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Abstract—We describe flexible schemes to explore the trade- using PlanetLab machines, where users often have storage
offs between storage space and access efficiency in reliablequotas. Shrinking the effective storage usagd t® or even
data storage systems. Aiming at this goal, two fundamentally |ogs (as the reliability of individual PlanetLab machines i

different classes of codes are introduced under the same namingI than that in dat t hiah licati tiofi
umbrella — Pyramid Codes. The basic Pyramid Codes are simply ower than that In data centers, higher replication ratiofisn

derived from any existing codes (preferably MDS codes [18]), ah required) will not appear as an attractive solution.
thus all existing work on optimizing encoding/decoding directly Naturally, many Erasure Resilient CodindERC) based

apply. The generalized Pyramid Codes are radically advanced schemes (e.g. Oceanstore [16]) are proposed to reduce the
new codes, which can further improve reliability and/or access gigrage overhead. In a typical ERC scheme, a certain mathe-
efficiency upon the basic Pyramid Codes. Moreover, we define . .

a necessary condition for any failure pattern to be recoverable mgt!cal transform mapé data blocks inton total blocks &

and show the generalized Pyramid Codes are optimal under the Original data and: —k redundant). Blocks often have the same
condition. To our best knowledge, this is thefirst work to define size and can be physically mapped to bytes, disk sectord, har
such a condition and the generalized Pyramid Codes are thenly  drives, and computers, etc. When failures happen, faileckblo
known non-MDS codes with such optimal property. (or simply erasure} can be recovered using other available
data and redundant blocks (imaginably, via the inverse ef th
mathematical transform). Such an ERC scheme is often called
a (n, k)-ERC scheme. Assuming @6, 12)-ERC scheme and

A promising direction in building large scale storage sys 3-replication scheme provide the same level of reliability
tems is to harness the collective storage capacity of massfunder certain failure conditions), it is obvious that thRE
commodity computers. While many systems demand higltheme requires only6 blocks in total, compared 86 blocks
reliability (such as fiveds), individual components can rarelyby the replication scheme, to store data blocks.
live up to that standard. Indeed, a recent study [25] on diskApparently, the storage savings of ERC schemes are su-
drives shows that the real-world reliability could be fasde perior. However, beyond RAID systems [4], such schemes
than expected. are yet to see any large scale production level adoption.

On the other hand, large scale production systems (eWge believe there are two fundamental obstacles. First, it's
GFS [9]) have successfully demonstrated the feasibility @try difficult to get ERC schemes right. Consistency issue
building reliable data storage systems using much lesabieli has long been a huge concern. Despite of numerous efforts
commodity components. These systems often use replicationsolve the problem, all solutions remain complicateds It
schemes to ensure reliability, where each data block is-replery challenging to design and implement, not even mention
cated a few times. Trivial as it seems, there are sound reastm verify, such schemes. Sometimes, the complexity simply
for such a choice. The simplicity of design, implementatioscares engineering efforts away. Second, ERC schemes often
and verification is perhaps the most important one. Anothsuffer greatly on the 1/O performance. In tfig6,12)-ERC
reason is because replication schemes often demonstrade ggscheme, writing a data block takes write operations ¥
I/O performance. For instance, irBareplication scheme (eachwrite to itself, 4 reads of the redundant blocké,operations
data block is stored witB additional replicas), writing a datato compute the change, and thénwrites to the redundant
block takes3 write operations { write to itself and2 to its blocks [1]), and reading takd® read operations when hitting
replicas) and reading simply takésread operation (from the a failed data block (in order to perform the inverse of the
original data block or either of the replicas). mathematical transform).

On the downside, replication schemes consume severaSome of the obstacles, however, can be largely avoided by
times more storage spaces than the data collection itself.eixploring practical storage needs. Many production sesvic
data centers, storage overhead directly translates irgts @@ have been successfully built on top of append-only storage
hardware (disk drives and associated machines), as wellsgstems, where write operations only append to the end of
costs to operate systems, which include building spaceepowexisting data and data is rarely modified once written. This
cooling, and maintenance, etc. As a matter of fact, it ismdge is viable as many data collections are by large static (no-
reported that oveb5% of the cost of a typical data centertable examples are ever exploding media content collestion
which provides Microsoft's Windows Live services, is dualue to the boom of portable music devices and Internet
to building, power distribution and equipments [13]. In wid video). We believe that combining ERC schemes together
area storage applications, the storage overhead also maaitis replication schemes is a right approach, and several
much less effective usage of allocated spaces. For instargeals can be achieved simultaneously: 1) simplified design,
WheelFS [26] proposes to build a distributed storage systémplementation and verification; 2) low storage overheaut a

|. INTRODUCTION



3) high /O performance. In particular, the reliability ofw long as anyk among then blocks are functional. That is, the
data is ensured by replication. Only completed data blooks aystem is resilient to arbitrary — & failures.
used to compute redundant blocks. Replicas are removed onljMany commonly used ERC schemes in storage systems are
after the redundant blocks are successfully stored. Irnvihis specific examples of the MDS codes. For example siheple
the consistency issue of ERC schemes is greatly alleviatpadrity scheme, which is widely used in RAID-systems,
Moreover, writing a data block has exactly the same overheeomputes the only redundant block as the binary sum (XOR)
as in a pure replication scheme, and the write performangk all the data blocks. It is essentially @& + 1,k) MDS
is not affected. Note that the ERC part can be considered esde. The replication scheme, which createsplicas for each
post-processing, so it can be put off until the system atiion  data block, is indeed &l + r,1) MDS code. Reed-Solomon
enters a valley period. codes [23] are a class of the most widely used MDS codes.
To this end, the remaining issue is how to improve the
read performance. Indeed, the read pe.rform.an(.:e has grlg_atBaSiC Pyramid Codes: An example
impact on overall system performance, since it dictatek pea
system load and/or peak bandwidth usage. Further, as modiow we use an example to describe the basic Pyramid
distributed storage systems incur many more reads thaasyritCodes, which can significantly improve the read performance
the read performance is a primary design concern. Instead#r example constructs a Pyramid Code frorfia 8) MDS
jumping from traditional ERC schemes to replication schemecode, which could be a Reed-Solomon code, or other MDS
which do improve the read performance, but also increase thédes, such as STAR [15]. (Note that MDS codes aoe
storage overhead significantly, we describe schemes sath fgquired, but Pyramid Codes constructed from MDS caltes
the read performance can be improved with only moderdi@ve certain good properties, which will become clear Jpter
higher storage overhead. If traditional ERC schemes ahfe Pyramid Code separates thedata blocks into2 equal
replication schemes can be regarded as two extremes of $#€ groupsS; = {di, dz, ds,ds} andS; = {ds,dg, d7, ds}.
trade-offs between storage space and access efficiency, lbdfeeps two of the redundant blocks from the MDS code
schemes allow flexible exploration of the rest. Specificalliynchanged (sag, andcs). These two blocks are now called
we introduce two fundamentally different classes of codédobal redundant blocks, because they cover all thelata
under the same naming umbrella — Pyramid Codes. The bagfecks. Next, a new redundant block is computed for group
Pyramid Codes are simply derived from any existing codes. Which is denoted agroup (or local)redundant blocle; ;.
(preferably MDS codes [18]) and thus all existing work od he computation is done as if computig in the original
optimizing encoding/decoding directly apply. The gerigesi MDS code, except for setting all the data blocksS to 0.
Pyramid Codes are radically advanced new codes, whigHnilarly, a group redundant blook, » is computed forS;.
can further improve reliability and/or access efficiencyomip It is €asy to see that group redundant blocks are only affecte
the basic Pyramid Codes. Moreover, we define a necessfyydata blocks in the corresponding groups awd by other
condition for any failure pattern to be recoverable and stimv groups at all.
generalized Pyramid Codes are optimal under the conditionAlgebraically, each data or redundant block can be rep-
To our best knowledge, this is tHest work to define such resented as mangymbols(or elements in finite fields (or
a condition and the generalized Pyramid Codes areotilg fings) [17]. The process of computing redundant blocks from
known non-MDS codes with such optimal property. data blocks is calleéncoding and the process of computing
The rest of the paper is organized as follows. Section fﬂlled data blocks from other data and redundant blockedall
describes the basic Pyramid Codes and Section Ill focustcoding(or recovery. Without loss of generality and yet to
on the generalized Pyramid Codes. Section IV lists sornkgep the presentation simple, we can assume each block is

additional related work. We make concluding remarks iferely one symbol. Most ERC schemes apply linear block
Section V, and more importanﬂy, raise a few open issues. COdeS, where the redundant blocks lBmear combinations of

the data blocks. For instance, in tiiel,8) MDS code, the
Il. BASIC PYRAMID CODES redundant blocle, satisfies

