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Skin cutaneous melanoma (SKCM) is a chronically malignant tumor with a high mortality

rate. Pyroptosis, a kind of pro-inflammatory programmed cell death, has been linked to

cancer in recent studies. However, the value of pyroptosis in the diagnosis and prognosis of

SKCM is not clear. In this study, it was discovered that 20 pyroptosis-related genes (PRGs)

differed in expression between SKCM and normal tissues, which were related to diagnosis

and prognosis. Firstly, based on these genes, nine machine-learning algorithms were

shown to perform well in constructing diagnostic classifiers, including K-Nearest Neighbor

(KNN), logistic regression, Support Vector Machine (SVM), Artificial Neural Network (ANN),

decision tree, random forest, XGBoost, LightGBM, and CatBoost. Secondly, the least

absolute shrinkage and selection operator (LASSO) Cox regression analysis was applied

and the prognostic model was constructed based on 9 PRGs. Subgroups in low and high

risks determined by the prognostic model were shown to have different survival. Thirdly,

functional enrichment analyses were performed by applying the gene set enrichment

analysis (GSEA), and results suggested that the risk was related to immune response. In

conclusion, the expression signatures of pyroptosis-related genes are effective and robust in

the diagnosis and prognosis of SKCM, which is related to immunity.

Keywords: pyroptosis-related genes, diagnosis, prognosis, classifier, prognostic model, immunity, skin

cutaneous melanoma

INTRODUCTION

Malignant skin cutaneous melanoma (SKCM) is a serious life-threatening disease, and the incidence
rate of SKCM is rapidly increasing throughout the world (1, 2). SKCM lacks specific treatment other
than early surgical resection, which leads to a poor prognosis and extremely high mortality (3).
Although non-Caucasian populations are less likely to develop melanoma, the severity of SKCM in
Africa, Asia, Central America, and South America has increased (4). Lack of prevention and early
diagnosis programs may contribute to the increased prevalence of SKCM in these regions (5).
Therefore, developing efficient diagnosis and prognosis methods is important for the treatment
of SKCM.
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Pyroptosis, or caspase 1-dependent cell death, also known as
cellular inflammatory necrosis, is triggered by various
pathological stimuli, such as microbial infections, stroke, heart
attack, and cancer (6). The term pyroptosis was first proposed in
2001 from the Greek roots pyro, relating to fire or fever, and
ptosis (to-sis) to denote a falling, to describe pro-inflammatory
programmed cell death (7). In addition to apoptosis, ferroptosis,
and autophagy, this newly discovered type of cell death has
become a hot spot recently.

Pyroptosis is characterized by the rapid rupture of the plasma
membrane and the release of pro-inflammatory intracellular
contents. A canonical pathway of pyroptosis is triggered by the
activation of inflammasomes which are cytoplasmic multi-
protein platforms containing the nucleotide-binding
oligomerization domain (NOD)-like receptor (NLR) family (8).
Caspase-1 can be activated by inflammasomes, which leads to the
cleavage of gasdermin D (GSDMD) and both the maturation and
secretion of pro-inflammatory cytokines, such as IL-18 and IL-
1B (9). Caspase-1-dependent plasma membrane pores dissipate
cellular ion gradients, resulting in osmotic pressure increase,
which leads to water influx and cell swelling (10). Ultimately,
osmotic lysis occurs and inflammatory intracellular contents are
released (10). Caspase-1 dependence is a defining feature of
pyroptosis in which mediates cell lysis during pyroptosis and is
not involved in apoptosis (11–13). Besides GSDMD, the plasma
membrane pores formation can be executed by the cleavage of
other gasdermin proteins, especially gasdermin E (GSDME)
which can be cleaved by caspase-3 to trigger pyroptosis (14, 15).

The mechanism and functions of pyroptosis in tumor cells
have been extensively studied, but its relationship to cancer
prognosis has been ambiguous. This is because pyroptosis
plays a dual role in cancer progression. On one hand, inducing
pyroptosis may be a feasible method to kill tumor cells; on the
other hand, as a type of pro-inflammatory death, pyroptosis can
form a suitable microenvironment for tumor cell growth and
thus promote tumor growth (16–20). In SKCM, aberrant
expression of PRGs was associated with metastasis, invasion,
and drug resistance, in addition to mediating melanoma cell
death (20). Given the existing findings, it is likely that the impact
of pyroptosis on the development of melanoma is bidirectional.
As a result, the role of PRG expression in the diagnosis and
prognosis of SKCM remains unclear. Studying the relationship
between pyroptosis and clinical features of SKCM is helpful for
its treatment, but the value of pyroptosis in the diagnosis and
prognosis of SKCM has not been reported. Therefore, in this
systematic study, classifiers were built through machine-learning
algorithms to mine out the diagnosis value of pyroptosis-related
genes (PRGs) in distinguishing between SKCM and normal
tissue. Then a novel PRGs prognostic risk signature in SKCM

was constructed for survival predicting. Besides, prognostic risk-
related phenotypes were analyzed. Thus, this study provides a
novel understanding of the role of pyroptosis in SKCM and
suggests that PRG signatures have the potential to diagnose and
predict the prognosis.

