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Pyroptosis and necroptosis represent two pathways of genetically encoded necrotic cell death. Although these cell death

programmes can protect the host against microbial pathogens, their dysregulation has been implicated in a variety of

autoimmune and auto-inflammatory conditions. The disease-promoting potential of necroptosis and pyroptosis is likely a

consequence of their ability to induce a lytic cell death. This cell suicide mechanism, distinct from apoptosis, allows the

release of immunogenic cellular content, including damage-associated molecular patterns (DAMPs), and inflammatory

cytokines such as interleukin-1β (IL-1β), to trigger inflammation. In this Review, we discuss recent discoveries that have

advanced our understanding on the primary functions of pyroptosis and necroptosis, including evidence for the specific

cytokines and DAMPs responsible for driving inflammation. We compare the similar and unique aspects of pyroptotic- and

necroptotic-induced membrane damage, and explore how these may functionally impact distinct intracellular organelles and

signalling pathways. We also examine studies highlighting the crosstalk that can occur between necroptosis and pyroptosis

signalling, and evidence supporting the physiological significance of this convergence. Ultimately, a better understanding of

the similarities, unique aspects and crosstalk of pyroptosis and necroptosis will inform as to how these cell death pathways

might be manipulated for therapeutic benefit.

Facts

● Pyroptosis and necroptosis are lytic, inflammatory types

of programmed cell death that require the membrane

damaging GSDMD and MLKL proteins, respectively.
● Pyroptosis and necroptosis protect against infections and

can be triggered by pathogen and host molecules.
● A number of DAMPs are released by pyroptotic and

necroptotic cell death, which have the capacity to trigger

inflammatory responses.
● GSDMD and MLKL signalling both cause potassium

efflux to trigger the NLRP3 inflammasome, resulting in

IL-1β-driven inflammation.

Open Questions

● Are there DAMPs that are released that are unique to

pyroptosis and necroptosis?
● What are the key necroptotic and pyroptotic DAMPs

that contribute to inflammatory responses?
● Does MLKL-induced NLRP3 inflammasome activity

contribute to necroptotic-induced inflammatory disease?
● How critical are GSDMD membrane pores for IL-1β

release and inflammatory responses in different diseases?

Introduction

The idea of cells equipped with an internal instruction

manual to die was first proposed back in 1965 from

the study of developing insect cells [1]. Since then, exten-

sive research has been carried out and has shed light on the

significance and the mechanism of programmed cell death.

It is now established that cells can commit suicide,

either during development, as a consequence of pathogen

invasion, or following cellular stress and metabolic dis-

turbances. The three genetically defined cell death pathways

that have been intensively investigated in recent years are

apoptosis, necroptosis, and pyroptosis.
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Apoptosis was the first programmed cell death

described [2], and in most cases apoptotic effectors such

as caspase-3 and -7 ensure that it remains immunologi-

cally silent [3–6]. In contrast, necroptosis and pyroptosis

are lytic cell death modalities that allow the release of

potential immunostimulatory molecules. Genetic evi-

dence supports the idea that, when activated, these cell

death pathways can induce potent inflammatory respon-

ses in vivo, and thereby may contribute to various

inflammatory disease pathologies [7–10]. However, it is

worth considering that the act of cell death, regardless of

its mechanism, will invariably abrogate cell-intrinsic

inflammatory cytokine production. This may reflect

cell-type and stimulus-specific pyroptotic and necroptotic

signalling scenarios and therefore, in some circum-

stances, the bystander DAMPs released following pyr-

optosis and necroptosis may be less inflammatory than if

the cell did not receive the cues for suicide [11–16]. In

this Review, we focus on the immunogenic nature of

necroptosis and pyroptosis. We compare the similarities

and differences in how the necroptotic and pyroptotic

effectors induce membrane damage, and the mounting

evidence documenting how these modes of cell death

allow the subsequent release of inflammatory cytokines

and DAMPs. We also discuss emerging studies suggest-

ing that necroptotic crosstalk with the pyroptotic

machinery may significantly contribute to the necroptotic

inflammatory response.

An overview of pyroptosis

The act of pyroptosis was first described in 1992 [17], but

the term was coined in 2001 following the observation that

bacteria-infected macrophages underwent a rapid lytic cell

death dependent on caspase-1 activity [18]. Although tra-

ditionally defined as caspase-1-mediated cell death, studies

have revealed other caspases, caspase-11 and its human

orthologs caspase-4 and -5 [19, 20], and more recently the

apoptotic effector caspase, caspase-3 [21, 22], as being

capable of triggering pyroptosis (Fig. 1).

The execution of pyroptotic cell death via these caspases

is a result of their ability to cleave and activate specific

members of the pore-forming gasdermin gene family, which

incorporates six genes in humans and ten in mice. To date,

caspase-1/4/5/11 have been reported to target gasdermin D

(GSDMD) [23, 24], while caspase-3 can process gasdermin

E (GSDME/DFNA5) [21, 22]. Gasdermin N- and C-

terminal linker domain cleavage releases an activated N-

terminal region from an inhibitory C-terminal fragment. As

such, expression of the gasdermin-N domain alone from

GSDMA, GSDMA3, GSDMB, GSDMAC, GSDMD and

GSDME can signal cell death [23, 25], although proteases

that might target GSDMA to GSDMC, and the physiolo-

gical functions of these gasdermins, requires further study.

Nevertheless, a body of evidence supports the idea that

when released by proteolysis, the gasdermin-N domain

binds to acidic phospholipids, such as phsophoinositides

Fig. 1 Gasdermins form membrane pores to cause pyroptosis. A wide

array of extracellular stimuli can drive pyroptosis. In the canonical

model of pyroptosis, inflammasome sensor proteins, such as NLRP3,

recognize cellular stressors, including those from bacteria, viruses,

toxins, ATP, uric acid crystals, silica, and DAMPs. These stressors

activate NLRP3 indirectly through potassium efflux, which leads to

NEK7 binding NLRP3 to trigger its oligomerization.

NLRP3 subsequently activates caspase-1 via the adaptor protein ASC.

