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Abstract

Matching local features across images is often useful
when comparing or recognizing objects or scenes, and ef-
ficient techniques for obtaining image-to-image correspon-
dences have been developed [4, 11, 16]. However, given a
query image, searching a very large image database with
such measures remains impractical. We introduce a sub-
linear time randomized hashing algorithm for indexing sets
of feature vectors under their partial correspondences. We
develop an efficient embedding function for the normalized
partial matching similarity between sets, and show how
to exploit random hyperplane properties to construct hash
functions that satisfy locality-sensitive constraints. The re-
sult is a bounded approximate similarity search algorithm
that finds (1 + ε)-approximate nearest neighbor images in
O(N1/(1+ε)) time for a database containing N images rep-
resented by (varying numbers of) local features. We demon-
strate our approach applied to image retrieval for images
represented by sets of local appearance features, and show
that searching over correspondences is now scalable to
large image databases.

1. Introduction

Representations that decompose images into local
patches or regions have proven to be very useful, in large
part due to their tendency to be preserved under a vari-
ety of imaging conditions and transformations. To lever-
age local representations when performing image-to-image
comparisons, many effective retrieval and object recogni-
tion algorithms evaluate similarity by establishing corre-
spondences (or a matching) between sets of local parts,
e.g., [6, 7, 3, 11, 4].

As advances are made in terms of powerful representa-
tions and sophisticated matching techniques, it is critical to
consider how they might scale to accommodate image re-
trieval with very large databases and recognition with a very
large number of categories or exemplars. If a retrieval sys-

tem is to index all of the images on the web by their visual
content, it cannot conceivably operate with a naive linear
scan, where a matching is computed between a query and
every image in the database. Likewise, if a recognition en-
gine based on correspondences is to ever cope with the thou-
sands of categories humans easily recognize, it must not re-
quire that a novel input be matched against every stored ex-
emplar for all categories.

Although researchers have developed the means to per-
form each individual matching efficiently [6, 11, 4, 16],
indexing over those correspondences remains a significant
computational challenge. While various tree data structures
have been explored to efficiently index features or keypoints
themselves [20, 18, 17, 22, 19], existing methods are lim-
ited to handling only these single vector inputs, and because
they index features independently, do not allow us to evalu-
ate one-to-one matchings.

In this work we present a sub-linear time randomized
hashing algorithm for indexing sets of feature vectors ac-
cording to their partial correspondences. We construct
an embedding and locality-sensitive hash functions under
which feature sets can be efficiently indexed, with guar-
antees on the expected error induced by the approximation
relative to the significant gains in query speed we achieve.
Specifically, we find the (1+ ε)-approximate nearest neigh-
bor (NN) images in O(N1/(1+ε)) time for a database con-
taining N images, each of which is represented by a set of
local features. The matching effected is partial and robust:
images may be described by varying numbers of features,
and the presence of very distant (“outlier”) features in an
image cannot significantly skew the correspondence simi-
larity that is measured for an otherwise good match.

We demonstrate our approach for image retrieval tasks
with large image databases, and show that for very little
loss in accuracy over a brute force linear scan, we obtain
significant computational advantages—typically, only 1-3%
of a database needs to be searched. In our experiments
we have focused on image matching with local appearance
features; however, the approach is general and applies to
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any set-based representation where correspondences are a
meaningful comparison measure. Beyond content-based
image retrieval itself, the sub-linear time search tool we
provide has potential applications to recognition with ex-
emplars and other example-based learning problems where
a large amount of training data is valuable.

2. Related Work
Vision researchers have previously explored ways to mit-

igate the cost of establishing correspondences between sets
of local image features, either by exploiting structural con-
straints to more efficiently compute optimal solutions [6] or
by designing approximations [4, 11, 16]. In [6], Felzen-
szwalb and Huttenlocher use dynamic programming and
distance transforms to detect a part-based object. To ap-
proximate the least-cost correspondences between pairs of
local features, Berg et al. optimize a linear bounding prob-
lem [4], while Leordeanu and Hebert propose an efficient
spectral method [16]. We have developed a linear-time ap-
proximation to the partial matching between sets of fea-
tures, and have demonstrated its use as a kernel for discrim-
inative classification of categories [11]. In [15], Lazebnik et
al. develop a variant that operates over spatial features.

