Pyrrolidinium Ionic Liquid Crystals with Pendant Mesogenic Groups

- Source link

Karel Goossens, Kathleen Lava, Peter Nockemann, Kristof Van Hecke ...+4 more authors
Institutions: Katholieke Universiteit Leuven, European Synchrotron Radiation Facility
Published on: 19 May 2009 - Langmuir (American Chemical Society)
Topics: Mesogen, Thermotropic crystal, Alkyl, lonic liquid and Liquid crystal

Related papers:

- Ionic liquid crystals.
- Pyrrolidinium ionic liquid crystals.
- The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals
- Small-Angle X-ray Scattering Studies of Liquid Crystalline 1-Alkyl-3-methylimidazolium Salts
- Thermotropic Ionic Liquid Crystals

Pyrrolidinium Ionic Liquid Crystals with Pendant Mesogenic Groups

Karel Goossens, Kathleen Lava, Peter Nockemann, Kristof Van Hecke, Luc Van Meervelt, Phil Pattison, Koen Binnemans, and Thomas Cardinaels*

Supporting Information

Experimental Section: General

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 300 spectrometer (operating at 300 MHz for ${ }^{1} \mathrm{H}$). Elemental analyses were obtained on a CE Instruments EA-1110 elemental analyzer. Electrospray ionization (ESI) mass spectra were recorded on a Thermo Finnigan LCQ Advantage mass spectrometer.

Experimental Section: Synthetic Procedures

The synthesis of the precursors is outlined in Scheme S1. 4'-Hydroxy-4biphenylcarbonitrile and 11-bromo-1-undecanol were coupled via the hydroxyl group by a Mitsunobu reaction to give the precursor P1 (diisopropyl azodicarboxylate (DIAD) was used instead of diethyl azodicarboxylate (DEAD)). ${ }^{1}$ Precursors P4, P5, P6 and P7 were prepared in a two-step procedure: 4,4'-biphenol was first monoalkylated with the appropriate 1-bromoalkane to give the intermediates $\mathbf{P 2}$ and P3, which were then alkylated with the appropriate dibromoalkane. Precursors P16, P17, P18 and P19 were synthesized by monoesterification of 4,4'-biphenol with acyl chlorides P12 or P13, and subsequent alkylation of intermediates P14 or P15 with the appropriate dibromoalkane.

Scheme S1. Synthesis of the precursors. ${ }^{\text {a }}$

${ }^{\text {a }}$ (i) 11-bromo-1-undecanol, PPh_{3}, DIAD, Ar, dry THF, rt; (ii) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}, \mathrm{K}_{2} \mathrm{CO}_{3}$, KI, Ar, 2-butanone, reflux, or $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{Br}, \mathrm{KOH}$, Ar , DMSO, $80^{\circ} \mathrm{C}$; (iii) $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Br}(n=4$, 10), $\mathrm{K}_{2} \mathrm{CO}_{3}$, KI, Ar, 2-butanone, reflux; (iv) $\mathrm{C}_{m} \mathrm{H}_{2 m+1} \mathrm{Br}(m=4,10), \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KI}, \mathrm{Ar}$, 2-butanone, reflux; (v) $1 . \mathrm{KOH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ (5:1), reflux; 2. conc. HCl ; (vi) SOCl_{2}, some drops of DMF, $\mathrm{Ar}, 6{ }^{\circ} \mathrm{C}$; (vii) $\mathbf{P 1 2}$ or $\mathbf{P 1 3}$, dry THF, dry pyridine, Ar, reflux; (viii) $\operatorname{Br}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Br}(n=4,10), \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KI}$, Ar, 2-butanone, reflux.

