate attentive fea-
tures, improving the feature representation. To verify its per-
formance, ablation experiments are performed. The experi-
mental results are shown in Table 1 and Table 2.

In Table 1, PAANet without DAM is used as the base net-
work. The base network achieves 98.11% mean Dice and
95.81% mean IOU. By applying DAM, the network achieves
98.82% mean Dice and 97.10% mean IOU. Mean IOU in-
creases by 1.29% by using the DAM. In Table 2, PAANet
without PUM and DAM is used as the base network, which
achieves 94.63% mean Dice and 91.31% mean IOU. By
employing the DAM, the mean Dice and IOU increase to
98.09% and 95.75%, respectively. These results show that
the DAM can significantly improve segmentation accuracy.

Table 1: Ablation study for DAM on Cata7. DAM consists of
position attention block (PAB) and channel attention block
(CAB).

Method PAB CAB mDice mIOU Param. FLOPs

BaseNet1 98.11 95.81 21.83M 55.14G
BaseNet1 � 98.21 95.99 22.17M 55.97G
BaseNet1 � 98.34 96.13 22.09M 56.38G
BaseNet1 � � 98.82 97.10 22.26M 56.39G

The position attention block (PAB) and the channel at-
tention block (CAB) are evaluated separately. As shown in
Table 1, applying PAB individually achieves 96.13% mean
IOU, which outperforms the base network by 0.32%. Mean-
while, employing CAB individually achieves 95.99% mean
IOU, which outperforms the base network by 0.18%. These
results show that both PAB and CAB help to improve seg-
mentation accuracy. Furthermore, the performance of the
DAM is better than that of PAB and CAB. This indicates that
the Double Attention Module can capture more discrimina-
tive attentive features than a single attention module.

The Double Attention Module has few parameters and
it takes up few computational costs. Three DAMs are in-
troduced in PAANet. As shown in Table 1, the number of
parameters only increases by 0.43 M. Each DAM has only
0.143 M parameters. Furthermore, by employing the DAM,
FLOPs only increases by 1.25G, which only accounts for
2.27% of the total FLOPs.

To give an intuitive display, the results are visualized in
Figure 5. The red line marks the contrasted region. In the

Figure 5: Visualization results of Double Attention Module
(DAM) on Cata7. The red line marks the contrast region.

Table 2: Ablation study for PUM on Cata7.The BaseNet2
represents PAANet without PUM and DAM.

Method DAM PUM mDice mIOU Param. FLOPs

BaseNet2 94.63 91.31 21.80M 47.35G
BaseNet2 � 98.11 95.81 21.83M 55.14G

BaseNet2 � 98.09 95.75 22.23M 48.60G
BaseNet2 � � 98.82 97.10 22.26M 56.39G

results without DAM, some surgical instruments are not
entirely segmented due to the class imbalance issue. Be-
sides, there is a misclassification in the second image, which
caused by specular reflection. Meanwhile, the results with
the DAM are the same as the ground truth. Since the Double
Attention Module captures global contexts and semantic de-
pendencies to boost the discrimination of semantic features,
it can solve the above problems very well and help the net-
work focus on key regions. By comparison, the effectiveness
of the DAM is confirmed.

Ablation Study for Pyramid Upsampling Module The
Pyramid Upsampling Module (PUM) aggregates multi-scale
attentive features and integrates multi-scale semantic infor-
mation. A serious of experiments are set up to confirm its
effectiveness. The results are illustrated in Table 2.

PAANet without PUM and DAM is used as the base
network. The network applying PUM achieves 95.81%
mean IOU, which outperforms the base network by 4.50%
mean IOU. When using both DAM and PUM, the network
achieves 97.10% mean IOU. The mean IOU increases by
1.35% due to the use of PUM. Furthermore, PUM only
adds 0.03 M parameters in PAANet, which only accounts
for 0.13% of the total parameter. These results show that
PUM can significantly improve segmentation accuracy with-
out adding a mass of parameters.

Table 3: Comparison with state-of-the-art methods on Cata7.

Method mDice mIOU

U-Net (Ronneberger, Fischer, and Brox 2015) 86.83 78.21
RefineNet (Lin et al. 2017) 93.53 88.41

LinkNet (Chaurasia and Culurciello 2017) 94.63 91.31
TernausNet (Iglovikov and Shvets 2018) 96.40 92.98

PAANet(Ours) 98.82 97.10
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Figure 6: Visualization of attentive features and segmentation results. For each row, we first show the original image and two
position-attention maps at different scales. To demonstrate the effectiveness of the channel attention block, two channels of
attentive feature maps are visualized. Finally, the segmentation results and the ground truth are provided.

