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ABSTRACT Facial Expression Recognition (FER) is a challenging task that improves natural

human-computer interaction. This paper focuses on automatic FER on a single in-the-wild (ITW) image.

ITW images suffer real problems of pose, direction, and input resolution. In this study, we propose a

pyramid with super-resolution (PSR) network architecture to solve the ITW FER task. We also introduce

a prior distribution label smoothing (PDLS) loss function that applies the additional prior knowledge of the

confusion about each expression in the FER task. Experiments on the three most popular ITW FER datasets

showed that our approach outperforms all the state-of-the-art methods.

INDEX TERMS Emotion recognition, image resolution, human computer interaction.

I. INTRODUCTION

Non-verbal communication plays an essential role in

person-person communication. These non-verbal signals can

add clues, additional information, and meaning to spo-

ken (verbal) communication. Some studies estimate that

around 60% to 80% of communication is non-verbal [1].

These signals include facial expressions, eye contact, voice

tone and pitch, gestures, and physical distance, of which

facial expression is the most popular input for analysis. The

facial expression recognition (FER) task aims to recognize

the emotion from the facial image.

In psychology and computer vision, emotion can be

divided into two kinds of model: discrete and dimensional

continuous [2]–[4]. The dimensional continuous model

focuses on arousal and valence, which values from -1.0 to

1.0, whereas the discrete emotion theory classifies a few core

emotions such as happy, sad, angry, neutral, surprise, disgust,

fear and contempt. In our study, we attempted discrete emo-

tion recognition.

Ekman and Friesen developed a Facial Action Coding Sys-

tem (FACS) to analyze human facial movements [5]. How-

ever, this scheme needs trained humans and is extensively

time consuming. The recent advances of successful machine
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learning in computer vision could help simplify and automate

those processes. The scope of our study is automatic facial

expression recognition, where emotional expression is in the

discrete model.

Many studies use traditional image processing and

machine learning for the FER task. Shan et al. used

local statistical features, termed Local Binary Patterns,

for person-independent facial expression recognition [6].

Ma and Khorasani used one-hidden-layer feed forward

neural network on a two-dimensional discrete cosine

transform [7]. Lien et al. combined facial feature point track-

ing, dense flow tracking, and gradient component detec-

tion to detect FACS and calculate emotion [8]. In [9],

Zhang et al.extracted scale-invariant feature transform and

used the deep neural network (DNN) as the classifier. Aleksic

and Katsaggelos used hidden Markov models for automatic

FER [10].

Recently, deep learning (DL) has significantly affected

many fields, such as image, voice, and natural language

processing. In the Boosted Deep Belief Network [14] intro-

duced by Liu et al., multiple deep belief networks learned

feature representation from patches of image and some of

them were selected to boost. In [15], Liu et al. ensembled

three convolutional neural networks (CNN) subnets and con-

catenated the outputs to predict the final results. Huang [16]

used a custom residual block of the ResNet architecture
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and late fusion to combine the results from the VGG and

the ResNet models. Zeng et al. extracted image histogram

of oriented gradients and passed them through deep sparse

autoencoders to classify them [17]. Tozadore et al. grouped

emotions into several groups to help CNN classify with better

accuracy [18].

Despite these successes of in-the-lab datasets, the rise of

the in-the-wild (ITW) dataset in recent years has raised new

challenges for researchers. When in-the-lab datasets were

collected under control, the data were clean, accurate, and

uniform. In contrast, ITW datasets are noisy, inaccurate, and

variant.We outline the following two observations about ITW

datasets for the FER task.

Observation 1: The images size of the ITW datasets

varies. While the size of in-the-lab datasets images is con-

trolled and nearly constant, ITW dataset images have various

sizes from too small to large. Figure 1 shows the image

size distribution of the RAF-DB [11], [12] (Fig. 1a) and the

AffectNet [13] dataset (Fig. 1b). These two selected datasets

are the most popular ITW datasets for the FER task. Because

of the differences in width and length, the average of the

two is considered as the size of the image. In both datasets,

the small images occur more frequently and this frequency

FIGURE 1. The image size distribution of the RAF-DB [11], [12] and
AffectNet [13] datasets.

decreases with increasing size. The mean and variance of the

image size in the RAF-DB are 193 and 144, which is a bit

large. The AffectNet dataset has larger image sizes, ranging

from 130 pixels to more than 2000 pixels. In the graph,

we round all images larger than 2000 pixels to the fixed value

of 1000 pixels. Similar to the RAD-DB dataset, the number

of image decreases when the size of the image increases. The

thirdmost popular ITWdatasets for the FER task is the FER+

dataset [19] extended from the FER2013 [20]. It also faces

the different-image-size problem. Unfortunately, the original

image size information was omitted when the author of the

FER data published. Most of the studies in this field does

not consider the image-size problem. They simply resized

all images to the same size, e.g. 128 × 128 or 224 × 224.

The first reason is due to the DL framework itself, because

in the batch mode, each batch must have the same input

shape. Implementing different input sizes at the same time

takes more effort, and is complicated and computationally

inefficient. While CNN architecture was successful for many

image classification tasks, it is based on the assumption that

despite the resizing of the images the network could learn to

distinguish by itself. Nearest-neighbor interpolation, bilinear,

and bicubic algorithms are popular techniques to scale image

sizes.