While these methods offer good complexity improve-
ments for the image-to-image matching problem, none ad-
dresses the problem of how to scale the correspondence
measure to index very large databases; despite the fast
matchings, a linear scan mode of computation is assumed.

Recent progress has been made using geometric embed-
dings and randomized algorithms to reduce computation re-
quirements for vision tasks. In the BoostMap method of
Athitsos et al., a learned embedding for the Chamfer dis-
tance maps data into a Euclidean space, where comparisons
are less expensive; however, retrievals are performed with a
linear scan [1]. In [14], Indyk and Thaper develop a metric
embedding for weighted bipartite graph matching between
equally-sized sets and apply it to global color histogram
matching with locality-sensitive hashing [13] (LSH), a sub-
linear time approach to approximate similarity search. We
further explore the embedding and LSH for comparing sets
of local shape features in [10], and Shakhnarovich et al. de-
sign a variant of LSH that is tuned to retrieve examples that
are similar in some parameter space and apply it to index
global descriptions of body pose [21].

In this work we also develop a form of locality-sensitive
hashing for sub-linear time search. However, in contrast to
previous techniques [14, 10, 21], our embedding allows in-
put feature sets to have varying cardinalities, and provides
for hashing over a normalized partial match. This is an im-
portant advantage for handling outlier “unmatchable” fea-
tures, as we will demonstrate in Section 4. In addition, un-
like [14, 10], with our hashing algorithm it is possible to
perform the feature space decomposition according to its

underlying structure, which means indexing can remain ac-
curate even for sets with high-dimensional features.

Several researchers have considered special tree data
structures to organize image feature vectors for fast ac-
cess [20, 2, 17, 22, 19]. Beis and Lowe develop the ap-
proximate Best-Bin-First technique, a variant of k−d trees,
to speed search for individual keypoints [2]. Shao et al. em-
ploy a Vantage Point tree to organize feature vectors [22],
while Lepetit et al. [17] and Obdrzalek and Matas [20] have
shown novel methods based on decision trees for efficiently
indexing features. In [19], Nister and Stewenius introduce a
“vocabulary-tree”, a hierarchical partition that reduces the
search time for similar features and allows bag-of-words
distances with very large vocabularies.

These approaches share our goal of realizing rapid
image-based search. However, they address the problem of
how, given a feature vector, to efficiently retrieve the most
similar feature vectors among a pool of feature vectors, with
similarity defined in terms of Euclidean distance. In con-
trast, we are concerned with the problem of how, given a
set of feature vectors, to efficiently retrieve the most simi-
lar sets from a database of sets, with similarity defined in
terms of one-to-one correspondences (a matching). While
the bag-of-words representation in [19] describes quantized
features jointly, unlike our approach it does not allow a par-
tial match and cannot formally guarantee sub-linear time
image search without assumptions about the frequency with
which features will occur in query images.

In addition, the approaches above are intended for ac-
cessing images that contain instances of the same object, a
scenario where identifying a few very similar features has
been shown to be sufficient to reach stored images of the
same object. Our framework applies to general matchings
not only between object instances, but also between tex-
tures or categories, which often exhibit wider appearance
variation and may not be isolated from a database on the
basis of a few discriminative features alone. Instead, the
joint matching of all component features may be preferable;
such matchings have been shown to yield good category-
level comparisons (e.g. [11, 15, 4, 3]).

3. Approach
The main contribution of this work is a novel embedding

for a set of vectors that enables sub-linear time approximate
similarity search over partial correspondences with random
hyperplane hash functions. The idea is to encode a point set
with a weighted multi-resolution histogram in such a way
that a dot product between any two such encodings will re-
flect the similarity of the original point sets according to
an approximate, normalized partial matching between their
component feature vectors. Then, by drawing on a prop-
erty of random hyperplanes, we designate randomized hash
functions which guarantee that examples with strong match-



(a) Pyramid match embedding (b) Pyramid match hashing

Figure 1. Overview of the approach. The pyramid match (a) takes two sets of feature vectors as input (for instance, two sets of image patch descriptors),
maps the vectors to multiresolution histograms, and intersects them to efficiently approximate the optimal partial matching (correspondence) between the
original feature sets. Our novel embedding of the pyramid match and associated random hash functions allow sub-linear time indexing over correspondences
(b); the pyramid match is applied only to a small portion of the database examples, but we still guarantee a specified retrieval accuracy with high probability.

ing similarity will (with high probability) hash into the same
buckets. Approximate similarity search in the Hamming
space of the hash keys then identifies the approximate near-
est neighbors according to the approximate matching score,
in time sub-linear in the number of database examples.