Table 4: Segmentation results on Endovis 2017 dataset. PAANet outperforms existing methods and achieves 64.10% mean IOU.
NCT, UB, and UA are the university abbreviation of the participating team (Allan et al. 2019). Since each dataset contains a
different number of samples, they are given a weight corresponding to the number of samples when calculating the mean IOU.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 mIOU

TernausNet 0.177 0.766 0.611 0.871 0.649 0.593 0.305 0.833 0.357 0.609 0.542
ToolNet 0.073 0.481 0.496 0.204 0.301 0.246 0.071 0.109 0.272 0.583 0.337
SegNet 0.138 0.013 0.537 0.223 0.017 0.462 0.102 0.028 0.315 0.791 0.371
NCT 0.056 0.499 0.926 0.551 0.442 0.109 0.393 0.441 0.247 0.552 0.409
UB 0.111 0.722 0.864 0.680 0.443 0.371 0.416 0.384 0.106 0.709 0.453
UA 0.068 0.244 0.765 0.677 0.001 0.400 0.000 0.357 0.040 0.715 0.346

Ours 0.106 0.819 0.923 0.945 0.836 0.625 0.435 0.869 0.318 0.858 0.641

Comparison with state-of-the-art To further verify the
performance of PAANet, it is compared with state-of-the-art
methods. As shown in Table 3, PAANet achieves 98.82%
mean Dice and 97.10% mean IOU, outperforming other
methods by a large margin. Among other methods, Ter-
nausNet has the best performance, 96.40% mean Dice and
92.98% mean IOU. PAANet exceeds TernausNet by 2.42%
on mean Dice and 4.12% on mean IOU, which is a signif-
icant gap. Besides, U-Net (Ronneberger, Fischer, and Brox
2015), RefineNet (Lin et al. 2017), and LinkNet (Chaurasia
and Culurciello 2017) are also evaluated on Cata7. LinkNet
and RefineNet use ResNet-34 and ResNet-50 as encoders,
respectively. Their performance is much poorer than that of
PAANet. These results show that PAANet achieves state-of-
the-art performance on Cata7.

Visualization of Attentive Feature Map Double Atten-
tion Module consists of the position attention block (PAB)
and the channel attention block (CAB). PAB encodes se-
mantic relationships into the position-attention map, which
only has one channel. CAB aggregates global information
into the channel-attention vector. To further verify their per-
formance, position-attention maps and feature maps are vi-
sualized in Figure 6.

Two position-attention maps at different scales are se-
lected for visualization, which is marked as #1 and #2.
The regions of the surgical instrument are highlighted in
position-attention maps, showing that PAB can effectively
infer the semantic information of target regions through se-

mantic dependencies between positions. Also, two channels
of attentive feature maps are visualized to demonstrate the
effect of the channel attention block. As shown in Figure 6,
the regions of the surgical instrument are highlighted in the
attentive feature map. These results indicate that channel
attention can effectively utilize semantic dependencies be-
tween channels to emphasize specific channels, making the
network focus on the target semantic information.

Results on EndoVis 2017

To verify the generalization of our proposed network, it is
also evaluated on the Endovis 2017 dataset (Allan et al.
2019). The test set consists of 10 video sequences. Dataset 1-
8 contain 75 images, respectively. Dataset 9 and 10 contain
300 images, respectively. Each sequence contains specific
surgical instruments. The results are reported in Table 4.
TernausNet (Iglovikov and Shvets 2018), ToolNet (Garcı́a-
Peraza-Herrera et al. 2017) and SegNet (Badrinarayanan,
Kendall, and Cipolla 2017) are evaluated on EndoVis 2017.
The results of other methods are all from EndoVis challenge
2017 (Allan et al. 2019).

Results show that our method achieves 64.10% mean
IOU, outperforming existing methods by a large margin.
The second-ranking method is TernausNet which achieves
54.20% mean IOU. Compared with TernausNet, our net-
work has increased by 9.90% on mean IOU, which is a sig-
nificant margin. Besides, the segmentation results of each
video sequence are shown in Table 4. Our method achieves
the best results in 7 video sequences. On the other three
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Figure 7: Visualization for segmentation results of PAANet
on EndoVis 2017. From top to bottom: image, prediction
and ground truth.

video sequences, the performance of the proposed network
is also at the forefront. These results show that our network
achieves state-of-the-art performance on this dataset.

To give a more intuitive display, the segmentation results
of PAANet are visualized in Figure 7. Despite the dramatic
changes in the scale and shape of surgical instruments, the
proposed network can still segment them correctly. Predic-
tions are the same as the ground truth, proving the excellent
performance of the proposed network.

Conclusion

In this paper, we propose the Pyramid Attention Aggrega-
tion Network to address specular reflection and scale vari-
ation issues, which includes two critical modules: the Dou-
ble Attention Module and the Pyramid Upsampling Module.
Ablation experiments show that the Double Attention Mod-
ule can improve segmentation accuracy by modeling seman-
tic dependencies. Experiments also prove that the Pyramid
Upsampling Module can significantly improve segmentation
accuracy with very few parameters. Besides, the proposed
network achieves state-of-the-art performance on Cata7 and
EndoVis 2017.
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