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Abstract. In this letter we evaluate the limiting magnitude for a Pyramid Sensor operating in a closed loop
astronomical Adaptive Optics system. A first heuristic analysis has shown that, when a point-like reference source
is used a pyramid sensor exhibits a significant gain in terms of limiting magnitude over the widely used Shack-
Hartmann sensor. This when diffraction limited conditions are reached. However, in current astronomical Adaptive
Optics, diffraction limited regime at the sensing wavelength is difficult to achieve. Our simulations quantify the
pyramid sensor limiting magnitude considering an Adaptive Optics system working in a partial correction regime.
The simulations show that the considered gain is retained even in partial correction. An average gain of two
magnitude is found in the considered case. This feature of a pyramid sensor can be very important in reducing
the fundamental limit of today’s Astronomical Adaptive Optics systems using natural reference sources, i.e. the
limited sky-coverage.
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1. Introduction

This letter reports the results of computer simulations
aimed at evaluating the Pyramid Sensor (Ragazzoni 1996)
(PS) behavior in partial correction Adaptive Optics (AO)
systems. It has been heuristically demonstrated that when
diffraction limited correction is approached at the sensing
wavelength, a PS performs better then a Shack-Hartmann
sensor (SHS) in terms of limiting magnitude (Ragazzoni &
Farinato 1999). This is because in diffraction limited con-
ditions the SHS sensitivity is limited by diffraction effects
introduced by the sensing subapertures, while PS sensitiv-
ity is limited by diffraction effects introduced by the whole
telescope aperture. The above statement holds when a
point-like reference source is used. However, diffraction
limited correction is difficult to reach at the sensing wave-
length with the present generation of AO systems. For this
reason our numerical code simulates PS and SHS behav-
ior in partial correction regime using diffractive optics to
evaluate the gain in limiting magnitude as a function of
the AO system correction efficiency.

Section 2 briefly describes the sensor optical configura-
tion and reports the equations that relate the PS signals
to the wavefront perturbations. Section 3 outlines the nu-
merical simulations of the sensor in closed loop operation
(Esposito et al. 2000). Section 4 considers the 6.5 m MMT
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Fig. 1. A sketch of the pyramid sensor optical set-up. The tip-
tilt mirror con be substituted with a translation stage that
translates the pyramid in the focal plane

telescope to show the different behavior of PS and SHS.
In Sects. 4.1 and 4.2 reconstruction error and limiting
magnitude for PS and SHS are calculated and compared
respectively.

2. PS principle of operation

The basic configuration of the PS is shown in Fig. 1. It
consists of three fundamental parts: a tip-tilt mirror conju-
gated to the exit pupil of the system under test, a square-
based glass pyramid with its vertex at the nominal focal
plane of the system and a relay lens that forms four images
of the exit pupil on a CCD detector. When the tip-tilt mir-
ror is not oscillating, the configuration is fully equivalent
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Fig. 2. Effect of tilt modulation in the PS focal plane

to a Foucault (Foucault 1859) knife-edge test (Babcock
1953; Horwitz 1994; Gale Wilson 1975). However, in the
considered configuration (Ragazzoni 1996), information
on the X and Y derivatives can be collected simultane-
ously. Introducing a periodic modulation of the wavefront
tilt (e.g. a circular one using the tip-tilt mirror Santagata)
allows the sensor sensitivity to be changed1. PS sensitivity
is found to be inversely proportional to the tip-tilt mod-
ulation amplitude. This allows the PS sensitivity to be
adjusted in order to deal with different amplitudes of the
incoming wavefront aberration. In closed loop operation,
the sensitivity can be increased as the wavefront correc-
tion progresses, as is usually done in the case of curvature
sensing systems (Roddier 1990; Roddier et al. 1991). In the
case of a circular tip-tilt modulation having amplitude big-
ger than the local tilt of the aberrated wavefront w(x, y),
geometrical optics calculations show that (Esposito et al.
1999; Riccardi et al. 1998):

∂w

∂x
(x, y) =

R

F
sin

(
π

2
Sx(x, y)/

4∑
i=1

Ii(x, y)

)
, (1)

where, referring to Figs. 1 and 2, F is the linear distance
between the system exit pupil (located on the tip-tilt mir-
ror) and the nominal focal plane, R is the linear tip-tilt
modulation amplitude on the focal plane and Ii(x, y) are
the intensity distribution in the ith pupil image obtained
by the PS. Furthermore Sx is the sensor signal defined as

Sx(x, y) = [I1(x, y) + I4(x, y)]− [I2(x, y) + I3(x, y)] . (2)

