
PyRETIS: A well-done, medium-sized Python library

for rare events

Anders Lervik∗, Enrico Riccardi†, Titus S. van Erp‡

June 30, 2017

Abstract

Transition Path Sampling techniques are becoming common approaches in the study
of rare events at the molecular scale. More efficient methods, such as transition inter-
face sampling (TIS) and replica exchange transition interface sampling (RETIS), allow
the investigation of rare events, e.g. chemical reactions and structural/morphological
transitions, in a reasonable computational time. Here, we present PyRETIS, a Python
library for performing TIS and RETIS simulations. PyRETIS directs molecular dynam-
ics (MD) simulations in order to sample rare events with unbiased dynamics. PyRETIS
is designed to be easily interfaced with any molecular simulation package and in the
present release, it has been interfaced with GROMACS and CP2K, for classical and
ab initio MD simulations, respectively.

Keywords: rare event, path sampling, Python, transition, reaction

∗Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Nor-
way, anders.lervik@ntnu.no

†Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Nor-
way

‡Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Nor-
way

1



PyRETIS is a Python based code to sample rare events in path space. It can handle
different types of dynamics and it can be easily interfaced with different software at

different resolution levels. Proton transfer between water molecules and biomolecule-DNA
binding are just two examples of the transitions that PyRETIS can describe quantitatively

without the implementation of any bias.

2



1 Introduction

Molecular dynamics (MD) simulations have become common computational experiments in
many disciplines. From biology to material science, descriptions at atomic scale of various
material properties and processes have been obtained.1–5 Validations of assumptions and
parameter estimation for continuum modeling have also been performed in systems for which
lab experiments can not be applied.6–9 On the other hand, molecular simulations have severe
limitations for the accessible time and length scale. Thus, there is still a significant need
for more efficient algorithms in order to reach longer time scales and study larger systems
without loosing valuable information.

Especially when simulations aim to capture transition events (e.g. chemical reactions,
nucleation, protein folding), exceedingly long simulations are required to describe the mech-
anisms and quantify their rates. Several approaches have recently been developed to increase
the simulation efficiency.10–18 However, the majority of these methods achieve this by dis-
turbing the physically correct dynamics of the system. Transition path sampling (TPS),19 on
the other hand, samples unbiased molecular dynamics trajectories via a Monte Carlo (MC)
procedure. Among the methods using a TPS based approach, transition interface sampling
(TIS)17 has grown as one of the most popular ones. Following the TIS development, more
advanced algorithms have been invented, e.g. replica exchange transition interface sampling
(RETIS)18 with new MC moves20 that further increases the sampling efficiency.

The beauty of TIS based methods is that its results are equivalent to the ones that would
be obtained by running exceedingly long brute-force molecular simulations, but orders of
magnitude faster. The lack of biased dynamics also implies that the TIS based methods can
easily be interfaced with any simulation approach (e.g. simulations with different resolutions,
like coarse grained, full atomistic, ab initio MD, Langevin dynamics, dissipative particle
dynamics, Brownian dynamics, kinetic MC, etc.) and any external MD code. In the present
manuscript, we present our library, named PyRETIS, for performing TIS-based rare event
simulations. The PyRETIS library handles the rare event algorithms and it employs external
simulation packages for running MD simulations. Currently, PyRETIS is interfaced with
two very popular simulation codes: CP2K21 (for ab initio based MD) and GROMACS22 (for
classical MD) and the library is designed so that no modifications of the external simulation
package is needed. This means that PyRETIS can, in principle, be interfaced with any free or
closed source MD simulation code (presently, we are developing interfaces with LAMMPS,23

VASP,24 Espresso,25,26 and QChem27).
While the TIS theory has been well established in the latest years,17,18,20 its practical us-

age has been limited by a lack of coordinated computational efforts. To address this demand,
we have developed a Python based library to perform rare event simulations. The program-
ming language has been chosen to reach many users and potential developers. Interpreted,
dynamic languages such as Python are known for poorer computational efficiency compared
to compiled languages (e.g. FORTRAN or C). However, since the MD simulations are by far
the most costly part of the path sampling algorithms, the relative poor performance of cur-
rent Python interpreters is limited since PyRETIS make use of efficient external programs for
the actual MD steps. Further, Python is a relatively simple programming language to learn,
has a large user base28 and several popular libraries for scientific computing is available (e.g.
Numpy and SciPy29,30) which can reduce the programming efforts, especially for beginners.

3



Currently, there exist several Python packages for performing MD simulations (for instance
MMTK31 and PyOpenMM32) and for setting up and analyzing output from MD simulations
(for instance, MDAnalysis33 and MDTraj34). This allows straightforward modification of
sampling algorithms, order parameters and implementation of additional analysis methods
in PyRETIS.

We begin the article by a description of the RETIS algorithm, since this algorithm is
the central rare event sampling technique implemented in PyRETIS, before we give an
overview of the library with required input and given output. We also show an example of
how PyRETIS can be extended by adding a custom order parameter and we report some
practical examples of the use of PyRETIS. The purpose of these examples is to get acquainted
to the use of the library and most of them can be performed on a simple laptop. Finally, we
close the article by describing our plans for future development and how the library can be
obtained.