MATERIALS AND METHODS

Data Collection
The study design and grouping are shown in Figure 1.
Transcriptome profiles and clinical data in SKCM patients
were collected in the database of The Cancer Genome Atlas
(TCGA) -SKCM (18th December 2019. https://portal.gdc.cancer.
gov/) and Gene Expression Omnibus (GEO. https://www.ncbi.
nlm.nih.gov/geo/) including GSE54467, GSE65904, GSE98394,
and GSE112509 (21–25). Transcriptome profiles in normal skin
tissues were collected in the database of Genotype-Tissue
Expression Project (GTEx-SKIN. https://gtexportal.org/home/).
The RNA-seq data in TCGA-SKCM, GSE98394, GSE112509,
and GTEx-SKIN were converted to Transcripts per Kilobase
Million (TPM) format. The microarray data in GSE54467 and
GSE65904 were normalized by using the R package “limma”.
Repeat values were averaged and missing values were removed.
The RNA-seq data in TCGA-SKCM and GTEx-SKIN were
merged and normalized by using the R package “limma”.

Identification of Differentially
Expressed Genes
Twenty PRGs (listed in Table S1) were retrieved in the
GeneCards database (8th January 2020. https://www.genecards.
org/) by the keyword “pyroptosis” and verified in several reviews
(26–29). The “limma” package was used to identify differentially
expressed genes (DEGs) between SKCM and normal tissues with
the FDR-adjusted p-value, i.e. the q-value < 0.1. The correlation
of DEGs was analyzed and demonstrated by using the R package
“corrplot”. The significance of relationships between OS and the
DEGs in TCGA-SKCM was determined using univariate Cox
regression analysis and the q-value < 0.1 was chosen as the
criteria, which was carried out by using the “survival” R package.
A protein-protein interaction (PPI) network for the DEGs was
obtained from Search Tool for the Retrieval of Interacting Genes
(STRING v11.0, https://string-db.org/).

Construction and Evaluation of PRGs-
Based Classifiers for SKCM Diagnosis
Data from GSE98394 were randomly divided into a training set
and a testing set according to 7:3. Data from the training set were
used to train the classifiers respectively based on the K-Nearest
Neighbor (KNN), logistic regression, Support Vector Machine
(SVM), Artificial Neural Network (ANN), decision tree, random
forest, XGBoost, LightGBM, and CatBoost via following Python
packages: Scikit-learn (sklearn) v0.23.2, XGBoost v1.3.3,
LightGBM v3.1.1, and CatBoost v0.24.4 (30–33).

The “sklearn.metrics” Python package was used to evaluate
the PRGs-based classifiers, and the “matplotlib” Python package

Abbreviations: SKCM, skin cutaneous melanoma; PRGs, pyroptosis-related

genes; DEGs, differentially expressed genes; PPI, protein-protein interaction;

KNN, K-Nearest Neighbor; SVM, Support Vector Machine; ANN, Artificial

Neural Network; ROC, receiver operating characteristic; AUC, area under

curves; CDFs, cumulative distribution functions; PCA, principal component

analysis; OS, overall survival; HR, hazard rate; CI, confidence interval; GSEA,

gene set enrichment analysis; Cor, Pearson correlation coefficient; FDR, false

discovery rate; NES, normalized enrichment score.
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was used to plot the receiver operating characteristic (ROC)
curves. Besides the area under ROC curves (AUC), accuracy,
precision (also known as positive predictive value), recall (also
known as sensitivity), and F1 score were calculated to evaluate
the prediction performance of the models by using the
“sklearn.metrics” Python package. To assess the quality of the
models, the Gini index and Kolmogorov–Smirnov (KS) value
were calculated according to the methods described
previously (34).

Data from the testing set were used to perform internal
evaluations and parameter tuning. Major parameters used in
the above algorithms are listed in Table S2. For external
evaluations, data from TCGA-SKCM & GTEx-SKIN
(validation 1 set) and GSE112509 (validation 2 set) were used.
Data from each group were normalized by employing the
“StandardScaler” function from the “sklearn.preprocessing”
Python package before training and evaluations.

Consensus Clustering Analysis of PRGs
To classify the SKCM by consensus clustering, R packages
“limma” and “ConsensusClusterPlus” were used. The
“prcomp” function in the “stats” R package was used to
conduct principal component analysis (PCA) based on the
clusters. The correlations between clusters and clinical
characteristics, including overall survival (OS), were analyzed
by employing the chi-square test and R package “survival”. The
results were presented by heat maps and Kaplan-Meier (KM)
curves via R packages “pheatmap”,”survival”, and “survminer”.

