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Abstract
Introduction: This study aims to examine the effect of a diet 
intervention and pyridoxamine (PM) supplementation on 
hepatic microcirculatory and metabolic dysfunction in non-
alcoholic fatty liver disease (NAFLD). Methods: NAFLD in Wi-
star rats was induced with a high-fat diet for 20 weeks (NAFLD 
20 weeks), and control animals were fed with a standard diet. 
The NAFLD diet intervention group received the control diet 
between weeks 12 and 20 (NAFLD 12 weeks), while the 
NAFLD 12 weeks + PM group also received PM. Fasting blood 
glucose (FBG) levels, body weight (BW), visceral adipose tis-
sue (VAT), and hepatic microvascular blood flow (HMBF) 
were evaluated at the end of the protocol. Results: The 
NAFLD group exhibited a significant increase in BW and VAT, 
which was prevented by the diet intervention, irrespective 
of PM treatment. The FBG was elevated in the NAFLD group, 
and caloric restriction improved this parameter, although 
additional improvement was achieved by PM. The NAFLD 
group displayed a 31% decrease in HMBF, which was par-

tially prevented by caloric restriction and completely pre-
vented when PM was added. HMBF was negatively corre-
lated to BW, FBG, and VAT content. Conclusion: PM supple-
mentation in association with lifestyle modifications could 
be an effective intervention for metabolic and hepatic vas-
cular complications. © 2021 S. Karger AG, Basel

Introduction

A sedentary lifestyle, coupled with increased con-
sumption of fat-laden, high-calorie diets, contributes to 
the growing prevalence of obesity worldwide [1]. Glob-
ally, obesity has become one of the main clinical and pub-
lic health problems. According to the World Health  
Organization, 39% of adults aged 18 years or older are 
overweight, while 13% are obese [2, 3]. Obesity is a mul-
tifactorial chronic disorder associated with cardiac and 
metabolic complications influenced by genetic factors, 
hormones, environment, and diet [4].

Along with increasing obesity rates, the incidence and 
prevalence of nonalcoholic fatty liver disease (NAFLD) 
continues to rise, affecting 25–30% of the adult popula-
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tion [5]. NAFLD encompasses a wide spectrum of condi-
tions ranging from simple steatosis, characterized by tri-
glyceride accumulation in the liver, to nonalcoholic ste-
atohepatitis, the inflammatory form of the disease that 
can lead to progressive liver damage, which may result in 
cirrhosis and hepatocellular carcinoma [6]. Up to 80% of 
patients with NAFLD are obese [7, 8]. Fatty liver severity 
in patients with morbid obesity is also correlated to the 
degree of impaired glycemic status [9]. The amount and 
distribution of visceral adipose tissue (VAT) plays a 
greater role in insulin resistance than the BMI [10] and is 
positively related to the presence of NAFLD [10]. Excess 
fatty acids derived from VAT tissue via lipolysis, as well 
as from dietary sources and de novo lipogenesis, are re-
leased to the portal venous system [11] and cause chron-
ic low-grade inflammation which then participates in liv-
er injury progression in NAFLD [12, 13]. Although obe-
sity is the major risk factor for NAFLD development and 
progression [14, 15], the exact molecular and pathophys-
iological insults that contribute to NAFLD progression 
are not yet fully understood.

Obesity has been implicated in the pathogenesis of 
both macro- and microvascular abnormalities [16–18]. 
Human and animal studies demonstrate that obesity is 
associated with systemic and hepatic endothelial dys-
function [19–21] and increased cardiovascular disease 
[22, 23]. Regional and systemic hemodynamic pathologi-
cal changes contribute to an altered hepatic microcircula-
tion flow, subsequently affecting hepatocellular function 
[24]. Fatty accumulation in the hepatocyte cytoplasm is 
associated with increased cell volume, which may result 
in partial or complete obstruction of the hepatic sinusoid 
space which, in turn, decreases the hepatic blood flow [25, 
26]. Decreases in the microcirculatory hepatic blood flow 
may enhance hepatic injury, impairing exchanges be-
tween the blood and the vasculature and depriving hepa-
tocytes of oxygen and nutrients [27]. Thus, microcircula-
tory alterations are an important hit in NAFLD progres-
sion, emerging as a promising pharmacological therapy 
target for NAFLD management.