Caspase-1 processes and activates IL-1β and IL-18, and also cleaves

GSDMD to release the membrane pore-forming GSDMD-N domain.

GSDMD-N pores promote the release of activated IL-1β and IL-18

and, most likely, DAMPs that can be accommodated by the 10–20 nm

pore diameter. Additional DAMPs will be released following the

collapse of the plasma membrane. Cytosolic LPS binds Caspase-4/5/

11 to trigger their cleavage of GSDMD, but not IL-1β and IL-18. In

addition, recent research has revealed how the apoptotic effector cas-

pase, caspase-3, can cleave GSDME to also cause pyroptotic

death. DAMPs damage-associated molecular patterns, LPS

lipopolysaccharide
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found on the inner leaflet of the mammalian plasma mem-

brane, to form oligomeric death-inducing pores [25–28]. In

vitro studies also suggest that gasdermins can target bac-

terial membranes to cause lysis, although in vivo reports

indicate that bacteria survive the act of pyroptosis and are

cleared by neutrophils [31, 32]. Regardless, we can now

define mammalian cell pyroptosis as being gasdermin-

dependent.

In the canonical model of caspase-1-mediated pyroptosis,

recognition of inflammatory ligands leads to activation of

intracellular multiprotein signalling complexes known as

the inflammasomes (Fig. 1). Among the best studied

inflammasome sensors are absent in melanoma 2 (AIM2),

Pyrin, and the NOD-like receptor (NLR) family members,

NLRP1, NLRP3, and NLRC4 [33]. The AIM2 inflamma-

some, for example, binds specifically to, and is activated by,

cytosolic double-stranded DNA. On the other hand, the

NLRP3 inflammasome responds to a diverse set of mole-

cules, such as ATP, crystalline (e.g. cholesterol crystals)

and viral components which, with few exceptions, trigger

NLRP3 activity by causing potassium efflux and subsequent

association of NEK7 (NIMA-related kinase 7) with NLRP3

[29, 34]. In many cases, including NLRP3, caspase-1 is

recruited to the inflammasome sensor proteins via the

CARD-domain containing adaptor protein, ASC, which

triggers auto-processing of the inactive form of caspase-1 to

its catalytically active species, p46 and p33/p10 subunits

[35]. Activated caspase-1 cleaves and activates GSDMD, as

well as the inflammatory cytokines, IL-1β and IL-18. In

contrast to caspase-1, non-canonical inflammasomes are

defined by their requirement for caspase-4/5/11, which have

been reported to directly bind cytosolic LPS [20], resulting

in their targeting and activation of GSDMD. Although

caspase-4/5/11 do not process IL-1β and IL-18 directly [36],

their activity does cause GSDMD-mediated potassium

efflux, which suffices to induce canonical NLRP3 inflam-

masome formation and IL-1β activation [30, 37]. To date,

caspase-1- and caspase-11-induced GSDMD pore formation

appears requisite for the efficient release of activated IL-1β,

although other membrane damaging pathways, such as

those mediated by mixed lineage kinase domain like pseu-

dokinase (MLKL) or monosodium urate crystals, have been

documented to allow activated IL-1β release in the absence

of GSDMD [24, 38, 39].

An overview of necroptosis

TNF superfamily receptors, such as TNF Receptor 1

(TNFR1), CD95, TRAIL-R1, and TRAIL-R2, can transmit

a cell death signal upon ligand binding via a conserved

cytosolic death domain, and are therefore known as death

receptors (DRs). The first genetic determinant of DR-

induced necroptosis, RIPK1, was discovered by Holler et al.

[40] 18 years ago. However, the term used to describe this

non-apoptotic cell death pathway, necroptosis, was not

coined until 2005 by Degterev et al. [41]. In this study, a

novel compound was identified, necrostatin-1, that blocks

the ability of RIPK1 kinase to induce necroptosis in TNF-

treated cell lines. This discovery sparked tremendous

interest in the cell death community to further characterize

the pathway and, in less than a decade, the two downstream

core components of the necropototic machinery, RIPK3 and

MLKL, have been identified [7] (Fig. 2). Nevertheless, the

quest to acquire a complete picture of the pathway is an

ongoing adventure, highlighted by the identification of post-

translational regulators [42], and experiments showing that

activated MLKL does not necessarily commit a cell to death

[43].

Necroptosis is frequently observed when DR apoptotic

signalling components are rendered non-functional. For

example, most studies to date trigger DR necroptotic killing

by genetic or chemicial inhibition of the cellular inhibitors

of apoptosis proteins (cIAP1/2) and caspase-8, which nor-

mally act to ubiquitylate (cIAP1/2) or cleave (caspase-8)

RIPK1/3 to limit necroptosis [44]. However, when caspase-

8 and/or cIAPs are removed, the activation of RIPK1/3 by

DRs (e.g. TNFR1, CD95, TRAIL-R), Toll-like receptors

Fig. 2 Membrane-associated MLKL induces necroptosis. Necroptosis

can be triggered by death receptors (e.g. TNFR1), the IFNR, and

TLR3/4, which promote the assembly of a RIPK1-RIPK3-MLKL

signalling complex. RIPK3-mediated phosphorylation of MLKL

results in MLKL translocation to the plasma membrane to induce

membrane damage. Damaged membrane shedding, and cell death, is

limited by the ESCRT-III complex. Recent findings have documented

additional necroptotic triggers, such as BH3-mimetic (ABT-737)-

induced MOMP or ZBP1/DAI-induced RIPK3 dimerization. cIAPs

cellular inhibitor of apoptosis proteins, DAI DNA-dependent activator

of IFN-regulatory factors, DAMPs damage-associated molecular pat-

terns, ESCRT-III endosomal sorting complex required for transport

(ESCRT) complex III, INFR interferon receptor, LPS lipopoly-

saccharide, MOMP mitochondrial outer membrane permeabilization,

Nec-1 Necrostatin-1, Smac mimetic; an IAP antagonist, QVD; a pan-

caspase inhibitor
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(i.e. TLR3 or TLR4), or the cytosolic Z-DNA/Z–RNA