Observation 2: The CNNs are usually sensitized with

input image size.While CNN was very successful for many

tasks related to image classification and segmentation, this

architecture suffers from several weaknesses. One of CNN’s

weaknesses is the sensitivity to the size of the input image.

Zooming is one of the data augmentation techniques that

attempts to address this problem. The selected zooming scale

in most of the experiments ranged from 0.9 to 1.2 because

values outside this range degraded and damaged the network.

With global pooling, CNN networks could support different

input sizes, and the size incremental technique was used to

train the networks more quickly and gives coverage easier.

Despite the improvement offered by this process, the network

remains sensitive to the input size. Therefore, the network

trainedwith this input sizeworks poorlywith the same images

but on a different scale. Figure 2 shows the training and

validation loss for VGG16 when training with the RAF-DB

and the FER+ in different scales: 50 × 50, 100 × 100,

150×150 and back to 50×50 again in RAF-DB and 48×48,

96× 96, 192× 192 and again 48× 48 in the FER+ for every

20 epochs in the sequence. We use weights transfer from the

ImageNet [21], and then, we freeze the whole CNN architec-

ture except the fully connected layers. The freeze steps were

trained in 20 epochs at the smallest input image size. At the

point of image size change (epoch 41, 61, 81), the loss of

both training and validation set a significant increase. At the

epoch 81, although the input size returns to the size 48 × 48

that was used to train to the network before, the loss value still

increases because of the characteristics of convolution. The

convolution layer uses a kernel (size 3×3, 5×5, or similar) to

scan the ‘‘pixel’’ in the previous layer. Then, even though the

image is the same but in a different scale, the next convolution
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FIGURE 2. The loss value for the training and validation during the
training process as the input size changed for the RAF-DB and the FER+

(VGG16 architecture [22]).

layers learns very different features; therefore, increasing the

kernel size does not help here.

While currently, the super-resolution (SR) step was in

the pre-processing for input, it could be a part of the DL

architecture. SR approaches may be better than the older

algorithms such as nearest-neighbor interpolation, bilinear,

and bicubic to solve the small-image-size problem. The SR

task is used to make the larger image from a low-resolution

image while trying to fill the lost pixels and to avoid the

pixels becoming blurred. From a low-resolution image, e.g.

size W × H , the SR task is used to make the larger image

kW × kH where k ≥ 2, with the aim of making the

new image as clear as possible. While down-scaling the

image from high-resolution to low-resolution is an easy task,

the reverse direction is not. The missing pixels that are

lost from low-resolution need to be recovered. Some recent

research has focused on this problem. Dong et al. intro-

duced the Super-Resolution Convolutional Neural Network

(SRCNN), a deep CNN model that works on low-resolution

and high-resolution feature maps and finally generated a

high-resolution image [23]. The SRCNN is lightweight and

outperforms the bicubic interpolation. Very Deep Super Res-

olution (VDSR) has a similar structure as the SRCNN but

is more in-depth [24]. In [25], Shi et al. makes the efficient

sub-pixel convolutional neural network (ESPCN) that out-

performs the SRCNN. ESPCN improves SRCNN by dealing

with the feature maps at low-resolution and upsampling to the

final image. Ledig et al. used resblocks to build SRResNet

in [26]. Lim et al. proposed enhanced deep super-resolution

network (EDSR) [27]. The EDSR is a modified version of

the SRResNet that removes all batch normalization layers to

reduce computing by 40% while improving the efficiency.

They also designed a multi-scale network from the base block

with good results. Hu et al. published a CascadedMulti-Scale

Cross network that includes a sequence of the cascaded

sub-networks [28]. In recent years, the network for the SR has

deepened, and the accuracy has been improved more. While

the SRCNN is lightweight but low accuracy, the EDSR needs

more computing but generates better results.

Our study has two highlight contributions. Firstly, we pro-

pose a Pyramid with Super-Resolution (PSR) network archi-

tecture to deal with the different-image-size problem for the

ITW FER task. Our approach aims to view an image on sev-

eral scales and uses SR for up-scaling. With many small-size-

image problems in real-world FER datasets, the SR improves

the network performance. Viewing the image on many scales

also helps the network to learn not only at a small local but

also at the global view of input. We also discuss the loss

function and apply it to the FER task where the distribution

of confusion labels are known and can be used.

The rest of this paper is organized as follows. We explain

our proposed methods in section II and introduce the

prior distribution label smoothing (PDLS) loss function in

section III. Dataset information is presented in section IV.

Section V describes the experimental results and discussion.

Finally, we conclude our study in section VI.

II. PYRAMID WITH SUPER-RESOLUTION (PSR) NETWORK

We deal with the various image-size problems by using

a pyramid architecture, which is termed as the PSR net-

work. Figure 3 shows the overall PSR network architecture.

There are six blocks in our approach, including spatial trans-

former network (STN), scaling, low-level feature extractor,

high-level feature extractor, fully connected, and the final

concatenation block. STN is a simulator of an affine transfor-

mation in a 2D image. The STN is used for face alignment.

The scaling block is the main block, the fundamental idea of

our approach. The details about this block are explained in

the next subsection. After the scaling block, there are several

internal outputs, each of which is one image of the original

input, but in different scales, and hence has different sizes.

Low and high-level feature extractors are two usual parts

in most of the CNN. The fully connected block includes

several fully connected layers and dropout layers. Finally,

we combine all branch outputs with a late fusion technique.