Construction of PRGs-Based SKCM
Prognostic Model
The least absolute shrinkage and selection operator (LASSO)
Cox regression analysis was performed by using the R package
“glmnet” to narrow down the candidate genes and to develop the
prognostic model. The penalty parameter (l) was determined by

FIGURE 1 | The flowchart of the overall procedures. This flowchart illustrates the process of data collection and analyses for diagnostic and prognostic studies.
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the minimum parameters. The risk scores were calculated using
the following equations:

RiskScore = eSi(Coefi ·Expi)

where Coef is the coefficient and Exp is the expression level of
every retained gene. Data from TCGA-SKCM were randomly
divided into a training set and a testing set according to 7:3. The
risk score was calculated by using the data from the training set.
Data from the testing set was used for the internal evaluation.
Data from GSE54467 and GSE65904 were merged and
normalized as a validation set by using the R package “limma”
for the external evaluation. The R packages “survival” and
“survminer” was employed to perform KM analyses. The R
package “survivalROC” was employed to perform 3- and 5-
year ROC analysis.

The correlat ion between subgroups and clinical
characteristics in TCGA-SKCM was analyzed by employing the
chi-square test and presented by heat map. The relationship and
independence of the clinical factors and the risk score calculated
from the prognostic model were determined using univariate and
multivariate Cox regression analyses, which were carried out by
using the “survival” R package.

Gene Sets Enrichment Analysis
The DEGs (|log2FC| ≥ 1 and FDR < 0.05) between the low- and
high-risk subgroups in TCGA-SKCM were filtered, which was
carried out with the Gene Ontology (GO) analysis by using the
“clusterProfiler” R package. Besides, gene set enrichment
analysis (GSEA) was used in TCGA-SKCM to identify the
biological processes that were significantly alerted between the
high-risk and low-risk subgroups (35, 36). The Java GSEA
software (version 4.0.1) was employed and the gene set
“c2.cp.kegg.v7.4.symbols.gmt” from the database of Kyoto
Encyclopedia of Genes and Genomes (KEGG) was chosen as
the reference (37–39). Biological processes with the normalized
p < 0.05 and the false discovery rate (FDR) q value < 0.05 were
considered as statistically significant. The top biological
processes that had been altered were chosen based on a
ranking of normalized enrichment ratings (NES).

Immune Infiltration Analysis
Transcriptome data from TCGA-SKCM was transformed into
the total abundance of immune cells by utilizing the Cell-type
Identification by Estimating Relative Subsets of RNA Transcripts
(CIBERSORT) analysis with the “CIBERSORT” R package (40,
41). Patients were divided into low- and high-infiltration
subgroups according to the median level. Tumor IMmune
Estimation Resource 2.0 (TIMER2.0, http://timer.cistrome.org/)
was employed to analyze the correlation between the immune
infiltration and OS in SKCM (42–44).

Statistical Analyses
Wilcoxon test was applied to compare the gene expression levels
between the normal skin and SKCM tissues and the immune
infiltration levels between subgroups. The two-sided log-rank
test was used to compare the OS between subgroups. Other

statistical methods are specifically described above. All statistical
analyses were accomplished with R (v3.6.2) and Anaconda 3
(Python v3.8.5).

RESULTS

Identification of Differentially Expressed
PRGs Between Normal Skin and
SKCM Tissues
Expression levels of 20 PRGs were compared between 557
normal and 471 tumor tissues from GTEx-SKIN and TCGA-
SKCM data. It was observed that all the 20 PRGs were
significantly differentially expressed (all q-value < 0.1.
Figure 2A and Figure S1A). Among them, 11 genes (CASP1,
PYCARD, APIP, FOXO3, IL18, GSDMA, GSDMC, CASP4,
GSDMB, NLRP1, and NAIP) were downregulated while 9
genes (NLRP9, DHX9, CASP3, NLRC4, AIM2, NLRP3, IL1B,
GSDME, and GSDMD) were upregulated in tumor tissues. In
addition, 13 genes showed significant associations with OS
(Figure 2B). Among them, 11 genes were protecting factors
(hazard ratio < 1) and 2 genes were risk factors (hazard ratio > 1).

To further explore the interactions of these PRGs, PPI and
expression correlation analysis were performed (Figure 2C and
Figure S1B). The minimum required interaction score for the
PPI analysis was set at 0.9 (the highest confidence). The results
suggested that CASP1, CASP3, GSDMD, NLRP3, PYCARD,
AIM2, and NLRC4 play central roles in the pyroptosis process
of SKCM. The Human Protein Atlas (www.proteinatlas.org) was
used to retrieve immunohistochemistry staining images of
proteins encoded by PRGs in SKCM, showing cellular
sublocalization of these molecules (Figure S2). It can be seen
that several widely reported pyroptosis-related proteins were in
high levels, including AIM2, CASP1, CASP3, GSDMD, and
GSDME, which indicate that pyroptosis occurred in a large
part of SKCM tissues.