sensing receptor, Z-DNA binding protein 1 (ZBP1/DAI/

DLM-1), can directly induce necroptosis. Activation of

these receptors triggers the formation of a RIPK1-RIPK3

cell death platform, termed the necrosome, via RIPK1/3

RHIM-RHIM domain interactions that adopt a hetero-

amyloid structure [45]. Subsequent RIPK3-mediated phos-

phorylation of the necroptotic executioner MLKL [46, 47]

triggers MLKL oligomerization and membrane association,

resulting in plasma membrane damage and the release of

potential DAMPs [48]. Although RIPK1 and its kinase

activity is essential for necroptosis in many conditions,

recent studies have uncovered how a RIPK1 scaffolding

function, in particularly the RHIM, acts as an essential

inhibitor of lethal necroptotic killing by preventing ZBP1

binding and oligomerization of RIPK3 [49, 50]. It is also

pertinent to note that both RIPK1 and RIPK3 have several

non-necroptotic transcriptional (e.g. inflammatory cytokine

induction) and post-translational (e.g. activation of apop-

totic cell death) functions [51]. Therefore, mammalian

necroptosis is best defined by its requirement for MLKL.

Pyroptosis and necroptosis: death with a
difference?

A body of evidence shows that both pyroptosis and

necroptosis represent lytic cell death pathways that are

inflammatory in nature. However, as suggested by their

different genetic determinants, pyroptotic and necroptotic

killing may also serve distinct purposes. For example,

necroptosis is mostly observed as a backup cell death

defence mechanism that is triggered when apoptosis is

hindered, such as during pathogen infection [52, 53], which

is highlighted by caspase-8 inhibition of lethal necroptotic

signalling [54, 55]. On the other hand, pyroptosis is a pri-

mary cellular response following the sensing of potentially

damaging insults, which include pathogen ligands, DAMPs,

altered levels of host metabolites and environmental

irritants.

GSDMD versus MLKL: mechanism of
membrane damage

Activation of GSDMD is mediated by proteolytic cleavage,

whereas a phosphorylation event is essential for MLKL

activation during necroptosis. RIPK3 phosphorylation of

MLKL will shift the equilibrium from inert cytoplasmic

monomeric MLKL to membrane-associated MLKL oligo-

mers [56–58]. The monomer-to-oligomer transition as an

essential step in the capacity of MLKL to induce membrane

damage has also been observed in the GSDMD-N domain

[25, 28, 59]. Whether GSDMD and MLKL-induced mem-

brane damage are sufficient to allow the release of DAMPs

and other small soluble cytosolic factors prior to complete

cell lysis, and their physiological relevance, is a topic of

ongoing interest. However, reports have suggested that pre-

lytic GSDMD pores may allow ion flux, or even cytokine

release, prior to plasma membrane rupture [60]. Several

studies have further hinted on this possibility, for instance,

with MLKL/GSDMD-mediated or GSDMD-independent

IL-1β release being detected prior to cellular lysis, or even

in the complete absence of cell death [38, 61–66].

The GSDMD-N domain oligomers form membrane

pores with ring diameters of ~10–20 nm [25, 27], while

cryo-electron microscopy indicates that the GSDMA-N

domain forms a 26- to 28-fold single ring anti-parallel β-

barrel 18 nm pore [67]. Unlike GSDMD, the mechanism of

the membrane damage resulting from activated MLKL is

less clear. RIPK3-mediated phosphorylation of the MLKL

activation loop within the pseudokinase domain unleashes

the killer, oligomeric and membrane associated, N-terminal

4-Helical Bundle (4HB) domain. The ability of the MLKL

4HB domain to permeabilize liposomes suggests it has

direct pore forming, or membrane damaging capacity [68–

70], and the size of MLKL-initiated membrane perforations

have been estimated at ~4 nm [71]. However, other studies

have suggested that activated MLKL binds ion channels and

induces ion flux [56, 57], or can form cation channels [72].

Moreover, mutant MLKL constructs have been documented

to oligomerize and associate with membranes, yet fail to

induce cell death, implying that additional factors may be

required for membrane perforation [58]. More recently, it

was reported that activated MLKL formed disulphide bond-

dependent amyloid-like fibres that were required for

necroptotic killing [73]. Whether these MLKL fibres recruit

additional necroptotic factors to cellular membranes, or

directly engage membrane binding and damage, remains

unclear.

MLKL and GSDMD killing can result in distinct

morphologies [59, 60]. This may be explained by variation in

MLKL and GSDMD membrane targeting and pore formation,

or experimental differences in the kinetics of necroptotic and

pyroptotic killing. The non-selective diffusion of ions triggered

by GSDMD-N pore formation has been suggested to explain

the reduced cell swelling and flattened cytoplasm during pyr-

optosis, and cells undergoing pyroptosis remain adherent until

the plasma membrane is compromised [59, 60]. In contrast,

necroptotic signalling results in cellular detachment, and ion-

selective MLKL damage has been reported to impact intra-

cellular osmolarity and cause cell swelling and subsequent

osmolysis [59]. However, as both cell death mechanisms

invariably rupture the plasma membrane, Annexin V staining

of phosphatidylserine does not distinguish between apoptosis,

pyroptosis, or necroptosis [43, 74, 75].
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GSDMD versus MLKL: membrane association
and subcellular localization

The killer GSDMD-N domain has been reported to bind

phosphoinositides (PIPs), such as PI(4,5)P2 and PI(3, 4,5)

P2, which are found on the inner leaflet of the plasma

membrane, and also to cardiolipin [25, 28, 59]. Cardio-

lipin is present in bacterial membranes and may therefore

also explain the direct in vitro bacterial killing capacity of

the GSDMD-N domain [25, 28]. The presence of

GSDMD binding PIPs on numerous organelles, the co-

fractionation of the GSDMD-N domain to intracellular

membranes, such as endosomes and lysosomes, and the

observation that lysosome and mitochondrial damage

occurs during pyroptotic signalling prior to plasma

membrane rupture [25, 60], suggests that GSDMD might

target and perforate multiple organelles, not just the

plasma membrane.