A. THE SPATIAL TRANSFORMER NETWORK (STN) BLOCK

The STN was introduced by Jaderberg et al. [29] and

Dai et al. [30]. The main idea of STN is to align the input

by learning the transformer. This block is comprised of three

parts: localization net, grid generator, and a sampler [29]. The

localization net has several convolution layers, and finally,

a fully connected layer to output θ , where θ is a matrix size
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FIGURE 3. Overall network architecture.

of 2 × 3, a representation of an affine transform in a 2D

image. The grid generator then accepts θ and makes a grid,

and finally, the sampler uses this grid and generates the output

image. The output image is from the input image with rotate,

scale, and transforms operators. The input and output of this

block are images with the same size and the same number of

channels.

Different from in-the-lab images, ITW images are very

different from the head pose direction. We add the STN block

to help the network learn to align the face and make it easier

to recognize.

Our implementation details follow the previously pub-

lished paper [29]. Table 1 shows the details of the internal

layers of this block. For the convolution layers, the parameters

are the input channel, output channel, kernel size, and stride.

The kernel size and stride are needed for themaxpool2d layer.

For the linear layer, only two parameters are needed: the

number of input nodes and that of output nodes. After the

localization, the feature map is flattened and passed through

the fully connected part. Our algorithm calculates the size

of the feature map dynamically based on the input size. So,

the block is adaptive to different sizes of the input images.

TABLE 1. The details of STN block.

B. THE SCALING BLOCK

The scaling block is the leading block in our architecture. The

main idea of this block is to view the input image on different

scale from small to large. Belong to that, super-resolution was

used to upscale the image size. As in many CNNs, to ensure

the efficiency of memory and computing, the input images

are kept at the same size. And to use the best information

from the input images, they are passed to the network at the

largest attainable size. The input size may be limited by the

computational limit and based on each dataset. While passing

the same size images, as in the first observation, many of them

were in low-resolution and were up-scaled by using some

traditional algorithm. However, our approach down-scales

them and then up-scales them again using the SR technique.

This block is to view the overall context in the low-resolution

images, along with the high-resolution image to consider the

original features.

In the scaling block the network branches to three or more

sub-networks. All sub-networks work with the same input

image but on a different scale. The latest branch received

the original input images, which had the highest resolution

for the network. Due to the computational limit, most studies

in the field of image classification use the input image from

100 to maximum 312. For the larger input size, the higher

resolution does not improve the performance. For the batch

mode, all images were resized to the central size before being

passed through to the network. The larger image size is then

down-scaled, and the smaller images needed to be up-scaled.

We call the original input size W × H . This process of scale

input is the traditional algorithm, such as Nearest-neighbor

interpolation, bilinear, and bicubic. While the down-scaled

image is safe, the up-scaling from small size images to the

larger size using the traditional algorithm is complicated and

inaccurate. Our approach tends to overcome this issue. The

first branch is applied to the lowest resolution image, which

was down-scaled from the original input by the simple oper-

ator using mean pooling to implement. We declare the value

step and kstep for the step scale value between two neighbors.

By the limit of DL, step is set to 2. A large kstep can be used,

but due to the computational limitation, we restrict kstep to

only 1 or 2. The size of image for the first branch is

W

2kstep
×

H

2kstep
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Between the first and the last branch, there are kstep of

SR branches, each of which is a SR block with the scale size

of 2, 4, 8, . . . from the lowest resolution image from the first

branch. The size of ith SR is given by equation 1.

W

2kstep−i
×

H

2kstep−i
(1)

In case k = 1, there is only one SR branch in the scaling

block, and the output size is the same as the original input

size. In case k = 2, there are two SR branches, which

have the sizes of [W/2, H/2] and [W , H ]. Our setup always

ensures that the last SR part has the same size as the original

input size. For the SR task, we use the EDSR architecture

introduced by Lim et al. [27].

By learning how to resample the image size, we assume

that this block can add useful information to this particular

task, and thereby increases the accuracy of the prediction

model.

C. LOW AND HIGH-LEVEL FEATURE EXTRACTOR

Typically, low and high-level feature extractors are combined

in a base network architecture. We choose VGG16 [22] as

the base network because this network is still used as the

base of many recent network for the FER task [31]–[33].

From the base network, VGG16 [22], we separated into two

parts for two levels of input. The low-level feature extractor

receives the images as input and generates the feature map

corresponding to the data. This block works at low level

of features, e.g., edge, corner, and so on. The high-level

feature extractor receives the feature map from the low-level

part and makes a more in-depth, high-level features for the

input.

While the input is passed through both extractors in this

order, we separated them as two to share across branches.

As in the second observation, we know that the CNNs are

very sensitized with the input size, and here, each branch has

different input sizes. The low-level features for each branch

are quite different and cannot be shared because sharing

low-level layers damages the network. The high-level feature

block is in another environment. At this level, a high-level

feature needs to be learned and is less dependent on the size

of the input. Then the weight of this block can be shared

across branches. The shared weights also act in a similar way

to multi-task learning where the combination helps each task

obtain better results.