The current scenario for the control and management 
of NAFLD is complex, since there are no approved phar-
macological treatments, and the recommendations relies 
on lifestyle changes, including physical activity and ca-
loric restriction, and control of risk factors, which is not 
easy to be reached since the adherence and maintenance 
of these strategies is not a trivial task, neither on the part 
of the patients nor on the part of public policies [28–34]. 
Caloric restriction must be associated with considerable 
weight loss (i.e., 7–10%) in order to achieve important ef-

fects on steatosis and other liver markers, which makes it 
even more difficult to be achieved by individuals [35, 36]. 
Therefore, the search for new intervention strategies that 
help reduce the impact of NAFLD on global public health 
and slow the progress of the disease to more severe cases 
is of great importance.

Nonpharmacological interventions have emerged as 
promising novel therapeutic agents in promoting anti-
inflammatory, antioxidative, and antifibrotic effects, with 
less adverse effects and, consequently, high treatment ad-
herence [37]. Pyridoxamine (PM), a vitamin B6 analog, 
has been reported to significantly improve blood glucose 
levels [38] and attenuate high-fat diet (HFD)-induced 
weight gain and VAT hypertrophy [39, 40]. Our previous 
data indicate that PM treatment is able to revert HFD-
induced hepatic vascular dysfunction [20] through anti-
glycating, antioxidative, and anti-inflammatory mecha-
nisms [21]. These findings highlight the potential of PM 
as an intervention strategy in obesity and NAFLD. There-
fore, the present study examined the effect of a diet inter-
vention, that is, reduced caloric intake, on hepatic micro-
circulatory dysfunction and metabolic complications in 
HFD-induced obese mice, a diet-induced obese animal 
model with NAFLD features [20]. In addition, PM treat-
ment was combined with a diet intervention in order to 
verify if both treatments result in additional improve-
ments when compared to their isolated effects.

Materials and Methods

Experimental Protocol and Animals
Four-week-old male Wistar rats were housed in polypropyl-

ene cages and maintained in a controlled room (12 h light/dark 
cycle and constant temperature of 22 ± 1°C). The animals were 
randomly divided into 4 experimental groups: the non-NAFLD 
control (CTL) group, which remained on ad libitum regular 
chow (Nuvilab – CR1; Nuvital Nutrients Ltd) throughout the 
whole experiment (CTL; n = 10); the HFD-induced NAFLD 
group, which had free access to a diet with saturated fat (lard) as 
the main fat source (30% g/fat) during 20 weeks (NAFLD 20 
weeks; n = 10); the NAFLD diet intervention group, which re-
ceived the HFD until week 12 and the normocaloric control diet 
between weeks 12 and 20 (NAFLD 12 weeks; n = 10); and the 
NAFLD diet intervention group, which, in addition to, be- 
ing submitted to the diet intervention, received PM treatment 
(PrimAGE; Life Link, Tampa, FL, USA) (60 mg/kg/day, v.o. by 
gavage) between weeks 12 and 20 (NAFLD 12 weeks + PM). 
Food intake was measured every 3 days. At the end of the pro-
tocol, the animals were anesthetized and hepatic microvascular 
blood flow (HMBF) assessed by laser speckle contrast imaging 
(LSCI) (Fig. 1). Body weight (BW) was measured, and abdomi-
nal and epididymal adipose tissue deposits were dissected and 
weighed. All experiments were conducted in accordance with 
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internationally accepted principles for the care and use of labo-
ratory animals and were approved by the Oswaldo Cruz Founda-
tion Animal Welfare Committee (License L-019/2016).

Fasting Blood Glucose Measurement
Fasting blood glucose (FBG) levels were measured using a glu-

cometer (Accu-Chek; Roche, Sao Paulo, SP, Brazil) in animals that 
fasted overnight. Using surgical scissors, a cut was made <1 mm 
from the tip of the tail, obtaining a drop of blood collected on the 
tape previously inserted in the glucometer. FBG was expressed as 
mmol/L.

