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Abstract: Nickel(II) dichloride complexes with a pyridine-chelated imidazo[1,5-a]pyridin-3-ylidene
py-ImPy ligand were developed as novel catalyst precursors for acrylate synthesis reaction from
ethylene and carbon dioxide (CO2), a highly promising sustainable process in terms of carbon
capture and utilization (CCU). Two types of ImPy salts were prepared as new C,N-bidentate ligand
precursors; py-ImPy salts (3, 4a–4e) having a pyridine group at C(5) on ImPy and a N-picolyl-ImPy
salt (10) having a picolyl group at N atom on ImPy. Nickel(II) complexes such as py-ImPyNi(II)Cl2
(7, 8a–8e) and N-picolyl-ImPyNi(II)Cl2 (12) were synthesized via transmetalation protocol from
silver(I) complexes, py-ImPyAgCl (5, 6a–6e) and N-picolyl-ImPyAgCl (11). X-ray diffraction analysis
of nickel(II) complexes (7, 8b, 12) showed a monomeric distorted tetrahedral geometry and a
six-membered chelate ring structure. py-ImPy ligands formed a more planar six-membered chelate
with the nickel center than did N-picolyl-ImPy ligand. py-ImPyNi(II)Cl2 complexes (8a–8e) with
tert-butyl substituents exhibited noticeable catalytic activity in acrylate synthesis from ethylene and
CO2 (up to 108% acrylate). Interestingly, the use of additional additives including monodentate
phosphines increased catalytic activity up to 845% acrylate (TON 8).
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1. Introduction

The synthesis of acrylic acid derivatives through the C–H carboxylation of ethylene with carbon
dioxide (CO2) has received much attention lately in the area of carbon capture and utilization
(CCU) [1–11], as the acrylate products are value-added chemicals for superabsorbent polymers,
adhesives, and coatings. This new acrylate synthetic route could be superior to the existing industrial
process (two-stage oxidation of propylene) by utilizing less expensive feedstock (ethylene vs. propylene)
and a sustainable carbon source (CO2) [12].

In pioneering studies in the 1980s, Hoberg [13–17] and Carmona [18–20] independently reported metal
(Ni, Fe, Mo, W) mediated stoichiometric coupling reactions between ethylene and CO2. Hoberg demonstrated
that oxidative coupling of ethylene and CO2 proceeded smoothly to afford nickelalactone products by
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electron-richNi(0)complexes ligatedwith2,2′-bipyridine (bpy), bis(dicyclohexylphosphino)ethane (DCPE),
1,8-diazabicyclo(5,4,0)undec-7-ene (DBU), and pyridyl-phosphine ligands. These stoichiometric
reaction results inspired researchers to develop a catalytic version; however, the development of
catalytic processes turned out to be highly challenging [21–27]. Turning over the proposed catalytic
cycle was impeded by the high energy barrier for β-hydride elimination of stable five-membered
nickelalactones and the endergonic thermodynamic feature of the overall reaction (ethylene + CO2 →

acrylic acid) [28–31]. After three decades, the long-standing problem was nicely solved by Vogt [32]
and Limbach [33,34], independently. Nickel-catalyzed C–H carboxylation of ethylene using CO2

was successfully realized by the cleavage of the nickelalactone using either hard Lewis acid [32] or
strong alkoxide bases [33,34] (Figure 1a). Since then, studies on nickel (Ni)–Catalysis with extensive
ligand screening have demonstrated that the choice of ligands greatly affects the catalytic activity,
and electron-rich bisphosphine ligands are often preferred for catalytic efficiency [35–38]. Recently,
several attempts have been made to extend the catalysis to metals other than Ni, including Pd [35,39–41],
Co [42], Ru [43], and Fe [44]. Despite progress in recent years, there remains a long road ahead for an
industrial application; therefore, more diverse ligands and metals should be explored to develop a
highly efficient catalytic acrylate synthesis process using ethylene and CO2 [45–47].

 

′

Figure 1. (a) One-pot catalytic systems for acrylate synthesis from ethylene and CO2 [32–34]; (b) this
research: pyridine chelated ImPy Ni(II) complexes for acrylate synthesis from ethylene and CO2.

As part of our research interests in the design and application of N-heterocyclic carbenes
(NHCs) [48–55], we were intrigued by the ideas of exploring various bidentate NHC ligands in the
Ni-catalyzed C–H carboxylation reaction of ethylene with CO2. NHCs are strong electron-donating
and highly versatile ligands. The use of NHC ligands has resulted in breakthroughs in many catalytic
reactions, such as ruthenium-based olefin metathesis [56–64]. Furthermore, bidentate NHC ligand
systems could provide more stable complexes by the chelate effect and expand the scope of the catalytic
transformations [65–70]. Nevertheless, there has been one example where NHC ligands are used in the
synthesis of acrylate from CO2/ethylene [47].

In 2005, Glorius and Lassaletta independently developed imidazo [1,5-a] pyridine-3-ylidene (ImPy)
ligands, classified as the rigid heterobicyclic variant of NHCs [71,72]. A substituent at C(5) on the
bicyclic ImPy can be placed adjacent to a metal coordination sphere, often forming bonding interactions
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with the metal [73–90]. For that reason, ImPys have attracted much attention as a privileged scaffold for
bidentate NHC ligands [81–90]. Recently, Nozaki reported Ni and Pd complexes having C,X-bidentate
ImPy ligands (X = phenoxide [84,85,88] and phosphine oxide [86]), which efficiently catalyzed
ethylene polymerization and copolymerization with polar monomers. More recently, Wang reported
Pd complexes bearing chelating ImPy-sulfonate ligand for norbornene polymerization [89]. Thus,
we envisioned that the transition-metal complexes containing a C,X-bidentate ImPy ligand could also
be effective for the catalytic synthesis of acrylate from CO2/ethylene.

Pyridine ligands are known as active ligands for nickel promoted coupling reactions using ethylene
and CO2 [13,17,91–93], which inspired us to develop mononuclear Ni(II) complexes containing a
pyridine-chelated ImPy for catalytic acrylate synthesis from CO2/ethylene (Figure 1b). We herein
present novel mononuclear Ni(II) complexes with a rigid six-membered ring, imposed by a special
pyridine-chelated bidentate ImPy ligand, providing catalytic activity in the acrylate formation from
ethylene and CO2.

2. Results and Discussion

2.1. Synthesis of Ligand Precursors

Two types of pyridine-chelated ImPy ligand precursors were synthesized: (i) py-ImPyR salts
(R = H 3 and R = t-Bu 4a–4e) with a pyridine group at C(5) on ImPy, and (ii) a N-picolyl-ImPy salt (10)
with a picolyl group at N on ImPy (Scheme 1). The py-ImPyR salts (3, 4a–4e) were obtained in moderate
yields (67%–85%), through iminopyridine formation from 2,2′-bipyridine-6-carbaldehyde derivatives
(1–2) and anilines (Ar–NH2), followed by the cyclization with chloromethylethyl ether. The lack of
substituents on pyridine and ImPy units of py-ImPyH salt (3) lead to the formation of less soluble Ni
complex. Therefore, the tert-butyl substituents were introduced into the backbone of the ligand to
improve the solubility, hence delivering py-ImPyt-Bu salts (4a–4e) [94–96]. The N-picolyl-ImPy salt (10)
was synthesized in 63% yield through the condensations of corresponding aldehyde (9), 2-picolylamine,
and paraformaldehyde [97].