Let a distributed storage system be composed bfocks, 8
wherek blocks aredata blocksand the restn = n — k blocks €1 = Z aid;,
areredundant blocksUsed; (i = 1,-- - , k) to denote the data =1
blocks, and:; (j = 1,-- - ,m) to denote the redundant blockswherea;’s are symbols in the same field (or ring). Based on
this representation, the new redundant blocks in the Pgrami

A. Brief primer on MDS erasure resilient coding Code satisfy

Before presenting Pyramid Codes, let us briefly review 4 8
maximum distance separable (MDS) [18] erasure resilient Ci1 :Zo"idi’ €12 :Zaid’i'
coding, which attracts particular attention in distrimlisgorage =1 =5
system design. When an ERC scheme appliésa,&) MDS Hence,c11 + c12 = ¢1 (all Y_'s and +’s are binary sum).
code in a distributed storage system,= n — k redundant To this end, the group redundant blocks can be interpreted
blocks are computed from original data blocks. The MDS as theprojection of the original redundant block in the MDS
property guarantees that all the original data are acdesa$h code onto each group (by setting the data blocks in all other



groups to0). Alternatively, given the group redundant blocksMDS code. Moreover, the Pyramid Code has good chance to
they can be combined (again, binary sum) to compute thattle additional failures (e.g. th&” failure in this case).
original redundant block in the MDS code. The Pyramid

Code constructed in this example is shown in Figure 1. For k=8
convenience, we define the conceptaaifiguration which A
represents all data block subsets used to compute the raaund
blocks. For instance, the configuration of this code;is : S, d, d, d3 d4 d5 d6 d7 ds
Ci1,2: So, andCQ,Cg 151 US,.
Now, we examine interesting properties of the Pyramid
Code. First of all, the Pyramid Code has the same write global
overhead as the original MDS code. Whenever any data block redundancy m
is updated, the Pyramid Code needs to updatedundant X n-k=4
blocks (bothc,, c3, plus eithercy ; or c; 2), while the MDS 2 .
code also updates redundant blocksc(, c; andcs). local c1rt {di,dz,d3,dg}
Secondly, we claim that thgl2, 8) Pyramid Code can also  redundancy ¢12* {ds.ds,d7.ds}

recover arbitrary3 erasures, the same as the origi#l, 8)

MDS code. To show this, assume there are arbitBagyasures Fig. 1. Construction of €12, 8) basic Pyramid Code from @l1,8) MDS
out of the 12 total blocks, which can fall into one of thec°de:

following two cases: 1) bothc;; and c; o are available;

or 2) at least one of them is unavailable. In the first case,

c; can be computed frone; ; and c; . Then, it becomes | # of failed blocks [0 [ 1 [ 27137 4|
recovering3 erasures from the origingll1,8) MDS code, | MDS code [ recoverability (%) | 100 [ 100 [ 100 | 100 [ 0 |
which is certainly doable. In the second case, it is impossih-—r—c) | avg read overhead 10 | 164 ] 227 | 2911

y ' : P Pyramid Code| recoverability (%) | 100 | 100 | 100 | 100 | 68.89 |
to computec;. However, other thare, ; or c; o, there are | (12, g) [“avg. read overhead 1.0 | 1.25 | 1.74 | 2.37 | 2.83 |

at most2 failed blocks. Hence, from the perspective of the
original MDS code, there are at mdsffailures €, and those Fig. 2. Comparison between the MDS code and the basic Pyramig.Co
2 failed blocks) and thus is decodable.

Third, the Pyramid Code is superior in terms of the read
overhead. When only one data block fails, the Pyramid Code
can decode using local redundant blocks, which leads to réad Generalization of basic Pyramid Codes
overhead off, compared ta® in the MDS code. Finally, note In general, a Pyramid Code can be constructed as follows.
that the gain of the Pyramid Code in terms of the read overheladstarts with a(n,k) code (preferably a MDS code), and
comes at the cost of using one additional redundant blodeparates the data blocks infodisjoint groups (denoted as
Hence, this example literally demonstrates ttwee concept S;, [ = 1,---, L), where groupS; containsk; blocks (i.e.,
of how the Pyramid Codes can trade storage space for acdess = k;). Next, it keepsm; out of them redundant blocks
efficiency. unchanged, and computesy = m—m hew redundant blocks

Next, we show detailed comparisons between the two codés. each groupsS;. The j** group redundant block for group
Two performance metrics are used here. When the numberSf(denoted ag; ;) is simply a projection of thg‘" redundant
failed blocks (could be data or redundant) is given (denotétbck in the original code (i.e.c;) onto the groups;. In
asr), there are(”) possible failure cases. The first metricanother wordg;, is computed the same as in the original
recoverability represents the ratio between the number a@bde, but simply setting all groups other thénto 0. Again,
recoverable cases and the total cases. It is directly celatbe combination of alt;;'s for the samé yields the redundant
to the reliability of the overall storage system and one cdolock c; in the original code. Moreover, if a Pyramid Code
link these two using failure probability models (we dot is constructed from a MDS code, it satisfies the following
expand along this direction, as it isot the focus of this property.
paper). The second metriayerage read overheadepresents Theorem 1:A basic Pyramid Code constructed from a
the average overhead to access each data block. Cons{dek) MDS code can recover arbitrary = n — k erasures,
an example ofl block failure in the (11,8) MDS code. and each group itself is &; + mo, k;) MDS code.
If the failure is a redundant block3(11 chance), then the Proof: The first part can be shown using a similar
data blocks can be accessed directly, so the average rasglment as in the previous example. Let’'s consider an ar-
overhead isl. Otherwise, the failure is a data block/(1 bitrary failure pattern withm erasures. Assuming (out of
chance), then the read overhead ifor the failed data block m) erasures are among the group redundant blocks, then there
and 1 for the rest7 data blocks. Hence, the average readrem — r erasures among all the data blocks and the global
overhead ig8+7)/8. Altogether, the average read overhead i®dundant blocks. There are only two casesr Ly mg; or
1x3/11+4(8+7)/8 x 8/11 = 1.64. Using these two metrics, 2) r < mgy. Whenr > mg, simply assume all the group
the detailed comparisons are shown in Figure 2. We obsereglundant blocks are failed (treating them as erasures i§s we
that the additional redundant block in Pyramid Code reducésom the perspective of the original MDS code, none of the
the read overhead under all failure patterns, comparedeto thy redundant blocks can be computed, which means



erasures. Together with the — r erasures in the rest data
and redundant blocks, there arg) + m — r < m erasures in
total. Hence, such failure patterns are recoverable. @iker
whenr < mg, the worst case is that all the group redundant
blocks c;;'s have differentj’s, which means they will keep group;
r out of themy redundant blocks as erasures. Even so, from

. . global )
the perspective of the original MDS code, there are at most redundancy e gu":;gncy
r+(m—r) = m erasures in total. Hence, such failures patterns
are also recoverable. (a) two hierarchy

The second part is quite intuitive and can be proven by

contradiction. If there exists one grouf, which is a(k; + subgroup; s
mo, k;) code but not MDS, this group must fail to recover group,
a certain erasure pattern withh, failures. Now, consider
a special example, where all data blocks in groups other
than S; simply have0 values. Then, group; together with subgroup,,
the m; global redundant blocks is equivalent to the original ~ 9"°UPe
MDS code. Assuming the:; redundant blocks are additional
erasures, still, the original MDS code is able to recover all T Lsubgmup
data blocks, because there aug+m; = m erasures in total. redundancy
Since the global redundant blocks amet used at all, this
literally means groub; is also recoverable, which apparently (b) three hierarchy
contradicts with our assumption.

group;

group;

subgroup; ,

L group

redundancy

subgroup, ,

Fig. 3. Multi-hierarchical extension of basic Pyramid Cades

D. Decoding of basic Pyramid Codes

To this end, the recovery procedure should become straigidelundant blocks], group redundant block for each group and

forward and we briefly summarize as follows. 1 subgroup redundant block for each subgroup.