Diagnosis Value of PRGs-Based
Classifiers in SKCM
Given the significant difference in PRG expression between
normal and tumor tissues, it was hypothesized that PRGs can
be used to diagnose SKCM. To verify this hypothesis, nine
commonly used machine-learning algorithms were used to
construct diagnostic classifiers, including KNN, logistic
regression, SVM, ANN, decision tree, random forest, XGBoost,
LightGBM, and CatBoost. Data from GSE98394 that contains
primary melanoma and common acquired nevi were randomly
divided into a training set and a testing set according to 7:3.
Respectively, classifiers based on the above algorithms were
trained by using the RNA-seq data in the training set. The
testing set was designed to perform internal evaluations. As
expected, RNA-seq data of PRGs were suitable for building the
SKCM diagnostic classifiers, because of the high accuracy in the
training and testing set (Table 1, Table S4, and Figure 3J).

In addition to the accuracy, ROC curves were used to evaluate
the sensitivity and specificity of the classifiers. In the testing set,
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except for the poor performance of the decision tree, the AUC
values of the other eight algorithms were all higher than 0.900
(Table 1). This suggests that PRGs had a very high capacity to
distinguish between normal and tumor samples in a single study
(GSE98394). To verify the performance of these classifiers in out-
of-sample data with different sample sizes and levels of balance,
two external validation sets were used to perform ROC analysis.
In the validation set 1 (TCGA-SKCM & GTEx-SKIN) with a
relatively larger and more balanced sample size (the numbers
of melanoma and normal skin samples are 471 and 557), all
classifiers performed well (Figures 3A–I, red line). Furthermore,
except for KNN and decision tree, classifiers based on the
other seven algorithms worked well in the validation set 2
(GSE112509) with a relatively smaller and unbalanced sample
size (the numbers of melanoma and normal nevi samples are
57 and 23) (Figures 3A–I, green line).

In order to further evaluate the classifiers, precision, recall
and F1 score were calculated and the results were consistent with
the ROC analysis (Table 1 and Figure 3K). Moreover, the Gini
index and KS value were estimated to confirm the results

(Table 1, and Figures 3L, M). Commonly, when these
parameters are close to 1.000, it indicates that the classifier has
a strong ability to distinguish. Besides, the classifier is robust
when the difference of these parameters among datasets is
minimal. Considering all the evaluation parameters, it was
found that ANN is the most suitable algorithm to construct
the diagnostic model based on PRGs in this study, while logistic
regression, random forest, and SVM also performed well, which
suggests that the expression signature of PRGs has a high
diagnostic benefit in SKCM.

Identification of SKCM Clusters Using
Consensus Clustering
In order to investigate the therapeutic utility of PRGs, we
attempted to divide the SKCM samples into clusters depending
on gene expression patterns (Figure S3). The number of clusters
was represented by the letter “k”. The empirical CDF was plotted
to determine the optimum k value for the sample distribution to
reach maximal stability (Figure S3A, B). Consensus matrices
showed that, with k = 2, patients in TCGA-SKCM could be

A

B C

FIGURE 2 | Expressions and the associations with OS of the 20 PRGs. (A) Violin plot of PRGs between the normal (blue) and the tumor tissues (red). q, FDR-adjusted

p-value. (B) Significance and hazard ratio (95% CI) values of OS-related PRGs in univariate Cox regression. CI, confidence interval. q, FDR-adjusted p-value.

(C) PPI network showing the interactions of the PRGs (interaction score = 0.9). The bottom boxes show the types of interactions.
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divided into two distinct and non-overlapping clusters, which
was verified by the PCA (Figure S3C and Figure 4A). It was
observed that there are significant differences in OS and the stage
of SKCM (Figures 4B, C). As shown in Figure 4B, cluster 2 had
a significantly poorer OS than cluster 1 (HR = 1.74).

Prognostic Value of PRGs Expression
Signature in SKCM
Cox regression analysis was used to evaluate the correlations
between each PRG and survival status to assess the prognostic
value of PRGs expression signature. Data from TCGA-SKCM
were randomly divided into a training set and a testing set
according to 7:3. To narrow down the candidate genes and
construct the prognostic model, the LASSO Cox regression
model was used in the training set. Nine genes and their
coefficients (Table 2) were eventually preserved, and the
penalty parameter (l) was determined by the minimum
parameters (Figures 5A, B). Data from GSE54467 and
GSE65904 were merged and normalized as a validation set for
the external evaluation. The risk scores in the test and validation
sets were calculated by the same equation obtained from the
training set (Figure S4).

According to the median risk score, patients in the training
set were divided into low- and high-risk subgroups, and a
significant difference in OS was observed via the KM survival
analysis (Figure 5C). The lifespan of patients in the high-risk
subgroup was shorter than those in the low-risk subgroup. The
sensitivity and specificity of the prognostic model were
determined using the time-dependent ROC analysis, and the
AUC was 0.640 for 3-year survival and 0.711 for 5-year survival,
respectively (Figure 5D). Furthermore, patients in the test and
validation sets were also divided according to the median risk
score. The OS and ROC analyses of these two subgroups showed
similar results to the training set (Figures 5E–H).