The synthesis of the pyrrolidinium salts is outlined in Scheme S2. Compounds 1a-9a were prepared by quaternization (Menschutkin reaction) of N-methylpyrrolidine with the appropriate precursor. ${ }^{2}$ Compounds $\mathbf{1 b}-\mathbf{9 b}$ were synthesized by a metathesis reaction between the bromide salts 1a-9a and lithium bis(trifluoromethylsulfonyl)imide $\left(\operatorname{LiNTf}_{2}, \mathrm{Tf}=\mathrm{SO}_{2} \mathrm{CF}_{3}\right)$. Compounds $\mathbf{1 c}$ - $7 \mathbf{c}$ were prepared by a reaction between the bromide salts 1a-7a, 2-thenoyltrifluoroacetone (Htta), sodium hydroxide, and europium(III) chloride hexahydrate. Compounds 1d-9d were synthesized by a reaction between the bromide salts 1a-9a and uranyl bromide
hydrate $\left(\mathrm{UO}_{2} \mathrm{Br}_{2} \cdot x \mathrm{H}_{2} \mathrm{O}\right)$ in ethanol. Due to its hygroscopic character, it is difficult to determine the exact number of water molecules, x, in the uranyl bromide salt precursor. The uranyl bromide salt was carefully dried, and when weighing, x was assumed to be zero in order to prevent that compounds $\mathbf{1 d} \mathbf{- 9 d}$ would be contaminated with an excess of uranyl bromide. The uranyl complexes were obtained as anhydrous yellow solids (as confirmed by CHN elemental analysis and thermogravimetry), although no special care was taken to prevent hydration of the salts.

Scheme S2. Synthesis of the pyrrolidinium compounds. ${ }^{\text {a }}$

${ }^{\text {a }}$ (i) appropriate precursor (P1, P4, P5, P6, P7, P16, P17, P18 or P19), Ar, dry toluene, $80{ }^{\circ} \mathrm{C}$; (ii-1b-9b) $\mathrm{LiNTf}_{2}, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}, 60-65{ }^{\circ} \mathrm{C}$; (ii-1c-7c) Htta, NaOH ,
$\mathrm{EuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}, 60-65^{\circ} \mathrm{C}$; (iii) $\mathrm{UO}_{2} \mathrm{Br}_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$, EtOH or $\mathrm{EtOH} / 1-\mathrm{BuOH}(2: 1)$, $70^{\circ} \mathrm{C}$.

Synthesis of the precursors

Synthesis of $\boldsymbol{P 1}$

Compound P1 was prepared by adding diisopropyl azodicarboxylate (DIAD) ($25.60 \mathrm{mmol}, 5.177 \mathrm{~g}$) dropwise to an ice-cooled stirred solution of 4'-hydroxy-4biphenylcarbonitrile ($25.60 \mathrm{mmol}, 4.998 \mathrm{~g}$), 11-bromo-1-undecanol (25.60 mmol , 6.431 g) and triphenylphosphine ($25.60 \mathrm{mmol}, 6.715 \mathrm{~g}$) in dry THF (50 mL) under an argon atmosphere. The solution (with exclusion of light) was allowed to warm up to room temperature and was stirred for 24 h . The solvent was removed under reduced pressure and the crude product was purified on a silica column with chloroform $/ n$ hexane (50:50) as the eluent. The product was recrystallized from n-hexane to obtain white needle-like crystals. The pure compound was dried in vacuo at $50^{\circ} \mathrm{C}$. Yield: $72 \%(7.90 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.26-1.51\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right), 1.75-1.90(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$ and $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}$), 3.40 (t, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Br}$), 4.00 (t, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 6.98 (d, $2 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.4 \mathrm{~Hz}$), 7.52 (d, 2H, H-aryl, $J=8.4 \mathrm{~Hz}$), 7.59-7.72 (m, 4H, H-aryl). Calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{BrNO}$ (428.41): C 67.29, H 7.06, N 3.27. Found: C 67.17, H 7.25, N 3.24. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right): \mathrm{Cr} \cdot(\mathrm{N} \cdot 66 \cdot) 77 \cdot \mathrm{I}\left(\right.$ lit. $\left.\mathrm{Cr} \cdot(\mathrm{N} \cdot 66 \cdot) 77 \cdot \mathrm{I}^{3}\right)$.