In image retrieval terms, this means we first take a col-
lection of images, each one of which is represented in some
fashion by a set of feature vectors. For example, each could
be described by a set of SIFT [18] descriptors extracted
at salient points, or a set of shape context [3] histograms
or geometric blur descriptors [4] extracted at edge points,
or a set of color distributions, etc. The database items
are prepared by mapping every set of vectors to a single
high-dimensional vector via the embedding function. After
this embedding, the dot product between any two examples
would reflect the partial matching similarity between the
original feature sets, that is, the strength of the correspon-
dence between their local parts. All embedded database ex-
amples are next encoded as binary hash key strings, with
each bit determined with a random hash function designed
to probabilistically give similar responses for examples with
similar dot products. These hash keys are stored in such a
way that they are accessible in sub-linear time.

Given a query image, local features of the chosen type
are extracted, and the embedding function is applied to
form the vector encoding for the query set. Then, rather
than compute the dot product between the embedded query
and every embedded database item, we apply the same ran-
domized hash functions used for the database items to in-
dex into the stored database hash keys, thereby (with high
probability) obtaining in sub-linear time the most similar
database neighbors in terms of the normalized partial match
between the original local image features. See Figure 1 for
a schematic overview of our approach.

We consider point sets from the input space S, which
contains sets of vectors drawn from feature space F : S ={
X|X = {x1, . . . ,xm}

}
, where each feature is a d-

dimensional vector, xi ∈ F ⊆ �d, and m = |X|.
A partial matching between two point sets is an assign-

ment that maps all points in the smaller set to some sub-
set of the points in the larger (or equally-sized) set. Given
point sets X and Y, where |X| ≤ |Y|, a partial match-
ing M (X,Y;π) pairs each point in X to some unique
point in Y according to the permutation of indices given
by π =

[
π1, . . . , π|X|

]
, 1 ≤ πi ≤ |Y|, where πi specifies

which point yπi
∈ Y is matched to xi ∈ X, for 1 ≤

i ≤ |X|. The cost of a partial matching is the sum of
the distances between matched points: C (M(X,Y;π)) =∑

xi∈X ||xi−yπi
||1. The optimal partial matching uses the

assignment π∗ that minimizes the matching cost:
π∗ = argmin

π
C (M(X,Y;π)) . (1)

Given a database of feature sets D = {X1, . . . ,XN} ⊆
S, and a query set of features Q ∈ S, the nearest neighbor
in D in terms of correspondences is the set R∗ that has the
minimal partial matching cost to Q:

R∗ = argmin
Xi∈D

C (M(Q,Xi;π∗)) . (2)

Let C = C (M(Q,R∗; π̂∗)), where π̂∗ refers to a
bounded approximation for π∗. In this work we develop a
sub-linear time hashing algorithm that guarantees retrieval
in O(N (1/1+ε)) time of an approximate nearest-neighbor R̂

for Q such that C
(
M(Q, R̂; π̂∗)

)
≤ (1 + ε)C.

3.1. Approximate Partial Correspondences

To construct our embedding, we build upon the matching
technique called the pyramid match, which we introduced



in [11]. The pyramid match is a low-distortion approxima-
tion for the least-cost correspondence between two sets of
vectors that requires only linear time in the number of vec-
tors per set to compute. We will briefly summarize the rele-
vant math of the pyramid match algorithm here, but see [11]
for details and intuition for why this approximation works.

Point sets are converted to multi-resolution histograms
(pyramids): Ψ(X) = [H0(X), . . . , HL−1(X)], where X ∈
S, L = �log2 A�, A is the feature value range, Hi(X)
is a histogram vector formed over points in X using d-
dimensional bins of side length 2i.1 These pyramids are
represented sparsely, with up to m = |X| nonzero entries
per level.

The (un-normalized) pyramid match score is defined as:

P̃∆ (Ψ(Y), Ψ(Z)) = wL−1IL−1 +

L−2X
i=0

(wi − wi+1) Ii, (3)

where Y,Z ∈ S, and Ii is the intersection between the
ith histogram in Ψ(Y) and Ψ(Z), respectively [11]. To
measure matching similarity, the weights wi are set to be
inversely proportional to the size of the histogram bins at
level i, with the constraint that wi ≥ wi+1 (e.g., wi = 1

2i is
a valid option).

