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ABSTRACT

This work introduces pyramidal convolution (PyConv), which is capable of process-
ing the input at multiple filter scales. PyConv contains a pyramid of kernels, where
each level involves different types of filters with varying size and depth, which are
able to capture different levels of details in the scene. On top of these improved
recognition capabilities, PyConv is also efficient and, with our formulation, it
does not increase the computational cost and parameters compared to standard
convolution. Moreover, it is very flexible and extensible, providing a large space of
potential network architectures for different applications. PyConv has the potential
to impact nearly every computer vision task and, in this work, we present different
architectures based on PyConv for four main tasks on visual recognition: image
classification, video action classification/recognition, object detection and semantic
image segmentation/parsing. Our approach shows significant improvements over
all these core tasks in comparison with the baselines. For instance, on image recog-
nition, our 50-layers network outperforms in terms of recognition performance on
ImageNet dataset its counterpart baseline ResNet with 152 layers, while having
2.39 times less parameters, 2.52 times lower computational complexity and more
than 3 times less layers. On image segmentation, our novel framework sets a new
state-of-the-art on the challenging ADE20K benchmark for scene parsing. We will
make the code and models publicly available.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) [1], [2] represent the workhorses of the most current
computer vision applications. Nearly every recent state-of-the-art architecture for different tasks
on visual recognition is based on CNNs [3]–[18]. At the core of a CNN there is the convolution,
which learns spatial kernels/filters for visual recognition. Most CNNs use a relatively small kernel
size, usually 3×3, forced by the fact that increasing the size comes with significant costs in terms
of number of parameters and computational complexity. To cope with the fact that a small kernel
size cannot cover a large region of the input, CNNs use a chain of convolutions with small kernel
size and downsampling layers, to gradually reduce the size of the input and to increase the receptive
field of the network. However, there are two issues that can appear. First, even though for many of
current CNNs the theoretical receptive field can cover a big part of the input or even the whole input,
in [19] it is shown that the empirical receptive field is much smaller than the theoretical one, even
more than 2.7 times smaller in the higher layers of the network. Second, downsampling the input
without previously having access to enough context information (especially in complex scenes as in
Fig. 1) may affect the learning process and the recognition performance of the network, as useful
details are lost since the receptive filed is not large enough to capture different dependencies in the
scene before performing the downsampling.

Natural images can contain extremely complicated scenes. Two examples (an outdoor and an
indoor scenes in the wild) are presented in Fig. 1 on the left, while on the right we have the se-
mantic label of each pixel in the scene (taken from the ADE20K dataset [20]). Parsing these
images and providing a semantic category of each pixel is very challenging, however, it is one
of the holy grail goals of the computer vision field. We can notice in these examples a big num-
ber of class categories in the same scene, some partially occluded, and different object scales.
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Figure 1: Scene parsing examples. An
outdoor and indoor images with their as-
sociated pixel-level semantic category.

We can see in Fig. 1 that some class categories can have
a very large spatial representations (e.g. buildings, trees
or sofas) while other categories can have significantly
smaller representations in the image (e.g. persons, books
or the bottle). Furthermore, the same object category
can appear at different scales in the same image. For
instance, the scales of cars in Fig. 1 vary significantly,
from being one of the biggest objects in the image to
cover just a very tiny portion of the scene. To be able to
capture such a diversity of categories and such a variability
in their scales, the use of a single type of kernel (as in
standard convolution) with a single spatial size, may not
be an optimal solution for such complexity. One of the
long standing goals of computer vision is the ability to
process the input at multiple scales for capturing detailed
information about the content of the scene. One of the
most notorious example in the hand-crafted features era is SIFT [21], which extracts the descriptors
at different scales. However, in the current deep learning era with learned features, the standard
convolution is not implicitly equipped with the ability to process the input at multiple scales, and
contains a single type of kernel with a single spatial size and depth.

To address the aforementioned challenges, this work provides the following main contributions:
(1) We introduce pyramidal convolution (PyConv), which contains different levels of kernels with
varying size and depth. Besides enlarging the receptive field, PyConv can process the input using
increasing kernel sizes in parallel, to capture different levels of details. On top of these advantages,
PyConv is very efficient and, with our formulation, it can maintain a similar number of parameters
and computational costs as the standard convolution. PyConv is very flexible and extendable, opening
the door for a large variety of network architectures for numerous tasks of computer vision (see
Section 3). (2) We propose two network architectures for image classification task that outperform the
baselines by a significant margin. Moreover, they are efficient in terms of number of parameters and
computational costs and can outperform other more complex architectures (see Section 4). (3) We
propose a new framework for semantic segmentation. Our novel head for parsing the output provided
by a backbone can capture different levels of context information from local to global. It provides
state-of-the-art results on scene parsing (see Section 5). (4) We present network architectures based on
PyConv for object detection and video classification tasks, where we report significant improvements
in recognition performance over the baseline (see Supplementary Material).

2 RELATED WORK

Among the various methods employed for image recognition, the residual networks (ResNets)
family [7], [8], [16] represents one of the most influential and widely used. By using a shortcut
connection, it facilitates the learning process of the network. These networks are used as backbones
for various complex tasks, such as object detection and instance segmentation [7], [13]–[18]. We use
ResNets as baselines and make use of such architectures when building our different networks.

The seminal work [3] uses a form of grouped convolution to distribute the computation of the
convolution over two GPUs for overcoming the limitations of computational resources (especially
memory). Furthermore, also [16] uses grouped convolution but with the aim of improving the
recognition performance in the ResNeXt architectures. We also make use of grouped convolution but
in a different architecture. The works [17] and [22] propose squeeze-and-excitation and non-local
blocks to capture context information. However, these are additional blocks that need to be inserted
into the CNN; therefore, these approaches still need to use a spatial convolution in their overall
CNN architecture (thus, they can be complementary to our approach). Furthermore, these blocks
significantly increase the model and computational complexity.

On the challenging task of semantic segmentation, a very powerful network architecture is PSP-
Net [23], which uses a pyramid pooling module (PPM) head on top of a backbone in order to parse
the scene for extracting different levels of details. Another powerful architecture is presented in [24],
which uses atrous spatial pyramid pooling (ASPP) head on top of a backbone. In contrast to these
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competitive works, we propose a novel head for parsing the feature maps provided by a backbone,
using a local multi-scale context aggregation module and a global multi-scale context aggregation
block for efficient parsing of the input. Our novel framework for image segmentation is not only very
competitive in terms of recognition performance but is also significantly more efficient in terms of
model and computational complexity than these strong architectures (see Supplementary Material).

3 PYRAMIDAL CONVOLUTION

Figure 2: (a) Standard conv; (b) Proposed PyConv.