1-Bromobutane ($124.00 \mathrm{mmol}, 16.990 \mathrm{~g}$) was added dropwise to a stirred solution of 4,4'-dihydroxybiphenyl ($136.40 \mathrm{mmol}, 25.399 \mathrm{~g}$) in 2-butanone (150 mL). Potassium carbonate ($124.00 \mathrm{mmol}, 17.138 \mathrm{~g}$) and a catalytic amount of potassium iodide were added and the mixture was refluxed for 24 h under an argon atmosphere. After cooling to room temperature, the reaction mixture was poured into 600 mL of cold water. The solution was neutralized with concentrated $\mathrm{HCl}(37 \mathrm{wt} . \%)$. 2Butanone was removed under reduced pressure. The remaining aqueous suspension was extracted with diethyl ether $(3 \times 400 \mathrm{~mL})$. The organic extract was dried over anhydrous MgSO_{4}, and diethyl ether was partly removed under reduced pressure. Silica was added, and the crude product was adsorbed to the silica under removal of the solvent under reduced pressure. The crude product was then purified on a drypacked silica column with toluene as the eluent. The pure product was obtained as a white powder and was dried in vacuo at $50{ }^{\circ} \mathrm{C}$. Yield: $24 \%(7.25 \mathrm{~g}) . \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.97\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right.$), 1.50 (sextet, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}$), 1.76 (quintet, $\left.2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}, J=7.0 \mathrm{~Hz}\right), 4.01\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=6.4 \mathrm{~Hz}\right), 6.90(\mathrm{~d}, 2 \mathrm{H}$, H-aryl, $J=8.3 \mathrm{~Hz}), 6.96(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.6 \mathrm{~Hz}), 7.44(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.3 \mathrm{~Hz})$, 7.49 (d, 2H, H-aryl, $J=8.6 \mathrm{~Hz}$), $8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ (242.31): C 79.31, H 7.49. Found: C 79.04, H 7.67. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right): \mathrm{Cr} \cdot 170 \cdot \mathrm{I}$ (lit. $\left.\mathrm{Cr} \cdot 172 \cdot \mathrm{I}^{4}\right)$.

4,4’-Dihydroxybiphenyl ($150.00 \mathrm{mmol}, 27.932 \mathrm{~g}$) was dissolved in DMSO $(150 \mathrm{~mL})$, and $\mathrm{KOH}(450.00 \mathrm{mmol}, 25.250 \mathrm{~g})$ was added. Then 1-bromodecane $(150.00 \mathrm{mmol}, 33.177 \mathrm{~g})$ was added dropwise. The reaction mixture was stirred for 3 h at $80^{\circ} \mathrm{C}$ under an argon atmosphere. After cooling to room temperature, 200 mL of cold water was added. The solution was neutralized with concentrated $\mathrm{HCl}(37 \mathrm{wt} . \%)$. The precipitate was filtered off and was recrystallized from chloroform and from methanol to obtain the pure compound as a white powder, which was dried in vacuo at $50^{\circ} \mathrm{C}$. Yield: $25 \%(12.01 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.88-0.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30-$ $1.48\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right), 1.79-1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 4.00\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=6.3 \mathrm{~Hz}\right)$, 6.88-6.96 (m, 4H, H-aryl), 7.43-7.48 (m, 4H, H-aryl), 8.25 (s, 1H, OH). Calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ (330.98): C 79.84, H 9.29. Found: C 79.47, H 9.50. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right): \mathrm{Cr}_{1} \cdot 107 \cdot \mathrm{Cr}_{2} \cdot 120 \cdot \mathrm{Cr}_{3} \cdot 148 \cdot \mathrm{I}\left(\right.$ lit. $\left.T_{\mathrm{m}}=151^{\circ} \mathrm{C}^{5}\right)$.