« Step 1: start from the group level. For each group, if As a simple exercise, Theorem 1 can also be extended to
the available redundant blocks are no less than the failedsic Pyramid Codes with multiple hierarchies. Similathe
data blocks, recover all the failed data blocks and mark &lecoding of multi-hierarchy basic Pyramid Codes will start
the blocks (both data and redundant) available. Whethaith the lowest level and gradually move to the global level.
or not the failed redundant blocks are actually computddis is very similar to climbing up a Pyramid, just as the name
depends on whether they are used in the following stepf. the codes suggestsote that groups (or subgroups) in the

« Step 2: move to the global level. For each (1 < basic Pyramid Codes aret required to be of the same size,

j < my), if all the group redundant block,;'s (over although it is often the case in practice for convenience.
all I's) are marked as available, mad (a redundant
block in the original code) available as well. On th%
global level, if there are no less available redundant
blocks than failed data blocks, recover all the failed This subsection presents comparisons among MDS codes,
blocks (otherwise, remaining failed blocks are declarddyramid Codes and replication schemes. To keep things sim-
unrecoverable). Moreover, when a combingdis used, Ple, the number of data blocks is fixed to lig(i.e., k = 12).
it should be computed (as well as its correspondings A MDS code has4 redundant blocks and thus its =
if they are not yet available). 12 + 4 = 16. Two Pyramid Codes (both ar@0, 12) codes)
are constructed from the MDS code, whose configurations are
shown in Figure 3. Finally, &-replication scheme creaté@s
replicas for each data block (hence, it is equivalentl®o

Figure 3(a) shows another example of the basic Pyramiwividual (3,1) MDS codes, or one jumbl€36,12) code).

Codes, which is constructed from @6,12) code. It can The comparisons are shown in Figure 4 and we make the
be considered as having two hierarchies, the global levellowing observations. From MDS codes to Pyramid Codes
and the group level. Then, it is conceivable that the basimd then replication schemes, the trend clearly demoastrat
Pyramid Codes can be readily extended to multiple hieraschithat adding more storage spaces can reduce the read overhead
For instance, Figure 3(b) shows an example3diierarchy. as well as increase the recoverability. Moreover, when the
The data blocks are separate it@roups, then each groupstorage overhead is the same (e.g. the two Pyramid Codes with
further separated int@ subgroups. Correspondingly, somalifferent configurations), schemes with higher recovditgibi
redundant blocks are kept global and some are projeci@do occur higher read overhead. Hence, on one hand, Pyramid
to compute group redundant blocks. Further, some gro@wdes can be used to explore more flexible ways to trade
redundant blocks are projected to compute subgroup onstrage space for access efficiency. On the other hand, even
The particular example in Figure 3(b) ends up witlylobal under the same storage overhead, the configuration of Pgrami

MDS codes, Pyramid Codes and Replication schemes

E. A multi-hierarchical extension of basic Pyramid Codes
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Fig. 5. Examples to motivate the generalized Pyramid Codesrgsures
each, marked by “x”).

avg. read access overhead

15t

o 1 2 5 a4 s s 7 s previous section, we know that the code can recover arpitrar
4 of failed blocks erasures. Since it h@isredundant blocks, interesting questions
(b) read overhead to ask are: 1) whab-erasure ands-erasure patterns can it
Fig. 4. Comparison of multi-hierarchy basic Pyramid Codes vbS recover? Apparently, due to information theory limits, tuele
codes and replication schemes (the two Pyramid Codes arg2@th2), the ~cannot recover more tha erasures; and 2) more generally,
3-replication is essentially a jumblE6, 12) code). can the recoverability be further improved?
In particular, we examine the two erasure patterns. The first
pattern hast erasures and is shown in Figure 5(a). There
Codes should be carefully considered, such that the reai@ 6 data blocks and redundant blocks available in the
overhead can be minimized, while the reliability requiretne second group. Hence, thoseedundant blocks areot useful

is also satisfied. for recovery and could be removed. Now, we are left with
erasures, but only redundant blocks. Therefore, this erasure
I1l. GENERALIZED PYRAMID CODES pattern is unrecoverable at all. The second erasure pagtern

shown in Figure 5(b). It turns out that the basic Pyramid Code

In this section, we describgeneralized Pyramid Codes can not recover this pattern either. Following the decodin
which are not trivial extensions of the basic Pyramid Code$ P ) g the | 9
focedure, the decoder carot make progress within each

but rather radically advanced new ERC schemes. They al¥

go beyond the structure of the basic Pyramid Codes, wh roup, where there are more failed data blocks than availabl

groups lower in the hierarchy are always nested in upper.onlresggr?qdi?;sbfsgsr}];inf:éL::](g;?]\ie;;;?g”?IObalaIr?(\j/el' where
In the generalized Pyramid Codes, groups may overlap th P 2,1 ©2,2-

; till, on the global level, there are onfyavailable redundant
each other. Nevertheless, we use the common rRynamid blocks and vet data erasures. Hence. the decoder nah
Codesto categorize both classes of codes, as they both aim a1 4 Y L ) ' )

roceed either. But, is this pattern ever possible to racave

the same goal of trading storage space for access efficierﬁﬂ/,) In the following, we give a positive answer by preseptin
and also follow the same concept dfmbing up a Pyramid | ° . T

: . the generalized Pyramid Codes.
during failure recovery.

We first present a necessary condition of recoverability. If
an erasure pattern is ever recoverable by any ERC scheme,
the necessary condition has to be satisfied. Note that the

We use an example to explain the need to investigate beyamposite isnot true. As a matter of fact, MDS codes are the
the basic Pyramid Codes. Figure 5 shows a configuration arfly known codes, where an erasure pattern is recoverable
a (18,12) basic Pyramid Code, which is constructed frorwhenever the necessary condition is satisfied (i.e., the con
a (16,12) MDS code. The code had groups. Within each dition also becomes sufficient). To our best knowledge, this
group,6 data blocks are protected Byredundant blocks (thus is the first work to present such a condition. Even better, we
a(8,6) MDS code). Additionally, there arzglobal redundant also present the construction of non-MDS generalized Pigkam
blocks which protect the entiré2 data blocks. From the Codes, which are able to recover any erasure patterns as long

A. Motivation



as the necessary condition is satisfied. In another worg, the Proof: We prove this theorem by contradiction. Ex-
are theonly non-MDS codes where the necessary conditicamining an arbitraryrecoverableerasure pattern, whose cor-
also becomes sulfficient. In this sense, the generalizedityraresponding Tanner grapii’ consists ofr; data nodes and
Codes are optimal (of course, MDS codes are optimal by redundant nodes. (Again, this means the erasure pattern

nature). hasr, failed data blocks and. available redundant blocks.)
Obviously,r4 < r.. Now, let's assumé&’ doesnot contain a
B. Necessary condition of recoverability full-size matching. Then, the size of its maximum matching

M,, is less thanry, i.e., |M,,| < rq. Based on the Knig-
Egenary Theorem [24] in graph theory, in a bipartite graph,
the maximum size of a matching is equal to the minimum
size of a node cover. Hencensinimum node covefdenoted
by N.), which contains a minimum set of nodes covering all
edges inT’, has|M,,| nodes, i.e.|N.| = |M,,|. Letn, be the
number of data nodes V., then|M,,| — ng is the number
of redundant nodes V.. It is clear thatn, < |M,,| < r4.