The lipid binding profile of MLKL has been reported to

be similar to GSDMD, with studies demonstrating that

MLKL can bind to cardiolipin and negatively charged PIPs

to enable its redistribution to the plasma membrane [57, 68,

69]. In particular, it has been suggested that MLKL acti-

vation first triggers MLKL 4HB domain low-affinity PIP

binding to enable plasma membrane targeting, which sub-

sequently exposes high-affinity MLKL 4HB domain PIP-

binding sites, with a preference for PI(4,5)P2 interactions

[70]. Other than the plasma membrane, localization studies

have implicated MLKL in targeting a diverse number of

cellular organelles, including lysosomes, mitochondria, the

endoplasmic reticulum [68] and the nucleus [76]. Whether

MLKL functionally impacts these other organelles has yet

to be thoroughly assessed. However, emerging studies have

implicated nuclear MLKL in limiting its necroptotic killing

potential [77], mitochondrial MLKL in RIPK3-mediated

induction of aerobic respiration [78, 79], while activated

MLKL may disrupt lysosomal function [80] and also pro-

mote vesicle trafficking and extracellular release [43, 74,

81]. Notably, the latter event has been reported to allow

shedding of activated MLKL, thereby removing damaged

membranes and promoting cellular survival [43, 81].

Whether similar membrane release functions exist to limit

gasdermin killing has yet to be documented, although like

necroptosis, membrane blebbing has been observed during

pyroptotic killing [32, 60].

What are the primary functions of GSDMD-
mediated pyroptosis?

Gain-of-function mutations in inflammasome sensor

proteins, such as NLRP3, Pyrin, NLRC4 and NLRP1, all

result in auto-inflammatory disease that is typically

treated by blocking IL-1 activity. Although the initial

characterization of GSDMD documented its importance

in IL-1β and IL-18 release from macrophages [23, 24],

whether GSDMD mediated IL-1β release in vivo was a

key determinant in inflammasome-driven disease

remained unclear. Recently, mice expressing activating

mutant Pyrin, responsible for Familial Mediterranean

Fever (FMF) in humans that is successfully treated with

anti-IL-1 biologics, were crossed to GSDMD deficient

animals [82]. The complete amelioration of disease

symptoms, such as elevated IL-1β, runting, tissue injury,

anaemia, neutrophilia and splenomegaly, demonstrated

that an important in vivo function of GSDMD, and by

extension pyroptosis, is to allow the exit of

inflammasome-activated cytokines such as IL-1β.

Other inflammasome-driven auto-inflammatory disease

model mice have yet to be crossed to GSDMD deficient

mice to define if disease pathology is rescued to the same

extent as IL-1β and/or IL-18 loss. However, NLRP3 mutant

mice resembling CAPS are better protected following the

loss of caspase-1 compared to the combined deletion of the

IL-1R and IL-18 [83]. This highlights that in some auto-

inflammatory disease models, pyroptosis and/or DAMP

release may play a significant role in disease pathology. In

line with this idea, haematopoietic progenitor cell pyr-

optosis is observed in NLRP1a auto-activating mice that is

also independent of IL-1 [84].

The loss of inflammasome sensors, adaptors, caspases,

and cytokines, have documented their importance for the

control of many pathogen infections, including bacterial,

fungal, and protozoan [10]. Distinguishing the functions of

pyroptosis versus inflammasome-activated cytokines is

challenging as both are initiated by caspase-1/4/5/11 sig-

nalling. However, recent evidence supports the idea that

pyroptosis is responsible for HIV-induced CD4 T-cell death

[85], and the clearance of intracellular infections. For

example, elegant genetic experiments comparing IL-1β and

IL-18 deficiency with caspase-1/11 loss have documented

that pyroptosis is required for optimal control of bacterial

infections, including Legionella pneumophila, Bulkholderia

thailandensis, Chromobacterium violaceum, and flagellin-

expressing Salmonella typhimurium [31, 86–88]. Macro-

phage pyroptotic structures termed pore-induced intracel-

lular traps (PITS) have been described to capture

intracellular bacteria to promote bacterial clearance, akin to

neutrophil extracellular traps (NETS), and it has been sug-

gested that necroptotic-induced structures may play a

similar role [32]. Interestingly, chemical induction of mac-

rophage apoptosis upon Legionella infection prevents lethal

disease and also triggers bacterial clearance, implying that

cell death of pathogen-containing cells, regardless of its

modality, can act as a potent anti-pathogen immune

response [89].
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The role of the terminal effector of pyroptosis, GSDMD,

in infection has yet to be examined in detail. However, one

recent study reported that diminished neutrophil killing

resulting from GSDMD deficiency enhances host responses

against Escherichia coli infection [14]. Whether pyroptosis

is beneficial or harmful to the host may be cell type and

context-dependent, and therefore warrants further research.

What are the primary functions of MLKL-
mediated necroptosis?

Evidence to date supports the hypothesis that mammalian

necroptosis primarily exists to counteract pathogen infections,

to destroy the microbial replicative niche and/or to trigger an

inflammatory anti-microbial response through the release of

DAMPs. First, necroptosis is triggered by PRRs, such as DAI

and TLRs, which have evolved to sense pathogen molecules.

Second, the physiological engagement of necroptosis can occur

in vivo following infection, and can serve as an efficient back-

up cell death mechanism when apoptosis is inhibited by

pathogen molecules [53, 90]. Third, both viral and bacterial

pathogens have been shown to directly target the necroptotic

machinery to prevent cell death, suggesting that pathogen fit-

ness is enhanced by limiting necroptotic killing and/or the

ensuing host inflammatory response [91]. Fourth, unlike dele-

tion of essential apoptotic effectors, genetic deletion of the core

necroptotic machinery, RIPK3 and MLKL, has no significant

role in animal development. This phenotype, or lack thereof, is

similar to inflammasome-deficient animals, which display no

abnormalities until challenged with infectious or damaging

environmental agents.