Synthesis of P4

1,4-Dibromobutane ($56.76 \mathrm{mmol}, 12.255 \mathrm{~g}$) was added dropwise to a stirred solution of compound $\mathbf{P} \mathbf{2}$ ($5.16 \mathrm{mmol}, 1.250 \mathrm{~g}$) in 2-butanone (80 mL). Potassium carbonate ($5.68 \mathrm{mmol}, 0.784 \mathrm{~g}$) and a catalytic amount of potassium iodide were added and the mixture was refluxed for 48 h under an argon atmosphere. After cooling to room temperature, 300 mL of dichloromethane was added. The white precipitate (inorganic salts) was filtered off and washed with dichloromethane. The solvent was removed under reduced pressure. The residue was dissolved in dichloromethane and washed with water. The organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The crude product was recrystrallized from n-hexane to obtain the pure compound as a white powder, which was dried in vacuo at $50{ }^{\circ} \mathrm{C}$. Yield: $71 \%(1.39 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.98(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}$), 1.51 (sextet, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}$), 1.79 (quintet, $2 \mathrm{H}, \mathrm{CH}_{2}-$ $\mathrm{CH}_{2}-\mathrm{CH}_{3}, J=6.9 \mathrm{~Hz}$), 1.96 (quintet, 2H, O-CH2-CH2 $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}, J=6.5 \mathrm{~Hz}$), 2.09 (quintet, $\left.2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}, J=6.5 \mathrm{~Hz}\right), 3.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Br}, J=6.5 \mathrm{~Hz}\right.$), $3.99\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=6.5 \mathrm{~Hz}\right), 4.02\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=6.1 \mathrm{~Hz}\right), 6.90-6.98(\mathrm{~m}, 4 \mathrm{H}$, H-aryl), 7.46 (d, 4H, H-aryl, $J=8.3 \mathrm{~Hz}$). Calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{BrO}_{2}$ (377.32): C 63.66, H 6.68. Found: C 63.42 , H 6.71. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right)$: $\mathrm{Cr} \cdot 135 \cdot \mathrm{I}$.

1,4-Dibromobutane ($168.47 \mathrm{mmol}, 36.374 \mathrm{~g}$) was added dropwise to a stirred solution of compound P3 (15.32 mmol, 5.000 g) in 2-butanone (150 mL). Potassium carbonate $(16.85 \mathrm{mmol}, 2.328 \mathrm{~g})$ and a catalytic amount of potassium iodide were added and the mixture was refluxed for 48 h under an argon atmosphere. After cooling to room temperature, 400 mL of dichloromethane was added. The white precipitate (inorganic salts) was filtered off and washed with dichloromethane. The solvent was removed under reduced pressure. The residue was dissolved in dichloromethane and washed with water. The organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The crude product was recrystrallized from n-hexane to obtain the pure compound as a white powder, which was dried in vacuo at $50{ }^{\circ} \mathrm{C}$. Yield: $88 \%(6.20 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.89(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 1.23-1.54\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right), 1.80$ (quintet, $2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}, J=7.0$ Hz), 1.96 (quintet, $2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}, J=6.3 \mathrm{~Hz}$), 2.08 (quintet, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}, J=$ 6.6 Hz), $3.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Br}, J=6.6 \mathrm{~Hz}\right), 3.98\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=7.0 \mathrm{~Hz}\right), 4.03(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{O}-\mathrm{CH}_{2}, J=6.3 \mathrm{~Hz}$), 6.90-6.97 (m, 4H, H-aryl), 7.43-7.49 (m, 4H, H-aryl). Calcd. for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{BrO}_{2}$ (461.47): C 67.67, H 8.08. Found: C 67.55, H 8.18. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right): \mathrm{Cr} \cdot 108 \cdot \mathrm{SmA} \cdot 114 \cdot \mathrm{I}$.

A solution of 1,10-dibromodecane ($56.76 \mathrm{mmol}, 17.032 \mathrm{~g}$) in 2-butanone (20 mL) was added dropwise to a stirred solution of compound $\mathbf{P} 2(5.16 \mathrm{mmol}, 1.250 \mathrm{~g})$ in 2-butanone (80 mL). Potassium carbonate ($5.68 \mathrm{mmol}, 0.784 \mathrm{~g}$) and a catalytic amount of potassium iodide were added and the mixture was refluxed for 48 h under an argon atmosphere. After cooling to room temperature, 300 mL of dichloromethane was added. The white precipitate (inorganic salts) was filtered off and washed with dichloromethane. The solvent was removed under reduced pressure. The residue was dissolved in dichloromethane and washed with water. The organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The crude product was recrystrallized from n-hexane to obtain the pure compound as a white powder, which was dried in vacuo at $50^{\circ} \mathrm{C}$. Yield: $69 \%(1.65 \mathrm{~g}) . \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.99\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.28-1.60\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73-1.93(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.41\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Br}, J=6.8 \mathrm{~Hz}\right), 3.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 6.91-7.03(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-$ aryl), 7.43-7.55 (m, 4H, H-aryl). Calcd. for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{BrO}_{2}$ (461.47): C 67.67, H 8.08. Found: C 67.80, H 8.01. Transition temperatures (${ }^{\circ} \mathrm{C}$): $\mathrm{Cr} \cdot 111 \cdot \mathrm{I}$.