Now let us assume all the data blocks/y are somehow
known (not erasures any more), then we can deduce a new
erasure pattern with less failed blocks, which correspdnds
a new Tanner grapf”. Any redundant node that is not iN,
can be removed frori”, because those redundant nodes can
only connect to the data nodes M. (otherwise, there will be
edges i’ not covered byV,.) and thus isolated iffi”. Hence,
there are at mosi\/,,,| —n, redundant nodes left ii’. On the

(@) unrecoverable ~pattern (b) recoverable pattern (full-  other hand, there are stitl; — nq (positive value) data nodes
(full-size matching doesot size matching exists)
exist) left. As |M,,| — ng < rq —ng, there are less redundant nodes
_ _ _ than the data nodes, and tHliSis not recoverable. Therefore,
Fig- 6. Tanner graphs (bold edges show maximum matchings). T should not be recoverable either, which contradicts with th
assumption. ]

The recoverability ofany ERC scheme (not just Pyramid To this end, we have proven the necessary condition of re-
Codes) can be easily verified using a Tanner graph, which is@verability. For interested readers, the same condigaiso
common tool frequently used in the study of erasure resienstudied using an alternative set representation in a coimpan
coding. A Tanner graph is a bipartite graph, where nodes paper [3] (calledMlaximally Recoverablproperty there). Next,
the left part of the graph represent data bloc#tat4 nodes we present the generalized Pyramid Codes, which are optimal
hereafter), and nodes on the right represent redundanksloas the necessary condition also becomes sufficient.
(redundant nodés An edge is drawn between a data node
and a redundant node, if the corresponding redundant b¥ockd, Construction of generalized Pyramid Codes

co;?puted_frorlr)f_thdeTcorrespondrl]n%datatl E;OCK' leben alnt?egsurl) Matrix representation of ERC schemeghe encoding
pattern, asimplifiedTanner graph (denoted &3 can be plotte process of an ERC scheme is a mathematical computation of

to show only_thdailed data blocks and thavailableredupdant the redundant blocks from the data blocks, which can be rep-
blocks. For instance, the Tanner graphs correspondingeto Msented using matrix multiplication &,, = G, x D, where

erasure patterns in Figure 5 are shown in Figure 6. C. represents the redundant blocks T
. . m @ascs, - ,cp]t, and
Furthern_mre, we definmatching(denoted byM) as a set D the zata blocks, &gl da, - - - ,dk]T{. Aga2in, for sinlplicity,
OI tehdges in-a Lann%r] gra}ph, \f/v?here n(?[ ;WO edgesl C?nnggtch entry ofC andD is merelyonesymbol in a finite field
at the same node. The size of the mac."“@ equais 1o (or ring). G, is ak x m generator matrix whose entries are
the number of edges in the set. Defimaximum matching

. X : symbols in the same field (or ring). Note th@t,, completely
(denoted bme)_ as a matching with the maximum numbeEjetermines the ERC scheme. For convenient purpose, the data
of edges. Also, if|M,,| equals to the number of data node

such a matching is called full-size matching(denoted by Slocks can be regarded as special redundant blocks and the

I ? encoding process can thus be represente€as G x D,
My). For example, the Tanner graph in Figure 6(b) contamsm%erelcgj D C,.|” anchjG _ [IpG 7. Now thex new
full-size m_a_tt_:hlng, while the one in Flgg_re 6(a) dosest W't.h. generator matriXG is ak x n matrix, which contains & x k
these definitions, the necessary condition of recovetabdi identity matrix on the top and3,, on the bottom. When
stated in the following theorem. (Note that when there is m '

Mock failures happen, some data and redundant blocks lecom

ambiguity, blocks and nodes are used interchangeably, SOef3sures. In the algebraic representation, this is eauritvab
the recovery of an erasure pattern and the recover of a Tangg)r/ing that some entries i@ are missing. If we cross out all

graph.) o L . . .
Theorem 2:For any linear ERC scheme (not just Pyrami(glsar;?(eer&tge? |Vr5}e (\:Vr}ﬁllgee;ttch;)filr;gv\izi?]gespondlng rows in

Codes), an erasure pattern is recoverabiéy if the corre-
sponding Tanner graph contains a full-size matching. C, =G, xD. Q)



Here, G, is a generator submatrix obtained fromG by is 3, its null space is simply a vector, denoted wsHence,
eliminating rows corresponding to erasure blocks (botla dahe orthogonality boils down to require that the dot product
and redundant). To this end, bof and G are completely of u and gs is non-zero, i.e.u - g5 # 0. To accommodate
known, while D contains some unknowns (those failed datany 3 rows out ofg; to g4, we simply enumerate through all
blocks). The recovery is essentially solving the set ofdime sub-matrices composed by afiyrows ((g) cases in total ),
equations in Eq(1) for those unknowns. It is clear that thehere each submatrix corresponds to one null space vector. A
necessary and sufficient condition of recoverability istthaull space matriXU is built to hold all the null space vectors,
Eq(1) should be solvable (please see [20] for a tutorial). and the ultimate goal is to find g5, such thaty u € U,

u-gs # 0.
d d In this particular case, the null space matrix is as simple as
1 2
0 0 01
d; d,4 a 0010
U= 3
horizontal 0100
redundancy 1000
vertical Then, finding a desirablgs is straightforward even by trial-
redundancy and-error. For instance, our random choice yields degrabl
outcomesys ; = 1 and gs » = 142 (all values are in a finite
Fig. 7. Example of generalized Pyramid Code construction. field GF(28), which is generated using +2*+23+22+1 as

the prime polynomial [17]). Straightforward as it seemgréh

2) A construction exampleNow, we use a simple example@re two things deserve special attention. First, noteghanly
to illustrate the construction of the generalized Pyramid€s. has2 non-zero entriesys ; andgs . Apparently,u; - g5 =0
Let's consider the configuration shown in Figure 7, which i@nduz - g5 = 0. Takingu, as an example, which is the null
ci: {d1,ds}, co: {ds,dy}, c3: {dy,ds}, andcy: {ds,d,}. SPace vector of the subspace spannegfyg, andgs. It is
In the matrix presentation, it i€ = G x D, whereC = clear thatu; - g5 = 0 dictates the impossibility of recovery
[dy1,dy,ds,dy, c1, Ca, c5,¢4]T, D = [dy,ds, ds, ds]7 and dy from dy, ds, d3 and ¢;. This is quite obvious from the

_ - configuration in Figure 7. Hence, for cases as sughg = 0),

1 0 0 0 we simply skip thosey;’s. Second, although it is very simple

0 1 0 0 in this case, finding a desirabfg with given U is nontrivial

0 0 1 0 in general. For that, we will present an effective algorithm

G = 0 0 0 1 , (2) separately, after the description of the complete conttmic

951 952 0 0 procedure.