2 Replica Exchange Transition Interface Sampling

Replica Exchange Transition Interface Sampling (RETIS) is a rare event method based
on transition interface sampling. To explain its basic concepts, we consider the transition
between two stable states, from the reactant (labeled A) to the product (labeled B). These
two states are defined by a progress coordinate, λ, where state A is for λ ≤ λA and state
B for λ ≥ λB. Here, and in the following, the term progress coordinate is used to denote a
particular order parameter which describe the progress of the reaction. The central quantity
calculated in RETIS simulations is the rate constant kAB for the transition from state A to
state B which can be expressed as

kAB = fAPA(λB|λA), (1)

where fA is the so-called initial flux (through λA) and PA(λB|λA) the crossing probability.
Formally, the crossing probability is the probability of crossing λB before λA given that λA

has just been crossed.
In practice, the RETIS algorithm splits up the calculation of the crossing probability by

considering so-called path ensembles. Within each path ensemble the algorithm generates
trajectories which sample the progress coordinate space. Mathematically, a path ensemble
comprises all possible trajectories that fulfill certain conditions: in RETIS, all path ensembles
contain trajectories that start at the foot of reaction barrier from the reactant side (λA),
end in the reactant (λA) or product region (λB) and having reached a certain threshold
value (λi) at some point in the trajectory. The threshold value, λi, differs for each path
ensemble and we label the corresponding path ensemble by [i+]. Typically, N + 1 path
ensembles are defined by positioning N+1 interfaces along the progress coordinate space, e.g.
{λA = λ0, λ1, λ2, . . . , λN = λB}. This sub-division of the progress coordinate space defines
the path ensembles [0+], [1+], . . . , [(N − 1)+]. In addition, a special path ensemble, [0−],
is considered in order to calculate the initial flux. This path ensemble contains trajectories
that explore the reactant state. The overall crossing probability can then be expressed as

kAB = fAPA(λB|λA) = fA

N−1
∏

i=0

PA(λi+1|λi), (2)

4



where the fA is given by

fA =
(〈

t
[0+]
path

〉

+
〈

t
[0−]
path

〉)

−1

, (3)

and 〈t
[0+]
path〉 and 〈t

[0−]
path〉 are the average lengths of the paths in the [0+] and [0−] ensembles,

respectively. PA(λi+1|λi) is the probability of a path crossing λi+1 given that it originated
from λA, ended in λA or λB, and had at least one crossing with λi. This crossing probability
is estimated for each path ensemble [i+] by sampling trajectories which are generated by a
set of Monte Carlo (MC) moves. These MC moves generate new trajectories from already
accepted trajectories in the different path ensembles. The relevant MC moves for the RETIS
algorithm are depicted in Fig. 1. As shown in this figure, the RETIS method uses the

Figure 1: Scheme of the RETIS method for generating trajectories. A contour plot of a hy-
pothetical free energy surface along a progress coordinate and an arbitrary second coordinate
is shown, and 4 interfaces (λ0, λ1, λ2, λ3) have been positioned along the progress coordinate.
Three different RETIS moves (shooting, time reversal and swapping) are illustrated for the
[i+] = [2+] path ensemble. The old paths are in blue and the new paths after (a successful)
completion of the MC moves are shown in red.

TIS MC moves (shooting and time reversal) with, in addition, the swapping move, which
significantly increases the sampling efficiency.18

The shooting move is adapted from the TPS shooting algorithm,35,36 to allow variable
trajectory lengths. It consists of a Monte Carlo (MC) algorithm in which one of the discrete
MD steps of the present path is randomly selected. After modifying the velocities of this
phase point (e.g. by randomly drawing new velocities from a Maxwellian distribution), a
new trajectory is generated and accepted or rejected according to a detailed balance20,37

condition. This condition ensures unbiased sampling. If a trajectory does not fulfill the
specific ensemble threshold condition, it is rejected.

5



The shooting move gives a much higher chance to generate a valid trajectory at each
trial compared to simply starting from a random phase point within the reactant well. Since
trajectories are generated by the shooting move, computationally expensive MD simulation
steps are required. In comparison, time reversal is an inexpensive move in path space: by
simply changing the time direction of a path, it eventually increases the number of accepted
paths of its ensemble.

The swapping move18 (which is inspired by replica exchange MC moves) acts between
different path simulations. If two simulations generate simultaneously two paths that are
valid for each other’s path ensemble, these two paths can be swapped as shown in Fig. 1. The
swapping moves increase with negligible extra computational cost the number of accepted
paths in the ensembles and decreases significantly the correlations between the consecutive
paths within the same ensemble. There is one notable exception where the swapping move
is more computationally demanding: the swap between the [0+] and [0−] ensembles requires
MD simulation steps.18 Currently, computational strategies for lowering the cost of this move
is under development38 and planned for future implementation in the PyRETIS library.

The efficiency of TIS, and moreover of RETIS, is relatively insensitive to the choice of
progress coordinate. This is advantageous in complex condensed systems where it is difficult
to determine, a priori, the most efficient progress coordinate(s).39 PyRETIS supports both
the TIS and RETIS algorithms. The TIS algorithm can trivially be run in parallel, while for
the RETIS algorithm this is currently not the case. The RETIS swapping move is applied
to the whole set of path ensembles when all path ensembles have completed a full MC step.
Therefore, a straightforward parallelization of RETIS in which each path ensemble is for
instance treated by a separate computer node, would lead to many computer nodes being
idle, each time they complete a short path and are waiting for longer paths to be finished in
other path ensembles. Novel algorithmic set-ups to avoid this issue are under development
and it is a long-term goal for the PyRETIS project to implement a parallel RETIS algorithm.
We note however, that the MD steps can be run in parallel for both TIS and RETIS.

3 Overview of the PyRETIS library

PyRETIS is designed as a Python library and it makes use of both object oriented and
procedural programming principles. Simulations can be set up and carried out by explicitly
making use of the library in a Python script, or by making use of an input file as described
in the next section. Due to the dynamic nature of Python, the PyRETIS library can easily
be extended by the end-user, and, by making use of the library, customized simulations can
be created. We show an example on how PyRETIS can be extended by adding a custom
order parameter in section 6.

In Fig. 2 we illustrate the main simulation loop in a typical rare event PyRETIS sim-
ulation. To start a rare event simulation, the user defines the path ensembles to consider
by deciding the positions of the interfaces. Optimal placement of these interfaces and the
number to consider has to be determined by the user and we give some guidelines for this in
section 5.