Adipose Tissue
Abdominal and epididymal adipose tissue deposits were dis-

sected after the euthanasia. Epididymal fat was considered as the 
fat present in the lower part of the abdomen connected to the epi-
didymis. Abdominal fat was considered as the whole fat pads ad-
hered to the intestines. After dissection, the adipose tissue deposits 
were weighed using an analytical balance (GR-200; A&D Com-
pany Limited, Tokyo, Japan).

Food and Energy Intake
Free access to food and water was provided during the experi-

mental protocol. Food intake was measured every 3 days using a bal-
ance (UDC 50000/20; Urano, Brazil), determined as the difference 
between the offered and nonconsumed feed. Food consumption was 
expressed as the daily food intake, in grams (g), and daily energy in-
take, in kilocalorie (kcal), with the energy intake determined as the 
product of food consumption by the dietary energy content.

Laser Speckle Contrast Imaging
The laser speckle contrast imaging apparatus (Pericam PSI sys-

tem, Perimed, Sweden), a real-time noninvasive and noncontact mo-
dality for the monitoring of microvascular blood flow and perfusion, 
was used to access the perfusion of the liver basal microvascular 
blood flow. The technique provides a microcirculatory perfusion in-
dex proportional to the moving scattering particles in the tissue (e.g., 
RBCs) [20, 41, 42]. For this analysis, animals were fasted overnight, 
anesthetized intraperitoneally with ketamine (100 mg/kg, i.p.) and 
xylazine (10 mg/kg, i.p.), and a laparotomy was performed. The ani-
mals were maintained in a room with a constant temperature at 25°C 
and a stable surface. The left lobe of the liver was placed on a glass 
disk and placed under a laser light system with image contrast for 
acquisition of the continuous measurement of tissue blood perfusion 
data, accomplished with a laser wavelength of 785 nm. The distance 
between the camera and the liver was set to 10.0 cm. Relative HMBF 
of the animals was expressed as arbitrary perfusion units (APUs).

Statistical Analyses
The results were expressed as means ± SEM for each group. 

Normal distribution was assessed using the Shapiro-Wilk test, and 
comparisons between groups were performed using a one-way 
ANOVA, followed by Bonferroni post hoc tests for multiple com-
parisons to follow up significances and interactions. The data were 
analyzed using GraphPad Prism, v. 8.0.1, software (GraphPad 
Software Inc., LA Jolla, CA, USA). The Pearson correlation coef-
ficient was used to assess correlations between metabolic and mi-
crocirculatory parameters (R Studio-version 4.0.2). Values set at  
p < 0.05 were considered significant.

CTL
(n = 10)

Weeks on diet 0 20*

CTL-diet

NAFLD 20 wks
(n = 10)

Weeks on diet 0 20*

HFD

NAFLD 12 wks
(n = 10)

Weeks on diet 0 20*12

CTL-dietHFD

NAFLD 12 wks + PM
(n = 10)

Weeks on diet 0 20*12

CTL-diet + PMHFD

* Endpoint: metabolic assessment + hepatic blood flow analyses (LSCI)

Fig. 1. Schematic representation of the ex-
perimental design. Forty 4-week-old male 
Wistar rats were randomly assigned to 4 
groups, namely, the non-NAFLD control 
group, which remained on ad libitum regu-
lar chow throughout the whole experiment 
(CTL); the HFD-induced NAFLD group, 
which had free access to a diet with satu-
rated fat (lard) as the main fat source (30% 
g/fat) during 20 weeks (NAFLD 20 weeks); 
the NAFLD diet intervention group, which 
received the HFD until week 12 and the 
control normocaloric control diet between 
weeks 12 and 20 (NAFLD 12 weeks); and 
the NAFLD diet intervention group, which, 
besides being submitted to the diet inter-
vention, received PM treatment (60 mg/kg/
day, v.o. by gavage) between weeks 12 and 
20 (NAFLD 12 weeks + PM). At the end of 
the protocol, the animals were anesthe-
tized, hepatic microvascular blood flow 
was assessed by LSCI, FBG and BW were 
measured, and abdominal and epididymal 
adipose tissue deposits were dissected and 
weighed. LSCI, laser speckle contrast imag-
ing; PM, pyridoxamine; CTL, control; 
FBG, fasting blood glucose; BW, body 
weight; HFD, high-fat diet; NAFLD, non-
alcoholic fatty liver disease.
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Results