The genetic deletion of inhibitors of necroptosis, such as

RIPK1, FADD, and Caspase-8, has provided proof of MLKLs

ability to trigger tissue damage and induce potent inflammatory

responses [8]. This implies that the unwanted engagement of

necroptosis may contribute to inflammatory-driven diseases,

similar to the disease-inducing potential of excessive inflam-

masome signalling. In line with this idea, necroptotic MLKL

signalling has been implicated in various pathological settings,

such as TNF-induced shock [92–94] and ischaemia-reperfusion

injuries involving the kidney and heart [95–97]. Several other

inflammatory conditions, such as atherosclerosis, have also

been linked to RIPK1 and/or RIPK3 signalling, although a role

for MLKL has yet to be defined [8].

Necroptotic to pyroptotic crosstalk: is the
NLRP3 inflammasome a driver of
necroptotic-induced inflammation?

As documented above, pyroptosis and necroptosis appear

to benefit mammalian health by inducing the death of

infected or damaged cells, and by their capacity to acti-

vate inflammatory signalling pathways. Genetic evidence

indicates that a primary function of GSDMD-mediated

pyroptosis is to allow the release of the caspase-1 acti-

vated cytokines, IL-1β and IL-18. Therefore, the question

arises as to whether necroptosis-induced inflammation

might also be driven by the release of inflammasome-

activated cytokines? Several lines of evidence lead cre-

dence to this hypothesis. Initial studies demonstrated that

the deletion of genes linked to human inflammatory dis-

eases, the inhibitor of apoptosis proteins (IAPs) [98–100],

and the ubiquitin-editing enzyme A20 [101], induced

RIPK3 to promote NLRP3-caspase-1-mediated IL-1β

secretion. Subsequently, genetic experiments, including

the use of MLKL and inflammasome knockout macro-

phages, confirmed that necroptosis signalling could trig-

ger a RIPK3-MLKL-NLRP3-Caspase-1 axis that resulted

in IL-1β maturation [38, 39, 65, 102] (Fig. 3). Notably,

single cell analysis documented that activated MLKL

triggered NLRP3 in a cell intrinsic manner, thereby

eliminating the potential for NLRP3 to be activated as a

consequence of DAMP release [38]. Mechanistically,

membrane-associated MLKL caused potassium efflux

to induce NLRP3 signalling, in line with how NLRP3

is activated by chemically and structurally diverse

stimuli.

The first in vivo evidence that necroptotic-induced IL-

1 is important for necroptotic-driven inflammation

resulted from the restricted deletion of the key RIPK3-

MLKL necroptotic repressor, caspase-8, in dendritic

cells (DCs) [103]. Unlike the RIPK3-MLKL-driven

embryonic lethality resulting from whole animal

caspase-8 loss, DC-restricted caspase-8 deletion was

well tolerated. Strikingly, however, the loss of DC

caspase-8 dramatically sensitized mice to endotoxic

shock that was prevented by inhibition of RIPK1 kinase

activity, co-deletion of RIPK3, or downstream inhibition

of IL-1 and, in vitro, MLKL silencing. On the other

hand, TNF neutralization had no impact. This study is

important because it demonstrates that necroptotic-

induced disease may, in some circumstances, be inhib-

ited by targeting a single downstream inflammatory

mediator. More recently, it was reported that MLKL

activation in the intestinal mucosa was required for

inflammasome-mediated protection against Salmonella

infection [104], while Staphylococcus toxin-induced

MLKLtriggered NLRP3 activation to promote dama-

ging inflammation [105]. It will be interesting to define

which other necroptotic disease models may also

respond to NLRP3 inflammasome inhibition, or whether

there are other specific DAMPS, such as HMGB1, whose

targeting may be useful to limit damaging, necroptotic-

induced, inflammation.
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Sterile DAMPs associated with pyroptosis
and necroptosis, and the evidence for their
physiological significance

Pyroptotic and necroptotic death pathways both allow the

release of immunogenic cellular content (DAMPs), which

have been suggested as direct activators of PRRs and

immune cells that can trigger inflammatory responses

(Table 1). While this is certainly true for members of the IL-

1 family, such as IL-33 and IL-1α, the in vivo evidence for

direct inflammatory functions of other proposed DAMPs

has been controversial. For example, heat shock proteins

(HSPs) have been suggested to limit inflammation, with

HSP70 expression conferring protection against the TNF

shock model [106] that is mediated by necroptotic signal-

ling. Similarly, HMGB1 has been suggested to act as an

indirect amplifier of TLR-induced inflammation, not a direct

ligand [107], and in some inflammatory models thought to

be driven by HMGB1, its genetic deletion has little impact

[108]. Perhaps surprisingly, it has been assumed that the

types of DAMPs released following necroptosis or pyr-

optosis are similar, independent of the molecular mechan-

ism that triggers membrane rupture. In this section, we

examine DAMPs that activate caspase-1 and pyroptotic

responses, the DAMPs released as a result of necroptotic or

pyroptotic killing, and the evidence to support their phy-

siological significance.

Pyroptosis and HMGB1

The injection of high-dose LPS into mice has been docu-

mented to cause lethality through caspase-11 and GSDMD

pyroptotic activity [19, 24]. GSDMD-induced NLRP3

activity also likely impacts LPS responses in vivo, as loss of

NLRP3 [109], or combined targeting of IL-1β and IL-18

[110] can also protect against LPS killing. However, evi-

dence suggests that these inflammasome-associated cyto-

kines, and NLRP3 itself, are dispensable at higher doses of

LPS, or under different laboratory/environmental conditions

[19, 111], implicating pyroptotic cell death and/or the

combined actions of other inflammatory mediators, such as

IL-33 [112] and TNF [113], in murine endotoxic shock

lethality.