 

Scheme 1. Synthesis of ligand precursors, Ag complexes, and Ni complexes.
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2.2. Synthesis and Structural Analysis of Ag(I) Complexes

Synthesized ligand precursors were converted to silver (Ag) complexes that could serve useful
transmetallating agents for Ni complexes (Scheme 1). Ag(I) complexes (5, 6a–6e, 11) were prepared
from the imidazopyridinium salts (3, 4a–4e, 10) by reaction with Ag(I) oxide in good yields (81%–96%)
(Scheme 1). After the disappearance of peaks related to the acidic imidazopyridinium proton of 3,
4a–4e, and 10 were confirmed in 1H NMR, Ag complexes were purified by washing with hexane
or recrystallization from CH2Cl2 and hexanes. The molecular structure of an Ag complex 5 was
characterized by X-ray crystallography (Figure 2). A single crystal for X-ray diffraction was prepared
by slow recrystallization from dichloromethane layered with hexane. The crystal structure exhibited a
mononuclear Ag(I) complex with a linear geometry, which is attributed to the unique steric effect at
C(5) on the ImPy. Similar structural features were observed in other previously reported Ag(I) chloride
complexes with ImPy [98].

 

Figure 2. Molecular structure of 5. Thermal ellipsoids are set at 50% probability. Hydrogen atoms have
been omitted for clarity.

2.3. Synthesis and Structural Analysis of Nickel(II) Complexes

ImPy Ag(I) complexes (5, 6a–6e, 11) were employed for subsequent transmetalation with
(DME)NiCl2 (DME as dimethoxyethane) to afford Ni(II) complexes (7, 8a–8e, 12) in up to 99% yield
(Scheme 1). All complexes were analyzed by elemental analysis and UV spectroscopy. Ni complexes
could not be analyzed by NMR spectroscopy owing to their paramagnetic properties. Magnetic
susceptibility in the solid-state was measured by magnetic susceptibility balance. Effective magnetic
moments (µeff = 2.56–3.09 BM, 297 K) were found to be similar to the spin-only value (2.87 BM,
S = 1) [99], which demonstrates that the Ni(II) complexes are paramagnetic species, high-spin d8 ions
with two unpaired electrons.

Structural characterization of 7, 8b, and 12 were established by X-ray crystallography.
Single crystals of 7, 8b, and 12 suitable for X-ray diffraction analysis were grown through the slow
diffusion of n-hexane into a saturated solution of dichloromethane. Three complexes were observed as
desired monomeric Ni(II) complexes with four-coordinated species (Figures 3–5). The Ni(II) center
displays a distorted tetrahedral geometry. The most remarkable structural feature of 7, 8b, and 12 is
the coordination of the carbene carbon and pyridine nitrogen (N) to the Ni(II) center, displaying a
bidentate C, N chelating mode that yields a six-membered nickelacycle.
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Figure 3. Molecular structure of 7. Thermal ellipsoids are set at 50% probability. Hydrogen
atoms have been omitted for clarity. Selected bond lengths [Å] and angles [◦]: Ni(1)–C(1) 1.937(2),
Ni(1)–N(3) 2.008(2), Ni(1)–Cl(1) 2.2077(8), Ni(1)–Cl(2) 2.2439(7); C(1)–Ni(1)–N(3) 92.84(9). Selected
torsion angles [◦]: C(1)–N(1)–C(7)–C(8) -1.1(4), N(1)–C(7)–C(8)–N(3) -8.4(3), C(7)–C(8)–N(3)–Ni(1)
15.6(3), C(8)–N(3)–Ni(1)–C(1) -11.7 (2), N(3)–Ni(1)–C(1)–N(1) 2.4(2), Ni(1)–C(1)–N(1)–C(7) 2.7 (3).

Å

 

Å
Figure 4. Molecular structure of 8b. Thermal ellipsoids are set at 50% probability. Hydrogen
atoms have been omitted for clarity. Selected bond lengths [Å] and angles [◦]: Ni(1)–C(1) 1.947(2),
Ni(1)–N(3) 2.015(1), Ni(1)–Cl(1) 2.2124(6), Ni(1)–Cl(2) 2.2377(6); C(1)–Ni(1)–N(3) 91.83(6). Selected
torsion angles [◦]: C(1)–N(2)–C(7)–C(8) -15.8(2), N(2)–C(7)–C(8)–N(3) 32.0(2), C(7)–C(8)–N(3)–Ni(1)
-10.7(2), C(8)–N(3)–Ni(1)–C(1) -16.4(1), N(3)–Ni(1)–C(1)–N(2) 30.8(1), Ni(1)–C(1)–N(2)–C(7) -20.3(2).

 

Figure 5. Molecular structures of 12. Thermal ellipsoids are set at 50% probability. Hydrogen
atoms have been omitted for clarity. Selected bond lengths [Å] and angles [◦]: Ni(1)–C(1) 1.991(9),
Ni(1)–N(5) 2.047(8), Ni(1)–Cl(2) 2.224(2), Ni(1)–Cl(3) 2.273(3); C(1)–Ni(1)–N(5) 92.0(3). Selected torsion
angles [◦]: C(1)–N(2)–C(17)–C(3) 57(1), N(2)–C(17)–C(3)–N(5) -51(1), C(17)–C(3)–N(5)–Ni(1) 3(1),
C(3)–N(5)–Ni(1)–C(1) 30.4(7), N(5)–Ni(1)–C(1)–N(2) -26.7(7), Ni(1)–C(1)–N(2)–C(17) -10(1).
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The Ni–C1 bonds of 7 and 8b complexes have lengths of 1.937(2) and 1.947(2) Å, respectively,
which are 0.04~0.05 Å shorter than that of 12 (1.991(9)). The bond lengths between the Ni and the N
donors in 7 and 8b complexes are 2.008(2) and 2.015(1) Å, respectively—that is, ~0.03–0.04 Å shorter
than that of 12 (2.047(8)). The bidentate py-ImPy ligands result in acute bite angles of 92.84(9)◦,
91.83(6)◦ and 92.0(3)◦ in 7, 8b and 12, respectively (vs. 109.5◦ in tetrahedral geometry), and inclinations
of the Ni(1)–C(1) bond by 3.2◦, 16.4◦ and 9.8◦, respectively, to the axis defined by the centroid of the
imidazole plane and the carbene carbon atom C1 [87,100].

The torsion angles of C(1)–N(1)–C(7)–C(8) and N(1)–C(7)–C(8)–N(3) in 7 are −1.1◦ and −8.4◦,
respectively, while those of C(1)–N(2)–C(7)–C(8) and N(2)–C(7)–C(8)–N(3) in 8b are −15.8◦ and 32.0◦,
respectively (Figures 3 and 4). They are smaller than those of 12, which are 57◦ and −51◦, respectively
(Figure 5). Note that py-ImPy ligands containing aromatic N-fused heterobicyclic skeletons contain
more rigid six-membered chelate rings than that by N-picolyl-ImPy ligand, thus showing a stronger
chelating effect.

2.4. Nickel Mediated Acrylate Synthesis from Ethylene Using CO2

Newly prepared ligand precursors (3, 4a–4e, 10) were tested in the “in-situ” Ni(II)-mediated C-H
carboxylation of ethylene using CO2, which was modified from Vogt’s reaction conditions (Scheme S1).
Interestingly, the activities (up to 50% acrylate) were observed only for the py-ImPyR ligand salts
(3, 4a–4e) bearing the pyridine chelating group at the C(5) position. On the other hand, no acrylate
product was observed when non-pyridine bidentate ImPy ligand precursors were used, for example,
bis-ImPy, OMe-ImPy, and O = P-ImPy. Moreover, no acrylate was detected when typical monodentate
NHC ligands were used such as ImPy·HCl or IPr·HCl. Although the ligand screening using the in
situ generation method might not accurately reflect the inherent ability of the ligands to promote the
reaction, it could provide a reasonable starting point to develop as novel carbene ligands for the C-H
carboxylation reaction.