Further, a valid initial trajectory for each path ensemble (i.e. a trajectory which fulfills
the specific ensemble conditions) is required. In PyRETIS this initial path can be either

6



Figure 2: Flowchart of a rare event simulation with PyRETIS. Following generation of the
initial paths, the main simulation loop is entered. Here, new trajectories are generated from
old ones by randomly selecting a MC move as described in the main text. In the case shown,
there are three options and two of these options may lead to an integration of the equations
of motion. Both the time reversal and the swapping moves which do not involve [0−] are
inexpensive operations that do not require MD simulation. However, the shooting move
and the swapping move in which [0−] is used require MD simulations for obtaining a new
trajectories and these are the most costly operations.

read from an already existing trajectory (for instance generated by an external MD software
using meta-dynamics) or it can be generated by PyRETIS. The generation of the initial
paths by PyRETIS is performed via a hybrid MC/MD method which search for a crossing
with the required interface. This is done in the following way: An initial configuration
supplied by the user is read and set as the current configuration. Then the velocities of
the current configuration is modified by assigning randomized velocities from a Maxwellian
distribution, and this is followed by one MD integration step. The current configuration
is then updated if the resulting configuration after the MD step is closer to the interface.
Otherwise, the old configuration is kept and the process (assigning velocities followed by one

7



MD integration step) is performed again. This is repeated until the current configuration and
the configuration after the MD step are on different sides of the relevant interface, giving a
crossing of the interface. A full trajectory is then generated by integrating the configuration
left of the interface backwards in time and the configuration right of the interface forward
in time.

After initiation, PyRETIS generates new trajectories according to the TIS/RETIS algo-
rithms (as shown in Fig. 2 and discussed in the previous section). Two of the generating
moves may result in integration of the equations of motion (i.e. a MD simulation). This
is, compared to the other operations, the most expensive operation in the algorithm since
this operation requires evaluation of the forces. In PyRETIS, the MD simulation is formally
handled by a specific class which we refer to as MD “engines”. The engine is responsible for
performing the actual dynamics (including updating the forces) and PyRETIS implements
both internal and external engines. The internal engines can be used to run pure PyRETIS
simulations for simple models, e.g. a single particle in a user-defined potential or a diatomic
molecule in a multi-particle two-dimensional Weeks-Chandler-Andersen system.17 This is
useful for testing and development of new algorithms. The external engine is used to in-
terface PyRETIS with external MD programs such as GROMACS or CP2K. Since the MD
simulation required by the rare event methods is the most expensive operation, it is also the
most important method to optimize. Presently, there exists several highly optimized MD
codes, both for classical and ab initio MD and the external engine in PyRETIS is designed
to make use of such codes. In order to be as general as possible PyRETIS does not interface
external codes by modifying the MD packages themselves, but it is rather used to control the
execution of these codes. This design choice is motivated by having the flexibility to also in-
clude closed-source MD packages as external MD engines. The disadvantage of this approach
is that there will be additional overhead due to the communication between PyRETIS and
the external MD package. This will slow down the execution of the MD package compared
to when the MD package is running without being controlled by PyRETIS. In order to avoid
this problem, we are currently working towards patching selected open source MD packages
in future releases of PyRETIS. Since the external engine is such an important feature of the
PyRETIS package, we discuss the interface in more detail in the following.

3.1 Interfacing external MD packages

PyRETIS can interface external MD simulation packages and Fig. 3 presents the scheme for
how PyRETIS connects to any external MD code. In the current implementation, PyRETIS
is used to direct the external MD software so that trajectories can be generated. PyRETIS
will not store the full trajectories (i.e. all positions, velocities etc. as function of time)
in memory and will only store the location of the externally generated files containing the
trajectories.

PyRETIS directs the execution of an external MD package via a specific Python class
which defines the following methods:

• A method which executes the external MD software for generating/extending trajec-
tories.

• A method which can read/write snapshots in given trajectories.

8



Figure 3: Scheme describing the PyRETIS–external simulation software information flow.
PyRETIS communicates with and lead the external software without altering its force
field/integration algorithm. PyRETIS selects the initial configuration and determines if
the equations of motion are to be propagated forward or backward in time. This is passed to
the external engine which then executes the MD steps. After completion of the MD steps,
the external engine passes information about the order parameters obtained and the files
created which contain the trajectory.

• A method for generating random velocities for a specific configuration using the ex-
ternal MD software. In simple cases (i.e. if there are no constrains between bounded
atoms) PyRETIS can be used to generate these velocities.

For executing the external MD software, PyRETIS may need several input files which has
to be provided by the user. The type and number of input files will depend on the MD
simulation package, but they should define a MD simulation. Typically, these files contain
information about the force field, topology, type of dynamics and so on. PyRETIS will
make use these files as templates for setting up new MD simulations and only a small subset
of the MD settings will be read (and possibly) modified by PyRETIS: the length of the
MD simulation (i.e. the number of steps), the time step, temperature settings, and the
frequency of output of the trajectory and energies. In some sense, from the point of view
of PyRETIS, the external MD engine is treated as a “black box” and PyRETIS does not
distinguish between executing classical MD software or ab initio MD software. The external
MD software is not modified by PyRETIS and it can be executed as one would normally
execute the software (e.g. in parallel when using a cluster). The specific command for
executing the external software can be modified and provided by the user in the input to
PyRETIS.

Thus, when MD integration is needed in the rare event algorithms, PyRETIS selects
a configuration from a trajectory file which is passed to the external engine as an initial
configuration. PyRETIS then executes the external MD engine which propagates the equa-
tions of motion until a stopping condition is reached. This stopping condition is defined
by the TIS/RETIS algorithms and is either that the maximum number of integration steps
is reached, or that the leftmost or rightmost interface has been crossed. If the maximum
number of integration steps is reached, the external MD engine will exit by itself, while

9



PyRETIS will stop the external MD engine if the specified interface is crossed in order pa-
rameter space. We have currently implemented two variants of the checking of the crossing
in order parameter space. In both variants the actual calculation of the order parameter is
identical, but they differ in the way they interact with the external MD code. In the first
variant, PyRETIS will start the external MD engine and let it run for a some steps, nsub,
(defined by the used in the input to PyRETIS) before the order parameter is calculated.
If none of the interfaces were crossed, PyRETIS will then continue the simulation for nsub

additional steps before checking again. In the second variant, PyRETIS will simply start
the execution of the external MD engine and continuously monitor and read new frames
from the trajectory as they are written by the external MD engine. The advantage of the
second variant over the first is that it avoids the overhead associated with stopping/starting
the execution of the external MD package many times. The disadvantage is that it can be
more difficult to implement. The first variant is then useful as a benchmark as the two
approaches should give identical results (within machine precision) when they are employed
by PyRETIS.