Inflammasome-mediated pyroptosis promotes the release of

HMGB1, and the neutralization of HMGB1 has also been

reported to protect against LPS lethality [114, 115], even when

killing occurs independent of IL-1β and IL-18 [111]. Simi-

larly, the activation of NLRC4-driven pyroptosis triggers

HMGB1 release, with the inflammatory functions of released

HMGB1 dependent on HMGB1 acetylation and disulphide

bonding [116]. Interestingly, extracellular HMGB1 may fur-

ther propagate inflammatory responses through bystander

macrophage endocytosis, resulting in lysosomal rupture and

caspase-1 activation [117]. Perplexingly, however, the genetic

deletion of HMGB1 in interferon responsive cells, as opposed

to the use of neutralizing antibodies, did not alter LPS-induced

lethality despite significantly reduced serum HMGB1 levels

[108]. It is possible that unknown intracellular functions of

HMGB1 are important for protecting against target cell LPS

responses, similar to HSP70 [106]. Regardless, the genetic

loss of HMGB1 has confirmed it as a bona fide DAMP, as its

deletion significantly reduces neutrophil recruitment following

necrotic tissue damage, and confers protection from hepatic

ischaemia reperfusion- and acetaminophen-induced liver

injury.

Fig. 3 Necroptotic signalling activates the NLRP3 inflammasome to

drive inflammation. Both the pyroptosis and the necroptosis pathways

can activate the NLRP3-IL-1β signalling axis. Data support the

hypothesis that both caspase-4/5/11 induction of GSDMD pores, or

MLKL-induced membrane damage, cause potassium efflux. As a

result, NEK7 binds and triggers NLRP3 inflammasome formation.

Activated IL-1β is subsequently released from pre-lytic GSDMD and

MLKL membrane perforations that may also accommodate appro-

priately sized DAMPs. Subsequent cellular rupture allows the release

of larger DAMPs. DAMPs; damage-associated molecular patterns
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Necroptosis and HMGB1

Unlike pyroptosis, a role or HMGB1 in necroptotic-induced

inflammation is less clear. While HMGB1 can clearly

contribute to detrimental inflammation in necrotic mouse

models [48, 118, 119], the levels of plasma HMGB1 in

neonate RIPK1-deficient mice was reported as similar to

wild-type animals, despite other inflammatory markers,

such as IL-33, being elevated in a RIPK3- and MLKL-

dependent manner [120]. In fact, it has been suggested that

HMGB1-RAGE-induced transcriptional responses may

suppress LPS-induced necroptosis by limiting TLR4

receptor expression levels [121]. Nevertheless, the activa-

tion of necroptosis signalling in cancer cell lines has been

reported to trigger immunogenic cell death that can enhance

tumour immunity. In this context, it has been documented

that, in some cancer cell types, RIPK3 and MLKL are

required for optimal release of HMGB1 and ATP from

tumour cells killed by chemotherapy, and that these DAMPs

generate an efficient anti-cancer immune response [118]. In

other cancer cell types, RIPK1-RIPK3 activation of NF-κB

and cytokine production, not necroptotic DAMP release,

has been suggested as the key determinant for efficient anti-

cancer immune responses [122]. It will, therefore, be

informative to define if, in cancer models treated with

necroptotic stimuli [123, 124], DAMPs such as HMGB1

and ATP contribute to cancer immunity.

Two inflammatory disease animal models that have

implicated MLKL and necroptosis in disease pathology are

TNF-induced systemic inflammatory response syndrome

(SIRS) and kidney-ischaemia reperfusion injury [97].

Although in vitro TNF-induced necroptosis can result in

HMGB1 release, its role in TNF SIRS severity remains to

be addressed. Interestingly, however, the neutralization of

HMGB1 can significantly protect from kidney-ischaemia

reperfusion injury, while the administration of recombinant

HMGB1 can exacerbate kidney damage in this model [125].

Therefore, necroptotic-mediated HMGB1 release may

contribute to ischaemia-reperfusion pathology.

ASC specks

Following pyroptosis, released ASC specks have been

reported to act in a DAMP-like manner. For example, they

have the capacity to activate extracellular caspase-1, as well

as be engulfed by bystander macrophages, resulting in

lysosomal rupture and subsequent engagement of cytosolic

Table 1 Sterile DAMPs associated with inflammasome, pyroptosis, and necroptosis signalling

DAMPs Experimental validation References

HMGB1 Observed in both pyroptosis and necroptosis, and has been reported to propagate

inflammation in vitro and in vivo during both these modes of cell death.

[111, 114, 115, 118, 120,

125]

S100a9 Not reported in pyroptosis. Released during necroptosis but its significance remains

undetermined.

[129]

HSPs (e.g. HSP70 and

HSP90)

HSP90 is required for both NLRP3 inflammasome and necroptotic signalling, while

HSP70 expression can protect from TNF-induced shock, which is mediated by both

necroptotic and apoptotic cell death. Potential DAMP role not determined.

[106, 130–132]

ATP Released during necrotic cell death and chemotherapy-induced necroptosis. At high

concentrations ATP is a potent activator of the NLRP3 inflammasome.

[109, 118, 134].

Mitochondria/mtDNA Released following TNF-induced apoptotic/necroptotic cell death in vivo in a

RIPK3-dependent manner. Necroptotic disease relevance unclear. Cytochrome C

released following pyroptosis, suggesting extracellular mtDNA will also be present.

Cytosolic mtDNA preferentially activates the AIM2 inflammasome.

[60, 92, 138, 139, 143].

ASC specks ASC particles released during pyroptosis can be phagocytosed to propagate

inflammasome activation in neighbouring cells. Detected in human and murine

inflammatory disease serum in vivo, but physiological relevance yet to be clarified.

Potential to occur following MLKL-induced inflammasome activation not yet

reported.

[126, 127]

IL-1α Can be released in a caspase-1 dependent manner during pyroptosis. Also released

from macrophages during necroptosis, RIPK3/caspase-8 apoptotic signalling, or

apoptotic bodies. Implicated in numerous cell death-associated pathologies.

[38, 92, 98, 100, 146, 153,

168]

IL-33 Necroptosis increases serum levels of cleaved IL-33 in vivo, predicted to be

biologically active. LPS lethality is reduced in IL-33 deficient animals.

[112, 120, 129]

Cholesterol and MSU

crystals

Activate the NLRP3 inflammasome to promote atherosclerosis (cholesterol crystals)

and gout (MSU crystals). Evidence accumulated using mouse models supported by

clinical studies targeting IL-1.