Obesity Phenotype
The metabolic and hemodynamic characteristics of 

the NAFLD animal model have been previously described 
in detail [20]. The diet composition used in the present 
study is depicted in Table 1. HFD administration did not 
induce alterations in daily calorie intake when compared 
to normal chow (Table 2), as, although the HFD com-
prises a higher caloric content than the CTL diet, animals 
fed on HFD exhibited reduced daily food intake.

Free access to a saturated HFD for 20 weeks led to an 
obesity-like phenotype, as observed in the NAFLD 20 
week group (Fig. 2). The HFD induced a 9% increase in 
BW compared to the CTL group (CTL: 481.9 ± 10.36 g vs. 
NAFLD 20 weeks: 525.2 ± 12.91 g, p = 0.017), while the 
diet intervention alone or associated with PM treatment 
prevented BW increases (NAFLD 12 weeks: 455.2 ± 11.17 
g and NAFLD 12 weeks + PM: 442.9 ± 7.93 g vs. NAFLD 
20 weeks: 525.2 ± 12.91 g, p < 0.001) (Fig. 2a). Abdominal 
fat content was 45% higher in the NAFLD 20 week animal 
group than that in the CTL group (CTL: 5.34 ± 0.46 g vs. 
NAFLD 20 weeks: 7.75 ± 0.63 g, p = 0.002) (Fig. 2b). The 
diet interventions with or without PM treatment were 
similarly effective in reducing abdominal fat content 
(NAFLD 12 weeks: 4.29 ± 0.38 g and NAFLD 12 weeks + 
PM: 3.77 ± 0.38 g vs. NAFLD 20 weeks: 7.75 ± 0.63 g, p < 
0.001) (Fig. 2b). Epididymal fat content exhibited a 74% 
increase in the NAFLD 20 week group when compared to 
the CTL group (CTL: 10.37 ± 0.90 g vs. NAFLD 20 weeks: 
18.06 ± 1.38 g, p = 0.001), while caloric restriction, alone 

or in association with PM treatment, reduced epididymal 
fat content in the same degree (NAFLD 12 weeks: 9.46 ± 
0.99 g and NAFLD 12 weeks + PM: 9.58 ± 0.88 g vs. 
NAFLD 20 weeks: 18.06 ± 1.38 g, p = 0.001) (Fig. 2c).

FBG levels were significantly elevated (17%) in the 
NAFLD 20 week group compared to the CTL group 
(CTL: 4.72 ± 0.11 mmol/L vs. NAFLD 20 weeks: 5.53 ± 
0.15 mmol/L, p = 0.001) (Fig. 2d). HFD interruption was 
able to ameliorate FBG in 92% (NAFLD 12 weeks: 5.10 ± 
0.12 mmol/L vs. NAFLD 20 weeks: 5.53 ± 0.15 mmol/L, 
p = 0.178), while the diet intervention alongside the PM 
treatment led to additional effects, with FBG levels achiev-
ing similar values to the CTL group (NAFLD 12 weeks + 
PM: 4.65 ± 0.20 and CTL: 4.72 ± 0.11 mmol/L, p > 0.999) 
(Fig. 2d).

Table 1. Description of the diets used in the CTL and HFD groups

g/100 g of diet (%kcal) CTL HFD

Protein 21.4% 10.2%
Commercial chow 23 13.2
Condensed milk – 1.4

Carbohydrates 66% 40.7%
Commercial chow 71 16
Corn starch – 30
Condensed milk – 10

Fat 12.6% 49.1%
Commercial chow 6 2.5
Condensed milk – 1.6
Animal fat (lard) – 25

%Kcal/kg 4,300 5,500

CTL, control; HFD, high-fat diet.