The standard convolution, illustrated in
Fig. 2(a), contains a single type of kernel:

with a single spatial size K1
2 (in the case of

square kernels, e.g., height×width: 3×3 = 32,
K1 = 3) and the depth equal to the number
of input feature maps FMi. The result of
applying a number of FMo kernels (all hav-
ing the same spatial resolution and the same
depth) over FMi input feature maps is a num-
ber of FMo output feature maps (with spa-
tial height H and width W ). Thus, the num-
ber of parameters and FLOPs (floating point
operations) required for the standard convolu-

tion are: parameters = K1
2 · FMi · FMo;

FLOPs = K1
2 · FMi · FMo · (W ·H).

The proposed pyramidal convolution (PyConv), illustrated in Fig. 2(b), contains a pyramid with
n levels of different types of kernels. The goal of the proposed PyConv is to process the input
at different kernel scales without increasing the computational cost or the model complexity (in
terms of parameters). At each level of the PyConv, the kernel contains a different spatial size,
increasing kernel size from the bottom of the pyramid (level 1 of PyConv) to the top (level n of
PyConv). Simultaneously with increasing the spatial size, the depth of the kernel is decreased from
level 1 to level n. Therefore, as shown in Fig. 2(b), this results in two interconnected pyramids,
facing opposite directions. One pyramid has the base at the bottom (evolving to the top by de-
creasing the kernel depth) and the other pyramid has the base on top, where the convolution kernel
has the largest spatial size (evolving to the bottom by decreasing the spatial size of the kernel).

Figure 3: Grouped Convolution.

To be able to use different depths of the
kernels at each level of PyConv, the input
feature maps are split into different groups,
and apply the kernels independently for
each input feature maps group. This is
called grouped convolution, an illustration
is presented in Fig. 3 where we show three
examples (the color encodes the group assignment). In these examples, there are eight input and
output feature maps. Fig. 3(a) shows the case comprising a single group of input feature maps, this is
the standard convolution, where the depth of the kernels is equal to the number of input feature maps.
In this case, each output feature map is connected to all input feature maps. Fig. 3(b) shows the case
when the input feature maps are split into two groups, where the kernels are applied independently
over each group, therefore, the depth of the kernels is reduced by two. As shown in Fig. 3, when the
number of groups is increased, the connectivity (and thus the depth of the kernels) decreases. As a
result, the number of parameters and the computational cost of a convolution is reduced by a factor
equal to the number of groups.

As illustrated in Fig. 2(b), for the input feature maps FMi, each level of the PyConv {1, 2, 3, ..., n}
applies different kernels with a different spatial size for each level {K1

2, K2
2, K3

2, ..., Kn
2}

and with different kernel depths {FMi,
FMi

(
K2

2

K1
2
)
, FMi

(
K3

2

K1
2
)
, ..., FMi

(Kn
2

K1
2
)
}, which outputs a different number

of output feature maps {FMo1
, FMo2

, FMo3
, ..., FMon

} (with height H and width W ). Therefore,
the number of parameters and the computational cost (in terms of FLOPs) for PyConv are:
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(1)

where FMon
+ · · ·+ FMo3

+ FMo2
+ FMo1

= FMo.
Each row in these equations represents the number
of parameters and computational cost for a level
in PyConv. If each level of PyConv outputs an
equal number of feature maps, then the number of
parameters and the computational cost of PyConv
are distributed evenly along each pyramid level.

With this formulation, regardless of the number of levels of PyConv and the continuously increasing

kernel spatial sizes from K1
2 to Kn

2, the computational cost and the number of parameters is similar

to the standard convolution with a single kernel size K1
2. To link the illustration in Fig. 3 with

Equations 1, the denominator of FMi in Equations 1 refers to the number of groups (G) that the
input feature maps FMi are split in Fig. 3.

In practice, when building a PyConv there are several additional rules. The denominator of FMi

at each level of the pyramid in Equations 1, should be a divisor of FMi. In other words, at each
pyramid level, the number of feature maps from each created group should be equal. Therefore, as
an approximation, when choosing the number of groups for each level of the pyramid (and thus the
depth of the kernel), we can take the closest number to the denominator of FMi from the list of
possible divisors of FMi. Furthermore, the number of groups for each level should be also a divisor
for the number of output feature maps of each level of PyConv. To be able to easily create different
network architectures with PyConv, it is recommended that the number of input feature maps, the
groups for each level of pyramid, and the number of output feature maps for each level of PyConv, to
be numbers of power of 2. Next sections show practical examples.

The main advantages of the proposed PyConv are: (1) Multi-Scale Processing. Besides the fact
that, compared to the standard convolution, PyConv can enlarge the receptive field of the kernel
without additional costs, it also applies in parallel different types of kernels, having different spatial
resolutions and depths. Therefore, PyConv parses the input at multiple scales capturing more detailed
information. This double-oriented pyramid of kernels types, where on one side the kernel sizes are
increasing and on the other side the kernel depths (connectivity) are decreasing (and vice-versa),
allows PyConv to provide a very diverse pool of combinations of different kernel types that the
network can explore during learning. The network can explore from large receptive fields of the
kernels with lower connectivity to smaller receptive fields with higher connectivity. These different
types of kernels of PyConv bring complementary information and help boosting the recognition
performance of the network. The kernels with smaller receptive field can focus on details, capturing
information about smaller objects and/or parts of the objects, while increasing the kernels size
provides more reliable details about larger objects and/or context information.

(2) Efficiency. In comparison with the standard convolution, PyConv maintains, by default, a similar
number of model parameters and requirements in computational resources, as shown in Equation 1.
Furthermore, PyConv offers a high degree of parallelism due to the fact that the pyramid levels can
be independently computed in parallel. Thus, PyConv can also offer the possibility of customizable
heavy network architectures (in the case where the architecture cannot fit into the memory of a
computing unit and/or it is too expensive in terms of FLOPs), where the levels of PyConv can be
executed independently on different computing units and then the outputs can be merged.

(3) Flexibility. PyConv opens the door for a great variety of network architectures. The user has the
flexibility to choose the number of layers of the pyramid, the kernel sizes and depths at each PyConv
level, without paying the price of increasing the number of parameters or the computational costs.
Furthermore, the number of output feature maps can be different at each level. For instance, for a
particular final task it may be more useful to have less output feature maps from the kernels with
small receptive fields and more output feature maps from the kernels with bigger receptive fields.
Also, the PyConv settings can be different along the network, thus, at each layer of the network we
can have different PyConv settings. For example, we can start with several layers for PyConv, and
based on the resolution of the input feature maps at each layer of the network, we can decrease the
levels of PyConv as the resolution decreases along the network. That being said, we can now build
architectures using PyConv for different visual recognition tasks.
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4 PYCONV NETWORKS FOR IMAGE CLASSIFICATION

Figure 4:
PyConv
bottleneck
building
block.

For our PyConv network architectures on image classification, we use a residual
bottleneck building block similar to the one reported in [7]. Fig. 4 shows an example
of a building block used on the first stage of our network. First, it applies a 1×1
conv to reduce the input feature maps to 64, then we use our proposed PyConv with
four levels of different kernels sizes: 9×9, 7×7, 5×5, 3×3. Also the depth of the
kernels varies along each level, from 16 groups to full depth/connectivity. Each level
outputs 16 feature maps, which sums a 64 output feature maps for the PyConv. Then
a 1×1 conv is applied to regain the initial number of feature maps. As common, batch
normalization [6] and ReLU activation function [25] follow a conv block. Finally,
there is a shortcut connection that can help with the identity mapping.