We then examined whether the isolated Ni(II) complexes (7, 8a–8b, 12) could yield lithium
acrylates under similar reaction conditions (Table 1). We were pleased to find that 7, 8b showed
better yields than that of 12 (entry 1, 3 vs. entry 7). In particular, 8b bearing tert-butyl substituents
on the py-ImPy backbone yielded lithium acrylate in slightly stoichiometric amounts (entries 2–6,
up to 80% acrylate). The ligand sterics are known to affect the catalytic performance in ethylene–CO2

coupling reaction (entries 19–20) [32,36]. Thus, we have further varied the ligand structure of the Ni(II)
complexes (8a, 8c–8e) by modulating the aniline unit of the Ni complex 8b. Overall, Ni(II) complexes
having tert-butyl pyridine units (8a–8e) showed higher efficiency than that of complex 7 without
tert-butyl groups. The activity of complex 8a having a smaller 2,6-diethylphenyl group was similar
to that of 8b having the 2,6-diisopropylphenyl group (entry 2 vs. entry 3). Complex 8c replacing an
isopropyl group on the aryl ring with n-propyl group afforded a slightly over-stoichiometric yield
(entry 4, 108% acrylate, TON 1). The complexes having a methylnaphthalenyl group (8d) or very
bulky 2,6-(Ph2CH)2-4-Me-C6H2 group (8e) showed relatively low activity (entries 5–6 vs. entry 3).
These results might suggest that reactivity could be related to the stronger chelating effect by a more
rigid and planar six-membered chelate ring (Figure 3).
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Table 1. Isolated Ni(II) complexes for Ni mediated acrylate synthesis.

′
′

 
Entry Ni(II) Additives % Acrylate a

1 7 none 34
2 8a none 85
3 8b none 80
4 8c none 108
5 8d none 50
6 8e none 62
7 12 none n/a b

8 7 PCy3 180
9 8a PCy3 677

10 8b PCy3 845
11 8c PCy3 728
12 8d PCy3 194
13 8e PCy3 814
14 (DME)NiCl2 PCy3 n/a b

15 c (DME)NiBr2 DPPE 1200
16 c (DME)NiBr2 DCPE 1500
17 c (DME)NiBr2 DPPP 900
18 c (DME)NiBr2 DCPP 1000
19 d Ni(COD)2 DCPE 800
20 e Ni(COD)2 DCPP 1400
21 c (DME)NiBr2 bpy 0
22 c (DME)NiBr2 Dtbbpy 0

a % acrylate was determined by 1H NMR spectroscopy using sodium 3-(trimethylsilyl)-2,2,3,3-d4-propionate as the
internal standard. % acrylate = (mmol acrylate)/(mmol Ni) × 100; b acrylate peaks could not be reliably integrated; c

20 h; d Reference [36]: 50 ◦C, 24 h; e Reference [32]: 50 ◦C, 72 h.

In an effort to improve the yield of acrylate, we were intrigued by the idea of adding
monodentate phosphines (Scheme S2). It has been reported that phosphines could prevent catalyst
decomposition in the reaction for acrylate formation [40,101]. Certain monodentate phosphines,
like PCy3, were proved to be beneficial, as catalytic activities of up to 845% acrylate (TON of 8.4)
were demonstrated (entries 8–13). It is interesting to note that in the absence of py-ImPy ligand,
PCy3 alone did not show reactivity (entry 14). As a reference point, the bidentate bisphosphine
ligands such as bis(diphenylphosphino)ethane (DPPE), DCPE, bis(diphenylphosphino)propane
(DPPP) and bis(dicyclohexylphosphanyl)propane (DCPP) were performed with (DME)NiBr2 in
the similar reaction conditions (entries 15–18, Scheme S3), as they are known to be good ligands in
the literature (entries 19–20) [32–38]. Although bipyridines have been known as potential ligands for
Ni-mediated oxidative coupling of CO2 and ethylene [13], typical bipyridine ligands such as bpy and
4,4′-di-tert-butyl-2,2′-dipyridine (Dtbbpy) were entirely ineffective (entries 21–22). Thus, the activity
was only observed for the ImPy ligands bearing the pyridine chelating group at the C(5) position.
It was found that the reactivity of the most active catalysts, such as 8b/PCy3 (TON 8), is comparable to
those of (DME)NiBr2/DPPP (TON 9) and Ni(COD)2/DCPP(TON 14).

2.5. Optimization of Reaction Conditions Using the Combination 8b and PCy3

To optimize the reaction conditions for acrylate synthesis using the combination of 8b and PCy3,
we have systematically varied several parameters, including the base and the solvent (Table 2). The role
of Et3N in the lithium acrylate synthesis helps to remove HI generated during the reaction, which is
known to be similar to the role in Ni Heck-type reaction [32]. Therefore, several weak bases to abstract HI,
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such as diisopropylethylamine (DIPEA), pyridine (py), K2CO3, Cs2CO3, 1,4-diazabicyclo [2.2.2] octane
(DABCO), and tetramethylethylenediamine (TMEDA), were screened (entries 2–7). Among them,
only organic bases, such as DIPEA and pyridine, showed reactivities, but these were significantly lower
than that of Et3N (entries 2–3). Strong alkoxide bases such as sodium 2-fluorophenoxide (2-F-PhONa),
sodium 2,6-dimethylphenoxide (2,6-Me-PhONa) and t-BuOK did not produce any acrylate (entries
8–12) [33,34]. In addition, the sodium iodide (NaI) did not produce the product (entry 13). Therefore,
Et3N/LiI was chosen for the next catalysis experiments. Subsequently, we investigated the effect of
solvents on the acrylate synthesis (entries 14–21). First, we screened weakly coordinating solvents such
as toluene, anisole, benzene, and 2-chlorotoluene (2-Cl-Tol), as they are effective solvents reported
in the Vogt′s system [32,42]. Although these solvents were suitable in acrylate synthesis (54%–799%
acrylate), PhCl is still the most effective solvent. Next, screening of other solvents such as THF, CH2Cl2,
DMF and 1,4-dioxane did not give any acrylate, suggesting that more strongly coordinating solvents
could hinder the weakly binding substrate from coordinating to the metal center [32]. The reaction
performed without Zn did not proceed, confirming the importance of Zn as a reducing agent (entry 22).
Et3N base and weakly coordinating solvents that were favored in the Vogt conditions, are also effective
in this system [32].

Table 2. Reaction optimization for Ni-catalyzed acrylate synthesis from ethylene and CO2.

′

 

 

Entry Base Solvent Red. MX % Acrylate a

1 NEt3 PhCl Zn LiI 845
2 DIPEA PhCl Zn LiI 34
3 py PhCl Zn LiI 80
4 K2CO3 PhCl Zn LiI 0
5 Cs2CO3 PhCl Zn LiI 0
6 DABCO PhCl Zn LiI 0
7 TMEDA PhCl Zn LiI 0
8 2-F-PhONa PhCl Zn - 0
9 2,6-Me-PhONa PhCl Zn - 0
10 2,6-Me-PhONa PhCl Zn NaI 0
11 t-BuOK PhCl Zn - 0
12 t-BuOK PhCl Zn LiI 0
13 NEt3 PhCl Zn NaI 0
14 NEt3 toluene Zn LiI 54
15 NEt3 anisole Zn LiI 416
16 NEt3 benzene Zn LiI 85
17 NEt3 2-Cl-Tol Zn LiI 799
18 NEt3 THF Zn LiI 0
19 NEt3 CH2Cl2 Zn LiI 0
20 NEt3 DMF Zn LiI 0
21 NEt3 1,4-dioxane Zn LiI 0
22 NEt3 PhCl - LiI 0

a % acrylate was determined by 1H NMR spectroscopy using sodium 3-(trimethylsilyl)-2,2,3,3-d4-propionate as an
internal standard. % acrylate = (mmol acrylate)/(mmol Ni) × 100.