In addition, significant differences in the tumor stage were
observed between low-and high-risk subgroups, such as more
stage-IV and fewer T1 samples in the high-risk subgroup
(Figure 6A). This observation led us to wonder whether the
risk score could function as an independent prognostic factor in
SKCM. To prove this hypothesis, univariate and multivariable
Cox regression analyses were performed. Firstly, univariate Cox
regression analysis revealed that the risk score was certainly
related to prognosis, with the greater the risk score, the poorer
the prognosis (HR = 2.470, p < 0.001. Figure 6B). Secondly,

TABLE 1 | Evaluation parameters of classifiers in different datasets.

Classifiers Datasets Precision Recall F1_score Accuracy ROC AUC Gini KS

KNN Training 1.000 0.974 0.987 98.30% 0.997 0.995 0.974

Testing 1.000 1.000 1.000 95.00% 1.000 1.000 1.000

Validation 1 0.803 0.987 0.886 88.30% 0.962 0.923 0.861

Validation 2 0.843 0.754 0.796 72.50% 0.772 0.545 0.426

L2 Logistic Regression Training 1.000 1.000 1.000 100.00% 1.000 1.000 1.000

Testing 1.000 1.000 1.000 100.00% 1.000 1.000 1.000

Validation 1 0.857 0.994 0.920 92.10% 0.994 0.988 0.953

Validation 2 0.852 0.912 0.881 82.50% 0.844 0.689 0.642

SVM Training 1.000 1.000 1.000 100.00% 1.000 1.000 1.000

Testing 1.000 1.000 1.000 100.00% 1.000 1.000 1.000

Validation 1 0.849 1.000 0.918 91.80% 0.997 0.993 0.957

Validation 2 0.841 0.930 0.883 82.50% 0.831 0.661 0.590

ANN Training 1.000 1.000 1.000 100.00% 1.000 1.000 1.000

Testing 1.000 1.000 1.000 100.00% 1.000 1.000 1.000

Validation 1 0.870 0.994 0.928 92.90% 0.995 0.990 0.955

Validation 2 0.897 0.912 0.904 86.30% 0.858 0.716 0.677

Decision Tree Training 0.974 0.974 0.974 96.60% 0.962 0.924 0.924

Testing 0.833 0.769 0.800 75.00% 0.742 0.484 0.484

Validation 1 0.929 0.949 0.939 94.40% 0.944 0.888 0.888

Validation 2 0.804 0.649 0.718 63.70% 0.629 0.258 0.258

Random Forest Training 1.000 1.000 1.000 100.00% 1.000 1.000 1.000

Testing 1.000 0.923 0.960 95.00% 1.000 1.000 1.000

Validation 1 0.816 0.998 0.898 89.60% 0.995 0.991 0.952

Validation 2 0.873 0.842 0.857 80.00% 0.854 0.709 0.615

XGBoost Training 1.000 1.000 1.000 100.00% 1.000 1.000 1.000

Testing 0.923 0.923 0.923 90.00% 0.984 0.967 0.923

Validation 1 0.703 0.970 0.815 79.90% 0.971 0.941 0.906

Validation 2 0.857 0.842 0.850 78.70% 0.840 0.680 0.607

LightGBM Training 1.000 1.000 1.000 100.00% 1.000 1.000 1.000

Testing 0.917 0.846 0.880 85.00% 0.978 0.956 0.857

Validation 1 0.768 0.994 0.867 86.00% 0.988 0.975 0.929

Validation 2 0.883 0.930 0.906 86.30% 0.839 0.679 0.643

Catboost Training 1.000 1.000 1.000 100.00% 1.000 1.000 1.000

Testing 1.000 0.923 0.960 95.00% 0.989 0.978 0.923

Validation 1 0.836 0.996 0.909 90.90% 0.994 0.989 0.940

Validation 2 0.879 0.895 0.887 83.80% 0.855 0.710 0.624
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A B C

D E F

G H

J K

L M

I

FIGURE 3 | Performance evaluations of diagnostic classifiers based on 9 algorithms. (A–I) ROC curves for evaluating the predictive performance of the diagnostic

models respectively based on K-Nearest Neighbor (A), logistic regression (B), Support Vector Machine (C), Artificial Neural Network (D), decision tree (E), random

forest (F), XGBoost (G), LightGBM (H), and CatBoost (I). Data from GSE98394 were randomly divided into a training set (not shown due to the AUCs were

extremely close to 1.0 in all classifiers) and a testing set (blue line) according to 7:3. Validation 1: the combination of TCGA-SKCM & GTEx-SKIN (red line). Validation

2: GSE112509 (green line). (J) Columns showing the accuracy (%) of each classifier in different datasets. (K) Columns showing the F1 score of each classifier in

different datasets. (L) Columns showing the Gini index of each classifier in different datasets. (M) Columns showing the KS value of each classifier in different datasets.
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multivariable Cox regression analysis showed that the risk score
is an independent prognostic risk factor (HR=2.078, p < 0.001.
Figure 6C). These results suggest that the PRGs-based
prognostic model is robust and independent in predicting the
prognosis of SKCM.