Our proposed network for image classification, PyConvResNet, is illustrated in
Table 1. For direct comparison we place aside also the baseline architecture ResNet [7].
Table 1 presents the case for a 50-layers deep network, for the other depths, the number
of layers are increased as in [7]. Along the network we can identify four main stages,
based on the spatial size of the feature maps. For PyConvResNet, we start with a
PyConv with four levels. Since the spatial size of the feature maps decreases at each
stage, we reduce also the PyConv levels. On the last main stage, the network ends up with only one
level for PyConv, which is basically the standard convolution. This is appropriate because the spatial
size of the feature maps is only 7×7, thus, three successive convolutions of size 3×3 cover well the
feature maps. Regarding the efficiency, PyConvResNet provides also a slight decrease in FLOPs.

Table 1: PyConvResNet and PyConvHGResNet.

stage output ResNet-50 PyConvResNet-50 PyConvHGResNet-50
112×112 7×7, 64, s=2 7×7, 64, s=2 7×7, 64, s=2

3×3 max pool,s=2

1 56×56

"

1×1, 64
3×3, 64
1×1, 256

#

×3

2

6

6

6

6

6

4

1×1, 64
PyConv4, 64:
2

4

9×9, 16, G=16
7×7, 16, G=8
5×5, 16, G=4
3×3, 16, G=1

3

5

1×1, 256

3

7

7

7

7

7

5

×3

2

6

6

6

6

6

4

1×1, 128
PyConv4, 128:
2

4

9×9, 32, G=32
7×7, 32, G=32
5×5, 32, G=32
3×3, 32, G=32

3

5

1×1, 256

3

7

7

7

7

7

5

×3

2 28×28

"

1×1, 128
3×3, 128
1×1, 512

#

×4

2

6

6

6

6

4

1×1, 128
PyConv3, 128:
"

7×7, 64, G=8
5×5, 32, G=4
3×3, 32, G=1

#

1×1, 512

3

7

7

7

7

5

×4

2

6

6

6

6

4

1×1, 256
PyConv3, 256:
"

7×7, 128, G=64
5×5, 64, G=64
3×3, 64, G=32

#

1×1, 512

3

7

7

7

7

5

×4

3 14×14

"

1×1, 256
3×3, 256
1×1, 1024

#

×6

2

6

6

4

1×1, 256
PyConv2, 256:
h

5×5, 128, G=4
3×3, 128, G=1

i

1×1, 1024

3

7

7

5

×6

2

6

6

4

1×1, 512
PyConv2, 512:
h

5×5, 256, G=64
3×3, 256, G=32

i

1×1, 1024

3

7

7

5

×6

4 7×7

"

1×1, 512
3×3, 512
1×1, 2048

#

×3

2

6

4

1×1, 512
PyConv1, 512:

[3×3, 512, G=1]
1×1, 2048

3

7

5
×3

2

6

4

1×1, 1024
PyConv1, 1024:

[3×3, 1024, G=32]
1×1, 2048

3

7

5
×3

1×1
global avg pool

1000-d fc
global avg pool

1000-d fc
global avg pool

1000-d fc

# params 25.56 × 106 24.85 × 106 25.23 × 106

FLOPs 4.14 × 109 3.88 × 109 4.61 × 109

As we highlighted, flexibility is a strong point
of PyConv, Table 1 presents another architecture
based on PyConv, PyConvHGResNet, which
uses a higher grouping for each level. For this
architecture we set a minimum of 32 groups and
a maximum of 64 in the PyConv. The number
of feature maps for the spatial convolutions is
doubled to provide better capabilities on learn-
ing spatial filters. Note that for stage one of
the network, it is not possible to increase the
number of groups more than 32 since this is the
number of input and output feature maps for
each level. Thus, PyConvHGResNet produces
a slight increase in FLOPs.

As our networks contain different levels of ker-
nels, it can perform the downsampling of the
feature maps using different kernel sizes. This
is important as downsampling produces loss of
spatial resolution and therefore loss of details, but having different kernel sizes to perform the
downsampling can take into account different levels of spatial context dependencies to perform the
dowsampling in parallel. As can be seen in Table 1, the original ResNet [7] uses a max pooling
layer before the first stage of the network to downsample the feature maps and to get the translation
invariance. Different from the original ResNet, we move the max pooling on the first projection
shortcut, just before the 1×1 conv (usually, the first shortcut of a stage contains a projection 1×1 conv
to adapt the number of feature maps and their spatial resolution for the summation with the output of
the block). Therefore, for the original ResNet, the downsampling is not performed by the first stage
(as the max pooling performs this before), the next three main stages perform the downsampling on
their first block. In our networks, all four main stages perform the downsampling in their first block.

This change does not increase the number of parameters of the network and does not affect sig-
nificantly the computational costs (as can be seen in Table 1, as the first block uses the spatial
convolutions with the stride 2), providing advantages in recognition performance for our networks.
Moving the max pooling to the shortcut gives our approach the opportunity to have access to larger
spatial resolution of the feature maps in the first block of the first stage, to downsample the input
using multiple kernel scales and, at the same time, to benefit from the translation invariance provided
by max pooling. The results show that our networks provide improved recognition capabilities.
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Figure 5: PyConvSegNet framework for image segmentation. Figure 6: PyConv blocks.

5 PYCONV NETWORK ON SEMANTIC SEGMENTATION

Our proposed framework for scene parsing (image segmentation) is illustrated in Fig. 5. To build an
effective pipeline for scene parsing, it is necessary to create a head that can parse the feature maps
provided by the backbone and obtain not only local but also global information. The head should be
able to deal with fine details and, at the same time, take into account the context information. We
propose a novel head for scene parsing (image segmentation) task, PyConv Parsing Head (PyConvPH).
The proposed PyConvPH is able to deal with both local and global information at multiple scales.

PyConvPH contains three main components: (1) Local PyConv block (LocalPyConv), which is
mostly responsible for smaller objects and capturing local fine details at multiple scales, as shown
in Fig. 5. It also applies different type of kernels, with different spatial sizes and depths, which can
also be seen as a local multi-scale context aggregation module. The detailed information about each
component of LocalPyConv is represented in Fig. 6(a). LocalPyConv takes the output feature maps
from the backbone and applies a 1×1 conv to reduce the number of feature maps to 512. Then, it
performs a PyConv with four layers to capture different local details at four scales of the kernel 9×9,
7×7, 5×5, and 3×3. Additionally, the kernels have different connectivity, represented by the number
of groups (G). Finally, it applies a 1×1 conv to combine the information extracted at different kernel
sizes and depths. As is standard, all convolution blocks are followed by a batch normalization layer
[6] and a ReLU activation function [25].