A solution of 1,10 -dibromodecane ($350.00 \mathrm{mmol}, 105.025 \mathrm{~g}$) in acetone (70 mL) was added dropwise to a stirred solution of compound $\mathbf{P} 3(30.00 \mathrm{mmol}, 9.794 \mathrm{~g})$ in acetone (150 mL). Potassium carbonate ($33.00 \mathrm{mmol}, 4.561 \mathrm{~g}$) and a catalytic amount of potassium iodide were added and the mixture was refluxed for 15 h under an argon atmosphere. After cooling to room temperature, 400 mL of dichloromethane was added. The white precipitate (inorganic salts) was filtered off and washed with dichloromethane. The solvent was removed under reduced pressure. The residue was dissolved in dichloromethane and washed with water. The organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The crude product was recrystrallized from n-hexane to obtain the pure compound as a white powder, which was dried in vacuo at $50{ }^{\circ} \mathrm{C}$. Yield: 63% (10.43 g). $\delta_{\mathrm{H}}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.88-0.91 (m, 3H, CH3$), 1.30-1.46\left(\mathrm{~m}, 26 \mathrm{H}, \mathrm{CH}_{2}\right), 1.79-1.90(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ and $\left.\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 3.43\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Br}, J=6.6 \mathrm{~Hz}\right), 4.00\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right.$, $J=6.3 \mathrm{~Hz}), 6.96(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.4 \mathrm{~Hz}), 7.48(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.4 \mathrm{~Hz})$. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{BrO}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (554.64): C 69.30, H 9.09. Found: C 69.22, H 9.58. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right): \mathrm{Cr} \cdot 99 \cdot \mathrm{I}$.

Synthesis of P14

4-(Butyloxy)benzoic acid ($152.65 \mathrm{mmol}, 29.650 \mathrm{~g}$) was dissolved in 60 mL of thionyl chloride. A few drops of DMF were added. The reaction mixture was stirred for 6 h at $60^{\circ} \mathrm{C}$ under an argon atmosphere. The excess of thionyl chloride was removed under reduced pressure. The remaining acyl chloride was immediately dissolved in dry THF (30 mL). This solution was added dropwise to a stirred solution of $4,4^{\prime}$-dihydroxybiphenyl ($324.90 \mathrm{mmol}, 60.500 \mathrm{~g}$) in dry THF (300 mL) and dry pyridine (40 mL). The reaction mixture was refluxed for 15 h under an argon atmosphere. After the reaction mixture was cooled to room temperature it was filtered. The solvent was removed under reduced pressure until about 100 mL remained. Then 300 mL of cold water was added. The formed precipitate was filtered off and washed with water, ethanol and n-hexane. The crude product could not be purified completely (after column chromatography (silica, n-hexane/ethyl acetate (70:30)) and an attempt to recrystallize the crude product from acetone, disubstituted byproduct still remained), and was used in the next synthesis step without further purification. Yield: could not be calculated (impure product) (26.201 g).