The position of the cutting point denotes pos, which is the

position of the convolution layers in the base network, where

we separate the two parts. A lower pos value means that all

branches share the weights in most of the internal layers,

while the highest value of pos separates all branches. From

the second observation, we assume that the low pos value

degrades the network. Since the base network is VGG16,

which has 12 convolution layers, the cutting position pos

should be in 0 − 12, which is the position of corresponding

convolution layers. We analyze the effect of the cutting point

(the pos value) in the experiments.

D. FULLY CONNECTED BLOCK AND CONCATENATION

BLOCK

The fully connected block includes two fully connected layers

(Linear, FC) and several additional layers. The output feature

from the high-level block then passes through this block to get

the vector to represent the score for each label. Depending

on the experiment, we use either seven or eight emotions,

and then the output vector sizes are set to seven or eight,

respectively. We also use BatchNorm1d for the last feature

map, and two dropout layers with p values of 0.25 and 0.5 for

the first and the second FC layers, respectively. The ReLU

activation function was applied after the first FC layer.

Similar to the high-level feature extractor block, the fully

connected block was also shared among branches.

All branches were fused with the weighted late fusion

strategy. The weight of each branch has been determined

according to the contribution to the final score of the whole

network.

III. THE PRIOR DISTRIBUTION LABEL

SMOOTHING (PDLS) LOSS FUNCTION

FER for basic emotion is a classification problem, where each

input image is classified into one of seven or eight classes.

Softmax Cross-Entropy is the most popular loss function for

classification tasks. The cross entropy (CE) loss function is

given in equation 2.

CE = −
∑

c∈C

tc ∗ log(σ (zc)) (2)

where:

• CE : cross entropy

• C : set of classes (labels)

• tc: the distribution value of the label c in the ground truth

where
∑

c∈C tc = 1

• σ (zc): softmax function for zc
• zc: raw value score for class c from the model

In the real world, it is difficult to get the ground truth

distribution for the labels for each sample; therefore, the all

in one assumption was used in most cases. In the ideal case,

the sample belongs to one and only one class; therefore,

the one-hot vector is widely used in the classification task

for labeling, so that equation 2 becomes the simple case of

−log(σ (zk )), where tc = 0 for all c ∈ C but the correct label

k (tk = 1). Then, all parts except the label k are omitted.

The Label Smoothing (LS) loss function has been intro-

duced in other studies [34], [35], and [36]. The formula for LS

is given as equation 3. The main idea here is the contribution

of all incorrect labels. The parameter α was set around 0.9,

meaning that the contribution for other labels is very small;

e.g., for FER task, |C| = 8, then theweight for each of them is

0.1/8 ≈ 0.0125 and for the correct label is 0.9125. Although

the weight of the incorrect labels is small, the LS has been

used successfully in many classification tasks. The advantage

of the LS over CE with one-hot is that all label scores pre-

dicted by the model are activated. Then the backpropagation
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TABLE 2. The prior distribution of the emotions on the FER task.

process can learn not only how to increase the score for the

correct label but also how to decrease for the incorrect ones.

LS = −log(σ (zk )) ∗ α + −
∑

c∈C

log(σ (zc)) ∗
(1 − α)

|C|
(3)

where:

• |C|: size of label set

• α: parameter control the weight for each part

In the LS loss function, all labels except the correct one

are given equal, i.e., they have a small role and are all equal.

LS can be used extensively in many tasks when there is no

information about the distribution. However, in many tasks

like FER, for a particular correct label, the confusion to other

classes are not uniform. The FER task has two advantages: the

number of labels is small, just seven or eight and, more impor-

tantly, we know that for the particular label, the confusion

for some specific classes is higher than others. For example,

the correct label fear is very likely to be confused with sur-

prise than with disgust. Another example is the disgust facial,

which can easily be mistaken as neutral, or sadness than

anger or fear. If we have this prior knowledge, the smoothing

part should not be a uniform distribution. So, we proposed

an extended version of LS with additional prior knowledge

of the label’s confusion call PDLS. The PDLS loss function

was given by two parts: the one-hot and the prior distribution,

as shown in equation 4.

PDLS = −
∑

c∈C

(tc ∗ α + dkc ∗ (1 − α)) ∗ log(σ (zc)) (4)

where:

• α is a parameter to control the weight of one-hot and

distribution.

• dkc the prior distribution for the correct label k and the

confusion label c.

All notations in equation 4 are similar to those in equation 2

and 3. The dkc value is the new operand in this formula, and it

replaced the uniform distribution 1
|C|

in the LS loss function.

The d matrix has the following properties:

size = |C| × |C|∑

c∈C

dkc = 1, ∀k ∈ C

argmax(dk1, dk2, . . . , dk|C|) = k, ∀k ∈ C

The most important part is how to calculate the dkc. Using

Barsoum et al. [19], when correcting the labels for the

FER2013 dataset [20], the authors of FER+ also provided the

labels distribution information for every sample. In FER+,

each sample was labeled by ten people, who need to classify

each image to eight basic classes plus two additional classes,

unknown and non-face. While the correct label’s distribution

for each sample is difficult to obtain, we assumed that the

method for making the FER+ is a good approximation for

the ground truth distribution. For each sample s ∈ S, S is

the FER+ dataset, we have the approximate distribution ads.

Since unknown and non-face images are omitted, we only use

information for eight basic emotions, denote by E . Then ads
is a vector in R8 when 8 is the size |E|, and

∑
ads = 1.