3. Materials and Methods

3.1. General Remarks

All air- and moisture-sensitive reactions were performed under an argon atmosphere either
using Schlenk techniques or a glove box. All reactions involving the formation of acrylate from
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ethylene and CO2 were carried out in 100 mL stainless steel autoclaves (Hanwoul Engineering Co.,
Gunpo-si, Republic of Korea). Nuclear magnetic resonance (NMR) (JEOL, Tokyo, Japan) spectra were
recorded on a JEOL 400 spectrometer, operated at 400 MHz for 1H NMR and at 100 MHz for 13C
NMR. Chemical shifts (ppm) for 1H were referenced to the residual solvent peak (CDCl3 = δ 7.26 ppm,
CD2Cl2 = δ 5.32 ppm, CD3OD = δ 3.31 ppm, (CD3)2SO = 2.50 ppm, D2O = δ 4.79 ppm). Multiplicities
were recorded as s (singlet), d (doublet), t (triplet), q (quartet), sept (septet), or m (multiplet). Chemical
shifts (ppm) for 13C were referenced relative to the residual solvent peak (CD2Cl2 = δ 53.84 ppm, CD3OD
= δ 49.00 ppm, (CD3)2SO = 39.52 ppm). High-resolution mass spectra (HRMS) were recorded on a JEOL
JMS-700 MStation mass spectrometer (JEOL, Tokyo, Japan). Elemental analyses were carried out with
an UNICUBE Elemental Analyzer (Elementar, Langenselbold, Germany). The magnetic susceptibilities
of nickel complexes were measured in the solid state using a magnetic susceptibility balance (Sherwood
Scientific, Cambridge, UK). Diamagnetic corrections were ignored. UV/vis measurements of nickel
complexes were carried out in CH2Cl2 solution using a Perkin-Elmer UV/VIS NIR Spectrometer
Lambda 950 (Perkin Elmer, Shelton, USA). Analytical thin layer chromatography (TLC) (Merck KGaA,

Darmstadt, Germany) was performed with Merck pre-coated silica gel 60 Ǻ (F254) glass plates and
visualization on TLC was achieved by UV light. Flash chromatography was performed with 230–400

Mesh 60 Ǻ Silica Gel purchased from Merck Inc.

3.2. Materials

Ethylene gas (99.999%) and carbon dioxide (99.99%) were purchased from Sinil Gas Co. Ethylene
was purified by passing through a column packed with BASF catalyst R3–11G, activated carbon
and 4 Å molecular sieves. Carbon dioxide was dried by passing through a column packed with
4 Å molecular sieves. All the chemicals were purchased from Aldrich, Acros, TCI, or Alfa-Aesar
Chemical Co. and used as received unless otherwise noted. Anhydrous tetrahydrofuran (THF),
diethyl ether (Et2O), dichloromethane (CH2Cl2) and dimethylformamide (DMF) were dried using
a J.C. Meyer solvent purification system. Triethyl amine, toluene and hexane were distilled
from calcium hydride. 2-Picolyl amine and 2,6-diisopropylaniline were distilled via short path
distillation. Methanol and ethanol were dried over 4 Å molecular sieves. The following compounds
were prepared based on the original and/or modified procedures: 2,2′-bipyridine-6-carbaldehyde
1 [102], 4,4′-di-tert-butyl-6-methyl-2,2′-bipyridine 2 [92], 6-mesityl-pyridine-2-carboxaldehyde 9 [103],
2-isopropyl-6-propylaniline [104], and 2,6-dibenzhydryl-4-methylaniline [105].

3.3. Synthesis of Ligand Precursors. General Procedure

Aldehyde (1 equiv), aniline (1–1.05 equiv) and ethanol or methanol (0.1–0.2 M) were added to a
Schlenk flask equipped with a magnetic stirrer and sealed with a rubber septum tightened with a cable
tie. The mixture was stirred at 90 ◦C for 24–48 h. The solvent was removed under reduced pressure.
If needed, the crude was purified by basic column chromatography. Then, imine derivatives were
transferred to a Schlenk tube equipped with a Teflon-valve. The solvent was removed by blowing
nitrogen gas and using vacuum. Subsequently, chloromethyl ethyl ether (20 equiv) was added and
stirred at 90 ◦C. After cooling to room temperature, the volatiles were removed by rotary evaporation
and recrystallization with dichloromethane and hexane. The crude solids were purified through flash
column chromatography and recrystallization with dichloromethane and hexane.

2-(2,6-diisopropylphenyl)-5-(pyridin-1-ium-2-yl)-2H-imidazo[1,5-a]pyridinium dichloride (3):
Following the general procedure of ligand precursors, a product 3 (172 mg, 76% yield) was obtained as
white solid from 2, 2′-bipyridine-6-carbaldehyde 1 (98 mg, 0.53 mmol), 2,6-diisopropylaniline (0.10 mL,
0.53 mmol), formic acid (1 drop), methanol (5 mL) and chloromethyl ethyl ether (1 mL, 10.6 mmol).
The cyclization of imine derivative with chloromethyl ethyl ether was completed in 3 days. The crude
product was purified through flash column chromatography (CH2Cl2:CH3OH = 8:1). 1H NMR
(400 MHz, CD2Cl2) δ 10.66 (d, J = 1.8 Hz, 1H), 8.71 (s, 2H), 8.53 (d, J = 9.1 Hz, 1H), 8.25 (d, J = 8.2 Hz,
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1H), 8.09–8.01 (m, 2H), 7.70–7.61 (m, 2H), 7.51 (dd, J = 7.6, 4.9 Hz, 1H), 7.43 (d, J = 7.8 Hz, 2H), 2.22 (sept,
J = 7.3 Hz, 2H), 1.23 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.8 Hz, 6H). 13C NMR (100 MHz, CD2Cl2) δ 150.36,
149.00, 145.44, 138.65, 132.79, 132.67, 132.33, 131.17, 127.33, 125.93, 125.38, 124.92, 123.86, 121.28, 120.52,
117.83, 54.38, 54.11, 53.84, 53.57, 53.30, 28.95, 24.39, 24.35 HR-MS (FAB): calcd. for C24H26N3 [M-H-2Cl]
356.2127 found 356.2119. Elemental analysis (%) calcd. for C24H27Cl2N3: C, 67.29; H, 6.35; N, 9.81.
Found: C, 67.33; H, 6.51; N, 9.75.