To avoid favoring large sets and to form a measure that
respects the triangle inequality, we will consider the pyra-
mid match value normalized by the product of each input’s
self-similarity:
P∆ (Ψ(Y), Ψ(Z)) =

P̃∆ (Ψ(Y), Ψ(Z))q
P̃∆ (Ψ(Y), Ψ(Y)) × P̃∆ (Ψ(Z), Ψ(Z))

.

(4)
The pyramid match will serve as our approximation to

the optimal partial matching (π̂∗). Below we develop an
embedding for the pyramid match and the locality-sensitive
hashing functions that will allow sub-linear time nearest
neighbor search on top of it.

3.2. Locality Sensitive Hashing

A locality sensitive hashing scheme is a distribution on
a family F of hash functions operating on a collection of
objects, such that for two objects x, y,

Pr
h∈F

[h(x) = h(y)] = sim(x, y), (5)

where sim(x, y) is some similarity function defined on the
collection of objects [5]. In other words, the probability that
two inputs collide in the hash table is equal to the similar-
ity between them, and so highly similar objects will be in-
dexed by the hash table with high probability. Such a hash-
ing scheme has been shown to support efficient data struc-
tures for performing approximate nearest-neighbor queries
on a database of objects, when hash functions that are ap-
propriate for both the data objects and similarity function of
interest can be defined [13, 5].

1Data-dependent, non-uniformly shaped bins are also possible, and
may be formed by hierarchical clustering on a corpus of features [12].

3.3. Random Hyperplane Hash Functions

In [8], Goemans and Williamson provide a randomized
algorithm for the MAX-CUT problem using semidefinite
programming. As part of this work, they prove that given
a collection of vectors {�v1, . . . , �vn} belonging to the unit
sphere, and a randomly generated vector �r, the probability
that any two vectors �vi and �vj each has a dot product with �r
having an opposite sign is related to the vectors as follows:

Pr [sgn(�vi · �r) �= sgn(�vj · �r)] =
1
π

cos−1(�vi · �vj). (6)

That is, the probability a random hyperplane separates two
vectors is directly proportional to the angle cos−1(�vi · �vj).

In [5], Charikar considers how this property may be ex-
ploited for locality sensitive hashing. Given a database of
vectors in �d, a vector �r is chosen at random from the d-
dimensional Gaussian distribution with zero mean and unit
variance. The corresponding hash function h�r accepts a
vector �u ∈ �d, and is defined as:

h�r(�u) =
{

1, if �r · �u ≥ 0
0, if �r · �u < 0 . (7)

Then, drawing on the relationship in Eqn. 6, a valid locality
sensitive hashing scheme is:

Pr [h�r(�vi) = h�r(�vj)] = 1 − θ(�vi, �vj)
π

, where (8)

θ(�vi, �vj) = cos−1

(
�vi · �vj√|�vi| |�vj |

)
.

In the following, we show that we can achieve hashing
over the pyramid match kernel with this hash function fam-
ily. We develop an embedding function for the pyramid
mapping Ψ(X) of point set X that incorporates the weights
and computation of the pyramid matching P∆. When con-
sidered as a type of unary encoding, we have an embedding
for each point set that under a dot product yields the un-
normalized pyramid match similarity value.

Given a histogram H that contains r bins, and a weight
w, let [wH] denote an r-dimensional vector giving the
counts in each bin of the histogram, with each count scaled
by w. Note that this weighting is distributive over histogram
intersection; that is, a weighted histogram intersection value
is equivalent to the intersection of the weighted histograms,
or w I (H(Y),H(Z)) = I ([wH(Y)], [wH(Z)]).

Let U([wH]) denote the following (padded) unary en-
coding of the histogram H weighted by w:

U ([wH]) =

0
BB@

wH(1)z }| {
1, . . . , 1,

P − wH(1)z }| {
0, . . . , 0| {z }

first bin

, . . . ,

wH(r)z }| {
1, . . . , 1,

P − wH(r)z }| {
0, . . . , 0| {z }

last bin

1
CCA ,

(9)
where P is the maximum possible weighted count in
any histogram bin, and H(j) is the count in bin j of



H .2 Let vi(X) refer to the histogram for set X at pyra-
mid level i, weighted by w = wi − wi+1: vi(X) =
[(wi − wi+1) Hi(X)].