Equation 5 is to calculate the average distribution for each

ground truth emotion k . In this calculation, we used only the

training set in the FER+.

dk =

∑
s∈Sk

ads

|Sk |
(5)

where:

• dk : the average distribution of the label k , dk ∈ R8

• |Sk |: the size of the subset Sk , Sk ⊂ S, where the ground

truth emotion is k . ∪k∈ESk = S.

The final prior distribution dki for the FER task is provided

in table 2. Each row in the table is dk , and k is one in eight

emotion labels. The columns are the confusion labels, and

there are also eight emotion labels. E.g. dneutral,sadness =

0.114 means when image in neutral, there is 11.4% chance

to confuse it as sadness. The number in the main diagonal is

always higher than 0.5 that represents the distribution for its

own emotion. The happiness emotion is very clear and easy

to detect: dhappiness,happiness = 0.918, whereas fear and the

disgust are difficult to detect and easy to be confused.

IV. DATASETS

There are three popular ITW datasets for the FER task,

including the FER+ [19], RAF-DB [11], [12] and Affect-

Net [13] datasets. In this study, the experiments are con-

ducted with all of them. The eight discrete emotions for

the classification are neutral, happiness, surprise, sadness,

anger, disgust, fear and contempt. Some previous datasets

and studies used seven of them as they excluded contempt

because it is difficult and rare in the real world. The details

for each dataset are given below.

FER+ dataset. The FER+ dataset [19] is the first

ITW dataset among them. The original version is the

VOLUME 8, 2020 131993
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TABLE 3. Number of images in training/testing/validation subsets of the FER+, RAF-DB, and AffectNet datasets.

FER2013 [20] by Goodfellow et al., released for the ICML

2013 Workshop on Challenges in Representation Learning.

But as the labeling accuracy of the FER2013 dataset is not

reliable, Barsoum et al. reassigned the labels [19]. Ten people

assigned manually the basic emotion for each image in the

FER2013 dataset. The subset of the original images was

excluded if it is classified as unknown or non-face. The final

emotion label was assigned based on the voting from the ten

people. The number of people voting for each emotion for

each image was given, which was then used to calculate the

approximate distribution of the emotion over that image.

The dataset includes all the images, each of which has one

person’s face aligned. The dataset imageswere collected from

the Internet by querying many related expression keywords.

There are many kinds of face in the real-world environment,

and their pose and rotation make them more challenging to

recognize. The images were aligned and centered, and they

were scaled slightly differently. All images are low-resolution

and in grayscale with a size of 48 × 48 pixels. Each corre-

sponding label for each image is also given. The eight basic

emotions are used in this dataset.

Table 3 and figure 4 show the distribution of train, test

and validation on the FER+ dataset. The number of neutral

images is highest, 9,030 on the train set, and 1,102 on the test

set. The disgust emotion has the lowest number of images:

only 107 on train and 15 on test. The contempt emotion has

a similar number of images with disgust: only 115 on train

and 13 on test. Disgust, contempt and fear have few images,

compared with the other five emotions. This is normal in

natural communication where people are usually in neutral

and happy state and only rarely experience disgust, contempt

FIGURE 4. The FER+ data distribution of train/test/valid.

or fear. Figure 4 shows that the distribution of emotions on

training, testing, and validation on the FER+ are similar.

RAF-DB dataset. Shan Li, Weihong Deng, and Jun-

Ping Du provided the Real-world Affective Faces Database

(RAF-DB) for emotion recognition [11], [12]. The dataset

contains about 30,000 images downloaded from the Internet.

About 40 trained annotators labeled carefully the image. The

dataset has two parts: the single-label subset (basic emotions)

and the two-tab subset (compound emotions). We used the

single-label subset with seven classes of basic emotions. This

subset has 12,271 samples in the training set and 3,068 in the

test set. The number of samples for each emotion is given in

table 3. Notably, the RAF-DB dataset does not include the

contempt expression. Figure 1 shows that images sizes in the

RAF-DB vary from tiny to large, which makes it difficult for

the DL model to deal with.

AffectNet dataset. The AffectNet [13] is the largest

dataset for the FER task. The dataset contains more than one

million images queried from the Internet by using related

expression keywords. There are about 450,000 images man-

ually annotated by trained persons. It also includes train,

validation, and test sets. The test set has not yet been pub-

lished, so most previous studies used validation set as the

test set [13], [37]–[40]. Because the contempt emotion is

rare in the natural world, some studies [40] used only seven

emotions while other studies [13], [38], [39] analyzed all

eight emotions. Another study used both eight and seven

expressions [37]. Therefore, to compare our results with the

previous studies, we performed experiments with both eight

classes and seven classes.

Table 3 shows the number of samples for each emotion

class on each subset train, validation, and test on the FER+,

RAF-DB, and AffectNet datasets. The name they use for

labels are a little different but can be mapped to the eight

basic emotions as the emotion column. The FER+ has three

separate subsets for training, validation, and testing, while

two others have only two subsets. The AffectNet dataset

has not published the testing subset, so as for most of the

studies in this dataset, the validation is taken as the testing

subset, and the validation subset during the training process

should be randomly selected from the training subset. Similar

to the RAF-DB, the training subset is randomly separated

and then applied to get the training and validation subsets.

Only AffectNet exhibits balanced validation (as the testing),
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while the FER+ and RAF-DB are highly unbalanced. Both

the FER+ and AffectNet datasets have eight emotions labels,

and the RAF-DB has only seven emotion classes without

contempt emotion expression.