0 0 gs3 9oa Now that onegs is found, we append it t€, whose size
grn 0 grz 0 then becomes x 4. The next step is to adgs. The criterion
L0 gs2 0 gsa is similar: any generator submatr®,, formed bygs and 3

whereg; is the entire rowi of G, andg, ; the entry at row out of g; to g5, should be invertible. The procedure is also

¢ and columnj (1 < ¢ <n,1 < j < k). Usinge; as an similar: enumerating through all sub-matrices composed of

example, it is computed as; = g51d; + g52da. It should any 3 rows from G and computing the null space vectors.

be clear thays 3 = g5.4 = 0, asc; is not computed fromd; Note that the null space matriJ from the previous round

and d4. The construction of a generalized Pyramid Code &an be reused, and thus we only need to consider additional

essentially to fill in all non-zero entries i@, such that the sub-matrices formed bg; and any2 out of g; to g,. Note

code is optimal. The algorithm works as follows. that all the sub-matrices dwt have rank3 now. For instance,
We start with an identity matrixG = I,.4 and addg,,’s the one formed byg;, g2 and g5 only has rank2. Again,

(5 < m < 8) one by one First, we elaborate on how toexamining the configuration in Figure 7, we know that there

add gs5. Note that the physical meaning of addigg to G  is no way to recoveds, d, from dy, d2, ¢; andcs, no matter

is defining the computation of the first redundant blagk how c; is computed. Hence, if a submatrix has rank less than

To achieve optimality, it is desirable that if any data blask 3, it is simply skipped. Otherwise, its null space vector is

failed, it should be recoverable from together with the rest computed and appendedt. OnceU is updated, a desirable

3 data blocks. In terms of the matrix representation, this g is found (using the same algorithm described separately as

equivalent to saying that a generator submaiy, formed follows) such thaty u € U, u-gg # 0. The above procedure

by g5 and any3 rows out ofg; to g4, should be invertible. is repeated until alg,,’s (5 < m < 8) are added tdz (the

Let’'s focus on one specific case, whee, consists ofg;, completeG is shown later in this section).

g2, g3 and gs. The invertibility (or non-singularity) ofG, 3) An algorithm for findingg,,,: Given U, what is the

requires that; is independent of;, g» andgs. DenoteS as general algorithm to find a row vectar,,, such that’ u € U,

the submatrix composed @f;, go andgs. Then,gs should u-g,, # 0? The algorithm starts with a random vectgy, (of

not be contained in the subspace spannedSbylenoted as course, certain entries are kept constant zeros,ge.g. gs 4,

span(S). This is further equivalent to requiring thgt should etc.). It checks the dot product of, andg,,,. If u; - g, # 0,

not be orthogonal to thaull spaceof S. Since the rank o8 then keepg,,, and move on tai,. The process continues until



it encounters the first null space vecioy € U, which makes | 1: G := Iyxy, U = Ixxx
u; g, = 0. As mentioned before, ifi;-g,,, = 0 (i.e., non-zero | 2: for m=k+1:ndo
entries ofg,, always correspond to zero entriesf), u; is Il g;7"?: boolean array marking constant zero entri¢s
simply skipped. Otherwise, the algoritrmigmentsg,,, (make /I t: index of thet'" entry ing,,
it g’,,,) such that the following two conditions are satisfied: for t=1:kdo
1) u, - g’,, # 0; and 2) all previouar's are not affected, i.e., gm[t] := random value in the field
u, - g, #0 (i < j) still hold. if g7 °[t] = true then

The first condition can be satisfied by settigl, = g, + gmlt] =0
eu; (e # 0), as any non-zere satisfies

© o N R W

ug := null // ug: all dot products ofu; - g,
10: for j=1:|U|,u; € U do

uj-g/m:uj-(gm+€uj):euj~uj7£0, 11: if uj-gm;téOthen
) 12 uglj] :=u; - g, repeat
Now, we simply need to tweaksuch that the second condition 13 if u;-g,=0 then
is also satisfied. Formally, this involves finding:auch that | 14. uglj] := 0, repeat
4 . . o 15: Il Epaq: all bade;’s, uu: all dot products ofu; - u;
Vui (1<i<j) ui-ghp,#0, “) 16: Epaq = null, uu := null
which turns out to be quite straightforward. We compute gllt”: fori=1:5~—1do
€'s that violate Eq(4) (call therbad ¢'s) and construct a set to | 18 uufi] ==, - uy
hold them (denote a&,,4). As long as we pick a out of the | 1% if uufi] = 0 then
set&,qq, it is guaranteed to satisfy the second condition. Tc?® repeat , ,
construct&,,q, simply compute all the bae;'s (1 < i < j), Zlf Evad = Epaa + {ugli] /uulil}
where each; satisfiesu; - g’,, = 0 such that: 22: ¢ = random value out 0fyq
23: /I argumentg,,, and updateug
¢ = u; - 8m ) 24: Em = 8m + eu;
u; - uj 25: fori=1:5do
To this end, as long as the number of bad in Eyuq (€., |2 . “g[j] 1: l‘;g[i]mj: EUE[%] .
|Eaal) is less than the number of symbols in the finite field>” ort=1:kgn"[t] = true do

(or ring), a desirable is guaranteed to be found. In the worst 22 ugg[;_"]' Vlj 0 o

_, : : . : = gm
case, _aII .badzzs happen to be unlgue during the final round 20, /I updateU and addg,, to G
(i.e., finding g,,), then [E,0q| = (") (the number of null a1, for ' — {k-2 rows InG} do
space vectors ilUJ). Still, as long as the field size is greater __ o

n ) i ; 32: S=5+4+{gmn}
than(," ), the construction of a generalized Pyramid Code S3. if rank(S) — k — 1 then
guaranteed to succeed. Note that this field size bounerig 34; u := null space vector of
loose. Indeed, our empirical experience shows that, intisegc 35: U:=U+{u
many back;’s collide and thus the required field size turns oyt G:=G+{gn)

to be much smaller. We defer both theoretical and empirical,. (eturn

efforts in quantifying the field size to future work.
4) The summary of the construction procedukésing the Fig. 8. Construction of generalized Pyramid Codes.

simple example, we have described all the details in the

construction of the generalized Pyramid Codes. Here, wef bri

summarize the entire procedure (refer to Figure 8 for the

complete details). Theorem 3:In the generalized Pyramid Codes, grossible
« Step 1:Start with ak x k identity matrixG = I, and recoverable erasure pattern (i.e., its corresponding éfann
construct an empty null space matfix graph contains a full-size matching) can indeed be recdvere
o Step 2: UpdateU. Enumerate through all sub-matrices
S formed by anyk — 1 rows from G. If the rank of S Proof: We prove the theorem by induction on the
is k — 1, compute its null space vector and append}o construction algorithm (details in Figure 8). Recall thgt
Otherwise, skifS. to g simply form a identity matrixI;.x, SO the base case

« Step 3:Find ag,, such thaty u € U, u-g,, # 0, which is wheng; is added toG. Consider an erasure pattern
adopts the previously described algorithm. Upd@tdy where one data block (sasl;) is failed. If the block is

addingg,, to it. recoverable, then the corresponding Tanner graph has-a full
« Step 4: Repeat Step 2 and 3 until the entire generatsize matching (simply sizé, an edge betweed; andc,). In
matrix G is completed. this case, the decoding equations &'¢ = G, x D, where

CS = [d17d27 e 7dk717cl]T and D = [d17d27 e 7dk]T'
o . . Also, the generator submatrix is
D. Optimality of generalized Pyramid Codes
In this section, the optimality of the generalized Pyramid

! _ G. — L—1yx(k—1) 0 )
Codes is shown by the following theorem. s

7 )
&ri1 Ik+1,k



whereg;  , is of sizel x (k — 1). Based on simple matrix
row elementary operations, it is easy to show that;
exists such that is invertible and thus the erasure pattern is
recoverable. Thus far, we have shown the existence,of.

“

. . . horizontal
Then, the algorithm ensures that once it terminates and a redundancy
gr+1 IS found, all generator sub-matrices &5 are indeed Vertical
invertible. redundancy

Now, let's assume the theorem holds after the construction
algorithm adds up tgn — 1) g,,'s (1 < m < n) to G. Next,
we want to show that the theorem still holds when a new
row vectorg,, is added. Consider an arbitrary failure pattern,
whose Tanner grapi contains a full-size matching. Assume
the pattern containg failed data blocks (sagd;_,11, - -,
d;) and r available erasure blocks (say, ---, ¢,—1 plus
¢ ). Apparently, we only need to consider patterns including
c.,. Otherwise, the erasure pattern is naturally recoverable
by the induction assumption. Without loss of generality, le
d; be connected te,, in the matching. Then, the decoding
equations can be written &8, = G, x D, whereC, =
[di,da, - ,dg_r,C1,Ca, - ,Cr1,¢,]T and the generator
submatrix is

(a) erasure pattern

Gl_ _ G2_
G, = (k 12><(k 1) (k—1)x1 ) (6)

gn In,k

Here,g/, of sizel x (k—1). We want to show thag,, ;, exists (b) Tanner graph
such thatG, is invertible.