Identification of the Prognostic
Model-Related Biological Processes
It is meaningful to figure out what biological processes were
influenced by the prognostic risk model to make them predictive.
To answer this question, functional enrichment analyses were

A B

C

F

FIGURE 4 | Consensus clustering analysis of PRGs. (A) PCA plot for clusters. (B) KM curves showing the OS of cluster 1 (blue) and cluster 2 (red). HR, hazard

ratio. CI, confidence interval. (C) Heatmap and the clinical characters of the two clusters (T, N, and M are the tumor node metastasis classification) (*p < 0.05).

TABLE 2 | Coefficients in the LASSO Cox regression model.

i Gene Coef

1 GSDMD -0.006861

2 GSDME 0.0003969

3 CASP4 -0.001943

4 GSDMC 0.0079361

5 NLRC4 -0.022123

6 APIP -0.009636

7 AIM2 -0.003569

8 CASP3 -0.00106

9 IL18 -0.000169
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performed. Firstly, GO enrichment was employed to analyze the
DEGs between the low- and high-risk subgroups. It was observed
that genes related to immune cell activation and proliferation
had different expression levels (Figure 7A). Secondly, to further
verify this observation, GSEA was utilized to find enriched

pathways in the KEGG database. Results showed that 53 gene
sets were significantly upregulated in the low-risk subgroup
(normalized p < 0.05 and FDR q < 0.05) but no gene set was
significantly upregulated in the high-risk subgroup (Table S7).
Interestingly, it was observed that the most enriched biological

A B

C E G

D F H

FIGURE 5 | Construction of the PRGs-based prognostic model. (A) LASSO regression of the 7 OS-related genes. (B) Cross-validation for tuning the parameter in

the LASSO regression. (C–H) KM curves showing the OS of the low- (blue) and high- (red) risk subgroups. ROC curves demonstrated the predictive efficiency of the

risk score for 3- and 5-year survival. Data from TCGA-SKCM were randomly divided into a training set (C, D) and a testing set (E, F) according to 7:3. GSE54467

and GSE65904 were merged as the validation set (G, H). HR, hazard ratio. CI, confidence interval.
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processes in the low-risk subgroup were closely associated with
immune responses (Table S7 and Figures 7B–G), including the
chemokine signaling pathway (NES = 2.566), Toll-like receptor
signaling pathway (NES = 2.507), leukocyte transendothelial
migration (NES = 2.488), T cell receptor signaling pathway
(NES = 2.423), cytokine-cytokine receptor interaction (NES =
2.402), NK cell-mediated cytotoxicity (NES = 2.238), etc. These
results proved that the PRGs-based prognostic risk model is
related to immune responses. Based on these findings, we
proposed that the effects of PRGs on predicting the prognosis
of SKCM could be related to the immune microenvironment.
CIBERSORT was employed to estimate the immune cell
component in SKCM tissues. The proportion of 22 human
immune cell subpopulations, including naive and memory B
cells, plasma cells, seven T cell types, NK cells, and myeloid
subsets, was assessed. Results suggested that fractions of activated
CD4+ memory T cells, gd T cells, and M1 macrophages were
significantly higher in the low-risk subgroup, whereas the high-

risk subgroup had a higher fraction of M2 macrophages (Figures
S5, S6). In addition, we retrieved the relationship between
immune cell infiltration and cumulative survival with Timer2.0
(Figures S6B–E). Interestingly, only the contents of
macrophages showed significant associations with survival,
where the high level of M1 macrophages or the low level of
M2 macrophages indicated better survival (Figures S6D, E).
Inflammation can be regulated by various types of tumor-
associated macrophages (45). These findings suggest that, in
the PRGs-based prognostic model, high-risk patients have less
pro-inflammatory M1 macrophages and more anti-
inflammatory M2 macrophages than low-risk patients,
eventually resulting in a worse prognosis.

Identification of Risk-Related Genes
Since PRGs have been shown to have prognostic significance,
identifying risk-related genes would aid in further research into
the function of pyroptosis in SCKM. The correlation of the

A

B C

FIGURE 6 | Univariate and multivariate Cox regression analyses for the risk score. (A) Heatmap and the clinical characters of low- and high-risk subgroups (T, N,

and M are the tumor node metastasis classification) (*p < 0.05, ***p < 0.001). (B, C) Univariate (B) and multivariate (C) Cox regression analyses showing the

significance and hazard ratio values of risk score and clinical characters. CI, confidence interval.
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A

B C D

E F G

FIGURE 7 | Functional enrichment analyses. (A) Bubble graph for GO enrichment (the bigger bubble means the more genes enriched, and the increasing depth of

red means the differences were more significant). (B–G) Representative enrichment plots generated by GSEA reveal that the low risk was significantly associated with

chemokine signaling pathway (B), Toll-like receptor signaling pathway (C), leukocyte transendothelial migration (D), T cell receptor signaling pathway (E), cytokine-

cytokine receptor interaction (F), NK cell-mediated cytotoxicity (G).
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prognostic risk score and the expression level of each gene was
analyzed by Pearson’s correlation analysis to screen the most
relevant genes. Genes with the p < 0.05 and the absolute value of
Pearson Correlation Coefficient (|Cor|) ≥ 0.6 were considered as
the strong-correlated genes (Table S8). Among them, the most
relevant gene is NLRC4 which is also a component of the
prognostic model. Respectively, KM survival analyses were
performed for each gene with the p < 0.05 and |Cor| ≥ 0.7
(Figures 8A–F). It was observed that all the six most relevant
genes were significantly associated with survival, and higher
expression means longer lifespan (Figures 8G–L). These
results imply that these genes may be involved in the
pyroptosis of SKCM and function as protectors to patients.