Figure 5 gives some sample images for each class from the

three datasets. In this figure, each column presents one emo-

tion expression. The images in the first two rows (figure 5a)

is from the FER+ dataset, figure 5b is from RAF-DB, and

the rest (figure 5c) are from AffectNet. The last column of

RAF-DB is empty because the RAF-DB dataset has seven

emotions without contempt expression.

FIGURE 5. Sample images from the (a) FER+, (b) RAF-DB and
(c) AffectNet datasets.

V. EXPERIMENTS AND RESULTS

This section reports our experiments and results. Subsec-

tion V-A gives the experimental setup. Results are shown in

subsection V-B. Finally, subsection V-C presents the discus-

sion about our approach and limitations.

A. EXPERIMENTAL SETUP

For all experiments, Fastai [41] and PyTorch [42] were used.

Those toolboxes make DL experiments easier, with many

build-in classes, functions, and also pre-trained models to

reuse.

InDL, the network initialization has a significant impact on

the training process. Commonly, weights are initially random.

Having a good initialization strategy helps the networks to

learn better and more smoothly. In our case, we carefully

initialize the network weights. The STN block was set to

identical transformation. The SR layers were initialized from

previously published pre-trained model [27]. The base net-

work, VGG16, was trained with different scale input images.

The model weights were then saved and reloaded to our

architecture. The careful initialization step has several advan-

tages. It is easier to train the network, gives quicker network

coverage, and makes a more stable network, leading to fewer

variants.

We use Adam optimization algorithm [43] with an adap-

tive learning rate using The One Cycle Policy suggested by

Smith [44]. The learning rates were set to 1e-3 for some later

layers of the network, and 1e-4 for the STN block. The lower

learning rate for STN with the transformation aims to keep

this bock with little change.

The validation set is used to optimize the hyper-parameters,

and then we collected the best models. The hyper-parameters

for all our experiments include the learning rate and the

number of epoch where the network gets the best result.

Those models were used to evaluate the test set. We applied

Test Time Augmentation on the test step. Eight randomly

rotated, zoomed images are generated from each image and

then passed through the model to get the raw score to predict.

The final raw score is the average of their outputs.

For basic emotions recognition, several metrics are used to

evaluate the results. The first and most widely used metric is

accuracy, or weighted accuracy (WA), which is the number

of correct answers divided by the total number of the test

samples. But, when the number of samples for each class is

highly unbalanced, WA may have poor performance, partic-

ularly FER task, because the emotions in the real world are

usually unbalanced. Some emotions such as neutral, happy,

or sad are more common than disgust, fear, or contempt. In

this case, unweighted accuracy (UA) should be considered for

the additional evaluation of the system. The UA metric is an

unbiased version of WA. The UA is calculated by the average

of the accuracy of each class. For comparison with other

studies, both WA and UA are adopted in the experiments.

All experiments were run on Ubuntu 18.04, 32G RAM,

GeForce RTX 2080 Ti GPU with 11G GPU RAM.

B. EXPERIMENTAL RESULTS

We report the experimental results for the RAF-DB, FER+,

and AffectNet datasets.

1) RAF-DB DATASET

Table 4 gives the results for the RAF-DB dataset. In previous

studies, the methods in [38], [39], [45] report results in WA

metric, and others [46], [47] report UA metric. We report and

compare with previous findings in both WA and UA metrics.

Our approach produces significantly better results than the

recent studies on bothmetrics. ForWA,we get 88.98%,which

is improved by more than 2% in absolute terms or 2.4%

relatively, compared to Wang et al. [39]. In the UA metric,

our approach is 4.05% better in absolute terms compared to

[46] or 5.28% relatively.

Figure 6 shows the confusion matrix for the RAF-DB. It is

shown that the model gives very good accuracy for happiness

and neutral, but the results for disgust and fear are only

54% and 59%, respectively. Disgust images were predicted

as neutral by 17% and fearwas predicted as surprise by 16%.

2) FER+ DATASET

Table 5 shows the experimental results on the FER+ test set.

The highest accuracy is from the PSR model, which achieved
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FIGURE 6. The confusion matrix on the test set for the RAF-DB, FER+ and AffectNet datasets.

TABLE 4. RAF-DB accuracy comparison (%).

89.75%. Compared to the best previous result in the literature

by Albanie et al. [48], our approach is improved by 0.65%.

The average accuracy for our proposed architecture is

69.54% and F1 score (macro) is 74.88%. The low accuracy

TABLE 5. FER+ accuracy comparison (%).

on disgust and fearmakes the F1 score and average accuracy

far lower than the average. Future work should consider

focusing on increasing the number of sample of disgust and

fear to improve the accuracy for these two expressions.
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FIGURE 7. Cumulative accuracy by size on the test set of RAF-DB dataset with the VGG16 (base-line) and the PSR architecture.

Figure 6c shows the confusions matrix on the test set of

the PSR architecture: happiness has the highest accuracy

of 96%, followed by neutral, surprise and anger. All four

expressions had accuracy above 90%. The lowest accuracy

was for contempt, 23% accuracy. Due to the lack of contempt

images, the model could not learn to distinguish it from neu-

tral, anger, or sadness. Some emotions have high likelihood

of wrong classification: fear predicted as surprise by 37%,

disgust classified as anger by 33% and sadness classified as

neutral by 22%. These high levels of confusion are typical in

the real world because even for humans, it can be difficult to

distinguish these pairs of emotions.