Next, let's modify the erasure pattern slightly. Assum
d; is now available andcc,, becomes erasure. Hence, the
new erasure pattern contaims— 1 failed data blocks and
r—1 available redundant blocks. Apparently, its correspomdin  Given an erasure pattern, we define @rcess pathas a
Tanner grapHl” contains a full-size matching of size— 1 sequence of blocks to be accessed in order to recover the
(simply removing the edge betweaty, and c,, from the desirable blocks. Different access paths often bear difiter
full-size matching inT"). Based on the induction assumptionpverheads. For instance, Figure 9(a) shows a configurafion o
this pattern is recoverable. Again, the decoding equatiams a generalized Pyramid Code, as well as an erasure pattern
be written (with slight rearrangement to pdi; as the last with 5 failed data blocks. If it is desirable to recover data

Eig. 9. Decoding of generalized Pyramid Codes.

entry) asC, = G/, x D, whereC/, = [dy,ds, - ,dx—r, blockdg, there are at least two viable access paths: 1) recover
c1,¢a, - ,¢._1,dg]T and differs fromC; only at the last dg directly from d, and cg; or 2) first recoverds from dj,
entry. Moreover, the generator submatrix is ds, ¢; andc,, then recoverd; from ds andc;, and finally
Gl a2 recoverdg from ds, dr, c3 and c4. Apparently, these two
G, = {(()];1)(2(];1) ““f”“ ; (7) access paths have significantly different overheads. Silwil
¥ (ke

if it is desirable to recover all the failed data blocks, ther

whereGl(k_l)X(k_l) is the samek — 1) x (k—1) matrix as might also be a few access paths with different overheads.

in Eq(6). Since the new erasure pattern is recoverdBleis In this section, we describe algorithms to find access paths

invertible, as well as(}l(k_l)x(k_l). with either minimum recovery overhead or minimum read
Examining Eq(6), it is easy to conclude that ;. exists overhead. This is contrast to the basic Pyramid Codes, where

such thatG, is also invertible. Thus far, the existencegf finding access path with minimum overhead is straightfodyar

is proven. Similarly, upon the termination of the constimtt because decoding should always start from the lowest lavel i

algorithm, once ag, is found, it is guaranteed that allthe hierarchy and gradually move up.

generator sub-matrices &, are always invertible. The proof 1) Minimum recovery overhead:

is complete. u Theorem 4:In the generalized Pyramid Codes, to recover
. _ _ the failed blocks in an erasure pattern withfailed data
E. Decoding of generalized Pyramid Codes blocks andc failed redundant blocks, the minimum access

When block failures happen in ERC schemes, two typ@ath will include exactlyd available redundant blocks. It will
of recovery could be triggered: 1) recovery of all the faile@lso include every available data block, from which theefdil
blocks, including data and redundant blocks; and 2) regoveredundant blocks are originally computed.
of a particular data block being actively accessed. Coomsp Proof: Apparently, to recoved failed data blocks, at least
ingly, the access overheadan also be categorized into: 1)d redundant blocks are needed. Hence, the minimum access
recovery overhead; and 2) read overhead. path includes at least redundant blocks. Next, we prove that
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including more thard redundant blocks wilbnly increase the without affecting the recoverability. This means the cokt o

recovery overhead. the minimum access path can be further reduced, which is
certainly a contradiction. Therefore, there must exist l& fu
(—] size matching betwee@{ and D{.
df Without loss of generality, assume this matching connects

C¢ to the firstr — d nodes inD¢ (denote them a®s”).
Now, let's consider a new erasure pattern, which consists of
D¢, D¢” and one more node froM§ (say d¢). Using the
redundant block inC* (C§ and C{) and the data blocks in
Dg, it is clear thatD¢ can be recovered. Next, we examine
the remaining Tanner graph. It contains a full-size maitghin
which consists of a matching of size— d betweenC§ and
D{”, together with an additional edge betwa#hand at least
one node inC§. Therefore, the rest failed data blocks can also
be decoded. To this end, we have demonstrated a case, where
d+ (r—d)+1 = r+1 failed data blocks are recovered
from only » redundant blocks. This creates a contradiction.
Therefore, the minimum access path should include exactly
available redundant blocks.
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Fig. 10. Minimum recover overhead for failed data blocks.

Both failed data and redundant blocks need to be recovered.
We first show that, to recover th&failed data blocks (denoted
asD¢ = {df, ---, d5}), the minimum access path should
include exactlyd available redundant blocks. Proving by
contradiction, let's assume the minimum access path in fact
includesr available redundant blocks (denoted@s = {c{,

-+, ct}) andr > d. Further, assume the minimum access
path includess additional available data blocks (denoted as

D¢ = {d¢, ---, d?}), which is shown to the right of the

Tanner graph in Figure 10. Sin&® is recoverable, there must &)

exist a full-size matching betwedn® and C*. Without loss D. dd

of generality, assume the matching connects the dinsbdes !

in C*, denoted aL’y = {C(ll’ T Cg}' Then, find another Fig. 11. Minimum recover overhead for failed redundant b#ock

access path, which includes only redundant block€§n Of
course, this access path need to include additional alailab
data blocks (denoted @{ = {dZ,,, ---, d?}). Based on In the second part of the proof, we show that to recover the
the assumption, the recovery overhead of this access patffaited redundant blocks, the minimum access path includes
not minimum (the path include€§, D§ and D{). Hence, every data block, from which these redundant blocks are
d+t>r+s (i.e., |C}l < |Df]). Note that each node in originally computed. In another word, no redundant block
D¢ is connected to at least one nodeGl. SinceD{ is not can be computed from the combination of data blocks and
included in the minimum access path, their values must haslundant blocks with less overhead. Using contradiction
been cancelled out b¢ during decoding. For this reason,argument, let's assume this claimrist true on one particular
each node irC§ should connect to at least one nodeld}. redundant blocle;. Instead of computing fromi data blocks
Now, let's consider only nodes irC§, D{ and edges (saydi, ---, dg), assumec; can instead be computed with
between them. We claim that there must exist a full-size minimum overhead fronp data blocks (denoted d3, =
matching betwee€{ andD{. Assuming this isiottrue, then, {di,---,d,}) together with(¢—1) redundant blocks (denoted
the maximum matching size will be less tha@i{|, so as the asCy = {ca,--- ,c4}), Wherep + (¢ — 1) < d (shown in
size of the corresponding minimum node covér (recall that Figure 11). Under this assumption, there must exist a faé-s
maximum matching and minimum node cover are equivalematching between the re$tl — p) data blocks (denoted as
in the bipartite graph). Deno®€¢{’ as those nodes i@¢ while D;) andCy. (Otherwise, we can examining the corresponding
notin N., and denoteD{’ as those nodes ilD¢ while also minimum node cover and show that at least one nod€gn
in N.. Based on the property of node cover, each node @dould be computed fronD, and the rest blocks i©y. This
C¢' is connected to at least one nodeId}’. On the other meansc; can be computed even if this node is removed from
hand, |C¢'| > |D{’| (based on the assumption). Now thaC,, which further implies even less overhead to compute
nodes inC¢’ do not connect to other nodes iP¢, at least c;.) Hence, the maximum matching size betweé®n and
one of them can be removed from the minimum access pdif is (¢ — 1), and denote thég — 1) matching nodes from
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D; asDy = {dp4+1,--- ,dp+q—1}. Now, let's consider a node. If the search encounters a redundant node, it folldiws a

particular erasure pattern gffailed data blocks, which include edges in the Tanner graph to all the data nodes, which have

all the (¢ — 1) nodes inD;’ and dy. This erasure pattern not been visited before. Lab, denote the set of data nodes

should be recoverable using all tie — 1) redundant blocks already visitedC,, the set of redundant nodes already visited,

in C, together withc;. This is because there exists a fullandD. the set of all data nodes connecteddg. The search

size matching in the corresponding Tanner graph (a matchistpps whenC, becomes large enough to recowdr, (i.e.,

of size (¢ — 1) betweenD,’ and Cy, together with an edge |D,| < |C,| and D. € D,). Please refer to Figure 13 for

betweend,; andc;). On the other hand;; can be computed details. After enumerating through all subsets, the mimmu

from Dy and Cy, and thus isot an effective redundant block read overhead can be easily derived. Moreover, the contplexi