The following embedding f serves to map the set of vec-
tors X to a single vector:

f(X) =
[
U(v0(X)), U(v1(X)), U(v2(X)), . . . ,

U(vL−2(X)), U([wL−1HL−1(X)])
]
.

(10)

The dot product between two such encodings for sets Y
and Z yields the un-normalized pyramid match score from
Eqn. 3 above:

f(Y) · f(Z) = P̃∆ (Ψ(Y),Ψ(Z)) . (11)

The length |f(Y)| of an encoding vector f(Y) is sim-
ply the sum of its total number of nonzero (one) entries.
Since self-intersection of a histogram returns the number
of total points in the histogram (I(H(Y),H(Y)) = |Y|),
the length of an embedding vector will be equivalent to the
original set’s self-similarity score under the pyramid match:

|f(Y)| = wL−1 |Y| +
L−2∑
i=0

(wi − wi+1) |Y|

= P̃∆ (Ψ(Y),Ψ(Y)) . (12)
Putting these pieces together, we have an embedding of

the pyramid match kernel that allows us to perform sub-
linear time similarity search with random hyperplane hash
functions. With the embedding in Eqn. 10 and the guarantee
from Eqn. 8, we have:

Pr [h�r(f(Y)) = h�r(f(Z))] = 1 − θ(f(Y), f(Z))

π
, where

θ(f(Y), f(Z)) = cos−1

 
f(Y) · f(Z)p|f(Y)| |f(Z)|

!

= cos−1 (P∆ (Ψ(Y), Ψ(Z))) .

Notice that this last term is the normalized pyramid match
similarity value, where normalization is done according to
the product of the self-similarity scores.3

We do not need to explicitly expand the components
vi(X) into their unary encodings. Likewise, we do not need
to generate an entry for every dimension of the random vec-
tor �r in Eqn. 7 to compute a hash bit from f(X). Instead,
the counts in Hi(X) indicate which entries in �r will result
in a nonzero contribution to 〈f(X) ·�r〉, that is, those entries

2If weighted counts are real-valued, this process can in theory proceed
by scaling to a given precision and truncating to integers. With the nor-
malization factor also scaled, the output remains equivalent. However, as
described below, the unary encoding is never explicitly computed.

3Similar embeddings and hash functions are possible with the
“vocabulary-guided” pyramid match given in [12], since the intersected
pyramids there too can be written as a dot product between weighted his-
tograms. Because a vocabulary-guided pyramid uses irregularly shaped
histogram bins, for that embedding weights must be applied at the level of
the bins instead of at the level of the pyramid resolutions.

where the encoding for vi(X) would be 1, not 0. For those
required entries only, we generate values in �r on demand:
we seed a random number generator relative to the index of
the particular nonzero entry in f(X), obtain two uniform
random numbers in [0, 1], and then convert those to a nor-
mally distributed random number from N(0, 1) using the
Box-Muller transformation. The inner product between the
random vector and the embedding is then the sum of those
particular entries in �r, and the sign of this sum determines
the hash key bit h�r(f(X)).

To further improve the efficiency of computing hash key
bits, rather than sample random Gaussian values for �r re-
peatedly for each unit of a total weighted bin count V
(i.e., each of V 1-bits), we draw directly from the sum
of V Gaussians, which is normally distributed with mean∑V

i=1 µi = 0 and variance
∑V

i=1 σ2
i = V (hence the

√
Vl

term in step 5 of Algorithm 1).

3.4. Indexing in Hamming Space

Using k random hash functions (that is, k independent
instances of the vector �r above), for each database set Xj

we generate a k-dimensional binary hash key string that is
the concatenation of the hash key bits that result from Eqn. 7
with input �u = f(X). Now the problem of indexing into the
database with query set Q is reduced to hashing f(Q) with
these same k functions and retrieving items corresponding
to database bit vectors having minimal Hamming distances
to the query bit vector.

For this step, we employ the technique for approximate
search in Hamming space developed by Charikar [5], which
guarantees that at most O(N1/(1+ε)) of the N bit vec-
tors must be examined to retrieve the (1 + ε)-approximate
nearest neighbors. Given the list of database hash keys,
M = O(N1/(1+ε)) random permutations of the bits are
formed, and each list of permuted hash keys is sorted lexi-
cographically to form M sorted orders. A query hash key is
indexed into each sorted order with a binary search, and the
2M nearest examples found this way are the approximate
nearest neighbors. See [5] for details.