(2) Global PyConv block (GlobalPyConv) is responsible for capturing global details about the scene,
and for dealing with very large objects. It is a multi-scale global aggregation module. The components
of GlobalPyConv are represented in Fig. 6(b). As the input image size can vary, to ensure that we can
capture full global information we keep the largest spatial size dimension as 9. We apply an adaptive
average pooling that reduces the spatial size of the feature maps to 9×9 (in the case of square images),
which still maintains reasonable spatial resolution. Then we apply a 1×1 conv to reduce the number
of feature maps to 512. We use a PyConv with four layers similarly as in the LocalPyConv. However,
as now we have decreased the spatial size of the feature maps to 9×9, the PyConv kernels can cover
very large parts of the input, ultimately, the layer with a 9×9 convolution covers the whole input and
captures full global information, as illustrated also in Fig. 5. Then we apply a 1×1 conv to fuse the
information from different scales. Finally, we upsample the feature maps to the initial size before the
adaptive average pooling, using a bilinear interpolation.

(3) Merge Local-Global PyConv block performs first the concatenation of the output feature maps
from the LocalPyConv and GlobalPyConv blocks. Over the resulting 1024 feature maps, it applies a
PyConv with one level, which is basically a standard 3×3 conv that outputs 256 feature maps. We
use here a single level for PyConv because the previous layers already captured all levels of context
information and it is more important at this point to focus on merging this information (thus, to use
full connectivity of the kernels) as it approaches the final classification stage. To provide the final
output, the framework continues with an upsample layer (using also bilinear interpolation) to restore
the feature maps to the initial input image size; finally, there is a classification layer which contains
a 1×1 conv, to provide the output with a dimension equal to the number of classes. As illustrated
in Fig. 5, our proposed framework is able to capture local and global information at multiple scales
of kernels, parsing the image and providing a strong representation. Furthermore, our framework is
also very efficient, and in the following we provide the exact numbers and the comparison with other
state-of-the-art frameworks.
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6 EXPERIMENTS

Experimental setup. For image classification task we perform our experiments on the commonly
used ImageNet dataset [26]. It consists of 1000 classes, 1.28 million training images and 50K
validation images. We report both top-1 and top-5 error rates. We follow the settings in [7], [8], [27]
and use the SGD optimizer with a standard momentum of 0.9, and weight decay of 0.0001. We train
the model for 90 epochs, starting with a learning rate of 0.1 and reducing it by 1/10 at the 30-th,
60-th and 80-th epochs, similarly to [7], [27]. The models are trained using 8 GPUs V100. We use
the standard 256 training mini-batch size and data augmentation as in [5], [27], training/testing on
224×224 image crop. For image segmentation we use ADE20K benchmark [20], which is one of the
most challenging datasets for image segmentation/parsing. It contains 150 classes and a high level
of scenes diversity, containing both object and stuff classes. It is divided in 20K/2K/3K images for
training, validation and testing. As standard, we report both pixel-wise accuracy (pAcc.) and mean
of class-wise intersection over union (mIoU). We train for 100 epochs with a mini-batch size of 16
over 8 GPUs V100, using train/test image crop size of 473×473. We follow the training settings as
in [23], including the auxiliary loss, with the weight 0.4.

Table 2: ImageNet ablation experiments
of PyConvResNet.

PyConv levels top-1(%) top-5(%) params GFLOPs

(1, 1, 1, 1)baseline 23.88 7.06 25.56 4.14
(2, 2, 2, 1) 23.12 6.58 24.91 3.91
(3, 3, 2, 1) 22.98 6.62 24.85 3.85
(4, 3, 2, 1) 22.97 6.56 24.85 3.84
top(4, 3, 2, 1) 23.18 6.60 24.24 3.63
(5, 4, 3, 2) 23.03 6.56 23.45 3.71

(4, 3, 2, 1) max 22.46 6.24 24.85 3.88
(4, 3, 2, 1) final 22.12 6.20 24.85 3.88

PyConv results on image recognition. We present in Ta-
ble 2 the ablation experiments results of the proposed Py-
Conv for image recognition task on the ImageNet dataset
where, using the network with 50 layers, we vary the
number of levels of PyConv. We first provide a direct
comparison to the baseline ResNet [7] without any addi-
tional changes, just replacing the standard 3x3 conv with
our PyConv. The column "PyConv levels" points to the
number of levels used at each of the four main stages of
the network. The PyConv levels (1, 1, 1, 1) represent the
case when we use a single level for PyConv on all four stages, which is basically the baseline ResNet.
Remarkably, just increasing the number of PyConv levels to two provides a significant improvement
in recognition performance, improving the top-1 error rate from 23.88 to 23.12. At the same time
it requires less number of parameters and FLOPS than the baseline. Note that by just using two
levels for PyConv (5×5 and 3×3 kernels), it has already significantly increased the receptive field
at each stage of the network. Gradually increasing the levels of PyConv at each level brings further
improvement, for the PyConv levels (4, 3, 2, 1) it brings the top-1 error rate to 22.97 with even lower
number of parameters and FLOPs. We also run the experiment using only the top level of the PyConv
at each main stage network, basically the opposite case of the baseline which uses only the bottom
level. Therefore, top(4, 3, 2, 1) refers to the case when using only the fourth level of the PyConv for
the stage 1 (9×9 kernel), third level for stage 2 (7×7 kernel), second level for stage 3 (5×5 kernel)
and first level of stage 4 (3×3 kernel). This configuration also provides significant improvements
in recognition performance compared to the baseline while having a lower number of parameters
and FLOPs, showing that our formulation of increasing the kernel sizes for building the network is
beneficial in many possible configurations.

We also add one more layer to PyConv for each stage of the network, (5, 4, 3, 2) case, where the fifth
level has a 11×11 kernel, but we do not notice further improvements in recognition performance.
In the rest of the paper we use (4, 3, 2, 1) levels of PyConv for image classification task. However,
we find this configuration reasonably good for this task with the input image resolution (224×224),
however, if, for instance, the input image resolution is increased, then other settings of PyConv may
provide even further improvements. Moving the max pooling to the shortcut, which provides access
for PyConv to perform the downsampling at multiple kernel sizes, improves further the top-1 error
rate to 22.46. To further benefit from the translation invariance and to address the fact that a 1×1
conv lacks the spatial resolution for performing downsampling, we maintain a max pooling on the
projection shortcut in the first block of each following stages. Our final network result is 22.12 top-1
error requiring only 24.85 million parameters and 3.88 GFLOPs. The conclusion is that regardless of
the settings of PyConv, using our formulation, it consistently provides better results than the baseline.

Fig. 7 shows the training and validation curves for comparing our networks, PyConvResNet and
PyConvHGResNet, with baseline ResNet over 50, 101 and 152 layers, where we can notice that
our networks significantly improve the learning convergence. For instance, on 50 depth, on first
interval (first 30 epochs, before the first reduction of the learning rate), our PyConvResNet needs
less than 10 epochs to outperform the best results of ResNet on all first 30 epochs. Thus, because of
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Figure 7: ImageNet training curves for ResNet and PyConvResNet on 50, 101 and 152 layers.