Similar equations hold for ∂w/∂y and Sy. In the case
of a generic tip-tilt modulation and wavefront aberra-
tion amplitude, diffraction theory can be used to find
the relationship between the wavefront phase aberrations
φ(x, y) = 2πw(x, y)/λ and the sensor signals. It can
be shown that (Riccardi & Esposito, in preparation), for
a square-based pyramid, the signals Sx and Sy depend

1 Sensor sensitivity refers to the ratio between the sensor
signal rms and the incoming wavefront rms.

on integrals of functions containing φ(x, y) and the tilt
amplitude of the form

sin [φ(P1)− φ(P2)] J0 (kd12R/F ) , (3)

where k = 2π/λ, J0 is the zeroth order Bessel function, P1

and P2 are two generic points on the pupil and d12 is the
distance between them. In the case of small aberrations,
such as those encountered in closed loop AO applications,
we have

sin [φ(P1)− φ(P2)] ≈ φ(P1)− φ(P2). (4)

With this approximation the sensor signals are obtained
as a linear combination of the phase perturbations. This
permits the use of linear systems theory to describe sensor
operation.

3. Partial correction AO system and PS behavior

The principal aim of the simulation is to evaluate the lim-
iting magnitude of a PS working in a closed loop AO sys-
tem. This translates directly into calculating the recon-
struction error σ2

rec as a function of the phase variance
of the wavefront corrected by the AO system σ2

c , for a
given number of detected photons. Both variances σ2

rec

and σ2
c are evaluated at the sensing wavelength. An un-

avoidable part of the PS reconstruction error is due to the
non linearity of Eq. (3). Moreover the simulation takes
into account reconstruction error due to photon noise. To
quantify the overall reconstruction error a diffractive cal-
culation of the sensor signals is performed and the wave-
front is reconstructed using a standard least-square modal
reconstructor. Sensing and reconstruction processes are
repeated for a set of Montecarlo generated wavefronts.
These wavefronts are generated as linear combination of
Zernike polynomials using a standard algorithm for at-
mospherically perturbed wavefronts (Roddier 1990b). To
simulate sensor operation in a partial correction regime
the Zernike coefficients of the various sets of realizations
are attenuated to obtain different values of the partially
corrected wavefront variance σ2

c . The main part of the sim-
ulation routines is devoted to calculation of the pupil im-
age illumination patterns generated by a certain incoming
wavefront. According to diffraction theory it can be shown
(Gale Wilson 1975) that the intensity distribution of the
four pupil images Ii(x, y) is given by

Ii(x, y) ∝
∣∣FT−1 [Hi(xf , yf)FT [P (x, y) exp(iφ(x, y)]]

∣∣2 ,(5)

where the functions Hi(xf , yf) (i = 1, 2, 3, 4) account for
the spatial filter effect introduced by the ith pyramid
facet in the focal plane (see Fig. 2), P (x, y) is the system
pupil function and FT is the Fourier Transform operator.
Following this equation each quantity Ii(x, y) has been
obtained using two FFT. These routines can be used to
evaluate a modal interaction matrix in the case of small
rms aberration (�1 rad). Using a singular value decom-
position algorithm we determined a modal least-square
reconstruction matrix allowing us to obtain an estimate
of the Zernike modes from the sensor signals.
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Fig. 3. Wavefront reconstruction error variance as a function of the corrected wavefront variance. The three plots (from left to
right) refer to three angular tilt modulation amplitudes of zero, ±1λ/D and ±3λ/D

4. A case study: MMT 6.5 m telescope

We consider below, as an example, the case of the 6.5 m
MMT telescope (Lloyd-Hart et al. 2000). We simulate the
operation of a PS having 16 × 16 sampling points ar-
ranged in a square grid on each of the four pupil images.
The sensing wavelength is assumed 0.7 µm (R band) with
r0 = 0.37 m. The sampling time for the AO system is
taken as 1 ms. The modal reconstructor used in this case
allows the retrieval of 210 Zernike polynomials. However
due to proper filtering of the singular values only 183 sin-
gular modes are taken into account. Finally the considered
number of photons does not take into account any at-
tenuation factor like optical elements transmission, CCD
quantum efficiency and so on.

4.1. Reconstruction error σ2
rec

Firstly we quantify the wavefront reconstruction error σ2
rec

as a function of the variance of the partially corrected
wavefront σ2

c , and of the number of received photons per
sampling point per sampling time. The Zernike polyno-
mial coefficients in the various sets of partially corrected
wavefronts give a variance σ2

c that ranges between 13 and
0.1 rad2, going from very poor to very good wavefront
correction. Finally we consider three different values of
tilt modulation and so three different conditions of the
sensor sensitivity. The reconstruction error variance σ2

rec

has been obtained as σ2
rec =

∑N
i=2 < (zi− z̃i)2 >, where zi

and z̃i are the ith true and estimated Zernike coefficients
respectively. The statistical average is obtained using 100
independent wavefront realizations. The results for σ2