3) AffectNet DATASET

We compared both eight and seven classes in the AffectNet

dataset. Table 6 shows the results in classification accuracy

(WA). In the classification of eight emotions, our model

archived the accuracy of 60.68%, outperformed the current

state-of-the-art 59.58% achieved by Georgescu et al. [37].

In the seven-emotion task, our model archived the accuracy

of 63.77%, slightly improved relative to the current highest

one at 63.31% [37]. Figure 6b and figure 6d present the confu-

sionmatrix for theAffectNet in the seven-class task and eight-

class task, respectively. The happy expression has the highest

detection rate in both cases, followed by the fear emotion.

Surprise, anger, and disgust have a similar performance in

both cases. In the eight-expression task, contempt has the

lowest performance just at 49%.

Figure 7 shows the cumulative accuracy according to the

size of the original image on the base-line network and the

PSR architecture. The PSR was run with the three branches

TABLE 6. AffectNet accuracy comparison (%).

[1, 2, 1] and the cutting point at the sixth convolution layer,

with the original input size of 100 pixels. The image size

ranged from 23 pixels to about 1200 pixels. Because the

large images were resized to a fixed size at 100 pixels,

we consider only those images smaller than 100 pixels to see

how our approach is affected. We omitted the first twenty

points because they are unstable to calculate the accuracy.

The figure shows that initially, with tiny image sizes less

than 40 pixels, both base-line and PSR are unstable. But after

40 pixels, the PSR architecture is improved and works better

than the base-line network. The PSR maintained this trend to

the end of the dataset because, in our approach, we added the

super-resolution module with double size for a small image

in one of the three branches, and another branch for half size

100/2 = 50 improved the recognition accuracy.

Figure 8 shows the accuracy discrepancy by size between

PSR and VGG16 on the test set of the RAF-DB dataset. The

blue points are raw values, and yellow ones are the smoothed

version. The accuracy discrepancy represents the speed of

the improvement of the PSR over the baseline network. It is

clear that the improvement had the highest speed when the
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FIGURE 8. The discrepancy of accuracy by size on the test set of the
RAF-DB dataset between PSR and baseline.

TABLE 7. Analysis of the effectiveness of each block on the RAF-DB (%).

original image size ranged from 40 pixels to about 55 pix-

els; it slows down when the size reached between 55 pixels

and 75 pixels, and it becomes lower for 75-85 pixels. After

85 pixels, the improvement continues but at a slow speed.

Notably, in the experiments for RAF-DB, the original input

size is 100 pixels resolution, then 50 pixels is half of the input

size.

4) THE EFFECTIVENESS OF EACH BLOCK

Table 7 shows a comparison between some variations of the

PSR on the RAF-DB dataset. The second row presents the

result of the PSR without the STN block, which means that

there are only the pyramid structure on top of the baseline

network with three branches (kstep = 2). It is clear that on

bothWAandUAmetrics, this network architecture gets better

results than the VGG16. The improvements are significant

in both cases of metrics, 2.73% for WA and 3.30% for UA.

This implies that our pyramid with SR has an important role.

When adding STN block to make the full PSR architecture,

we can get a little improvement, about 0.36% in WA and

0.81% in WA metrics. We analyzed the effectiveness of the

super-resolution reconstructionmodule by breaking down the

PSR without the STN block to three separate branches to see

the contribution of each to the final fusion. Figure 9 shows the

accuracy of each separated branch and also the fusion of them

on the PSR architecture. As expected, the small size branch

got the lowest accuracy, and the fusion gets the best one when

combining all three branches. The SR branch and original

input size use the same scale input size, one is SR from

the haft size and another is the original input size. Although

using the same scale size, the SR branch performs better

FIGURE 9. The accuracy by original image size on each branch of the PSR
without the STN block on the RAF-DB test-set.

FIGURE 10. The boxplots of performance with different cutting points
(accuracy).

than the original size branch. The discrepancy between SR

and original input size branch is large for the small images,

and it decreases as the size increase. The results clearly

reconfirm that the SR branch helps the network improve the

performance when the original image size is small.

Figure 10 shows the performance on the RAF-DB dataset

by the cutting point pos of the convolution layers from

VGG16. The network exhibits the lowest performance at the

point pos = 0, indicating that all the convolution layers are

shared. The accuracy increases as the pos value increases

but this improvement ceases after the particular cutting point

at pos = 5. After the fifth layer cutting, the accuracy

remains stable around the particular value. This result sup-

ports the second observation, i.e. the CNN is sensitized with

the input size. Sharing some early convolution layers causes

the network to crash. On the other hand, the deeper layers can

be shared because the former convolution layers are learning

the low-level features, and the later convolution layers are

working on more abstract, high-level features.

5) THE SENSITIVITY OF THE NETWORK TO THE DIFFERENT

INPUT IMAGE SIZE

Figure 11 shows the comparison between PSR and

VGG16 about the sensitivity when changing the input image
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FIGURE 11. Visualization of training loss of the PSR and baseline during
the training process of the RAF-DB when changing the original input size
in the sequence 50, 100, 150, and back to 50 pixels again.