Table 3: Validation error rates comparison results of PyConv on ImageNet with other architectures.

Network
network depth: 50 network depth: 101 network depth: 152

top-1 top-5 params GFLOPs top-1 top-5 params GFLOPs top-1 top-5 params GFLOPs

ResNet (baseline)[7] 23.88 7.06 25.56 4.14 22.00 6.10 44.55 7.88 21.55 5.74 60.19 11.62
pre-act. ResNet [8] 23.77 7.04 25.56 4.14 22.11 6.26 44.55 7.88 21.41 5.78 60.19 11.62
NL-ResNet [22] 22.91 6.42 36.72 6.18 21.40 5.83 55.71 9.91 21.91 6.11 71.35 13.66
SE-ResNet [17] 22.74 6.37 28.07 4.15 21.31 5.79 49.29 7.90 21.38 5.80 66.77 11.65
ResNeXt [16] 22.44 6.25 25.03 4.30 21.03 5.66 44.18 8.07 20.98 5.48 59.95 11.84
PyConvHGResNet 21.52 5.94 25.23 4.61 20.78 5.57 44.63 8.42 20.64 5.27 60.66 12.29
PyConvResNet 22.12 6.20 24.85 3.88 20.99 5.53 42.31 7.31 20.48 5.27 56.64 10.72

improved learning capabilities, our PyConvResNet can require significantly less epochs for training
to outperform the baseline. Table 3 presents the comparison results of our proposed networks
with other state-of-the-art networks on 50, 101, 152 layers. Our networks outperform the baseline
ResNet [7] by a large margin on all depths. For instance, our PyConvResNet improves the top-1
error rate from 23.88 to 22.12 on 50 layers, while having lower number of parameters and FLOPs.
Remarkably, our PyConvHGResNet with 50 layers outperforms ResNet with 152 layers on top-1 error
rate. Besides providing better results than pre-activation ResNet [8] and ResNeXt [16], our networks
outperform more complex architectures, like SE-ResNet [17], despite that it uses an additional
squeeze-and-excitation block, which increases model complexity. (See S. Material with augmentation.)

Table 4: PyConvSegNet results with different backbones.

Backbone
mean IoU(%) pixel Acc.(%)

params GFLOPs
SS MS SS MS

ResNet-50 41.54 42.88 80.18 80.97 34.40 116.84
PyConvResNet-50 42.08 43.31 80.31 81.18 33.69 114.18

ResNet-101 42.88 44.39 80.75 81.60 53.39 185.47
PyConvResNet-101 42.93 44.58 80.91 81.77 51.15 177.29

ResNet-152 44.04 45.28 81.18 81.89 69.03 242.00
PyConvResNet-152 44.36 45.64 81.54 82.36 65.48 229.11

PyConv on semantic segmentation (ADE20K). Table 4
shows the results of PyConvSegNet using different depths
of the backbones ResNet and PyConvResNet. Besides the
single-scale (SS) inference results, we show also the results
using multi-scale inference (MS) (scales equal to {0.5, 0.75,
1, 1.25, 1.5, 1.75}). Table 5 presents the comparisons of our
approach with the state-of-the-art on both validation and
testing sets. Notably, our approach PyConvSegNet, with
152 layers for backbone, outperforms PSPNet [23] with
its 269-layers heavy backbone, which also requires signif-
icantly more parameters and FLOPs for their PPM head.

Table 5: State-of-the-art comparison on
single model. († increase the crop size just for inference

from 473×473 to 617×617; ♣ just increase training epochs

from 100 to 120 and train over training+validation sets; the results

on testing set are provided by the official evaluation server, as the

labels are not publicly available. The score is the average of mean

IoU and pixel Acc. results.)

Method
Validation set Testing set
mIoU pAcc. mIoU pAcc. Score

FCN [28] 29.39 71.32 - - 44.80
DilatedNet [29] 32.31 73.55 - - 45.67
SegNet [30] 21.64 71.00 - - 40.79
RefineNet [31] 40.70 - - - -
UperNet [32] 41.22 79.98 - - -
PSANet [33] 43.77 81.51 - - -
KE-GAN [34] 37.10 80.50 - - -
CFNet [35] 44.89 - - - -
CiSS-Net [36] 42.56 80.77 - - -
EncNet [37] 44.65 81.69 - - 55.67

PSPNet-152 [23] 43.51 81.38 - - -
PSPNet-269 [23] 44.94 81.69 - - 55.38

PyConvSegNet-152 45.64 82.36 37.75 73.61 55.68

PyConvSegNet-152 † 45.99 82.49 - - -

PyConvSegNet-152 ♣ - - 39.13 73.91 56.52

7 CONCLUSION

In this paper we proposed pyramidal convolution (PyConv), which contains several levels of kernels
with varying scales. PyConv shows significant improvements for different visual recognition tasks
and, at the same time, it is also efficient and flexible, providing a very large pool of potential network
architectures. Our novel framework for image segmentation provides state-of-the-art results. In
addition to a broad range of visual recognition tasks, PyConv can have a significant impact in
many other directions, such as image restoration, completion/inpainting, noise/artifact removal,
enhancement and image/video super-resolution.
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SUPPLEMENTARY MATERIAL TO THE PAPER:

"PYRAMIDAL CONVOLUTION: RETHINKING CONVOLUTIONAL NEURAL NET-

WORKS FOR VISUAL RECOGNITION"

Anonymous authors
Paper under double-blind review

This supplementary material just presents additional architectures details and/or analysis on the main
results already introduced in the paper (we could not fit more details into the main paper as we
propose architectures and run experiments on four core recognition tasks). It contains five main
sections: Section 1 presents the details of our architecture for object detection; Section 2 presents the
details for the video classification pipeline; Section 3 contains the results of PyConvResNet using
additional data augmentation. Section 4 additional comparisons with the existing works. Section 5
presets a direct comparison with the inception module and also the integration of our PyConv in
the inception architecture. Section 6 presents a head-to-head comparison with other strong image
segmentation methods. Finally, Section 7 shows some visual examples on image segmentation.

1 PYCONV ON OBJECT DETECTION

As we already presented in the the main paper the final result on object detection, that we outperform
the baseline by a significant margin (see main contribution (4) in the main paper), this section provides
the details of our architecture on object detection and the exact numbers of the results.

As our proposed PyConv uses different levels of kernel sizes in parallel, it can provide significant
benefits for object detection task, where the objects can appear in the image at different scales. For
object detection, we integrate our PyConv in a powerful approach, Single Shot Detector (SSD) [1].
SSD is a very efficient single stage framework for object detection, which performs the detection at
multiple feature maps resolutions. Our proposed framework for object detection, PyConvSSD, is
illustrated in Fig. 1. The framework contains two main parts:

(1) PyConvResNet Backbone. In our framework we use the proposed PyConvResNet as backbone,
which was previously pre-trained on ImageNet dataset [2]. To maintain a high efficiency of the
framework, and also to heave a similar number of output feature maps as in the backbone used in [1],
we remove from our PyConvResNet backbone all layers after the third stage. We also set all strides in
the stage 3 of the backbone network to 1. With this, PyConvResNet provides (as output of the stage
3) 1024 output feature maps (S3FM ) with the spatial resolution 38×38 (for an input image size of
300×300).