Having pulled up these nearest bit vectors, we then com-
pute the actual pyramid match similarity values between
their associated database pyramids and the query’s pyramid.
The hashed neighbors are ranked according to these scores,
and this ranked list is the final output of the algorithm. A
useful property of our indexing approach is that adding to
the database does not require recomputing the preprocess-
ing steps; to add a new example, its hash key is computed,
permuted, and then inserted into the existing sorted orders.
See Algorithm 1 for a summary of our approach.

3.5. Normalized Partial Matches

To achieve a complete partial matching—where no
penalty whatsoever is accumulated for unmatched features



Algorithm 1 Pyramid match hashing algorithm.
Given: Database of images {X1, . . . ,XN} each with feature vectors

Xj =
˘
x1, . . . ,xmj

¯
, xi ∈ �d:

1: for all sets Xj , j = 1, . . . , N do
2: Compute embedding: Compute the L-level multi-resolution his-

togram Ψ(Xj) and then weighted vector f(Xj), represented
sparsely as {〈Il, Vl〉}Z

l=1, a list of d-dim. nonzero indices Il and
their associated weighted counts Vl, with Z = O(mjL).

3: Compute hash key:
4: for all Hash functions �ri, i = 1, . . . , k do
5: Generate next hash key bit:

h�ri
(f(Xj)) =


1, if

PZ
l=1 �r

(l)
i

√
Vl ≥ 0

0, otherwise
,

where �r
(l)
i ∼ N(0, 1) is the Ith

l entry in random vector �ri,
generated via seeds relative to i and Il.

6: end for
7: Concatenate k bits to form binary hash key:ˆ

h�r1 (f(Xj)), . . . , h�rk
(f(Xj))

˜
8: end for
9: Process hash keys for Hamming space approximate-NN search ac-

cording to [5]: generate M = O(N1/(1+ε)) random k-dimensional
permutations, permute all database hash keys by each one, and sort
each list of permuted keys.

Given: Query image represented by set of features Q,
10: Compute embedding f(Q) and hash keyˆ

h�r1 (f(Q)), . . . , h�rk
(f(Q))

˜
as in 2 and 3 above.

11: Apply each permutation to query hash key bits.
12: Perform binary search on each sorted, permuted order of database

hash keys, and collect the indices [t1, . . . , t2M ] corresponding to the
database items’ hash keys that are indexed in each.

13: Sort hashed examples according to P∆ (Ψ(Q), Ψ(Xti)), for i =

1, . . . , 2M .

in a larger input set—it is necessary to normalize the match-
ing cost only according to the size of the smaller set. How-
ever, the hashing described above makes use of a normal-
ization factor that includes the sizes of both input sets. This
yields a correspondence measure between two variably-
sized sets that does include some penalty for the unmatched
points in the larger set, but remains robust to increasingly
distant outlier features.

For example, consider two sets; with the minimum car-
dinality normalization, their pyramid match score would re-
main constant if we were to add more and more features to
one of the sets. In contrast, with the product normaliza-
tion, the pyramid match value would slowly decrease as we
added those features. When is this a desired property for
image matching? If there is expected to be an unknown
amount of clutter, background, or unmatched features in
both of the images being matched, this normalization is rea-
sonable. The best matching will be the one that can find
good matches for all the features in both sets. An image
matching with more clutter (unmatchable features) will re-
ceive a lower similarity weight than an image matching with
fewer unmatched features. However, pyramid match hash-
ing will not care how different the unmatched features are to
any features in the other set; that is, the penalty is only rel-

ative to how many unmatched features there are. We verify
this property experimentally in Section 4.

Which normalization approach is most suitable may de-
pend on the application. We have shown how to perform
sub-linear time hashing with the product normalization, and
in Chapter 5 of [9] we prove that it is not possible to do lo-
cality sensitive hashing with the alternative minimum car-
dinality normalization.

4. Results

In this section we evaluate our indexing technique in sev-
eral ways. We first systematically test the pyramid match’s
robustness to outlier features, and compare it against an al-
ternate approximate matching approach. Then we demon-
strate pyramid match hashing applied to image retrieval for
two different data sets.