Table 2. Description of the daily food intake in the CTL and HFD 
groups

CTL HFD p value

Daily food intake, g 18.0±1.7 15.0±0.5 0.045
Daily energy intake, kcal 79.0±7.3 84.0±3.2 0.443

Values are expressed as means ± SEM. CTL, control; HFD, 
high-fat diet.

Table 3. Correlation between metabolic and microcirculatory 
parameters evaluated by Pearson’s correlation analysis

Pearson correlation 
coefficient (r)

p value

Liver microvascular blood flow
BW −0.39 0.012
FBG −0.35 0.024
Epididymal fat content −0.48 0.001
Abdominal fat content −0.43 0.006

BW
FBG 0.31 0.056
Epididymal fat content 0.83 <0.001
Abdominal fat content 0.78 <0.001

FBG
Epididymal fat content 0.33 0.041
Abdominal fat content 0.18 0.261

Epididymal fat content
Abdominal fat content 0.88 <0.001

FBG, fasting blood glucose; BW, body weight.
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Liver Microcirculatory Dysfunction
Regarding the assessed microcirculatory parameters, 

the laser speckle contrast imaging analyses indicate a 31% 
decrease in liver microvascular blood flow in the NAFLD 
20 week animal group when compared to CTL rats (CTL: 
161.5 ± 7.96 APUs vs. NAFLD 20 weeks: 111.8 ± 4.63 
APUs, p = 0.003) (Fig. 3a–b, e). Although the diet com-
position changes resulted in an 85% improvement in the 
hepatic basal microvascular blood flow of the NAFLD 12 
week group when compared to the NAFLD 20 week ani-
mals (NAFLD 12 weeks: 135.2 ± 13.54 APUs vs. NAFLD 
20 weeks: 111.8 ± 4.63 APUs, p = 0.314), the combined 
diet intervention and PM treatment led to a more pro-
nounced beneficial effect of 100% blood flow recovery, 
achieving similar blood flow levels to control values (CTL: 
161.5 ± 7.96 APUs vs. NAFLD 12 weeks + PM: 162.7 ± 
12.67 APUs, p > 0.999) (Fig. 3c–e).

Pearson Correlations
Pearson’s correlation analysis demonstrated that BW 

was positively correlated with epididymal fat content (p < 

0.001, r = 0.83) and abdominal fat content (p < 0.001, r = 
0.78). FBG levels were positively correlated with epididy-
mal fat content (p = 0.041, r = 0.33), while epididymal fat 
content was positively correlated with abdominal fat con-
tent (p < 0.001, r = 0.88). Importantly, liver microvascular 
blood flow was negatively correlated with BW (p = 0.012, 
r = −0.39), FBG levels (p = 0.024, r = −0.35), and epididy-
mal (p = 0.001, r = −0.48) and abdominal fat content (p = 
0.006, r = −0.43) (Table 3; Fig. 4).

Discussion/Conclusion

The present study investigated whether metabolic and 
microcirculatory disorders associated with obesity and/
or NAFLD are modulated by caloric restriction alone or 
conjugated to PM treatment. Increased fat intake has 
been linked to obesity, insulin resistance, impaired post-
prandial lipid metabolism, and the development and pro-
gression of NAFLD [32]. Concerning obesity manage-
ment, a weight management approach is also recom-
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mended for NAFLD patients [31, 43–47]. Lifestyle 
interventions, such as caloric restrictions, either low in 
carbohydrates or low in fats, is the first line of treatment 
for NAFLD. Sustained adherence to these lifestyle modi-
fications however is difficult to achieve and maintain 
[48]. As the management of obesity and its hepatic com-
plications through lifestyle modifications is an important 
challenge for most individuals, adjunct treatments are ur-
gent and necessary [49].