Synthesis of P15

4-(Decyloxy)benzoic acid ($100.33 \mathrm{mmol}, 27.930 \mathrm{~g}$) was dissolved in 60 mL of thionyl chloride. A few drops of DMF were added. The reaction mixture was stirred for 6 h at $60{ }^{\circ} \mathrm{C}$ under an argon atmosphere. The excess of thionyl chloride was removed under reduced pressure. The remaining acyl chloride was immediately dissolved in dry THF (30 mL). This solution was added dropwise to a stirred solution of 4,4'-dihydroxybiphenyl ($252.46 \mathrm{mmol}, 47.010 \mathrm{~g}$) in dry THF (300 mL) and dry pyridine (40 mL). The reaction mixture was refluxed for 15 h under an argon atmosphere. After the reaction mixture was cooled to room temperature it was filtered. The solvent was removed under reduced pressure until about 100 mL remained. Then 300 mL of cold water was added. The formed precipitate was filtered off and washed with water, ethanol and n-hexane. The crude product was purified on a silica column with chloroform as the eluent. The product was recrystallized from acetone to obtain the pure compound as a white powder, which was dried in vacuo at $50{ }^{\circ} \mathrm{C}$. Yield: $34 \%(15.16 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $0.87-0.89\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29-$ $1.48\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right), 1.81-1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 4.05\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=6.5 \mathrm{~Hz}\right)$, $4.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.87(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.5 \mathrm{~Hz}), 6.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.4 \mathrm{~Hz})$, 7.24 (d, 2H, H-aryl, $J=8.5 \mathrm{~Hz}$), 7.44 (d, 2H, H-aryl, $J=8.4 \mathrm{~Hz}$), 7.55 (d, 2H, H-aryl, $J=8.5 \mathrm{~Hz}), 8.16(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.5 \mathrm{~Hz})$. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (482.61): C 72.17, H 7.94. Found: C 71.97, H 7.78. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right)$: $\mathrm{Cr} \cdot(\mathrm{SmC} \cdot 174$ -) $175 \cdot \mathrm{~N} \cdot 207 \cdot \mathrm{I}\left(\right.$ lit. $\left.\mathrm{Cr} \cdot(\mathrm{SmC} \cdot 171.9 \cdot) 175.5 \cdot \mathrm{~N} \cdot 205.5 \cdot \mathrm{I}^{6}\right)$.

1,4-Dibromobutane ($327.60 \mathrm{mmol}, 70.732 \mathrm{~g}$) was added dropwise to a stirred solution of compound P14 (36.45 mmol, 13.210 g) in 2-butanone (150 mL). Potassium carbonate ($38.22 \mathrm{mmol}, 5.282 \mathrm{~g}$) and a catalytic amount of potassium iodide were added and the mixture was refluxed for 15 h under an argon atmosphere. After cooling to room temperature, 300 mL of dichloromethane was added. The white precipitate (inorganic salts) was filtered off and washed with dichloromethane. The solvent was removed under reduced pressure. The residue was dissolved in dichloromethane and washed with water. The organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The crude product was recrystrallized from n-hexane, and was further purified on a silica column with chloroform $/ n$-hexane (5:1) as the eluent. The pure product was obtained as a white powder and was dried in vacuo at $50^{\circ} \mathrm{C}$. Yield: could not be calculated (impure starting product) $(10.808 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}\right)$, 1.49-1.56 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.77-2.13 (m, $6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ and $\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$), $3.51(\mathrm{t}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Br}, J=6.4 \mathrm{~Hz}\right), 4.01-4.08\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 6.95-6.99$ (m, 4H, H-aryl), 7.23 (d, 2H, H-aryl, $J=8.6 \mathrm{~Hz}), 7.51(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.4 \mathrm{~Hz}), 7.58(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=$ 8.6 Hz), $8.16(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.8 \mathrm{~Hz})$. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BrO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (506.43): C 64.03, H 5.97. Found: C 64.30 , H 5.54. Transition temperatures (${ }^{\circ} \mathrm{C}$): $\mathrm{Cr} \cdot 157 \cdot \mathrm{~N} \cdot$ 229 I.