(2) PyConvSSD Head. Our PyConvSSD head illustrated in Fig. 1 uses the proposed PyConv to
further extract different features using different kernel sizes in parallel. Over the resulted feature
maps for the third stage of the backbone we apply a PyConv with four levels (kernel sizes: 9×9,
7×7, 5×5, 3×3). Also PyConv performs the downsampling (stride s=2) of the feature maps using
these multiple kernel sizes in parallel. As the feature maps resolution decreases we also decrease the
levels of the pyramid for PyConv. The last two PyConv contains only one level (which is basically
the standard 3×3) as the spatial resolution of the feature maps is very small. Note that the last two
PyConvs use a stride s=1 and the spatial resolution is decreased just by not using padding. Thus, the
head decreases the spatial resolution of the feature maps from 38×38 to 1×1. All the output feature
maps from the PyConvs in the head are used for detections.

For each of the six output feature maps selected for detection {S3FM , HFM1, HFM2, HFM3,
HFM4, HFM5} the framework performs the detection using a coresponding number of default boxes
(anchor boxes) {4, 6, 6, 6, 4, 4} for each spatial location. For instance, for (S3FM ) output feature
maps with the spatial resolution 38×38, using the four default boxes on each location results in 5776
detections. For localizing each bounding box, there are four values that network should predict (loc:
∆(cx, cy, w, h), where cx and cy represent the center point of the bounding box, w and h the width
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Figure 1: PyConvSSD framework for object detection.

Table 1: PyConvSSD with 300×300 input image size (results on COCO val2017).

Architecture
Avg. Precision, IoU: Avg. Precision, Area: Avg. Recall, #Dets: Avg. Recall, Area:

params GFLOPs
0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

baseline SSD-50 26.20 43.97 26.96 8.12 28.22 42.64 24.50 35.41 37.07 12.61 40.76 57.25 22.89 20.92
PyConvSSD-50 29.16 47.26 30.24 9.31 31.21 47.79 26.14 37.81 39.61 13.79 43.87 60.98 21.55 19.71

baseline SSD-101 29.58 47.69 30.80 9.38 31.96 47.64 26.47 38.00 39.64 14.09 43.54 61.03 41.89 48.45
PyConvSSD-101 31.27 50.00 32.67 10.65 33.76 51.75 27.33 39.33 41.07 15.48 45.53 63.44 39.01 45.02

and height of the bounding box). This bounding box offset output values are measured relative to a
default box position, relative to each feature maps location. Also, for each bounding box, the network
should output the confidences for each class category (in total C class categories). For providing the
detections the framework uses a classifier which is represented by a 3×3 convolution, that outputs for
each bounding box the confidences for all class categories (C). For localization the framework uses
also a 3×3 convolution to output the four localization values for each regressed default bounding box.
In total, the framework outputs 8732 detections (for 300×300 input image size), which pass through
a non-maximum suppression to provide the final detections.

Different from the original SSD framework [1], for a fair and direct comparison, in the baseline SSD,
we replaced the VGG backbone [3] with ResNet [4], as ResNet is far superior to VGG in terms of
recognition performance and computational costs as shown in [4]. Therefore, as main differences
from our PyConvSSD, the baseline SSD in this work uses ResNet [4] as backbone and the SSD
head uses standard 3×3 conv (instead of PyConv) as in the original framework [1]. For showing the
exact numbers to compare our PyConvSSD with the baseline on object detection, we use COCO
dataset [5], which contains 81 categories. We use for training COCO train2017 (118K images) and
for testing COCO val2017 (5K images). We train for 130 epochs using 8 GPUs with 32 batch size
each, resulting in 60K training iterations. We use for training SGD optimiser with momentum 0.9,
weight decay 0.0005, with the learning rate 0.02 (reduced by 1/10 before 86-th and 108-th epoch).
We also use a linear warmup in the first epoch [6]. For data augmentation, we perform random crop as
in [1], color jitter and horizontal flip. We use an input image size of 300×300 and report the metrics
as in [1].

Table 1 shows the comparison results of PyConvSSD with the baseline, over 50- and 101-layers
backbones. While being more efficient in terms of number of parameters and FLOPs, the proposed
PyConvSSD reports significant improvements over the baseline over all metrics. Notably, PyConvSSD
with 50 layers backbone is even competitive with the baseline using 101 layers as backbone. This
results show a grasp of the benefits for PyConv on object detection task.

2 PYCONV ON VIDEO CLASSIFICATION

In the main paper we introduced the main result for video classification, that we report significant re-
sults over the baseline (see main contribution (4)). This section presents the details of the architecture
and the exact numbers. PyConv can show significant benefits on video related tasks as it can enlarge
the receptive field and process the input using multiple kernels scales in parallel not only spatially but
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Table 2: ResNet3D architecture for video recognition.

stage output ResNet3D-50 PyConvResNet3D-50

16×112×112
5×7×7, 64
stride (1,2,2)

5×7×7, 64
stride (1,2,2)

1×3×3 max pool
stride (1,2,2)

1 16×56×56

"

1×1×1, 64
3×3×3, 64
1×1×1, 256

#

×3

2

6

6

6

6

6

4

1×1×1, 64
PyConv4, 64:
2

4

7×9×9, 16, G=16
5×7×7, 16, G=8
3×5×5, 16, G=4
3×3×3, 16, G=1

3

5

1×1×1, 256

3

7

7

7

7

7

5

×3

2 16×28×28

"

1×1×1, 128
3×3×3, 128
1×1×1, 512

#

×4

2

6

6

6

6

4

1×1×1, 128
PyConv3, 128:
"

5×7×7, 64, G=8
3×5×5, 32, G=4
3×3×3, 32, G=1

#

1×1×1, 512

3

7

7

7

7

5

×4

3 8×14×14

"

1×1×1, 256
3×3×3, 256
1×1×1, 1024

#

×6

2

6

6

4

1×1×1, 256
PyConv2, 256:
h

3×5×5, 128, G=4
3×3×3, 128, G=1

i

1×1×1, 1024

3

7

7

5

×6

4 4×7×7

"

1×1×1, 512
3×3×3, 512
1×1×1, 2048

#

×3

2

6

4

1×1×1, 512
PyConv1, 512:

[3×3×3, 512, G=1]
1×1×1, 2048

3

7

5
×3

1×1×1
global avg pool

400-d fc
global avg pool

400-d fc
# params 47.00 × 106 44.91 × 106

FLOPs 93.26 × 109 91.81 × 109

also in the temporal dimension. Extending the networks from image recognition to video involves
extending the 2D spatial convolution to 3D spatio-temporal convolution. Table 2 presents the baseline
network ResNet3D and our proposed network PyConvResNet3D, which are the initial 2D networks
extended to work with video input. The input for the network is represented by 16-frame input clips,
with spatial size is 224×224. As the temporal size is smaller than spatial dimensions, for our PyConv
we do not need to use equally large size on the upper layers of the pyramid. In the first stage of the
network, our PyConv with four layers contains kernel sizes of: 7×9×9, 5×7×7, 3×5×5 and 3×3×3
(the temporal dimension comes first).