PM, a vitamin B6 analog with antiglycative effects, has 
emerged as a promising nonpharmacological agent for 
the protection against the progressive tissue damage that 
occurs in diabetes and other diseases, such as schizophre-
nia, hyperlipidemia, chronic kidney disease, and myocar-
dial infarction [50–53]. Vitamin B6 refers to 6 metaboli-
cally interchangeable compounds derived from pyridine, 
that is, pyridoxine, pyridoxal, pyridoxamine, and their 
respective phosphorylated forms. PM is found in food de-
rived from animals and has already been described as act-
ing, in its metabolically active form, as a cofactor for a 
variety of enzymes that participate in amino acid trans-
amination, decarboxylation, and racemization [54–57]. 
In addition, PM acts by inhibiting the post-Amadori oxi-
dative steps of the Maillard reaction through the binding 
of catalytic redox metal ions [58]. PM has proven effective 
against both systemic and hepatic changes in obesity-as-
sociated NAFLD [21]. A previous study by our group 
demonstrated that PM is able to reduce BW, liver leuko-
cyte recruitment, and oxidative damage in animals pre-
senting NAFLD [59].

In accordance with previous assessments by our group, 
the present study demonstrates that Wistar rat exposure 
to an HFD for 20 weeks induced an obesity-like pheno-
type, characterized by significant body adiposity associ-
ated with hyperglycemia [20, 21]. In addition, we have 
previously shown that the same protocol concerning diet-
induced obesity as applied herein also induces increases 
in systolic arterial blood pressure, hepatic triglycerides 
and cholesterol, and impairment of glucose and insulin 
metabolisms and steatoses, which make these animals 
suitable for NAFLD pathogenesis and intervention stud-
ies [20]. Herein, the diet intervention effects led to similar 
improvements in BW and epididymal and abdominal fat 
content, irrespective of PM supplementation. On the oth-
er hand, the association of PM with caloric restriction was 
more effective on glucose metabolism homeostasis recov-
ery than the diet intervention alone. Fat content remains 
a more reliable adiposity measure than anthropometric 
measures, with VAT reported being associated with in-
creased risks for cardiovascular and metabolic diseases 

[15]. The literature supports the concept that VAT are 
compartments exhibiting a high metabolism rate and se-
creting free fatty acids, adipocytokines, and vasoactive 
substances that can negatively affect the liver through the 
hepatic portal vein circulation [60]. In addition, Sogabe 
et al. [61] reported that VAT increases may be one of the 
most important NAFLD predictors in women with meta-
bolic syndrome. It has also been shown that lifestyle in-
tervention consisting of caloric restriction with physical 
activity for 12 months in obese patients is able to decrease 
BW, visceral abdominal fat, liver fat content, blood pres-
sure, and insulin resistance [62]. In a randomized con-
trolled trial, a nutritional intervention aimed at reducing 
VAT in middle-aged adults led a substantial decrease in 
the percentage of hepatic fat content, resulting in moder-
ate weight loss and beneficial cardiometabolic parameter 
effects [63]. In an assessed population of obese patients, a 
very low-calorie ketogenic diet exerted a positive effect in 
VAT decreases, ameliorating adiposity and blood bio-
chemistry parameters [64]. The beneficial additional ef-
fects of PM can be explained by its function as an essential 
cofactor for enzymes involved in biological and metabol-
ic activities, such as in the amino acid, fat, and glucose 
metabolisms [65, 66]. Maessen et al. [40] demonstrated 
that 18 weeks of PM treatment improved several obesity 
aspects, such as metabolic dysfunction, insulin resistance, 
and tissue inflammation in obese mice. Kim et al. [67] 
evaluated the antihyperglycemic potential of pyridoxal 
and its derivatives using Sprague-Dawley rats and report-
ed that this nonpharmacological intervention decreased 
FBG levels by inhibiting carbohydrate hydrolysis and the 
activity of enzymes linked to glucose absorption, such as 
sucrase, maltase, and glucoamylase.

Liver microcirculation is essential for the physiological 
function of the entire organism, ensuring the supply of 
oxygen and nutrients to parenchymal tissue. In addition, 
it serves as a gateway for leukocytes in liver inflammation 
cases and is responsible for the clearance of toxic metabo-
lites and foreign bodies from the bloodstream [68]. Di-
etary fat and obesity have negative impacts on microvas-
cular health. HFD appears to promote endothelial dys-
function [66], and a high-saturated fat diet impairs 
endothelial vasodilation [16, 18, 69, 70].