7-(tert-butyl)-5-(4-(tert-butyl)pyridin-2-yl)-2-(2,6-diethylphenyl)-2,3-dihydroimidazo[1,5-a]

pyridinium chloride (4a): Following the general procedure of ligand precursors, a product 4a (265 mg,
83% yield) was obtained as a beige solid from 4,4′-di-tert-butyl-[2,2′-bipyridine]-6-carbaldehyde 2

(200 mg, 0.67 mmol), 2,6-diethylaniline (0.10 mL, 0.67 mmol), ethanol (3.4 mL) and chloromethyl
ethyl ether (1.25 mL, 13.4 mmol). The cyclization of imine derivative with chloromethyl ethyl ether
was completed in 24 h. The crude product was purified through flash column chromatography
(CH2Cl2:AcOEt:CH3OH = 4.5:0.5:0.5). 1H NMR (400 MHz, CD2Cl2) δ 10.28 (d, J = 1.7 Hz, 1H),
8.76 (d, J = 1.9 Hz, 1H), 8.62 (d, J = 5.3 Hz, 1H), 8.34 (d, J = 1.1 Hz, 1H), 7.92 (d, J = 1.6 Hz, 1H),
7.69 (d, J = 1.7 Hz, 1H), 7.56 (t, J = 7.8 Hz, 1H), 7.51 (dd, J = 5.3, 1.7 Hz, 1H), 7.35 (d, J = 7.8 Hz, 2H),
2.43–2.18 (m, 4H), 1.47 (s, 9H), 1.44–1.39 (m, 9H), 1.14 (t, J = 7.6 Hz, 6H). 13C NMR (100 MHz, CD2Cl2) δ
163.10, 150.58, 149.34, 149.07, 140.77, 133.40, 133.09, 133.03, 131.97, 127.53, 126.38, 122.97, 120.56, 119.37,
116.68, 114.95, 54.38, 54.11, 53.84, 53.57, 53.30, 35.66, 35.50, 30.53, 30.08, 24.35, 15.25. HR-MS (FAB):
calcd. for C30H38N3 [M-Cl] 440.3066 found 440.3068. Elemental analysis (%) calcd. for C30H38ClN3:
C, 75.68; H, 8.05; N, 8.83. Found: C, 75.42; H, 8.301; N, 8.61.

7-(tert-butyl)-5-(4-(tert-butyl)pyridin-2-yl)-2-(2-isopropyl-6-propylphenyl)-2,3-dihydroimidazo

[1,5-a]pyridinium chloride (4c): Following the general procedure of ligand precursors, a product 4c
(228 mg, 67% yield) was obtained as white solids from 4,4′-di-tert-butyl-[2,2’-bipyridine]-6-carbaldehyde
2 (200 mg, 0.67 mmol), 2-isopropyl-6-propylaniline (119 mg, 0.67 mmol), ethanol (3.4 mL) and
chloromethyl ethyl ether (1.25 mL, 13.4 mmol). The cyclization of imine derivative with chloromethyl
ethyl ether was completed in 24 h. The crude product was purified through flash column
chromatography (hexane:AcOEt:CH3OH = 3.5:0.5:0.5). 1H NMR (400 MHz, CD2Cl2) δ δ 10.26 (s, 1H),
8.71 (d, J = 1.9 Hz, 1H), 8.61 (dd, J = 5.3, 0.8 Hz, 1H), 8.33 (s, 1H), 7.94 (dd, J = 1.8, 0.7 Hz, 1H), 7.71
(d, J = 1.8 Hz, 1H), 7.58 (t, J = 7.8 Hz, 1H), 7.51 (dd, J = 5.3, 1.8 Hz, 1H), 7.40 (dd, J = 7.9, 1.4 Hz,
1H), 7.31 (dd, J = 7.7, 1.4 Hz, 1H), 2.31–2.15 (m, 3H), 1.60–1.52 (m, 2H), 1.48 (s, 9H), 1.42 (s, 9H), 1.21
(d, J = 6.8 Hz, 3H), 1.15 (d, J = 6.8 Hz, 3H), 0.83 (t, J = 7.3 Hz, 3H). 13C NMR (100 MHz, CD2Cl2)
δ 163.12, 150.54, 149.30, 149.20, 145.63, 139.21, 133.37, 133.01, 132.27, 131.98, 128.01, 126.54, 125.09,
122.99, 120.52, 119.44, 116.81, 114.89, 35.68, 35.51, 33.20, 30.52, 30.08, 28.88, 24.42, 24.40, 24.34, 13.98.
HR-MS (FAB): calcd. for C32H42N3 [M-Cl] 468.3379 found 468.3377. Elemental analysis (%) calcd. for
C32H42ClN3: C, 76.24; H, 8.4; N, 8.33. Found: C, 76.34; H, 8.749; N, 8.22.

7-(tert-butyl)-5-(4-(tert-butyl)pyridin-2-yl)-2-(2-methylnaphthalen-1-yl)-2,3-dihydroimidazo

[1,5-a] pyridinium chloride (4d): Following the general procedure of ligand precursors, a product
4d (227 mg, 70% yield) was obtained as white solids from 4,4′-di-tert-butyl-[2,2′-bipyridine]-
6-carbaldehyde 2 (200 mg, 0.67 mmol), 2-methylnaphthalen-1-amine (105 mg, 0.67 mmol), ethanol
(3.4 mL) and chloromethyl ethyl ether (1.25 mL, 13.4 mmol). The cyclization of imine derivative with
chloromethyl ethyl ether was completed in 2 days. Then, the crude product was purified through flash
column chromatography (hexane:AcOEt:CH3OH = 3.5:0.5:0.5). 1H NMR (400 MHz, CD2Cl2) δ 10.41
(s, 1H), 8.87 (s, 1H), 8.57 (d, J = 5.3 Hz, 1H), 8.42 (s, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 7.3 Hz, 1H),
7.93 (d, J = 1.2 Hz, 1H), 7.73 (s, 1H), 7.52 (m, 4H), 7.03 (d, J = 8.3 Hz, 1H), 2.30 (s, 3H), 1.48 (s, 9H), 1.40
(s, 9H). 13C NMR (100 MHz, CD2Cl2) δ 162.99 (s), 150.56 (s), 149.31, 149.12, 133.91 (s), 133.49, 133.31,
132.62 (s), 131.69 (s), 129.66, 129.57, 129.03 (s), 128.63, 128.59, 127.04 (s), 126.79 (s), 122.87 (s), 120.63,
120.61, 119.41 (s), 116.96 (s), 114.97 (s), 35.63 (s), 35.42 (s), 30.47 (s), 30.05 (s), 17.98 (s). HR-MS (FAB):
calcd. for C31H34N3 [M-Cl] 448.2753 found 448.2751. Elemental analysis (%) calcd. for C31H34ClN3:
C, 76.92; H, 7.08; N, 8.68. Found: C, 77.02; H, 6.627; N, 8.45.
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7-(tert-butyl)-5-(4-(tert-butyl)pyridin-2-yl)-2-(2,6-dibenzhydryl-4-methylphenyl)-2,3-

dihydroimidazo[1,5-a]pyridinium chloride (4e): Following the general procedure of ligand
precursors, a product 4e (464 mg, 85% yield) was obtained as white solids from 4,4′-di-tert-butyl-
[2,2′-bipyridine]-6-carbaldehyde 2 (500 mg, 0.71 mmol), 2,6-dibenzhydryl-4-methylaniline (312 mg,
0.71 mmol), ethanol (3.5 mL) and chloromethyl ethyl ether (1.33 mL, 14.2 mmol). The cyclization of
imine derivative with chloromethyl ethyl ether was completed in 2 days. The crude product was
purified through flash column chromatography (CH2Cl2:CH3OH = 10:1). The remaining byproduct
was removed by recrystallization with CH2Cl2/hexane at a low temperature. 1H NMR (400 MHz,
CD2Cl2) δ 8.96 (d, J = 1.9 Hz, 1H), 8.35 (dd, J = 1.9, 0.8 Hz, 1H), 8.13 (dd, J = 5.3, 0.7 Hz, 1H), 8.07 (dd,
J = 1.6, 0.6 Hz, 1H), 7.66 (dd, J = 1.8, 0.7 Hz, 1H), 7.43 (d, J = 1.7 Hz, 1H), 7.41 (dd, J = 5.3, 1.8 Hz, 1H),
7.30–7.17 (m, 6H), 7.09–7.05 (m, 4H), 6.99–6.93 (m, 4H), 6.83 (s, 2H), 6.81–6.72 (m, 6H), 5.14 (s, 2H), 2.25
(s, 3H), 1.45 (s, 9H), 1.44 (s, 9H). 13C NMR (100 MHz, CD2Cl2) δ 162.60, 150.07, 148.75, 148.43, 142.40,
141.86, 141.52, 141.49, 132.86, 131.92, 131.49, 130.52, 129.88, 128.90, 128.77, 128.67, 128.34, 127.30, 127.18,
122.30, 120.11, 118.43, 116.06, 114.31, 52.22, 35.57, 35.42, 30.60, 30.07, 21.93. HR-MS (FAB): calcd. for
C53H52N3 [M-Cl] 730.4161 found 730.4165. Elemental analysis (%) calcd. for C53H52ClN3: C, 83.05;
H, 6.84; N 5.48,. Found: C, 83.01; H, 6.985; N, 5.25.