DISCUSSION

Since pyroptosis may be a double-edged sword for cancer
patients, the most straightforward and concrete way to explain
its importance is to develop pyroptosis-related prognostic and
diagnostic models. The mRNA levels of 20 PRGs were
investigated in SKCM and normal tissues in this study, and it
was discovered that they were all differentially expressed. The
significance of these genes related to the survival of patients was
studied. Several genes that were highly expressed in SKCM and
lowly expressed in normal skin tissues, but those genes were
shown to be associated with a better prognosis, such as GSDMD
and NLRC4, which is consistent with previous findings (46).
Furthermore, diagnosis by a single gene is difficult and
inaccurate. So it seems that a single PRG is unreliable for
SKCM diagnosis and predicting the prognosis. This has
inspired us to explore the diagnostic and prognostic value of
pyroptosis by using a multi-PRG signature.

First of all, we established the SKCM-normal classifiers based
on nine commonly used algorithms. Although there was little
overfitting, the classifiers still had reasonable generalization ability
and classification performance, especially classifiers based on the
ANN, logistic regression, random forest, and SVM. Except for the
decision tree, classifiers constructed from other tree-based
algorithms (random forest, XGBoost, LightGBM, and Catboost)
also had excellent performance. It’s worth noting that differences in
immune infiltration and phenotypic patterns may lead to
differences in diagnostic model performance between validation
set 1 and 2, although these models performed well in these datasets.
Since the PRG signature had the potential to diagnose SKCM but
performed differently across the datasets, it is critical to collect
more training samples and further tune parameters for the
advancement of this SKCM diagnostic method. Clinically,
because the PRGs-based classifiers were constructed using a
dataset containing benign nevi and melanoma (GSE98394), and
it was validated in datasets containing normal skin tissue (GTEx-
SKIN) and benign nevi (GSE112509), they have the potential to
provide a novel approach for distinguishing between malignant
melanoma and benign nevus.

Secondly, we proved that PRGs expression signature has
prognostic value in SKCM. To verify the hypothesis, it was

found that PRGs could cluster SKCM patients, and patients in
different clusters have different clinical outcomes. This suggested
that the occurrence of pyroptosis in tumor tissues may be
different in SKCM patients, which led to a different OS. Then
we constructed a 9-gene prognostic risk model via LASSO Cox
regression analysis, and patients in different risk subgroups had
different OS, which was then validated to perform well in the
external datasets.

Through the enrichment analysis of biological processes for
different risk subgroups, it was found that there were significant
differences in immune-related signaling pathways, which is in
line with our expectations. Because the process of pyroptosis can
lead to the secretion of many inflammatory cytokines, and it is
also the result of inflammasome activation (6, 29). Interestingly,
in addition to the representative results shown in Figure 7, we
also found several signaling pathways associated with
immunological rejection and autoimmune-related diseases
including Type 1 diabetes. This may be due to the fact that
certain patients have been treated with immune checkpoint
therapy, such as ipilimumab (47, 48). While our study centered
on melanoma, the importance of pyroptosis in immune
checkpoint and autoimmune diseases deserves more
investigation. In addition to immune checkpoint therapy, some
commonly used melanoma-targeting drugs, including BRAF and
MEK inhibitors, also affect the immune microenvironment
through pyroptosis (49). Therefore, we hypothesize that
patients will benefit from these drugs, and their curative
efficacy can be monitored by PRGs-based risk score to guide
the treatment.

Furthermore, pyroptosis was firstly discovered in the
infectious pathogenic bacteria Shigella and Salmonella, which
induced lytic cell death in macrophages by activating caspase-1
through secreted effector proteins SipB and IpaB, respectively
(50, 51). As for SKCM, circulating macrophages are selectively
recruited into tumors during tumor development, where they
modify the tumor microenvironment. In response to numerous
microenvironmental signals produced by tumor and stromal
cells, macrophages change their functional phenotypes
including M1 and M2. On one hand, M1 macrophages
participate in the inflammatory response, pathogen clearance,
and antitumor immunity. M1 macrophages have high levels of
the main histocompatibility complex class I (MHC1) and class II
(MHC2) molecules, which are needed for tumor-specific antigen
presentation. As a result, M1 macrophages play an important
role in the inflammatory response as well as antitumor
immunity. On the other hand, the M2 macrophages influence
the anti-inflammatory response, wound healing, and pro-
tumorigenic properties. Tumor-associated macrophages
(TAMs) are M2-polarized macrophages that are important
modulators of the tumor microenvironment to accelerate
tumor progression (52). Coincidentally, by analyzing the
fraction and types of immune cells in the microenvironment,
we found that M1 and M2 macrophages were different between
low- and high-risk subgroups (Figure S6). Nevertheless, it is
crucial to emphasize that using bulk sequencing in tissues to
estimate the immune infiltration is imprecise, so that further
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FIGURE 8 | Identification of risk-related genes. (A–F) Representative results of correlation analysis between the risk score and each gene in SKCM. Cor: correlation

coefficient. (G–L) KM curves showing the relationship between the six most relevant genes and OS. HR, hazard ratio. CI, confidence interval.
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research on the relationship between pyroptosis and TAM in
melanoma tissues, as well as their relevance to patient outcomes,
is worth discussing in future works.