Although the exact mechanisms remain unclear, in the 
liver, decreases in the size of the sinusoidal lumen is due, 
in part, to swollen hepatocyte “ballooning” as a conse-
quence of the abnormal accumulation of triacylglycerol 
within the hepatocyte cytoplasm, which may cause partial 
or complete obstruction of the hepatic sinusoid space in 
up to 50% compared with the normal liver [26, 71]. Lipid 
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accumulation also occurs within the mitochondrial ma-
trix, resulting in the production of superoxide and vaso-
active metabolites that promote the activation of hepatic 
stellate cells [24]. Preclinical fatty liver studies have dem-
onstrated that steatosis is inversely correlated with the to-
tal and microcirculatory hepatic blood flows [26], but the 
severity of steatosis has a more determinant impact on 
hepatic microcirculation than total liver blood flow [25]. 
Passarin et al. [72] demonstrated that Wistar Kyoto rats 
fed on a cafeteria diet exhibited overweight, arterial hy-
pertension, hypertriglyceridemia, insulin resistance, and 
hepatic steatosis, all associated with hepatic endothelial 
dysfunction. Obese Zucker rats after schistosomiasis and 
reperfusion presented steatotic livers and abnormal mi-
crocirculation, manifested by a reduced sinusoidal den-
sity due to the decrease in the number of functional sinu-
soids and greater leukocyte adherence [27]. Recently, our 
group demonstrated that animals presenting obesity and 
NAFLD exhibit hepatic microcirculation disturbances, 
which can play an important role in NAFLD pathogenesis 
[20] and that a PM treatment for 8 weeks normalized the 
detected microcirculatory disturbances [21]. Of note, we 
report herein that caloric restriction and the PM treat-
ment result in similar microcirculatory improvement ef-
fects, although within a significantly shorter period of 
time, that is, 2 weeks. In the present study, caloric restric-
tion was able to partially improve liver microcirculation 
dysfunction, an important and original finding, while the 
diet modification associated with PM treatment led to a 
more pronounced effect on HMBF normalization than 
the diet intervention alone. Diet intervention as a strategy 
to reverse microcirculatory dysfunction had been as-
sessed by several studies [73–77]. The additive benefit of 
PM supplementation on HMBF may be attributed to its 
ability to (a) improve metabolic parameters, (b) decrease 
hepatic AGE levels, (c) reduce ROS, (d) improve lipid 
peroxidation, and (e) decrease hepatic stellate cell activa-
tion [21]. To the best of our knowledge, this is the first 
time that the hepatoprotective effect of PM in association 
with a diet intervention has been shown in in vivo liver 
microcirculation.

NAFLD is a multifactorial disease comprising multiple 
physiological and biochemical events, including genetic, 
environmental, metabolic, and stress-related factors, 
even affecting extrahepatic organs and regulatory path-
ways [78]. In this context, hepatic microcirculatory ab-
normalities have emerged as an important risk factor for 
NAFLD progression and complications [20, 72]. A clini-
cal study evaluating the correlation between NAFLD and 
microvascular complications in type 2 diabetes mellitus 

reported that NAFLD was positively correlated with BMI, 
waist circumference, triglyceride levels, and FBG [79]. A 
preclinical study focusing on morphological features and 
microcirculation in NAFLD demonstrated that the de-
gree of steatosis correlates with reduced blood flow speed 
in central veins, as well as in sinusoids [80]. We demon-
strate herein that liver microcirculation blood flow is neg-
atively correlated with BW, FBG, and VAT, suggesting 
the involvement of metabolic parameters in hepatic mi-
crocirculation impairment. The data reported in the pres-
ent study substantiate the implementation of PM supple-
mentation in association with lifestyle modifications as 
an effective intervention for the metabolic dysfunction 
and hepatic complications associated with obesity and 
NAFLD, controlling BW, visceral fat content and glyce-
mia, and recovery to normal HMBF.
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