Robust Matching: The degree to which the unmatch-
able (or “outlier”) features differ from the matched features
will not affect our matching scores, meaning that pyramid
match hashing is robust to increasingly distant outlier fea-
tures. In contrast, bijective matchings as in [14, 10] com-
puted over sets that have been re-weighted to achieve total
equal masses are not robust to increasingly distant outliers.
These properties hold by definition (see [9], Ch. 5 for an
illustrative figure), and we verify them empirically here.

In order to work with realistic data but still have con-
trol over the amount of clutter features, we established syn-
thetic class models. Each model is comprised of some fixed
number m′ of parts, and each part has a Gaussian model
that generates its d-dimensional appearance vector (in the
spirit of the “constellation model” used by Fergus et al. [7]
and others). Given these category models, we can then add
clutter features and noise, simulating in a controlled man-
ner the variations that occur with the patches extracted from
real images. The appearance of the clutter features is de-
termined by selecting a random vector from a uniform dis-
tribution whose range is set to be a function of the model
feature values’ range (see below).

We generated 50 examples for two synthetic category
models, each of which was defined by a set of m′ = 35
features with d = 2, for a total of 100 point sets. We com-
puted pairwise similarities using the pyramid match normal-
ized by the product of the input sets’ cardinalities, pairwise
similarities using the optimal partial matching and the same
normalization, and pairwise distances based on a bijective
matching approximation. To apply the bijective matching to
unequally-sized sets, points in a set were weighted so that
all weights summed to one.

Then we added to every set up to 100 clutter features
having a value range bounded by a percentage Q of the
inlier features’ value range, and re-computed the resulting
pairwise matching scores. We tested for values of Q rang-
ing from 100% to 900%, in increments of 200. (When
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Figure 2. A partial match normalized by the product of the sizes of both
input sets will remain robust to distant outlier clutter features (blue cir-
cles). This property cannot be simulated by re-weighting point sets and
computing a bijective matching (green squares).

Q = 100%, the inlier and outlier features have the same
value range.) Figure 2 shows the results, with the approxi-
mations’ ranking quality quantified by the Spearman corre-
lation coefficient. The two left-most points on the plot cor-
respond to matchings with equally-sized sets and no clutter.
The remaining points correspond to matchings with increas-
ingly more distant clutter or outlier features. The match
scores normalized by the sizes of both input sets remain ro-
bust to the addition of stronger outlier features (blue cir-
cles), whereas the bijective matching must incorporate the
distance of the outlier features in its matching and suffers as
that distance increases (green squares).

Image Retrieval Experiments: Next we demonstrate
pyramid match hashing applied to content-based image
retrieval where images are represented by sets of local
SIFT [18] image features. We consider two different data
sets: the Caltech-4 database and the Caltech-101 database.
In all experiments, we set ε = 1.0, which means that our
query times are bounded by O(

√
N) for N images.

We measure our performance with several metrics: (1)
the observed accuracy of the approximate-NN indexing,
(2) the extent to which our hash functions are in practice
locality-sensitive to the pyramid match, (3) the ranking of
hashed database neighbors relative to the ranking we would
obtain with a linear scan of all items, and (4) the relevance
of examples retrieved via hashing, again relative to the re-
sults of a linear scan. For metrics (1) and (3) we display
results with ‘box and whisker plots’: each box has lines at
the lower quartile, median value (red line), and upper quar-
tile values, whiskers extend from each end of the box to
show the extent of the rest of the data, and outliers are de-
noted with pluses. For metrics (2) and (4) we summarize
the error/accuracy distributions in terms of their means and
standard deviations (denoted by σ).

To measure the approximate-NN indexing accuracy (1),
we measure how frequently we obtain some (1 + ε)-
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Figure 3. Image retrieval results for Caltech-4 (top row) and Caltech-101
(bottom row) databases. Left plots measure extent to which approximate-
NN guarantee is realized; right plots show ranking quality of hashed NN
relative to a linear scan of the entire database.

neighbor for each query. That is, we count how often we
hash to one (or more) database hash keys that are within
(1 + ε)C of the query, if the true nearest item is at dis-
tance C from it. To measure the hash function accuracy
(2), we compute the error Pr(h�r(f(X)) = h�r(f(Y))) −(
1 − cos−1(P∆(Ψ(X),Ψ(Y)))

π

)
, for all queries X and all

database examples Y. The probability of two sets having
equal hash key bits is estimated by averaging over 80 ran-
dom hash functions. The ranking quality (3) is computed
in terms of the top percentile among the top K hashed NN
(according to the ranking a linear scan would provide). The
relevance of hashed NN (4) is measured by the ratio of the
number of top K hashed NN having the same label as the
query divided by the same count for the NN according to
a linear scan; a ratio of 1 means the hashing retrieves at
least as many relevant examples as the linear scan. We set
K = 5. All results are collected for five repeated runs, due
to the random elements of the algorithm. Figure 3 displays
results for both databases using metrics (1) and (3).