rec

are shown in Fig. 3, where each plot corresponds to a dif-
ferent tilt modulation amplitude, namely zero modulation
±λ/D, and ±3λ/D (from left to right). Each plot con-
tain five curves that represent σ2

rec as a function of the
variance σ2

c for 10, 20, 50 and 100 photons per subaper-
ture per integration time respectively (from top to bot-
tom). The last curve is obtained when no photon noise is
considered and quantifies the error due to sensor non lin-
ear effects. For comparison purposes the same simulation
aimed at evaluating σ2

rec for a SHS in the same cases of
10, 20, 50, 100 photons is performed. The obtained results
are reported in Fig. 4. They agree with theoretical results
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Fig. 4. Reconstruction error as a function of the input variance
for a SHS

about SHS reconstruction error obtained by Rigaut and
Gendron rigaut.

Comparison of Figs. 3 and 4 shows that when high σ2
c

values are considered a PS with no tilt modulation has
higher σ2

rec than SHS. When σ2
c is lower than a certain

threshold (4 rad2 in our simulation), the use of tilt mod-
ulation allows a PS to achieve lower values of σ2

rec than
SHS. However the tilt modulation increases the σ2

rec values
achievable when low values of σ2

c are considered. Finally it
is interesting to note that simulation results suggest that
to decrease PS reconstruction error when σ2

c is higher than
4 rad2 we have to increase the tilt modulation.

4.2. Limiting magnitude

Results of the previous subsection show that the limiting
magnitude of a PS can be fainter than that for a SHS. The
data obtained in the simulation and presented in Figs. 3
and 4 allows the limiting magnitude difference to be quan-
tified. Using our data we obtain the relationship between
σ2

rec and the number of photons collected per subaperture
per integration time Nphot at a given value of σ2

c . This is
done by fitting the σ2

rec data obtained at a certain σ2
c with

the relationship:

σ2
rec = A+B/Nphot (6)

where A and B are parameters depending on σ2
c . In par-

ticular A accounts for non linear effect in the sensing
process so that σ2

rec is not zero when the number of re-
ceived photons is infinite. Considering these relationships
we determine the number of photons required to obtain
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Fig. 5. Magnitude of the reference source needed to obtain a σ2
rec value of 0.5, 1.0 and 2.0 rad2 as a function of the corrected

wavefront variance σ2
c for PS and SHS. PS curves labelled 0, 1 and 3 refer to different tilt modulations cases of zero, ±1λ/D

and ±3λ/D

a certain value of σ2
rec as a function of σ2

c . These pho-
ton numbers, Nps and Nshs, give the limiting magnitude
comparison when a certain level of reconstruction error is
fixed as a target. Results obtained are shown in Fig. 5.
In this figure we consider three level of reconstruction er-
ror of 0.5, 1.0, and 2.0 rad2 respectively. If we examine
the case of 1.0 rad2 residual. these results show that using
zero tilt modulation the PS has a magnitude gain that is
of about 3 mag with respect to a SHS. However, if the AO
system can not achieve an overall phase error lower that
1.5 rad2 the magnitude gain is strongly reduced or even
nulled. In a partial correction regime, the tilt modulation
allows to get again an important gain over the SHS. This
is shown considering that using a tilt modulation of 1λ/D
permits a 2 mag gain when the overall system phase er-
ror is lower than 2 rad2 and decreases smoothly after this
limit. Finally when using a modulation of about 3λ/D
the gain is reduced to about 1.5 mag but this gain is re-
tained until σ2

c is lower than 5 rad2. Similar results hold
for the other values of σ2

rec considered. This demonstrates
the better behavior of PS with respect to SHS in terms of
limiting magnitude even in partial correction AO systems.

5. Conclusion

A numerical simulation of PS and SHS in partial cor-
rection regime is performed. Our simulations show that
in this regime the PS has better behavior then the SHS
in terms of limiting magnitude. This better performance
is obtained optimizing the tilt modulation amplitude
depending on the partially corrected wavefront variance.
Quantitatively results for MMT telescope for good
seeing conditions show that reaching partial correction
between 1–5 rad2 allows to operate the PS with a limiting

magnitude gain between 3.0−1.5 mag. In the considered
case the tilt modulation is optimized between three dif-
ferent values namely zero, ±1λ/D, and ±3λ/D. Finally
our analysis shows how the better PS performance,
demonstrated in a diffraction limited correction regime
(Ragazzoni & Farinato 1999) is retained using the tilt
modulation, even with partial correction AO systems. This
gain in limiting magnitude can be extremely important to
solve or reduce the principal limitation of astronomical
AO systems using natural star as reference sources, i.e.
the limited sky-coverage.
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