The actual calculation of the order parameter may in some cases also introduce a non-
negligible overhead for the external MD engine. The order parameters considered in the
examples in this paper are relatively simple and are negligible compared to the propagation
by the MD engines. However, in some cases the calculation of the order parameter will
be expensive, one specific example is the determination of clusters in relation to nucleation
events. In some cases, the external MD engine can actually be capable of calculating and
outputting the order parameter during the propagation. PyRETIS can the make use of this
output if the order parameter, from the point of view of PyRETIS is defined to read this
output from the external MD engine.

In this way, the external MD package is used to generate trajectory segments which
is joined by PyRETIS to create full trajectories. If a new generated trajectory satisfies
the ensemble requirements, the old trajectory is discarded in favor of the new one. For
each trajectory, relevant information of the path are saved and for visualization purposes,
and post-processing analysis, the full trajectories can also be saved. This scheme permits a
complete computational separation of PyRETIS from the external MD package also allowing
the eventual usage of multiple packages or multiple independent (parallel) simulations.

4 Input description

We show short examples of typical input to PyRETIS in Figs. 4, 5 and 6. In general, the
input file is structured into sections and in each section, keywords are used to define settings.
We refer to the on-line manual40 for a more detailed description of the recognized sections
and keywords. Further, we can classify the input sections into two main categories, defining
the rare event method and the dynamics:

The rare event method settings This defines how the actual rare event simulation should
be performed and a short example is given in Fig. 4. These settings do not define set-
tings for the dynamics such as selection of the force field, type of dynamics (NVE,
NVT, etc.), integration time step, etc.

10



Figure 4: Example input file for a PyRETIS RETIS simulation. Here, we show the rare event
specific settings which are given by the sections “Simulation”, “RETIS settings”, “TIS set-
tings” and “Orderparameter”. These sections define the rare event simulation, for instance
are the positions of the RETIS interfaces given in the “Simulation” section by defining the
“interfaces” keyword and the order parameter is defined by the keywords in the “Orderpa-
rameter” section. We refer to the on-line manual40 for an explanation of all sections and
keywords.

The MD input If an internal MD engine is used, the MD input includes the selection of
the engine and a force field. A short example is given in Fig. 5 where an internal engine
and a force field is set up. If an external MD engine is used, then the input to PyRETIS
selects the external engine and describe additional input files required. The additional
input files are the ones required by the external MD package and this is specific to
the package. For instance, GROMACS, needs information about the topology/force
field, the initial configuration and how to perform the actual MD. It is assumed that
the user provide these, so that PyRETIS can make use of them. Typically, only the
file containing the settings for actual MD will be read and used by PyRETIS as a
template. In Fig. 6 we show a short input example which makes use of GROMACS.

5 Output description

For each path ensemble in a simulation, PyRETIS stores statistics for the generated trajec-
tories. This includes information on the type of MC move performed, the maximum order

11



Figure 5: Example of a PyRETIS input file using an internal MD engine. The engine is
selected and defined in the “Engine” section and a force field is set up in the “Forcefield set-
tings” section, consisting of a single potential function as defined in the “Potential” section.
The force field in this example consists of a single (internal) potential function which is of
type “DoubleWell”. In Fig. 7 we show the potential energy of this particular potential func-
tion with the given parameters (“a”, “b”, “c”). The on-line manual40 contains information
about the meaning of these parameters and other potential functions.

Figure 6: Example of a PyRETIS input file for using an external MD engine. The GRO-
MACS external MD engine is here specified by defining the commands for executing it and
the input files. The input files are stored in a separate folder named “gromacs input” and
is referenced with the “input path” keyword. In this folder, PyRETIS expects to find the
initial configuration, the topology information and the simulation settings for GROMACS.
In addition, the number of sub-cycles is defined. This is the number of MD steps the en-
gine will perform before PyRETIS halts the execution and calculates the order parameter.
PyRETIS will then decide if additional MD steps are required or not. When using the ex-
ternal GROMACS engine, we do not specify a force field as this is handled by the input files
supplied to the engine.

12



parameter reached, acceptance/rejection and so on. This information is needed to calculate
the crossing probability. In addition, information about the trajectories themselves can be
stored for each path ensemble. This will typically include the value of the order parameter(s),
energies, positions and velocities as function of time on the trajectories. This information
is not needed to calculate rates, however they can be very valuable for additional analysis.
For large systems the storage of several trajectories can grow very large and the user can
select the frequency by which they are written. PyRETIS only requires that the current
accepted trajectory is stored and this trajectory is always kept separate from the additional
trajectories the user may wish to store. For instance, the user can select to not write any
additional trajectories at all and then, only the current accepted trajectory will be kept.

PyRETIS comes with a series of analysis tools to extract the most relevant information
from the simulation output in terms of the transition event. After performing an analysis,
PyRETIS can gather the results into a short report which is generated using a specified
template. This template can be extended and customized by the user to tailor the reporting
of the results. Currently PyRETIS is using matplotlib41 for generating the figures and
supports generation of reports in reStructuredText, HTML or LATEX.

While different order parameters can be considered and implemented, the main PyRETIS
analysis is based on the progress coordinate which describes the rare event. During a sim-
ulation, information about rejected and accepted trajectories are stored for each ensemble
on disk for each simulation cycle. The initial, final, maximum and minimum value of the
progress coordinate are saved for each path. For each path ensemble [i+] the following results
are obtained:

(a) The crossing probability as a function of the progress coordinate.