[148, 164–166]

DAMPs damage-associated molecular patterns, HMGB1 high-mobility group box 1 protein, HSP heat shock protein, mtDNA mitochondrial DNA,

MSU monosodium urate

106 D. Frank, J. E. Vince



caspase-1 [126, 127]. The injection of ASC specks into

mice is also sufficient to generate inflammatory responses.

Notably, ASC specks have been detected in broncoalveolar

lavages from inflamed lungs and bacterially infected mice,

as well as the serum of CAPS patients, who express gain-of-

function NLRP3 mutations and are successfully treated with

anti-IL-1 biologics [126, 127]. Whether extracellular ASC

specks act as a bona fide DAMP to influence inflammatory

responses in these diseases, however, requires further

research.

S100

The S100 protein consists of 24 members that exhibit

diverse functions, including in inflammation by acting as

proinflammatory DAMPs during accidental necrosis [128].

Although the expression level of one of the members,

S100a9, was upregulated in caspase-8-deficient epidermal

keratinocytes [129], it is not clear at this stage whether the

increase was related to necroptosis. There is currently no

report regarding the presence of this DAMP during

pyroptosis.

HSPs

Currently there is a lack of data available examining the

release of these immunogenic proteins during pyroptosis

and necroptosis, even though these chaperones have been

frequently associated with cell death. HSP70 release, for

instance, was only reported after necrotic cell death [130],

and its expression actually confers protection against the

TNF shock model [106] that is mediated by necroptotic

killing [97]. Intracellular roles of HSP90 include essential

functions in activating the NLRP3 inflammasome [131] and

necroptotic cell death [132]. However, whether this cha-

perone is released in the extracellular milieu and retains

DAMP-like functions in both scenarios has not been

determined.

ATP

Cell death and tissue damage results in high extracellular

levels of ATP which can act as an immunomodulatory

DAMP, including a potent ability to trigger activation of the

NLRP3 inflammasome and pyroptosis in innate immune

cells [133]. In murine cells, TLR stimulation by ligands,

such as LPS, primes cells for inflammasome activation by

inducing NLRP3 and IL-1β expression, but is insufficient

for inflammasome activation. However, high levels of

extracellular ATP act on the purinergic receptor, P2X7R, to

trigger potassium ion efflux and NLRP3 inflammasome

activity [109]. On the other hand, in human monocytes, LPS

alone can stimulate both IL-1β synthesis (priming) and

inflammasome activation. It has been suggested that LPS

stimulates ATP release, which then acts in an autocrine

manner to activate the P2X7R and NLRP3 signalling [134].

However, more recent reports indicate that LPS-induced IL-

1β activation in human monocytes results from a TLR-

caspase-8-NLRP3 signalling axis that occurs independent of

ATP release and cell death [135]. It has also been suggested

that chemotherapeutic-induced tumour cell death and ATP

release triggers P2X7R-induced NLRP3 activation in DCs

to promote anti-tumour immune responses [118, 136].

Similarly, pressure-disrupted necrotic cells can trigger

bystander cell NLRP3 inflammasome activation in vitro and

in vivo, and this appears to result from the ability of NLRP3

to respond to released mitochondrial ATP [137].

Mitochondrial DNA

Another DAMP that has the ability to trigger innate immune

responses is mitochondrial DNA (mtDNA). It was sug-

gested that blockade of mitophagy and the accumulation of

damaged mitochondria, or canonical NLRP3 inflammasome

activators themselves, trigger mitochondrial apoptosis to

promote oxidized mtDNA release, which subsequently

binds and activates NLRP3 [138, 139]. However, experi-

ments revealed that mtDNA, if present in the cytosol, is

most efficient in activating the DNA-sensing AIM2

inflammasome [138–140]. Moreover, deletion of the

essential mitochondrial apoptotic effectors BAX and BAK

had no influence on the capacity of canonical NLRP3

activators to trigger NLRP3 signalling [141]. On the other

hand, it has been reported that downstream of NLRP3 and

AIM2 inflammasome formation, caspase-1 mediates mito-

chondrial damage and inhibits mitophagy [142]. The block

in autophagy-mediated mitochondrial degradation suggests

that mitochondrial components, such as mtDNA, are likely

to accumulate and be released into the extracellular milieu

during pyroptosis, albeit this has yet to be experimentally

tested. However, cytochrome C has been detected in the

media following pyroptotic death in vitro, implying that

mtDNA will also be released [60].

Whether mtDNA acts as a bona fide DAMP following

necroptotic killing has yet to be determined. It was recently

documented that TNF-induced necroptosis results in release

of extracellular intact mitochondria, and that these mito-

chondria can be phagocytosed by macrophages and DCs to

induce cytokine production and cellular maturation,

respectively [143]. This observation contrasts findings

suggesting that necrotic cell death triggers the release of

mtDNA to signal inflammation [144], and results
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documenting the detection of mtDNA in the plasma of

TNF-challenged wildtype, but not RIPK3-deficient, mice

[92]. Whether necroptotic-induced mitochondria or mtDNA

release significantly impacts necroptotic inflammatory

responses in vivo is unclear.

IL-1α

The spectrum of immune consequences resulting from IL-

1R signalling is not only IL-1β-dependent. IL-1α acti-

vates the same cell surface receptor as IL-1β, IL-1R, and

is frequently released from dying cells, including down-

stream of inflammasome activation [145]. However,

caspase-1 does not target IL-1α for proteolysis. Instead,

caspase-1 degrades the IL-1R2 that is bound to IL-1α,

thereby releasing IL-1α and allowing its processing by

macrophage calpain-like proteases to a p17 fragment that

has increased biological activity [146, 147]. However, it

has been reported that full-length IL-1α also possesses

biological activity and its release is often observed in cell

death-associated conditions, such as atherosclerosis and

ischaemia-reperfusion injury, for which both necroptotic

and pyroptotic signalling components have been impli-

cated [97, 148–152]. Notably, elevated serum and peri-

toneal lavage fluid IL-1α (and IL-1β) is also observed

following sensitization to apoptotic, LPS-induced,

caspase-8 activation, both in vitro and in vivo, implying

that IL-1α has the potential to trigger an inflammatory

response regardless of the cell death mechanism [98,

100]. This idea is consistent with findings documenting

the inflammatory potential of IL-1α containing apoptotic

bodies [153].