1,4-Dibromobutane ($164.70 \mathrm{mmol}, 35.560 \mathrm{~g}$) was added dropwise to a stirred solution of compound P15 ($18.29 \mathrm{mmol}, 8.170 \mathrm{~g}$) in acetone (100 mL). Potassium carbonate ($19.22 \mathrm{mmol}, 2.656 \mathrm{~g}$) and a catalytic amount of potassium iodide were added and the mixture was refluxed for 15 h under an argon atmosphere. After cooling to room temperature, 200 mL of dichloromethane was added. The white precipitate (inorganic salts) was filtered off and washed with dichloromethane. The solvent was removed under reduced pressure. The residue was dissolved in dichloromethane and washed with water. The organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The crude product was recrystallized from n-hexane to obtain the pure compound as a white powder, which was dried in vacuo at $50{ }^{\circ} \mathrm{C}$. Yield: $57 \%(6.06 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.89-0.91$ (m, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.31-1.57 (m, 14H, CH_{2}), 1.80-2.14 (m, $6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ and $\mathrm{Br}-\mathrm{CH}_{2}-$ CH_{2}), 3.51-3.55 (m, 2H, CH2-Br), $4.07\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=5.9 \mathrm{~Hz}\right), 6.98-7.01(\mathrm{~m}, 4 \mathrm{H}$, H-aryl), 7.25-7.28 (m, 2H, H-aryl), 7.53 (d, 2H, H-aryl, $J=8.2 \mathrm{~Hz}$), 7.60 (d, 2H, Haryl, $J=8.2 \mathrm{~Hz}$), $8.18(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.3 \mathrm{~Hz})$. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{BrO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (590.59): C 67.11, H 7.17. Found: C 67.11, H 7.08. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right): \mathrm{Cr}$. $\left(\mathrm{SmX}_{1} \cdot 99 \cdot\right) 122 \cdot \mathrm{SmX}_{2} \cdot 123 \cdot \mathrm{SmC} \cdot 156 \cdot \mathrm{SmA} \cdot 184 \cdot \mathrm{~N} \cdot 201 \cdot \mathrm{I}$.

A solution of 1,10-dibromodecane ($322.20 \mathrm{mmol}, 96.683 \mathrm{~g}$) in 2-butanone (70 mL) was added dropwise to a stirred solution of compound P14 (35.84 mmol, 12.990 g) in 2-butanone (150 mL). Potassium carbonate ($37.59 \mathrm{mmol}, 5.195 \mathrm{~g}$) and a catalytic amount of potassium iodide were added and the mixture was refluxed for 15 h under an argon atmosphere. After cooling to room temperature, 400 mL of dichloromethane was added. The white precipitate (inorganic salts) was filtered off and washed with dichloromethane. The solvent was removed under reduced pressure. The residue was dissolved in dichloromethane and washed with water. The organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The crude product was recrystrallized from n-hexane, and was further purified on a silica column with chloroform $/ n$-hexane (5:1) as the eluent. The pure product was obtained as a white powder and was dried in vacuo at $50^{\circ} \mathrm{C}$. Yield: could not be calculated (impure starting product) $(12.403 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.00(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}\right), 1.32-1.56\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right), 1.79-1.88\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}\right), 3.41\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Br}, J=6.5 \mathrm{~Hz}\right), 3.98-4.08\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 6.96-6.99$ (m, 4H, H-aryl), 7.24 (d, 2H, H-aryl, $J=8.8 \mathrm{~Hz}$), 7.51 (d, $2 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.4 \mathrm{~Hz}$), 7.58 (d, 2H, H-aryl, $J=8.8 \mathrm{~Hz}$), 8.16 (d, $2 \mathrm{H}, \mathrm{H}$-aryl, $J=9.0 \mathrm{~Hz}$). Calcd. for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{BrO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (590.59): C 67.11, H 7.17. Found: C 67.33, H 7.41. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right): \mathrm{Cr} \cdot(\mathrm{SmX} \cdot 107 \cdot \mathrm{SmC} \cdot 116 \cdot) 123 \cdot \mathrm{~N} \cdot 186 \cdot \mathrm{I}$.