(b) A running average of the crossing probability at λi+1 as a function of the number of
cycles.

(c) An error analysis of the crossing probability using block averaging.

(d) Distribution of lengths of the generated paths.

(e) The distribution along the progress coordinate of the shooting points.

Furthermore, PyRETIS reports the relative sampling efficiency of the simulation, the average
length of accepted and rejected paths, the acceptance rate and the correlation number of
generated paths. The estimated correlation (also called the statistical inefficiency), Ncor, is
obtained as the square of the estimated relative error divided by the square of the block error
obtained for a block size of 1. For the RETIS method, the reported errors are indicative as
they do not include the effect of correlations due to the swapping move.

As an illustrative example, the results (a)–(c) are shown below in Fig. 8 for a RETIS
simulation of a single particle moving in a 1D potential, identical to the potential shown in
Fig. 7. The RETIS simulation was performed as previously reported,42 with a temperature
taken equal to 0.12 (dimensionless units) and interfaces λ0 = −0.90, λ1 = −0.75, λ2 = −0.65,
λ3 = −0.40, λ4 = 1.0) defining 5 path ensembles ([0−], [0+], [1+], [2+], [3+]).

The crossing probabilities as functions of the progress coordinate (a) are shown in the first
columns of Fig. 8. The fractional crossing probability for each ensemble of crossing the next

13



A B

Figure 7: The 1D double well potential defined by the settings given in the example in
Fig. 5. The reactant and product states are identified (labeled “A” and “B” respectively)
and interfaces for a RETIS simulation (λi) are shown with vertical dashed lines. In this
particular example, the order parameter is taken as the position in the potential.

interface is explicitly considered in the plots of crossing probability versus number of MD
cycles (b) in Fig. 8, central column. The plots are essential indicators of the computational
convergence of the computed crossing probability. From a comparative analysis, the most
difficult regions to sample in the path space can be identified (in this example, the third
ensemble has the slowest convergence). A third plot (Fig. 8, right column), reports the
relative error as a function of the averaging block size (c) used to compute the crossing
probability and the correlation between paths. Depending on the behavior of the system
(fluctuations or slow drift), it provides a criterion to determine an appropriate average block
length to quantify the local probability and the correlation between paths. Plots (a)-(e)
are automatically generated for each ensemble, enabling a quantitative visualization of the
crossing probabilities. Dedicated modification, or simply more intensive computations can,
therefore, be directly addressed to the most demanding interval in the progress coordinate
space.

An optimal interface positioning minimizes the statistical error while maximizing the
computational efficiency in the estimation of the rate of the transition event. As a general
indication, an interface should be positioned such that PA(λi+1|λi) ≈ 0.2.43 The first inter-
face also defines the limit of state A. A general approach to define its location is to perform a
regular MD simulation starting within state A, and track, step by step, the value of the order
parameter (assuming that the transition start from a stable state, which is desirable but not
strictly required). From this simulation, a graph of residence time versus order parameter
can be drawn. The first interface can then be located at the order parameter value such that
only the 20% of the simulation time is spent at larger order parameter values. Thereafter,
an arbitrary number of interfaces can be positioned as an initial attempt and a TIS/RETIS
simulation is performed. After this first exploration of the path space, following the 0.2
crossing probability guideline, the interfaces can be changed (both in position and number)
for a better sampling efficiency (eventually discarding the previous results). TIS/RETIS
provides the same results regardless the number and position of the interfaces for infinitely

14



Table 1: Summary of crossing probabilities (Pcross) for the path ensembles as generated by
the PyRETIS analysis tool for the 1D potential described in the main text. The reported
absolute error and relative error are obtained from the block error analysis.

Ensemble Pcross Error Rel. error (%)
[0+] 0.275527 0.003722 1.350769
[1+] 0.302107 0.005891 1.949818
[2+] 0.040280 0.002657 6.596495
[3+] 0.084479 0.005571 6.594036

long simulations. A judicious approach is required, therefore, in selecting the number and
location of interfaces, and even their eventual repositioning, to maximize the sampling ef-
ficiency. In the example reported in Fig. 8, it can be noted (first column of graphs) that
the first interfaces (dashed lines) are positioned following approximately the 0.2 probabil-
ity guideline while in third row ([2+]), the interface position gives a lower probability. For
higher probability values, new trajectories have little contribution to reduce the statistical
error while the opposite is true for lower crossing probability values which require a larger
number of trajectories to reduce the relative error. This is reflected in the results shown
for the crossing probabilities and the relative errors (see table 1). For the given case, an
additional interface positioned around −0.5 would have reduced the error in the second last
ensemble, increasing the sampling efficiency.

From Fig. 8 it can be assumed that the computations have converged, but longer simu-
lations might be needed to reduce the statistical errors. Numerical values for the crossing
probabilities, with error estimates, are also reported in tables as exemplified in table 1. In
addition, the overall probability is also reported and the rate constant is obtained as exem-
plified in Fig. 9. The matching of the histograms is here done by matching on a single point.
This implies that the crossing probabilities shown in Fig. 8 are scaled such that they do not
start with the value 1, but at a value equivalent to the product of the previous crossing prob-
abilities. This implies for this example (see Fig. 8 and table 1) that the crossing probability
of [1+] is rescaled with a factor 0.275527, the crossing probability of [2+] is rescaled with a
factor 0.275527×0.302107 etc. A somewhat more accurate evaluation of the overall crossing
probability can be made using the weighted histogram analysis method (WHAM)44–46 as
was done in Refs. 47 and 48 The implementation of WHAM in PyRETIS is presently only
available in a development version, but will soon become available in an open release.