For video classification, we perform the experiments on Kinetics-400 [7], which is a large-scale
video recognition dataset that contains ∼246k training videos and 20k validation videos, with 400
action classes. Similar to image recognition, use the SGD optimizer with a standard momentum of
0.9 and weight decay of 0.0001, we train the model for 90 epochs, starting with a learning rate of
0.1 and reducing it by 1/10 at the 30-th, 60-th and 80-th epochs, similar to [4], [6]. The models are
trained from scratch, using the weights initialization of [8] for all convolutional layers; for training
we use a minibatch of 64 clips over 8 GPUs. Data augmentation is similar to [3], [9]. For training, we
randomly select 16-frame input clips from the video. We also skip four frames to cover a longer video
period within a clip. The spatial size is 224×224, randomly cropped from a scaled video, where the
shorter side is randomly selected from the interval [256, 320], similar to [3], [9]. As the networks on
video data are prone to overfitting due to the increase in number of parameters, we use dropout [10]
after the global average pooling layer, with a 0.5 dropout ratio. For the final validation, following
common practice, we uniformly select a maximum of 10 clips per video. Each clip is scaled to 256
pixels for the shorter spatial side. We take 3 spatial crops to cover the spatial dimensions. In total, this
results in a maximum of 30 clips per video, for each of which we obtain a prediction. To get the final
prediction for a video, we average the softmax scores. We report both, top-1 and top-5 error rates.

Table 3 presents the result comparing our network, PyConvResNet3D, with the baseline over 50-
layers depth. PyConvResNet3D improves significantly the results over baseline, for top-1 error, from
37.01% to 34.56%. In the same time our network requires less number of parameters and FLOPs
than the baseline. Fig. 2 shows the training and validation curves where we can see that our network
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Table 3: Video recognition error rates.

Architecture top-1(%) top-5(%) params M GFLOPs

ResNet3D-50 [4] 37.01 15.41 47.00 93.26
PyConvResNet3D-50 34.56 13.34 44.91 91.81

Figure 2: Training and validation curves on Kinetics-400 dataset (these results are computed during
training over independent clips).

improves significantly the training convergence. This results show the potential of PyConv on video
related tasks.

3 PYCONV ON IMAGENET WITH MORE COMPLEX TRAINING SETTINGS

The ImageNet results presented in the paper mainly aim to show the advantages of our PyConv over
the standard convolution by running all the networks with the same standard training settings for a
fair comparison. Note that there are other works which report better results on ImageNet, such as
[11]–[13]. However, the improvements are mainly due to the training settings. For instance, [12]
uses very complex training settings, such as, complex data augmentation (autoAugment [14]) with
different regularization techniques (dropout [15]), stochastic depth [16], the training is performed on
a powerful Google TPU computational architecture over 350 epochs with a large batch of 2048. The
works [11], [13], besides using a strong computational architecture with many GPUs, take advantage
of a large dataset of 3.5B images collected from Instagram (this dataset is not publicly available).
Therefore, these resources are not handy to everyone. However, the results show that PyConv is
superior to standard convolution and combining it with [11]–[13] can bring further improvements.
While on ImageNet we do not have access to such scale of computational and data resources to
directly compete with state-of-the-art, we do push further and show that our proposed framework
obtains state-of-the-art results on challenging task of image segmentation.

To support our claim, that our networks can be easily improved using more complex training settings,
we integrate an additional data augmentation, CutMix [17]. As CutMix requires more epochs to
converge, we increase the training epochs to 300 and use a cosine scheduler [18] for learning rate
decaying. To speed-up the training, we increase the batch size to 1024 and use mixed precision [19].
Table 4 presents the comparison results of PyConvResNet for the baseline training settings and
with the CutMix data augmentation. For both depths, 50- and 101-layers, just adding these simple
additional training settings improve significantly the results. For the same trained models, in addition
to the standard test crop size of 224×224 we also run the testing on 320×320 crop size. This results
show that there is still room for improvement if more complex training settings are included (as the
training settings from [12]) and/or additional data used for training (as in [11], [13]), however, this
requires significantly more computational and data resources, which are not easily available.
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Table 4: Validation error rates comparison results of PyConvResNet on ImageNet with different
training settings, for network depth 50 and 101.

Network
test crop: 224×224 test crop: 320×320

params
top-1 top-5 GFLOPs top-1 top-5 GFLOPs

PyConvResNet-50 22.12 6.20 3.88 21.10 5.55 7.91 24.85
PyConvResNet-50 + augment 20.56 5.31 3.88 19.41 4.75 7.91 24.85

PyConvResNet-101 20.99 5.53 7.31 20.03 4.82 14.92 42.31
PyConvResNet-101 + augment 19.42 4.87 7.31 18.51 4.28 14.92 42.31

4 EXTENDED RELATED WORK

(Due to limited number of pages, we could not fit more related works in the main paper. As it will be
provided one additional page in the next step, we plan integrating the below comparisons in the main
paper)

The inception module used in various CNN architectures [20]–[22] in another approach to integrate
kernels at multiple scales. However, our PyConv is different from inception module in both key
components: a) spatial kernel sizes: our PyConv is capable of using multiple scales of the kernels
while maintaining a similar number of parameters and computational costs as the standard convolution.
Inception module is not capable of building real high spatial sizes for the kernels without affecting
the computational costs compared to standard 3x3 convolution as it simulates higher kernels sizes by
factorizing it in successive convolutions. We provide more details in the next section.

b) kernel depths: inception module uses only the full connectivity (depth) of the kernels, while
our PyConv uses a pyramid of various kernels connectivity (depths). The depths of our PyConv
kernels range from full to very low connectivity. This wide range of kernel depths is not only
important for controlling the computational costs, it is also important for network learning and
convergence. As important to have a varying spatial sizes of the kernels for learning different spatial
dependencies/details, similarly, it is important to have a varying kernel depths to learn different feature
maps dependencies/entanglements. The full connectivity of the kernels is important for learning very
complex feature maps entanglements, but the price to pay is the fact that the learning convergence
is very difficult (see ResNet in Fig.7 in the main paper) due to high complexity. On the other hand,
having lower depth of the kernels reduces the complexity entanglement, helping significantly the
starting of the convergence. Thus, the lower connectivity is very critical at the beginning of the
training, for starting the convergence, while higher connectivity becomes more critical towards the
end, where more complex relationships can be finally achieved through learning. This is one of the
reasons that our networks converge very fast (see Fig.7 in the main paper), in fact we are able to
outperform ResNet (in the first interval) by just using half of the epochs. These two interconnected
pyramids (for the kernels spatial size and connectivity) for our PyConv provide a very diverse pool of
variations of different kernel types that the network can explore during learning, leading to improved
convergence and learning capabilities for visual patterns.