(or c; is linear dependent o, and Cy). Hence,c; should is comparable to the algorithm in Figure 12.

be removed. To this end, it isnpossibleto recoverq failed Using the example shown in Figure 9(b), when a redundant

data blocks from(¢ — 1) redundant blocks. This creates aubset is chosen withc,, c2, c3, c7, cs}, a full-size matching

contradiction. In summary, the proof is complete with thean be found. To access the failed data bldek the breadth

combination of the above two parts. m first search starts fromd;, goes tacr, thends, co, d4 and stops
Based on Theorem 4, it is straightforward to design a datc;. It is straightforward to compute that the read overhead

coding algorithm with the minimum recovery overhead. Giveoorresponding to this redundant subses.is

any erasure pattern, we choose subsets of redundant blocks,

such that the size of each subset simply equals to the number: ¢ .= null // queue used for the breadth first search

of failed data blocks. If the recovery can succeed (agam, th 2: D, := null, C, := null, D, := null

corresponding Tanner graph contains a full-size matching) 3: M := find a maximum matching

the recovery (data- redundant) overhead is computed. Aftef gf i rgﬁ ‘r i less than failed data blockthen

enumerating through all the redundant subsets, the minimuny. Q.enqueue(no) /l no: the target failed data block

recovery overhead can be readily derived (details shown |in7: while |Q| >0 do

Figure 12). In practice, the number of available redundant8: 7 := Q.dequeue

blocks in the Tanner graph will not be many more than ® f 7 isa data nodethen

. - 10: if D, then
the number of failed data blocks, so the complexity of the,;. " oo

' ' : repeat
algorithm shouldnot be high. For instance, the Tanner graphi2: D, :=D, + {n}
in Figure 9(b) containg redundant blocks and failed data | 13: Q-enqueue(M(n]) // follow the edge in the matching

7 14: else
blocks, thus there are merefy) = 21 subsets to compute. 15: C,:=C, + {n}

16: /I follow all edges to data nodes
1: D¢ := failed data nodes 17: for ng := data nodes connected to do
2: C* := all available redundant nodes 18: if ng ¢ D, then
3: overhead := oo 19: Q.enqueue(ng)
4: for C§ = subsets ofC* with size|D®| do 20: if ng ¢ D, then
5. if 3 full-size matching betwee®; andD* then 21 D, :=D. + {naq}
6: oy := |C%| + available data blocks connected @ 22: if |Dy| <|C,| and D, C D, then
7: o1 := co + overhead to recover failed redundant blocks 23: last // found an access path fer
8: overhead = min(overhead, o) 24: o; := |C,| + available data blocks connected @,
9: return 25: overhead := min(overhead, o;)
26: return

Fig. 12. Calculate minimum recovery overhead.
Fig. 13. Calculate minimum read overhead (one redundant §ubse

2) Minimum read overhead:

The recovery of a single data block in general requires Very careful readers might challenge that given a redundant
smaller overhead than the recovery of all failed blocks, amstibset, there could exist more than one full-size matching
their respective access paths could be rather differentedls win the Tanner graph (i.e., data and redundant nodes could
An algorithm to find an access path with the minimum redae matched differently, while the sizes of matchings are the
overhead is described as follows. same). The breadth first search in Figure 13 only explores

Similar to the algorithm in Figure 12, we choose subsetsie of them, which might happen to @t minimum. Nev-
of the available redundant blocks, whose size equals to thheless, the following theorem states that the algorithm
total number of failed data blocks. If the correspondingriean Figure 13 can indeed find the minimum read overhead.
graph doesnot contain a full-size matching, this subset is Theorem 5:Given an erasure pattern and a redundant sub-
simply skipped. (For simplicity, we only care cases wherget, the algorithm in Figure 13 will always yield the safg
all the failed data blocks can be recovered. This assumptieven following different full-size matchings.
can be easily removed, should the recovery of a subset of Proof: It is easy to show thafD,| = |C,|, when the
blocks become interesting.) Otherwise, a breadth firstcheaalgorithm terminates. Now, we prove the theorem by contra-
is carried out, starting from the target failed data blo¢khé diction. Assume the algorithm yields with two different ués
search encounters a data node in the Tanner graph, it follol@enoted asD,,, C,, and D,,, C,,, respectively), when
only the edge in the matching to the corresponding redunddoliowing two different matchings. It is clear thdD,, and
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D,, share at least the target data block. Th€yp, and C,, often use rather small finite fields. Moreover, all the tegheis
share at least one redundant block as well. Otherwise dfailesed to speed up encoding and decoding (e.g. XOR-based
data blocks in neitheD,, nor D,, will not be recoverable, array codes [7], [15], etc.) can be directly applied to thseiba
because they have to be decoded from redundant blocks Rgtamid Codes.

in C,, or C,,, but there are less redundant blocks than failed

data blocks. On the other hand, any data blocks, which &e Additional notes

connected to the shared redundant block betw€gp and |t is worth briefly comparing the generalized Pyramid Codes

C,,, have to be shared bP,, and D.,. Hence, following to some other ERC codes under the same configuration. Two
the same logic and using induction argument, we can sh@¥amples are shown here.

that D,, andD,, cannot overlap. Then, one has to contain |n the first example, the configuration in Figure 7 is
the other. Without loss of generality, assur,, contains revisited, which turns out to be a simple form pfoduct
D,, (thenC,, also containsC,,). If that's the case, in the codes[17]. In this product codes individual (2,1) codes are
matching betweeD,,, and C,,, at least one node in bothapplied independently to the rows and the columtesative
D,, and D,, should not connected toC,,. Based on the decodingis often used to recover failures. For a particular
existence of the full-size matching, at least one nod€jn  erasure pattern, where alldata blocks are failed, the iterative
should connect to a node ib,, while notin D,,. This decoding cannot succeed and the product code is declared un-
implies the algorithm woulaiot have terminated witl,, and  recoverable. However, if the code were a generalized Pgrami
C,,. Hence, it is neither possible fdd,, to containD.,. In  Code, then, the erasure pattern is in fact recoverablegsinc
summary, this is a contradiction and the proof is complde. the corresponding Tanner graph contains a full-size magghi
Indeed, if we complete the construction of the earlier eXamp

F. Comparisons with basic Pyramid Codes the following generator matrix is obtained:

This subsection compares the generalized Pyramid Codes 10 0 0
with the basic Pyramid Codes. We first use the same configura- ¢ 1 0 0
tion (shown in Figure 5). Hence, both codes @&, 12) codes 0 0 1 0
and guarantee the recovery of arbitranfailures. Figure 14 G = 0 0 0 1 . (8)
compares their recoverability beyondfailures, as well as 1 1420 0
the recovery and read overhead. It is quite obvious that the 00 24471
generalized Pyramid Codes has higher recoverability when t 4 0 1% 0
number of failures exceeds Moreover, this improvement of [0 108 0 174

recoverability comes at the cost of increased read overhdhds straightforward to verify that the generator submatri
(when there aré failures). formed by the lastt rows of G is invertible, i.e., thet data

Next, we modify the configuration slightly and create a neWwlocks can be recovered from the redundant blocks. Of
generalized Pyramid Code, where the global redundant bloglourse, the generalized Pyramid Codes require finite field op
are removed and replaced by : {d;,d», ds,d7,ds,do} and erations, while the product code might only use XOR in each
¢y : {d4,ds,dg,d1g,d11,d12}. (Note that this configuration row/column. Nevertheless, the generalized Pyramid Cades
is not valid for a basic Pyramid Code, as there are group oveahow higher recoverability under the same configuration.
laps.) The performance of this code in also shown in Figure 14
We observe that its recoverability is slightly reduced, tasoi
longer guarantees the recovery of arbitrdrgrasures. On the
other hand, both its recovery and read overhead are reduced
as well. Again, combined with failure probability modelsig

possible to choose right configurations such that the access {d d, d: et {d: da dedo):
overhead is minimized while the reliability requirement is crt {cdpds): 7' {dhdlsds dek
always satisfied. C3:{dy,ds,de}; 4t {d2,d3,ds,ds}.