6 Extending PyRETIS: Adding a new order parameter

PyRETIS has been designed so that it is easy to extend the program with new progress
coordinates, force fields or to interface it with other external MD packages. Due to the
dynamic nature of Python, such extensions can be added without a recompilation of the
PyRETIS library. Further, these extensions can be written in Python or other languages.
In this section we briefly discuss how a new progress coordinate can be added.

PyRETIS internally computes the progress coordinate and additional order parameters
for each system. These quantities are in general functions of all positions and velocities in

15



the system. In PyRETIS, new order parameters can be added by creating a custom order
parameter class which is then referenced in the input to PyRETIS. At run time, new order
parameters are dynamically loaded by PyRETIS and used in the simulation. In Fig. 10 we
give a short example on how a custom order parameter is created. We note that the order
parameter can be implemented relatively freely in the sense that it can be implemented in
C/C++/FORTRAN as well as in Python. For the former options, a Python wrapper is
needed in order for PyRETIS to be able to use the order parameter. It can also make use of
scientific Python libraries such as Numpy30 or SciPy.29 In principle, since Python can call
external programs, a custom order parameter can also make use of external programs for the
actual computation if this is convenient for the user. Again we refer to the on-line manual40

for specific examples.

7 PyRETIS examples

To show some of PyRETIS features and capabilities, we briefly describe four different appli-
cations. In the first case, the internal MD engine has been used to simulate a particle moving
in a 2D potential surface.20 The second and third cases are examples of using CP2K21 for
simulating hydrogen splitting and proton transfer in water respectively. Finally, we show an
example of using GROMACS22 for studying the diffusion of a methane molecule into a water
hydrate. We note that the aim of this section is to illustrate different features of PyRETIS
and not to report on extensive results and PyRETIS input settings for the case studies we
show here. For the latter, we refer to the on-line documentation40 where we describe these
examples in more detail together with additional examples.

7.1 Internal MD: A 2D potential with hysteresis

The PyRETIS internal MD engine can run simple MD simulations with user defined potential
functions. Here we consider a 2D potential, V (x, y), given by

V (x, y) =(x2 + y2)2 − 10e−30(x−0.2)2−3(y−0.4)2

−10e−30(x+0.2)2−3(y+0.4)2 ,
(4)

and depicted in Fig. 11. Depending on how the progress coordinate is selected, rare event
methods will have different efficiencies. Specifically free energy based methods like umbrella
sampling and thermodynamic integration will suffer from hysteresis when the y-coordinate
is chosen as progress coordinate. TIS/RETIS is not suffering from this hysteresis problem,39

but still a drop in the acceptance of the shooting move is expected which makes it more
difficult to effectively sample reactive trajectories. This particular potential has been used
as a test case in the development of new algorithms20 based on RETIS which are able to
alleviate this problem.

Via the implementation of such simple potentials and case studies, students and develop-
ers can have direct access to simulation cases suitable for computational tests and method
development. The internal engine constitutes an educational tool providing a simple in-
terface to understand and gain experience with PyRETIS and the rare event algorithms

16



without considering expensive simulations or high-dimensional and complex systems. Such
case studies have a relatively low computational cost which means that small and portable
computers can also be used to perform test cases.

7.2 Simulations interfacing CP2K

A second case of study exemplifies the capability of PyRETIS to interface with ab initio
MD codes, such as CP2K. CP2K21 is a quantum chemistry and solid state physics software
that can perform atomistic simulations using DFT with the mixed Gaussian and plane waves
basis sets.

We first report, as a minimal application of the CP2K–PyRETIS interface, the splitting
of H2 (Fig. 12). The dissociation of H2 has been followed with a progress coordinate equal
to the distance between the hydrogen atoms. It should be noted that this case of study is
here included purely as an educational and computationally accessible example that can be
even launched on a laptop (even ignoring spin issues to increase the computational speed).

The second application reported here consists of proton transfer in water. We refer to
van Erp et al. for simulation details of the proton transfer study in a gas-phase water cluster
of 8 water molecules.48 This study has been extended to liquid water systems, composed
of 32 water molecules, which requires extensive computations on computer clusters. An
illustration of the system is shown in Fig. 13. In this case of study, the progress coordinate
was defined using all distances between oxygen and hydrogen atoms. Each hydrogen atom
was assigned to the closest oxygen atom. This allowed classification of the molecules as H2O,
H3O

+ or OH−. If the system only contains H2O molecules, the progress coordinate is defined
as the longest hydrogen-oxygen bond length. If the system contains H3O

+ and OH− species,
the order parameter is taken as the shortest distance from the oxygen in OH− to a hydrogen
in H3O

+. Within the RETIS method, definition of such progress coordinates is relatively
straightforward. The RETIS algorithm provided the means to generate hundreds of proton
transfer reactions from which the rate constant could be estimated.

Further application of RETIS with CP2K have been already completed and detailed in
the studies of silica oligomerization49 and water autoionization.48

7.3 Simulations interfacing GROMACS

GROMACS22 is currently one of the most widely used packages to perform classical MD
simulations. The large user base has been obtained thanks to its computational speed and
relative efficient scaling on large clusters, allowing the simulation of millions of particles for
relative long times. We have therefore prioritized GROMACS and included it as one of the
supported external packages in PyRETIS.

A study on the methane diffusion between water cages of the sI hydrate (see Fig. 14), has
been performed via RETIS and GROMACS. In the simulation, the progress coordinate has
been defined as the distance of the methane molecule to the center of the water ring, along
the vector normal to the water ring plane. The study allows the determination of the rate of
transport of methane and its relation to movements of the water molecules composing the
rings.

17



8 Conclusions and future work

In this article, we have presented PyRETIS a library for performing rare event simulations
based on TIS and RETIS. PyRETIS has been explicitly interfaced with CP2K and GRO-
MACS in order to efficiently sample trajectories. This interface can be extended to other
molecular simulation packages. As noted, while our current strategy for interfacing external
MD packages is flexible and generic (so that any free or closed-source package can be inter-
faced), it leads to additional overhead due to the communication between PyRETIS and the
external package. We are currently working towards patching of open source MD packages,
which will allow us to more efficiently generate trajectories using external programs. This
will be included in future releases of the library.