5-mesityl-2-(pyridin-1-ium-2-ylmethyl)-2H-imidazo[1,5-a]pyridinium dichloride (10):
The synthetic method for compound 10 is almost analogous to the procedure reported by Aron [97].
Picolinamine (0.18 mL, 1.70 mmol) and paraformaldehyde (80 mg, 2.67 mmol) were stirred in 3.6 mL
of ethanol at room temperature for 12 h. Subsequently, 1.25 M HCl in ethanol (2.8 mL, 3.56 mmol)
and 6-mesityl-pyridine-2-carboxaldehyde 9 (396 mg, 1.76 mmol) were added and the reaction was
maintained at room temperature for 6 h. The solvent was removed by rotary evaporation and the crude
mixture was purified using column chromatography (silica, CH2Cl2:CH3OH = 8:1). Recrystallization
from CH3OH/CH2Cl2/ether afforded an ivory powder 10 (443 mg, 63% yield). 1H NMR (400 MHz,
CD2Cl2) δ 9.28 (s, 1H), 8.97 (d, J = 1.6 Hz, 1H), 8.43 (d, J = 4.8 Hz, 1H), 7.93 (d, J = 7.8 Hz, 1H), 7.79
(d, J = 9.4 Hz, 1H), 7.68 (td, J = 7.7, 1.8 Hz, 1H), 7.29 (dd, J = 9.4, 6.8 Hz, 1H), 7.22 (ddd, J = 7.6, 4.8,
1.1 Hz, 1H), 7.07 (s, 2H), 6.90 (dd, J = 6.8, 1.0 Hz, 1H), 6.25 (s, 2H), 2.34 (s, 3H), 2.00 (s, 6H). 13C NMR
(100 MHz, CD2Cl2) δ 153.3, 149.7, 141.2, 137.6, 137.5, 134.4, 130.4, 129.5, 127.0, 125.1, 124.9, 124.4,
124.0, 119.3, 117.7, 116.0, 54.8, 21.2, 19.3 HR-MS (FAB): calcd. for C22H22N3 [M-H-2Cl] 328.1814 found
328.1839. Elemental analysis (%) calcd. for C22H23Cl2N3: C, 66.00; H, 5.79; N, 10.50. Found: C, 66.2;
H, 6.239; N, 10.52.

3.4. Synthesis of Ag(I) Complexes. General Procedure

In the absence of light, ligand precursors (1 equiv) and Ag2O (2 equiv) in CH2Cl2 (0.084 M) were
stirred in a Schlenk flask at room temperature for 23 h. The crude solution was filtered through a
Celite pad with CH2Cl2. The volatiles were evaporated in vacuo and washed with distilled hexane
(if needed, the crude products were recrystallized using CH2Cl2 with hexane).

Synthesis of Ag(I) complex 5: Following the general procedure of Ag (I) complex, a product 5 (292
mg, 84% yield) was obtained as a light-yellow solid from ligand precursor 3 (300 mg, 0.77 mmol), Ag2O
(360 mg, 1.55 mmol), and CH2Cl2 (9 mL). X-ray quality crystals were gained by the liquid diffusion of
hexane into saturated CH2Cl2 at room temperature in the dark. 1H NMR (400 MHz, CD2Cl2) δ 8.79 (d,
J = 4.9 Hz, 1H), 7.92 (td, J = 7.7, 1.8 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 9.3 Hz, 1H), 7.57–7.46
(m, 3H), 7.31 (d, J = 7.8 Hz, 2H), 7.13 (dd, J = 9.3, 6.7 Hz, 1H), 6.83 (dd, J = 6.7, 1.2 Hz, 1H), 2.24 (sept, J

= 6.8 Hz, 2H), 1.19 (d, J = 6.9 Hz, 6H), 1.13 (d, J = 6.9 Hz, 6H). 13C NMR (100 MHz, CD2Cl2) δ 152.92,
151.17, 145.77, 138.84, 137.98, 136.36, 132.81, 132.74, 130.85, 125.29, 125.05, 124.43, 123.56, 118.54, 117.17,
114.94, 114.88, 54.38, 54.11, 53.84, 53.57, 53.30, 28.56, 24.57, 24.54. Elemental analysis (%) calcd. for
C24H25AgClN3: C, 57.79; H, 5.05; N, 8.42. Found: C, 57.76; H, 5.176; N, 8.40.

Synthesis of Ag(I) complex 6a: Following the general procedure of Ag (I) complex, a product 6a (352
mg, 96% yield) was obtained as a light-yellow solid from ligand precursor 4a (300 mg, 0.63 mmol),
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Ag2O (292 mg, 1.26 mmol), and CH2Cl2 (7.5 mL). 1H NMR (400 MHz, CD2Cl2) δ 8.66 (dd, J = 5.3,
0.7 Hz, 1H), 7.66–7.63 (m, 1H), 7.49–7.41 (m, 2H), 7.39 (d, J = 1.9 Hz, 2H), 7.25 (d, J = 7.7 Hz, 2H), 6.87
(dd, J = 1.9, 0.5 Hz, 1H), 2.33–2.16 (m, 4H), 1.37 (d, J = 0.7 Hz, 18H), 1.12 (t, J = 7.6 Hz, 6H). 13C NMR
(100 MHz, CD2Cl2) δ 161.70, 152.87, 150.85, 146.78, 141.09, 138.96, 138.29, 133.10, 133.03, 130.35, 127.04,
122.46, 116.74 (s), 113.80, 113.74, 111.69, 35.26, 35.12, 30.58, 29.98, 24.39, 15.54. Elemental analysis (%)
calcd. for C30H37AgClN3: C, 61.81; H, 6.4; N, 7.21. Found: C, 62.19; H, 6.49; N, 7.06.

Synthesis of Ag(I) complex 6b: Following the general procedure of Ag (I) complex, a product 6b (406
mg, 84% yield) was obtained as a light-yellow solid from ligand precursor 4b (400 mg, 0.79 mmol),
Ag2O (371 mg, 1.60 mmol) and CH2Cl2 (9 mL). 1H NMR (400 MHz, CD2Cl2) δ 8.68 (d, J = 5.4 Hz, 1H),
7.68 (d, J = 1.9 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.48 (dd, J = 5.4, 1.9 Hz, 1H), 7.40 (d, J = 1.6 Hz, 2H),
7.30 (d, J = 7.8 Hz, 2H), 6.92 (d, J = 2.0 Hz, 1H), 2.26 (sept, J = 6.8 Hz, 2H), 1.38 (d, J = 6.0 Hz, 18H),
1.18 (d, J = 6.9 Hz, 6H), 1.13 (d, J = 6.9 Hz, 6H). 13C NMR (100 MHz, CD2Cl2) δ 161.46, 152.68, 150.89,
146.99, 145.80, 138.95, 136.45, 133.15, 133.08, 130.78, 124.41, 122.44, 122.43, 116.86, 114.21, 114.15, 111.65,
35.27, 35.15, 30.58, 29.99, 28.60, 24.63, 24.53. Elemental analysis (%) calcd. for C32H41AgClN3: C, 62.90;
H, 6.76; N, 6.88. Found: C, 62.98; H, 6.612; N, 6.76.