There could be many complicating factors that drive the
variations in gene expression among different tissues, especially
the expression of PRGs and inflammation-related genes,
including the percentage of immune cell infiltration and the
differentiation status of melanoma (49, 53). Although these
factors did not affect the use of PRG expression signature to
diagnose and predict the prognosis of SKCM, the links between
pyroptosis and immune cell infiltration, the differentiation status
of SKCM, and other factors are interesting to investigate, which
may provide novel inspirations to predict the diagnosis and
prognosis of SKCM. To determine whether samples with either
high or low PRGs is related to immune cell contamination, we
investigated if critical PRGs were linked to the expression of
inflammatory components. Firstly, it was reported that GSDME
who can be activated by Caspase 3 to mediate pyroptosis is
expressed in the majority of melanomas (Figure 2A and Figure

S2) (16). Thus, CIBERSORT was utilized to analyze the TCGA-
SKCM dataset and it was observed that the expression level of
GSDME was not significantly related to immune invasion (data
not shown), which indicated that the presence of GSDME may
not be caused by immune cell contamination. Secondly, it was
found that, compared with the canonical Caspase 1-mediated
pyroptosis pathway, the expression level of Casp3 was highly
correlated with the expression levels of some inflammasomes
and inflammatory cytokine-related genes (Figure S1B). Taken
together, it was indicated that a number of melanoma cells
underwent Casp3/GSDME pathway-mediated pyroptosis and
hence generated inflammatory cytokines to recruit immune
cells. In addition, much more research will be required in the
future to fully understand how the PRG-related prognostic and
diagnostic models work.

Finally, we analyzed genes associated with risk scores. In
particular, NLRC4 was the most associated gene with the risk
score, even though it was one component of the prognostic
model. This suggests that NLRC4 inflammasomes may be more
involved in SKCM. The risk score can be estimated using the
expression level of a single NLRC4 gene since it is associated with
OS in SKCM (Figure 8G). Furthermore, it was reported that
Nlrc4-/- mice were shown to have increased tumor development
when injected subcutaneously with mouse B16F10 melanoma
(54). Therefore, the impairment of NLRC4 inflammasome in
melanoma cells and the function in pyroptosis are worth
further study.

In decades, there have been many studies on data mining and
modeling based on gene expression profiles and clinical outcomes
of melanoma patients, which can provide reliable models for the
diagnosis and prognosis of melanoma (55–58). Compared with
these studies, we used candidate genes to establish diagnostic and
prognostic models in one study, which proved that PRGs were
significantly valuable for the diagnosis and prognosis of SKCM. In
terms of diagnostic models, we employed a variety of traditional
algorithms and compared their effectiveness. In future works, we
will refer to previous reports to discuss the potential of these

models in predicting the metastasis of melanoma (55). As for the
prognosis of SKCM, we solely selected the mRNA levels of the
protein-coding PRGs to establish the prognostic model. Although
there were still some gaps with some models based on other genes,
the results suggested that PRGs had an effective prognostic
performance in SKCM (56). In addition to transcriptome data
that can be used for these analyses, we hypothesize that other
omics data, such as proteome and metabolome, can be used
similarly for tumor diagnosis and prognosis.

In conclusion, our study showed 20 PRGs differentially
expressed between SKCM and normal tissues, and their
association with diagnosis and prognosis. Then we showed that
these genes can be used to distinguish between normal and
SKCM tissues. Furthermore, the risk score derived from the
prognostic model based on 9 PRGs was an independent risk
factor for predicting SKCM prognosis, which was found to be
related to the immune microenvironment.
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training set (D), testing set (E), and validation set (F).
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Proportional histogram of the percentage of each immune cell. (B) Heatmap

showing the amount of each immune cell in patients of TCGA-SKCM. (C) Heatmap

showing the relationships among immune cells (the increasing depth of red means

higher significance).

Supplementary Figure 6 | Comparison of the immune microenvironment

between subgroups. (A) Violin plot showing the relationship between the risk score

and immune fractions. The red color represents the high-risk subgroup while the

blue color represents the low-risk subgroup. (B–E) KM curves showing the

relationship between cumulative survival and immune cells in significantly different

infiltrating levels, including activated CD4+ memory T cells (B), gd T cells (C), M1

macrophages (D), and M2 macrophages (E). HR, hazard ratio.
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