Further, we aim to introduce new efficient algorithms based on RETIS and new analysis
methods which we are currently developing. It is also a long-term goal for the PyRETIS
project to implement a parallel RETIS algorithm.

The PyRETIS project is a collaborative open source project and new developers are
welcome to participate and contribute to the project.

9 Availability

PyRETIS is free (released under a LGPLv2.1+ license) and can be obtained as described
at http://www.pyretis.org/user/install.html. The latest release can be installed via
the Python Package Index50 and the source code and development version is accessible
at: https://gitlab.com/pyretis/pyretis The website gives a detailed description of the
usage of PyRETIS and show example calculations that can be carried out with the package.

10 Acknowledgments

The authors thank the Research Council of Norway for funding (QuanTIS, project number
237423) and the Olav Thon foundation for the support in the development of interactive
visualization tools to facilitate the teaching of rare event methods. A.L. thanks the Research
Council of Norway, project number 250875 for support. This research was supported in
part with computational resources at NTNU provided by NOTUR, http://www.sigma2.no,
project number NN9254K. Magnus Heskestad Waage is thanked for providing the methane–
water sI clathrate system and commenting on the manuscript. Mahmoud Moqadam is
thanked for providing the system used for autoionization of water.

References

[1] D. Marx, M. E. Tuckerman, J. Hutter, and M. Parrinello, Nature 397, 601 (1999).

[2] M. Karplus and J. A. McCammon, Nat. Struct. Mol. Biol. 9, 646 (2002).

[3] S. P. Adiga and D. W. Brenner, Nano Lett. 5, 2509 (2005).

18

http://www.pyretis.org/user/install.html
https://gitlab.com/pyretis/pyretis


[4] R. O. Dror et al., Annu. Rev. Biophys. 41, 429 (2012).

[5] A. C. Pan, D. W. Borhani, R. O. Dror, and D. E. Shaw, Drug Discov. Today 18, 667
(2013).

[6] J. Li, D. Liao, and S. Yip, Phys. Rev. E 57, 7259 (1998).

[7] E. Riccardi and A. I. Liapis, J. Sep. Sci. 32, 4059 (2009).

[8] E. Riccardi, J.-C. Wang, and A. I. Liapis, J. Chem. Phys. 140, 084901 (2014).

[9] E. Riccardi, M. C. Böhm, and F. Müller-Plathe, Eur. Phys. J. E 37, 103 (2014).

[10] M. Iannuzzi, A. Laio, and M. Parrinello, Phys. Rev. Lett. 90, 238302 (2003).

[11] A. Laio and F. L. Gervasio, Rep. Prog. Phys. 71, 126601 (2008).

[12] A. F. Voter, J. Chem. Phys. 106, 4665 (1997).

[13] A. F. Voter, Phys. Rev. Lett. 78, 3908 (1997).

[14] A. F. Voter and M. R. Sørensen, Mat. Res. Soc. Symp. Proc. 538, 427 (1999).

[15] H. Grubmüller, Phys. Rev. E 52, 2893 (1995).

[16] F. G. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

[17] T. S. van Erp, D. Moroni, and P. G. Bolhuis, J. Chem. Phys. 118, 7762 (2003).

[18] T. S. van Erp, Phys. Rev. Lett. 98, 268301 (2007).

[19] C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler, J. Chem. Phys. 108, 1964
(1998).

[20] E. Riccardi, O. Dahlen, and T. S. van Erp, Submitted, (2017).

[21] J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, Wiley Interdiscip. Rev.
Comput. Mol. Sci. 4, 15 (2014).

[22] M. J. Abraham et al., SoftwareX 1–2, 19 (2015).

[23] S. Plimpton, J. Comput. Phys. 117, 1 (1995).

[24] G. Y. Sun et al., J. Mol. Struc.-Theochem 624, 37 (2003).

[25] A. Arnold et al., in Meshfree Methods for Partial Differential Equations VI, edited by
M. Griebel and M. A. Schweitzer (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013),
pp. 1–23.

[26] H. J. Limbach, A. Arnold, B. A. Mann, and C. Holm, Comp. Phys. Comm. 174, 704
(2006).

19



[27] Y. Shao et al., Mol. Phys. 113, 184 (2015).

[28] TIOBE - The Software Quality Company, TIOBE Index, http://www.tiobe.com/

tiobe-index/, accessed: 07-04-2017.

[29] E. Jones et al., SciPy: Open source scientific tools for Python, http://www.scipy.org,
2001–, accessed: 07-04-2017.

[30] S. van der Walt, S. C. Colbert, and G. Varoquaux, Comput. Sci. Eng. 13, 22 (2011).

[31] K. Hinsen, J. Comput. Chem. 21, 79 (2000).

[32] P. Eastman et al., J. Chem. Theory. Comput. 9, 461 (2013).

[33] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein, J. Comp. Chem.
32, 2319 (2011).

[34] R. McGibbon et al., Biophys. J. 109, 1528 (2015).

[35] C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler, J. Chem. Phys. 108, 1964
(1998).

[36] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Annu. Rev. Phys. Chem.
53, 291 (2002).

[37] D. Frenkel and B. Smit, Understanding molecular simulation, 2nd ed. (Academic Press,
San Diego, CA, 2002).

[38] A. Lervik and T. S. van Erp, J. Chem. Theory Comput. 11, 2440 (2015).

[39] T. S. van Erp, J. Chem. Phys. 125, 174106 (2006).

[40] A. Lervik, E. Riccardi, and T. S. van Erp, The PyRETIS manual, http://www.

pyretis.org, accessed: 07-04-2017.

[41] J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).