Beyond this simple comparison, there are several other ma-
jor differences between the basic and the generalized Ryrafi9- 1>
Codes. The basic Pyramid Codes have less flexibility in code
configurations, as they require all groups to be nestedihe. In the second example, the generalized Pyramid Codes are
data blocks of one subgroup always form a subset of anotleempared with EVENODD codes [2]. A particular configura-
higher hierarchy group, and two groups do not intersect witton is shown in Figure 15, as well as an erasure pattern. It is
each other. The generalized Pyramid Codes, howevenotlo easy to see that the erasure pattermasrecoverable by an
impose such a constraint, and two groups may overlap. On B8¢ENODD code, while in fact recoverable by a generalized
other hand, the generalized Pyramid Codes may need a lafggramid Code. Of course, the EVENODD codes were meant
finite field and thus require higher computation complexitio protect failures of entire storage nodes (complete cofum
in encoding and decoding. As they are simply derived fron here). Hence, the erasure pattern in Figure 15 was not
existing codes, the basic Pyramid Codes can be constructedsidered in the original design of EVENODD codes. How-
from well-known codes, e.g. Reed-Solomon codes, whi@ver, as the capacity of individual storage nodes incredises

Pyramid Codes vs. EVENODD Codes.
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[ # of failed blocks [0 1 [ 271 3] 41 5 71 6 ]
basic Pyramid Code recoverability (%) 100 [ 100 | 100 | 100 100 | 94.12 | 59.32
( configuration shown in Figure 5 )| avg. recovery overhead O 6.67 | 9.80 | 12 12 12 12

avg. read overhead | 1.0 | 1.28 | 156 | 1.99 | 259 | 3.29 | 3.83
generalized Pyramid Code recoverability (%) 100 [ 100 | 100 | 100 100 | 94.19 | 76.44
( configuration shown in Figure 5 )| avg. recovery overhead O 6.67 | 9.80 | 12 12 12 12

avg. read overhead | 1.0 | 1.28 | 1.56 | 1.99 | 2.59 329 | 412
generalized Pyramid Code recoverability (%) 100 [ 100 | 100 | 100 | 97.94 | 88.57 | 65.63
( global redundant blocks removed|) avg. recovery overhead 0 6.0 | 799 | 9.95 12 12 12

avg. read overhead | 1.0 | 1.28 | 1.56 | 1.87 | 2.32 2.93 3.85

Fig. 14. Comparisons with the basic Pyramid Codes. (Th& generalized Pyramid Code has a different configuration fréguré 5, where the global
redundant blocks are removed and replaceadpy {d1,d2,ds,d7,ds,dg} andcy : {d4,ds,ds,d10,d11,d12}.)

gradually becomes desirable to consider partial failuritisizv. - empirical experience shows that for the same block length,
a node, as suggested in [10]. In these scenarios, the gepdraltraditional MDS codes (e.g. Reed-Solomon codes) require
Pyramid Codes also show higher recoverability than exgstimuch smaller finite fields. In our opinion, traditional MDS
two dimensional ERC schemes, such as [12], [14], etc.  codes are constructed using more structured approach#s, wh
the construction of the generalized Pyramid Codes carries
IV. ADDITIONAL RELATED WORK certain random fashion. To this end, there is a very intergst

There are a few work, which bear a similar concept &nd yet chaIIenging question:. is it ever pgssible to cowstru
trading storage space for access efficiency. For exampl, [fon-MDS generalized Pyramid Codes.ulsmg more structu'red
can improve the read overhead by using twice as much Storgé)@roaches, su_ch t_hat_ much smaller finite fields are required
spaces as the data collection itself. [21] uses slightlyemo‘?nd yet the optimality is _preserv_ed? .
storage spaces than MDS codes to improve access efficienclfC€Nt developments in applying network coding to storage

in wide area storage networks. Compared to these schenf@plications [6] suggest the effectiveness of random finea

Pyramid Codes are much more flexible and can explorecgdes in this area. From the perspective of the generalized

much wider range of the trade-offs. Moreover, the gen&rdlizpyram'd Codes, these work apparently move even further away

Pyramid Codes have optimal recovery performance, WhifI@m structured construction approaches and into complete
none of the other existing schemes does randomness. Moving towards that extreme, it is also intiergs
' hio ask: given a code configuration, instead of following the

There are also significant efforts in trying to improve t K i X ) ) ?
encoding/decoding performance of ERC schemes. In partid neralized Pyramid Codes construction, what if we simply

lar, lots of them advocate using pure XOR operations, suchf %in the entrigs with random values? Of course, the .code
EVENODD [2], X-Code [27], B-Code [28], RDP [5], codesW'I not be (_)ptlmal_any more, but how much will it deviate
based on CPM [7], [8], etc. As mentioned before, if thesféom the optimality in terms of recov_erablhty? Moreovegvh
codes are used to derive the basic Pyramid Codes, then!%me access over.h.ead affected? Th's appears a very bmgres
optimizations direct apply. As for the generalized Pyramiﬁ;Sue to be quantified both theoretically and empirically.

Codes, some generic optimization concepts, such as [22], arWhen the copfiguration is given, for bo_th basic and gen-
also applicable. eralized Pyramid Codes, we have described how to study

the storage cost, the recoverability and the access owkrhea
Applying simple probability failure models, we can compare

) ) ) and choose among various configurations, such that certain
In this paper, we describe two classes of Pyramid Codegpects or a combination of them is optimized. We will preésen

where the basic Pyramid Codes are simply derived frofRose results in a separate paper. However, models thatreapt
existing codes, while the generalized Pyramid Codes aff failures of practical large scale systems are in general
radically advanced new codes. We also define a necessgiymore sophisticated, especially when failures couldoeap
condition of recoverability and show the generalized Pytamcorrelated, as recent observations suggest [19]. Henee, th
Codes are optimal under the condition. Beyond presentieg {§rand challenge is how to choice right configurations (omeve

main results, another intention of this paper is to inspic¥en petter, adapt configurations) in practical large scaleesyst
research efforts in issues that still remain open. Belowliste

a number of these challenges. ACKNOWLEDGMENT

If we revisit the construction of the generalized Pyramid The authors would like to thanks Dr. Cha Zhang, Dr.
Codes, there is another interesting observation. When tennan Wu and Dr. Philip A. Chou at Microsoft Research
simplest configuration is used (a flat configuration, whete dbr very helpful and inspiring discussions on various parts
the redundant blocks are computed from all the data blockdyring this work. In particular, Dr. Zhang helped on desngni
then the generalized Pyramid Code essentially becomestha technique to find g, given U in Section Ill. Dr. Wu
MDS code. Hence, the construction algorithm can also be udsglped on solving the problem to find the minimum recovery
to find new MDS codes. On the other hand, the generalizederhead of the generalized Pyramid Codes in Section Ill. Dr
Pyramid Codes might need larger finite fields. Indeed, o@hou offered great insights on the open issues.

V. CONCLUDING REMARKS AND OPEN ISSUES
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