Note that for these last two metrics, exhaustive search us-
ing the pyramid match is our baseline because the method
we have proposed is meant to approximate the quality of
such a search at a small fraction of the cost. Our implemen-
tation of the pyramid match requires on average 0.1 ms to
compare two sets averaging 1400 features each, on a ma-
chine with a 2.4 GHz processor and 2 GB of memory. We
have previously proven bounds on the pyramid match’s er-
ror relative to the optimal partial match [9], and have shown
that its accuracy in practice is very close to optimal [11, 9],
and so we do not focus our results on this aspect.



The Caltech-4 database contains 3,188 total images
spanning four different categories of objects. We with-
held 20 images from each category to query the remain-
ing images. The approximate-NN accuracy (top left plot)
is very strong in practice here, with nearly a 100% chance
of fulfilling the (1 + ε) guarantee when k ≥ 40. As ex-
pected, a larger number of hash functions provides better
accuracy. The distribution of errors between the hash func-
tion bit agreement and the pyramid match scores (metric
2) has a mean of -0.01 (σ = 0.04), again verifying our
method’s theoretical properties for this data. The top right
plot demonstrates that the hashed NNs match the quality of
the NNs obtained with a linear scan very well, with rank-
ing percentiles at median values of 99.8. The mean rele-
vance ratio is 0.97 (σ = 0.12) and the median ratio is 1.0
for the closest 5 neighbors. On average, a query with pyra-
mid match hashing required searching only 79 images, or
2.5% of the database. Thus, our pyramid match hashing
algorithm greatly improves the efficiency of partial match
search with very little loss in accuracy.

The Caltech-101 database contains 8,677 images span-
ning 101 object categories. Because there are only 30 im-
ages in some categories, we withheld 10 images from each
class to use as queries on the rest of the database. For this
data, an average query required searching only 115 images,
or 1.5% of the database. The realized approximate-NN ac-
curacy follows a similar trend as above, with nearly per-
fect satisfaction of the indexing guarantee for 40 hash bits
or more (bottom left plot). The mean hash function error
(metric 2) is 0 (σ = 0.03); this again is evidence that the
relationship between the pyramid match and our hash func-
tions holds in practice. The ranking quality of the pyramid
match hashing relative to the linear scan is high on this data,
with median percentiles of 99.9 for 20 to 100 hash functions
(bottom right plot). The mean ratio of relevant examples re-
trieved with hashing versus a linear scan is 0.76 (σ = 0.4),
and the median value is 1.0 for this data. This distribution
is wider than it was for the Caltech-4 data, suggesting that
the large number of categories makes the retrieval of all rel-
evant examples more challenging. Still, on average 76% of
relevant examples found in the top 5 NN with a linear scan
are also found by the hashing retrieval.

For both data sets, using more hash functions improves
the indexing accuracy because it increases the probability
that similar examples collide; however this accuracy comes
at the cost of a linear increase in hash key computation time.
Overall, we lose very little accuracy (Figure 3) but achieve
average speedup factors of 11 (for N=3,188) and 20 (for
N=8,677) per query, even including the overhead required
to compute hash keys. This empirical evidence together
with our theoretical bounds indicate the trend in speedups
that will continue for even larger databases.

5. Conclusions
We have developed a sub-linear time randomized hash-

ing method that enables scalable search over a normalized
partial matching for very large databases. We have demon-
strated our approach on retrieval tasks for images repre-
sented by sets of local appearance features, and we have
analyzed its accuracy and theoretical guarantees in various
ways. Nothing about the method is specific to a given repre-
sentation; it can be applied in any case where it is useful to
index sets of feature vectors based on their correspondence.
In the future we are interested in exploring how pyramid
match hashing might have impact on large-scale recognition
or clustering problems where a traditional linear processing
of the training data would not be feasible.
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