TABLE 8. The loss function comparison (accuracy %).

size on the RAF-DB dataset. The training process is similar

as in figure 2a with the first 20 freeze steps were omitted.

The changing points are in epoch 20, 40, and 60. The graph

exhibits that the PSR is less sensitive than the baseline. After

the changing point, the loss of PSR architecture is slightly

increasing. But the VGG16 has a large increase of loss values.

The results confirm that our approach has the robustness

for the ITW FER task where the original image size varies,

although the CNNs usually sensitized to the input image.

6) THE COMPARISON OF THE THREE DIFFERENT LOSS

FUNCTIONS

Table 8 compares three loss functions, including the CE,

LS and PDLS on the RAF-DB dataset. For each type of

loss function, we conducted on experiment on the baseline

architecture, VGG16, and our proposed network architecture.

In both cases of the VGG16 and PSR network architecture,

the CE loss function gets the lowest accuracy. For the baseline

network, the LS is slightly better than PDLS, by 0.12%. For

the PSR architecture, however, the PDLS is slightly better

than LS with a margin of 0.42%.

Figure 12 shows some sample images from the RAF-DB

dataset that PSR predict the correct emotions while the base-

line network gave the incorrect emotions. All three images are

in the low-resolution which the size ranged between 45 and

56 pixels.

C. DISCUSSION

The experiments have demonstrated the significant improve-

ment of our approach in FER task on all the three datasets.

Compared to the base network, VGG16, our pyramid archi-

tecture with additional SR block and late fusion greatly

improves the performance. On the RAF-DB dataset, our

accuracy is better by about 2% in WA metric and 4.05% in

FIGURE 12. Sample images in low-resolution in the RAF-DB dataset
where PSR recognizes better than the baseline network.

UAmetric, compared to the state-of-the-art results. The most

substantial improvement in accuracy has been obtained on the

RAF-DB dataset. On theAffectNet dataset, PSR improves the

accuracy by 1.01% and 0.46%, compared to the best previous

study, respectively. Although the given input is in a small

size (48 × 48) as the FER+ dataset, our PSR model gener-

ated better results. Among the three datasets, the RAF-DB

exhibited the most improvement because the RAF-DB has

many image sizes from 23-100. The AffectNet dataset shows

less improvement. For the FER+ dataset, the dataset includes

the resized and cropped version of images; using the original

version, if it were available, PSR would give better results.

Notable, the different accuracy discrepancies versus the sec-

ond best algorithm in tables 4, 5, and 6 might be due to

each of these tables having a different set of algorithms..

Overall, the pyramid with SR has a significant improvement

for the FER task on the ITW dataset. The SR branch helps

the network performance on the low-resolution image and

then combiningwith other branchesmakes thewhole network

better. The STN block also has some improvement.

As in the second observation, the DL networks are sen-

sitized with the image input size, and the low-level block

in each branch is very different. The result shown in

figure 10 supports our assumption. When the pos value is

decreased, indicated that more layers are shared, including

some low-level convolution layers, the network is degraded.

When the pos value is increased, indicating that the low-level

features are less shared, the network exhibits better results.

Due to the trade-off between the performance and the com-

puting cost in real practice, the results in figure 10 are useful

for selecting the cutting point.

The experimental results in table 8 reconfirmed that LS

loss function is better than CE as in many previous studies

[34]–[36]. Both the LS and PDLS have better performance

compared to CE, and in the case of the PSR architecture,

PDLS shows a significant boost. The PDLS loss function

gave a slight improvement over the original LS function in

the FER task, but it varies case by case, it depends on the

network architecture. In the case of VGG16, the experiments

show that the PDLS is nearly equal to LS, which suggests

that future improvements should be needed. The results from

PSR model suggests that either LS or PDLS is good for the

loss function in the FER task, instead of CE.

Despite the significant improvements presented in our

study, some limitations warrant further research. The first is
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the step of the scale-up from the lowest resolution. The pyra-

mid architecture has viewed the input on several scales, but a

step is an integer number larger than one, and 2 is a starting

value. But, the double scale is still a tremendous value. While

the scale 1.2 is a good point for most of the augmentation

techniques, and 1
1.2

(≈ 0.83) in the reverse case, we suggest

that the scale step should be 1.22 = 1.44, or approximated

as 1.5. For the traditional algorithm, a decimal scaling value

is possible, but it cannot be used for the DL approaches.

The second weakness is the baseline network architecture.

Although several network architectures, more reliable than

VGG16, such as ResNet [49] and SENet [50] have been

reported, we chose the VGG16 as the base network. Although

our approach is general, we can apply many kinds of CNN,

and the re-implementation is needed for each base network.

Our approach is not a simple module, so extra efforts must be

taken to implement case by case. The innovation of another

architecture is left for future work.

VI. CONCLUSION

In this study, we addressed the various different-image-size

problem in the FER task for ITW datasets, where the original

input image size varies. Although the CNNs could work on

the image with a small rotate and scale, they are worthless

when the scale is enormous. The main contribution of this

study is the development of a pyramid network architec-

ture with several branches, each of which works on one

level of input scale. The proposed network is based on the

VGG16model, but it can be extended to another baseline net-

work architecture. In the PSR architecture, the SR method is

applied for up-scaling the low-resolution input. Experiments

on three ITW FER datasets show that our proposed method

outperforms all the current state-of-the-art methods.
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