[42] T. S. Van Erp, in Kinetics and Thermodynamics of Multistep Nucleation and Self-

Assembly in Nanoscale Materials: Advances in Chemical Physics Volume 151, edited
by G. Nicolis and D. Maes (John Wiley & Sons, Inc., New Jersy, USA, 2012), pp. 27–60.

[43] T. S. van Erp and P. G. Bolhuis, J. Comput. Phys. 205, 157 (2005).

[44] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).

[45] S. Kumar et al., Journal of Computational Chemistry 13, 1011 (1992).

[46] B. Roux, Comput. Phys. Commun. 91, 275 (1995).

[47] J. Rogal et al., J. Chem. Phys. 133, 174109 (2010).

20

http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.scipy.org
http://www.pyretis.org
http://www.pyretis.org


[48] T. S. van Erp, M. Moqadam, E. Riccardi, and A. Lervik, J. Chem. Theory Comput.
12, 5398 (2016).

[49] M. Moqadam et al., J. Chem. Phys. 143, 184113 (2015).

[50] The Python Software Foundation, PyPI - the Python Package Index, https://pypi.
python.org/pypi, accessed: 07-04-2017.

21

https://pypi.python.org/pypi
https://pypi.python.org/pypi


Figure 8: Example of analysis plots generated by PyRETIS for a case with four path en-
sembles, [0+]–[3+] for the 1D potential simulation described in the main text. Each row
corresponds to the results from a single path ensemble. From left to right: crossing proba-
bility as a function of the progress coordinate, the running average of the crossing probability
at interface λi+1 and the error in the crossing probability obtained by a block error versus av-
erage block size. It can be noted that each crossing probability starts at 1 (by the definition
of the path ensemble crossing probability) and reach a value of 0, except for the last ensemble
where some trajectories successfully reach the product state. In these crossing probabilities,
the crossing of the next interface is also shown which defines the crossing probability for each
ensemble. It is the running average of this crossing probability that is shown in the second
column, and its error is shown in the third column.

22



BA

Figure 9: Example of overall analysis output as generated by PyRETIS for the 1D potential
case described in the main text. The analysis was performed after 20 000 steps (panel A)
and after 100 000 steps (panel B). The overall crossing probability is obtained as a function
of the progress coordinate by matching and aligning the partial crossing probabilities (the
probabilities shown in the first column in Fig. 8). In the leftmost figures in the panels, all
the individual probabilities are shown, while only the overall crossing probability is shown
in the rightmost figures. The main results from the analysis (overall crossing probability,
flux and rate with their relative errors) are reported in tables as shown at the bottom of the
panels.

23



A. File "distorder.py" defining a new order parameter:

B. Input settings for using the new order parameter:

Figure 10: Example showing how a new order parameter is created. Panel A show the Python
code needed to create a new order parameter for PyRETIS: The new order parameter needs
to subclass the generic order parameter class defined in PyRETIS. Further, a method needs
to be defined which handle the actual calculation of the order parameter taking the “system”
object from PyRETIS as its input. We refer to the on-line manual40 for a more detailed
explanation, but note that we are here free to make use of any Python library (e.g. Numpy30

as shown here), external extensions (e.g. Python extensions written in C) or even external
programs. Panel B show the PyRETIS input needed to make use of the new order parameter.
The “module” keyword specifies the location of the file containing the new order parameter.

24



Figure 11: (Left) The 2D potential energy as a function of the two Cartesian coordinates
x and y. In this potential several order parameters can be considered, for instance λ = x

or λ = y. Here, we have used λ = y together with an extra energy criterion to identify
the stable states. The energy criterion is only used close to the first and last interfaces
and requires that the total energy is less than −9 (reduced units) for the system to be
considered as being in state A or in state B. Interfaces were positioned as shown in the
figure (dashed horizontal lines) and the solid lines are different trajectories as obtained in
the simulations for the last path ensemble. Crosses indicate starting points and circles
indicate ending points for the trajectories. (Right) The crossing probability obtained from
PyRETIS simulations. The jump in the crossing probability close to the first interface
is due including the energy term in the order parameter (the similar jump close to the
last interface is not visible on the logarithmic scale). The vertical dashed lines indicate
the interface positions. Simulation settings and input files are available on-line at: http:

//pyretis.org/examples/examples-2d-hysteresis.html

Figure 12: The H2 dissociation studied. In this example, the progress coordinate is defined
as the distance between the two atoms. Simulation settings and input files are available
on-line at: http://pyretis.org/examples/examples-cp2k-hydrogen.html

25

http://pyretis.org/examples/examples-2d-hysteresis.html
http://pyretis.org/examples/examples-2d-hysteresis.html
http://pyretis.org/examples/examples-cp2k-hydrogen.html


Figure 13: Proton transfer in a liquid water cluster. In blue, green, yellow and red the
water molecules participating to the proton transfer are highlighted. The yellow lines show
the respective hydrogen bonds. In the top panel, the water molecules are shown before the
proton transfer. The lower panel shows the system after the proton transfer with highlighted
water molecules being part of the proton transfer reaction chain. This example illustrates how
reaction mechanisms can be studied from the generated trajectories in RETIS simulations.

26



Figure 14: The sI hydrate structure studied in the methane diffusion example. The methane
molecule (color cyan) can diffuse between cages, through 5- or 6-membered rings, via a
hopping mechanism. In this study water is modeled using TIP4P and methane as a single
united-atom particle. This example requires the positioning of several interfaces as shown
in the figure by the dashed lines. The full PyRETIS settings and inputs are available at
http://pyretis.org/examples/examples-gromacs-hydrate.html

27

http://pyretis.org/examples/examples-gromacs-hydrate.html

	Introduction
	Replica Exchange Transition Interface Sampling
	Overview of the PyRETIS library
	Interfacing external MD packages

	Input description
	Output description
	Extending PyRETIS: Adding a new order parameter
	PyRETIS examples
	Internal MD: A 2D potential with hysteresis
	Simulations interfacing CP2K
	Simulations interfacing GROMACS

	Conclusions and future work
	Availability
	Acknowledgments