The work [23] introduces mixed depthwise convolution (MixConv). Besides a slight variation of
above point b), there is also another fundamental difference that separates our work from MixConv:
as we can see from Fig.3 of MixConv work [23], it splits the input feature maps into separate parts
and applies independently a different kernel size for each part. Thus, each spatial kernel size has only
access to a limited portion of the input feature maps. For instance, the kernels with 3x3 size run only
on a limited number of input feature maps, without having access to the remaining ones. Similarly,
for the next kernel sizes. This is an important shortcoming of MixConv, as there is no explainable
reason for giving, let’s say, only the first 16 input feature maps to 3x3 kernels and only the next 16
maps to 5x5 kernels. While in our PyConv, each kernel level gets access to all input feature maps,
thus, each level is able to extract a more complete representation of the input.

5 PYCONV ON INCEPTION ARCHITECTURE

The Inception family [20]–[22] is another powerful type of CNN, which uses the inception block
to construct the network. To further show the advantages of our PyConv we replaced the inception
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Table 5: Validation error rates comparison results on ImageNet for Inception architecture.

Architecture
top-1 top-5 params FLOPs Latency Throughput

(%) (%) (×106) (×109) (sec./batch) (img./sec.)

Inception-ResNet-v2 [22] 20.49 5.29 55.84 16.75 0.965 265
PyConvInception 20.31 5.21 43.48 11.92 0.738 347

Table 6: Head-to-Head comparison on image segmentation (using ResNet with 50 layers as backbone)
on ADE20K.

Head
output stride backbone: 8 output stride backbone: 16

mean IoU pixel Acc. params GFLOPs mean IoU pixel Acc. params GFLOPs

baseline [24]: 3×3 conv 37.87 78.17 35.42 131.37 36.84 77.84 35.42 39.52
DeepLabv3 [25]: ASPP 40.91 79.92 41.48 151.17 40.34 79.44 41.48 44.47
PSPNet [24]: PPM 41.24 80.01 49.06 165.42 39.75 79.17 49.06 48.08
PyConvSegNet: PyConvPH 41.54 80.18 34.40 116.84 40.43 79.45 34.40 36.08

blocks in Inception-ResNet-v2 [22] with our PyConv building blocks. The comparison results are
presented in Table 5, where we can see that our PyConv provides significant improvements. We
follow [22] and use for these experiments an image crop size of 299×299. Note that [22] reports
19.9% top-1 error rate, the difference from our experiments is due to different training settings, but
more importantly, the single crop - single model experimental results (Table 2. in [22]) are reported
on the non-blacklisted subset of the validation set of ImageNet (refer to [22] for more details).

For comparing the running time we report also the latency (measured in terms of seconds per batch)
and throughput (images per second), the results are the average over an entire training epoch. We
can see that our network is significantly faster than Inception-ResNet-v2 [22]. The reason for this
discrepancy in running time is due to the fact that Inception blocks [22] factorizes a convolution
in several successive convolutions to avoid increasing significantly the number of parameters and
FLOPs. For instance, Inception simulates a spatial 7×7 kernel by factorizing it into two successive
convolutions of 1×7 and 7×1. This is just a rough approximation of 7×7 kernel as it can learn
only horizontal and vertical patterns but not at different other angles as 7×7. Furthermore, this is
not scalable, because if we want increase further the size of the kernel it will still bring additional
costs, so they did not go more than that. Importantly, factorizing a convolution in several successive
convolutions as in Inception blocks (even for two chained 3x3 conv for simulating 5x5), reduces
the degree of parallelism and can affect negatively the running time, while in our case, all levels
in our PyConv run independently in parallel (thus, there is no theoretical limitation regarding the
running time) and we can scale the kernel size at very high spatial resolutions without increasing the
computational costs.

6 HEAD-TO-HEAD COMPARISON ON IMAGE SEGMENTATION

We compare our proposed framework, PyConvSegNet, with two of the most powerful architectures
for semantic segmentation [24] and [25]. Table 6 presents head-to-head comparison of our method
with state-of-the-art heads on image segmentation: PSPNet with Pyramid Pooling Module (PPM)
head, and DeepLabv3 with Atrous Spatial Pyramid Pooling (ASPP). The baseline is constructed as
in [24], which as head, it basically applies a 3×3 conv over the output feature maps provided by the
backbone. For a fair and direct comparison, all methods use the same auxiliary loss (deep supervision)
exactly as in [24]. For a comprehensive view, the reports in terms of number of parameters and
FLOPs include the auxiliary loss components. As [24] uses an output stride for the backbone of 8 and
[25] uses 16, we report the experiments for both cases. We run these experiments using the ResNet
with 50 layers as backbone. Table 6 shows that our proposed head is not only more accurate than the
other methods, but it is also more efficient, requiring significantly smaller number of parameters and
FLOPs than [24] and [25]. We can also see that without a strong head on top of the backbone, the
baseline reports significantly worse results.
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7 QUALITATIVE EXAMPLES ON IMAGE SEGMENTATION

Fig. 3 shows some qualitative examples for visually comparing our proposed approach for image
segmentation, PyConSegNet, with state-of-the-art approaches PSPNet [24] and DeepLabv3 [25].
For the numeric results, refer to Table 4 in the main paper (for the output stride backbone 8). This
examples show the visual comparison results between our proposed head, PyConvPH (PyConv
parsing head), with ASPP (Atrous Spatial Pyramid Pooling) of [25] and PPM head (Pyramid Pooling
Module) of [24].

Very suggestive is the last row example of Fig. 3, where we can clearly notice the difference in
segmentation details. It is remarkable that our proposed head can compete at a high level with other
state-of-the art approaches for image segmentation while having significantly less requirements in
terms of number of parameters and computational complexity. For instance, in comparison with our
PyConSegNet, PSPNet [24] requires over 40% more parameters and FLOPs, while DeepLabv3 [25]
requires over 20% more parameters and close to 30% more FLOPs.

In the second row example of Fig. 3 we can also notice a failure case of our approach, which confuses
the door with a window. However, this case is quite difficult and confusing even for a human eye.
Fig. 4 shows some visual results of our approach, PyConSegNet, using 50-, 101-, 152-layers for
the PyConvResNet backbone. For the exact number, refer to Table 5 in the main paper (multi-scale
inference). Note in the second row of Fig. 4 how the quality of the segmentation for the fan (ceiling
mount air fan) is improving while increasing the depth of our PyConvResNet backbone.
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Figure 3: Visual comparison results of our approach PyConvSegNet (with PyConvPH head) with
state-of-the-art approaches: PSPNet [24] (with PPM head) and DeepLabv3 [25] (with ASPP head).
The images are from ADE20K dataset [26] validation.
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Figure 4: Visual results of our approach, PyConvSegNet, on 50-, 101-, 152-layers deep backbone
PyConvResNet. The images are from ADE20K dataset [26] validation set.
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