Synthesis of Ag(I) complex 6c: Following the general procedure of Ag (I) complex, a product 6c (370
mg, 81% yield) was obtained as a light-yellow solid from ligand precursor 4c (380 mg, 0.75 mmol),
Ag2O (349 mg, 1.50 mmol), and CH2Cl2 (9 mL). 1H NMR (400 MHz, CD2Cl2) δ 8.67 (dd, J = 5.3, 0.8 Hz,
1H), 7.66 (dd, J = 1.9, 0.8 Hz, 1H), 7.49–7.44 (m, 2H), 7.39 (dd, J = 2.9, 1.4 Hz, 2H), 7.30 (dd, J = 7.9,
1.4 Hz, 1H), 7.22 (dd, J = 7.6, 1.4 Hz, 1H), 6.90 (d, J = 1.9 Hz, 1H), 2.31–2.11 (m, 3H), 1.64–1.50 (m, 2H),
1.37 (d, J = 4.4 Hz, 18H), 1.18 (d, J = 6.9 Hz, 3H), 1.11 (d, J = 6.9 Hz, 3H), 0.83 (t, J = 7.3 Hz, 3H).
13C NMR (100 MHz, CD2Cl2) δ 161.50, 152.74, 150.87, 146.87, 146.04, 139.43, 138.95, 137.53, 133.10,
133.04, 130.38, 127.51, 124.60, 122.43, 116.81, 114.07, 114.00, 111.68, 35.25, 35.14, 33.47, 30.58, 29.99, 28.41,
24.63, 24.56, 24.51, 14.28. Elemental analysis (%) calcd. for C32H41AgClN3: C, 62.9; H, 6.76; N, 6.88.
Found: C, 63.22; H, 7.007; N, 6.59.

Synthesis of Ag(I) complex 6d: Following the general procedure of Ag (I) complex, a product 6d (353
mg, 96% yield) was obtained as a yellow solid from ligand precursor 4e (300 mg, 0.62 mmol), Ag2O
(287 mg, 1.24 mmol), and CH2Cl2 (7 mL). 1H NMR (400 MHz, CD2Cl2) δ 8.66 (d, J = 5.3 Hz, 1H), 7.95
(dd, J = 13.3, 8.2 Hz, 2H), 7.68 (dd, J = 1.9, 0.7 Hz, 1H), 7.53–7.42 (m, 6H), 7.04 (d, J = 8.5 Hz, 1H),
6.92 (d, J = 1.9 Hz, 1H), 2.23 (s, 3H), 1.40 (s, 9H), 1.37 (s, 9H). 13C NMR (100 MHz, CD2Cl2) δ 161.89,
152.98, 150.83, 146.94, 139.03, 135.16, 133.44, 132.78, 130.73,130.12, 128.74, 128.39, 128.06, 126.47, 122.53,
122.37, 122.01, 116.86, 114.00, 111.75, 35.25, 35.15, 30.59, 30.00, 18.20. Elemental analysis (%) calcd. for
C31H33AgClN3: C, 63.01; H, 5.63; N, 7.11. Found: C, 63.07; H, 5.685; N, 6.95.

Synthesis of Ag(I) complex 6e: Following the general procedure of Ag (I) complex, a product 6e (423
mg, 93% yield) was obtained as a yellow solid from ligand precursor 4f (400 mg, 0.52 mmol), Ag2O
(241 mg, 1.04 mmol), and CH2Cl2 (6 mL). 1H NMR (400 MHz, CD2Cl2) δ 8.65 (dd, J = 5.3, 0.8 Hz, 1H),
7.56 (dd, J = 1.9, 0.7 Hz, 1H), 7.48 (dd, J = 5.3, 1.9 Hz, 1H), 7.27–7.11 (m, 12H), 7.01–6.97 (m, 5H), 6.90
(ddd, J = 4.7, 2.5, 0.5 Hz, 4H), 6.83 (s, 2H), 6.81 (d, J = 1.9 Hz, 1H), 6.33 (d, J = 1.7 Hz, 1H), 5.19 (s, 2H),
2.24 (s, 3H), 1.38 (s, 9H), 1.33 (s, 9H). 13C NMR (100 MHz, CD2Cl2) δ 161.67, 152.82, 150.79, 146.22,
142.87, 142.71, 141.51, 140.06, 138.74, 138.72, 136.54, 132.21, 132.15, 130.23, 129.70, 129.60, 128.88, 128.72,
126.94, 126.88, 122.27, 116.66, 114.80, 114.74, 111.58, 51.74, 35.27, 35.02, 30.68, 29.98, 21.89. Elemental
analysis (%) calcd. for C53H51AgClN3: C,72.89; H,5.89; N,4.81. Found: C,72.96; H,5.774; N, 4.65.

Synthesis of Ag(I) complex 11: Et3N (2 drops) was added to a Schlenk flask containing activated 4Å
molecular sieves (20 mg), ligand 10 (210 mg, 0.64 mmol) and Ag2O (297 mg, 1.28 mmol, 2.01 equiv) in
CH2Cl2 (18 mL). The mixture was stirred overnight at room temperature in dark. The crude solution
was filtered through a pad of Celite with CH2Cl2. To remove Et3N, purification was carried out by
recrystallization from dichloromethane/hexane. The volatiles matters were evaporated in vacuo to give
a white solid (240 mg, 80% yield). 1H NMR (400 MHz, CD2Cl2) δ 8.56 (d, J = 4.1 Hz, 1H), 7.69–7.62
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(m, 2H), 7.43 (d, J = 9.3 Hz, 1H), 7.26 (d, J = 7.4 Hz, 2H), 7.10 – 6.96 (m, 3H), 6.51 (d, J = 6.6 Hz, 1H), 5.59
(s, 2H), 2.40 (s, 3H), 2.02 (s, 6H). 13C NMR (100 MHz, CD2Cl2) δ 155.54, 150.02, 141.25, 138.56, 137.61,
136.88, 132.88, 130.31, 129.64, 123.78, 123.48, 122.97, 117.13, 116.01, 112.85, 59.66, 21.59, 19.79. Elemental
analysis calcd. (%) for C22H21AgClN3: C 56.13, H 4.50, N 8.93; found: C 55.96, H 4.757, N 8.79.

3.5. Synthesis of Ni(II) Complexes. General Procedure

Ag (I) complexes (1 equiv) were added to a 250 mL Teflon-valve Schlenk flask containing
(DME)NiCl2 (1 equiv) in a glove box. The flask was removed from the glove box and dichloromethane
was added. The resulting solution was stirred at 60 °C for 8 h. After cooling to room temperature,
the solution was filtered through a glass frit containing Celite under argon atmosphere. The solvent was
removed under reduced pressure. The crude mixture was transferred to a vial with distilled CH2Cl2
and recrystallized from CH2Cl2/hexane or washed with hexane. Ni(II) complexes (7, 8a–8e) do not
decompose easily in air without moisture. In a low-humidity environment, they can be quickly filtered
using celite under normal atmosphere and the solvent can be removed using a rotary evaporator.