Macrophages undergoing TNF-induced necroptotic

death also release IL-1α [38]. In the TNF-induced shock

model, IL-1α serum levels are elevated in wildtype, RIPK3-

and MLKL-deficient animals, but do not increase with TNF

injection upon loss of both MLKL and Caspase-8, con-

sistent with this model triggering both necroptotic and

apoptotic cell death [97]. Similarly, the plasma of RIPK1-

deficient animals contained greatly elevated levels of IL-1α

that is a likely consequence of MLKL and caspase-8 killing

[154]. RIPK3 loss was reported to protect from cecal liga-

tion and puncture (CLP)-induced sepsis, and this also cor-

related with reduced blood cytokine levels, including IL-1α

[92]. Of note, loss of the inflammasome activated cytokines,

IL-1β and IL-18 protect against CLP lethality, but in a

caspase-1 and -11 independent manner [110], implicating

other pathways, such as caspase-8, in their cleavage-

induced activation [98, 155]. Although the contribution of

IL-1α to CLP animal mortality was not examined in this

study [110], combined therapeutic targeting of IL-18, and

anakinra to inhibit both IL-1α and IL-1β, afforded greater

protection from CLP-induced killing than genetic loss of

just IL-1β and IL-18. Whether IL-1α, IL-1β and IL-18

activation and release in this model reflects necroptotic and/

or apoptotic signalling remains unclear [156].

IL-33

IL-33, like IL-1α, is a chromatin-associated member of the

IL-1 family implicated in innate and adaptive immune

responses. During apoptosis, IL-33 is cleaved by apoptotic

caspases to destabilize the protein and limit its biological

activity [157]. Although IL-33 was suggested to be acti-

vated by caspase-1 processing [158], subsequent studies

have reported that IL-33 is not a substrate for caspase-1

[157, 159], or that caspase-1 can inactivate it [160].

Regardless, upon necrosis induction, through agents like

hydrogen peroxide or sodium azide treatment, full-length

IL-33 is readily detected in the cell supernatant, and

recombinant full-length IL-33 is an efficient activator of the

interleukin-1 receptor family member, ST2 [157]. Notably,

an IL-33 fragment, with a molecular weight likely reflecting

increased biological activity, was detected in the plasma of

RIPK1-deficient mice that was dependent on the presence

of RIPK3 and MLKL, but not caspase-8 [154]. Together

with an earlier observation highlighting increased IL-33

expression in necroptotic epidermal keratinocytes [129],

these findings implicate IL-33 as a necroptotic DAMP. It

remains feasible that in the above genetic models studied,

IL-33 release reflects the indirect actions of necroptotic

killing. The potential for direct pyroptotic-induced IL-33

release also remains to be clarified. However, LPS-induced

lethality is reduced in IL-33-deficient mice [112] implying

that IL-33 may contribute to the pyroptotic-generated

inflammatory response. Nonetheless, in other inflamma-

tory models, such as allergic asthma, caspase-1 has been

reported to either limit [161], or increase [162], IL-33

levels.

Cholesterol crystals and MSU

Cholesterol crystals are a feature of atherosclerotic plaques

and can be phagocytosed by macrophages to activate the

NLRP3 inflammasome. The loss of NLRP3 and IL-1 sig-

nalling significantly protects against atherosclerosis in low-

density lipoprotein (LDL)-receptor-deficient mouse models

[148]. Additional DAMP molecules, including fatty acids

and oxidized LDL, have also been implicated in NLRP3

activation in the context of cardiovascular disease [163]. In

line with sterile DAMPs triggering inflammasome-driven

inflammation that can contribute to coronary heart disease,

the recent CANTOS trial results demonstrated the clinical
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efficacy of inhibiting IL-1β to protect from cardiovascular

events [164].

MSU crystallization in joints acts as a potent DAMP that

causes the inflammatory arthritis termed gout. Like cho-

lesterol crystals, MSU crystals are phagocytosed by mac-

rophages to induce lysosomal rupture and subsequent

NLRP3 inflammasome activity [165]. Mouse models sug-

gested that targeting NLRP3 and IL-1 would be beneficial

in the treatment of gout, with subsequent clinical trials using

anti-IL-1 biologics proving this to be correct [166]. There-

fore, there is significant evidence implicating mammalian

particulate DAMPs as inducers of IL-1-driven disease.

Whether GSDMD contributes to these pathologies will be

of significant interest to determine [167].

Conclusions

A significant body of evidence implicates both necrop-

totic and pyroptotic killing in host protection from

infectious pathogens. As demonstrated by the apoptotic

clearance of intracellular pathogens [89], any mode of

cell death has the capacity to destroy a pathogens repli-

cative niche and expose it to the immune system. The

potential advantage conferred by pyroptosis and necrop-

tosis is the release of immunogenic molecules that can

contribute to anti-microbial activity, or even anti-cancer

immune responses. At face value, therefore, both modes

of lytic cell death appear remarkably similar. However,

while it has been established that a principle function of

the GSDMD pores are to ensure the efficient release of

activated IL-1β and IL-18, it remains unclear whether

MLKL-induced membrane perforations are similar in

nature and can also target the release of specific disease-

causing inflammatory mediators. Although initial studies

suggest that necroptosis can drive pathological NLRP3-

caspase-1 and IL-1β activation in innate immune cells,

the key inflammatory DAMPs and cytokines released

following necroptotic killing of cell types that do not

express the inflammasome machinery will be important to

investigate. Moreover, the physiological roles of pyr-

optotic gasdermins other than GSDMD remain very much

unclear. Whether sub-lethal gasdermin activation and

targeting to distinct intracellular membranes can occur, as

reported for MLKL, will be important to investigate.

Clearly, the uncovering of these new cell death effectors,

MLKL and gasdermins, has sparked renewed interest into

how distinct cell death modalities sculpt developmental

and immune responses. A greater understanding of their

mechanisms and physiological roles will inform as to

how these new cell death effectors might be targeted for

the treatment of inflammatory conditions, or triggering of

cancer cell death and anti-cancer immune responses.
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