Synthesis of Ni(II) complex 7: Following the general procedure of Ni(II) complexes, a product 7 (188
mg, 95% yield) was obtained as a yellow solid from Ag (I) complex 5 (200 mg, 0.40 mmol), (DME)NiCl2
(89 mg, 0.40 mmol), and CH2Cl2 (135 mL). X-ray quality crystals were obtained by the liquid diffusion of
hexane into saturated CH2Cl2 at room temperature. Elemental analysis (%) calcd. for C24H25Cl2N3Ni:
C, 59.43; H, 5.2; N, 8.66. Found: C, 59.54; H, 5.398; N, 8.27;UV-Vis (CH2Cl2): λ(nm) 411; µeff = 2.99 B.M
(at 297K).

Synthesis of Ni(II) complex 8a: Following the general procedure of Ni(II) complexes, a product 8a (97
mg, 66% yield) was obtained as a red-brown powder from Ag (I) complex 6a (151 mg, 0.26 mmol),
(DME)NiCl2 (57 mg, 0.26 mmol), and CH2Cl2 (90 mL). Elemental analysis (%) calcd. for C30H37Cl2N3Ni:
C, 63.3; H, 6.55; N, 7.38. Found: C, 63.18; H, 6.764; N, 7.27; UV-Vis (CH2Cl2): λ(nm) 409; µeff = 2.86 B.M
(at 297K).

Synthesis of Ni(II) complex 8b: Following the general procedure of Ni(II) complexes, a product
8b (170 mg, 89% yield) was obtained as a light-ocher powder from Ag (I) complex 6b (196 mg,
0.32 mmol), (DME)NiCl2 (71 mg, 0.32 mmol), and CH2Cl2 (110 mL). Elemental analysis (%) calcd. for
C32H41Cl2N3Ni: C, 64.35; H, 6.92; N, 7.04. Found: C, 64.2; H, 6.584; N, 6.9; UV-Vis (CH2Cl2): λ(nm)
408; µeff = 3.00 B.M (at 297 K).

Synthesis of Ni(II) complex 8c: Following the general procedure of Ni(II) complexes, a product 8c

(240 mg, 98% yield) was obtained as a light-ocher powder from Ag (I) complex 6c (250 mg, 0.41 mmol),
(DME)NiCl2 (90 mg, 0.41 mmol), and CH2Cl2 (140 mL). UV-Vis (CH2Cl2): λ(nm) 408. Elemental
analysis (%) calcd. for C32H41Cl2N3Ni: C, 64.35; H, 6.92; N, 7.04. Found: C, 64.16; H, 7.031; N, 6.87;
µeff = 2.56 B.M (at 297 K).

Synthesis of Ni(II) complex 8d: Following the general procedure of Ni(II) complexes, a product 8d

(240 mg, 99% yield) was obtained as a dark-brown powder from Ag (I) complex 6e (248 mg, 0.42 mmol),
(DME)NiCl2 (92 mg, 0.42 mmol), and CH2Cl2 (145 mL). UV-Vis (CH2Cl2): λ(nm) 407. Elemental
analysis (%) calcd. for C31H33Cl2N3Ni: C, 64.51; H, 5.76; N, 7.28. Found: C, 64.25; H, 5.854; N, 6.91;
µeff = 2.82 B.M (at 297 K).

Synthesis of Ni(II) complex 8e: Following the general procedure of Ni(II) complexes, a product 8e

(290 mg, 99% yield) was obtained as an ocher powder from Ag (I) complex 6f (300 mg, 0.34 mmol),
(DME)NiCl2 (75 mg, 0.34 mmol), and CH2Cl2 (117 mL). UV-Vis (CH2Cl2): λ(nm) 417. Elemental
analysis (%) calcd. for C53H51Cl2N3Ni: C, 74.06; H, 5.98; N, 4.89. Found: C, 73.72; H, 5.927; N, 4.75;
µeff = 3.09 B.M (at 297 K).

Synthesis of Ni(II) complex 12: Following the general procedure of Ni(II) complexes, a product
12 (172 mg, 90% yield) was obtained as a light-brown powder from Ag (I) complex 11 (198 mg,
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0.42 mmol), (DME)NiCl2 (92 mg, 0.42 mmol), and CH2Cl2 (140 mL). X-ray quality crystal was obtained
by liquid diffusion of n-hexane into aturated CH2Cl2 at room temperature. UV-Vis (CH2Cl2): λ(nm)
490 Elemental analysis (%) calcd. for C22H21Cl2N3Ni: C, 57.82; H, 4.63; N, 9.19. Found: C, 57.66;
H, 4.853; N, 9. µeff = 3.0 B.M (at 297 K).

3.6. General Procedure for the Synthesis of Lithium Acrylate Using Ethylene and CO2

Lithium acrylate was synthesized following a modified version of a previously reported
procedure.7b Inside a glove box, Ni(II) complex (0.05 mmol), LiI (1.25 mmol) and Zn (2.50 mmol) were
added into a 4 mL screw-cap vial equipped with a magnetic stir bar. The vial was removed from the
glove box and charged with PhCl (2 mL) via a syringe under argon atmosphere. The vial was then
stirred for 3 min, and Et3N (0.35 mL) was injected via a syringe. Under argon atmosphere, the vial was
transferred to a 100 mL stainless steel autoclave and was punctured with a flat-cut needle (18 G, 0.6 cm).
The autoclave was immediately closed and purged with ethylene gas (10 bar) for 10 min without stirring.
The autoclave was pressurized with ethylene (25 bar) and then with CO2 (5 bar) at room temperature.
The autoclave was heated to 60 ◦C in an oil bath for 12 h. After cooling to room temperature, the pressure
was released. D2O (1 mL) with sodium 3-(trimethylsilyl)-2,2,3,3-d4-propionate (0.070 mmol), was added
to the reaction mixture as an internal standard. After vigorous stirring for 15 min and manual shaking
for about 15 min, the D2O layer was separated from organic phase by centrifugation and filtration.
The D2O layer was washed with ether (2 mL). The amount of acrylate was determined by 1H NMR of
the D2O layer.

4. Conclusions

In conclusion, a series of new pyridine-chelated ImPy ligand precursors (3, 4a–4e, 10) were
prepared, and their catalytic efficiencies for Ni mediated acrylate synthesis from ethylene and CO2 were
investigated. Additionally, py-ImPyHNi(II)Cl2 complexes (3), py-ImPyt-BuNi(II)Cl2 complexes (4a–4e)
and N-picolyl-ImPyNi(II)Cl2 (12) were synthesized from corresponding Ag complexes (5, 6a–6e, 11)
through Ag transmetalation protocol and characterized by single-crystal X-ray crystallography. X-ray
structures demonstrated that the six-membered chelate rings with a fused pyridine of ImPy were
more rigid and planar than those with labile picolyl units at the N atom of ImPy. Ni(II) complexes
(7, 8a–8e) with strong chelates yielded up to 108% acrylate (TON 1). Catalytic activities of complex 8b

was further improved (TON up to 8.4) by the addition of monodentate phosphine. Currently, we are
exploring other NHC ligands in the catalytic acrylate synthesis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/7/758/s1,
Scheme S1: in-situ nickel(II) mediated C-H carboxylation of ethylene using CO2; Scheme S2: Screening of
monodentate phosphine additives in acrylate synthesis using ethylene and CO2; Scheme S3: Screening of
bisphosphine ligands in acrylate synthesis using ethylene and CO2; Scheme S4: Screening of bidentate N-N ligands
in acrylate synthesis using ethylene and CO2; Figure S1: Percent buried volume (%Vbur) of Ni(II) complexes;
Figure S2–S45: 1H NMR and 13C{1H} NMR spectrum; Figure S46: UV-Vis spectroscopy of 7, 8a–8e, 12; Table S2:
Crystallographic data and parameters for 3, 7, 8b and 12.
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