A solution of 1,10 -dibromodecane ($134.10 \mathrm{mmol}, 40.239 \mathrm{~g}$) in acetone (35 mL) was added dropwise to a stirred solution of compound P15 (14.87 mmol, 6.640 $\mathrm{g})$ in acetone (80 mL). Potassium carbonate ($15.64 \mathrm{mmol}, 2.162 \mathrm{~g}$) and a catalytic amount of potassium iodide were added and the mixture was refluxed for 15 h under an argon atmosphere. After cooling to room temperature, 200 mL of dichloromethane was added. The white precipitate (inorganic salts) was filtered off and washed with dichloromethane. The solvent was removed under reduced pressure. The residue was dissolved in dichloromethane and washed with water. The organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The crude product was recrystallized from n-hexane to obtain the pure compound as a white powder, which was dried in vacuo at $50{ }^{\circ} \mathrm{C}$. Yield: $72 \%(7.13 \mathrm{~g}) . \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.89-0.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30-1.54\left(\mathrm{~m}, 26 \mathrm{H}, \mathrm{CH}_{2}\right), 1.83-1.85\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\right.$ CH_{2} and $\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$), 3.41-3.46 (m, 2H, $\left.\mathrm{CH}_{2}-\mathrm{Br}\right)$, 4.00-4.07 (m, 4H, O-CH2), 6.99 (m, 4H, H-aryl), 7.23-7.27 (m, 2H, H-aryl), 7.53 (d, 2H, H-aryl, $J=8.3 \mathrm{~Hz}$), 7.60 (d, $2 \mathrm{H}, \mathrm{H}$-aryl, $J=8.1 \mathrm{~Hz}$), 8.18 (d, $2 \mathrm{H}, \mathrm{H}$-aryl, $J=8.6 \mathrm{~Hz}$). Calcd. for $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{BrO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (674.75): C 69.42, H 8.07. Found: C 69.77 , H 8.34. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right): \mathrm{Cr} \cdot 98 \cdot \mathrm{SmX} \cdot 119 \cdot \mathrm{SmC} \cdot 152 \cdot \mathrm{SmA} \cdot 161 \cdot \mathrm{~N} \cdot 173 \cdot \mathrm{I}$.

Uranium(VI) oxide dihydrate ($10.00 \mathrm{mmol}, 3.221 \mathrm{~g}$) was boiled thoroughly in water (100 mL) for 1 h . The suspension was allowed to cool to room temperature. Then concentrated HBr ($48 \mathrm{wt} . \%$ aqueous solution) ($20.00 \mathrm{mmol}, 3.372 \mathrm{~g}$) was added dropwise to the reaction mixture under constant stirring in a fumehood. The mixture was slowly heated to $60^{\circ} \mathrm{C}$, and hydrogen peroxide ($30 \mathrm{wt} . \%$ aqueous solution) was added dropwise over a total period of at least 30 minutes until all solid reagents had been dissolved. At this point, the solution should be very dark brown to brown-red. The solution was stirred further, and was concentrated at $60{ }^{\circ} \mathrm{C}$ under reduced pressure to a total volume of approximately 30 mL . The solution was set aside for crystallization over $\mathrm{P}_{2} \mathrm{O}_{5}$ in a desiccator until no liquid was visible anymore. The dark brown, hygroscopic crystals were further dried over silica in a desiccator for two to three weeks. The final recipient should be closed very tightly and be kept in a desiccator.

Synthesis of the pyrrolidinium compounds

Synthesis of compounds 1a-9a

A solution of 1-methylpyrrolidine (1 eq.) in dry toluene (5 mL) was added dropwise to a stirred solution of the appropriate precursor (1.05 eq.) in dry toluene (50 mL) at $60^{\circ} \mathrm{C}$. The mixture was stirred for 48 h at $80^{\circ} \mathrm{C}$ under an argon atmosphere. A precipitate was formed, filtered off and washed carefully with (warm) toluene, (warm) ethyl acetate and diethyl ether. The crude product was purified on a silica column with chloroform/methanol $(90: 10)$ as the eluent (not necessary for compound 1a). The purified product was dissolved in chloroform and filtered through a Grace cellulose filter $(0.45 \mu \mathrm{~m})$ mounted on a syringe to remove traces of silica. After recrystallization from methanol/diethyl ether, the pure product was obtained as a white powder, which was dried in vacuo at $50^{\circ} \mathrm{C}$. 1a: Yield: $39 \%(2.30 \mathrm{~g}) . \delta_{\mathrm{H}}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.31-1.37 (m, $14 \mathrm{H}, \mathrm{CH}_{2}$), 1.75-1.81 (m, $4 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ and $\mathrm{O}-\mathrm{CH}_{2}-$ CH_{2}), 2.31 ($\mathrm{s}, 4 \mathrm{H}$, pyrr. $\mathrm{H}-3$ and $\mathrm{H}-4$), $3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.65-3.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-$ CH_{2}), 3.85-3.87 (m, 4H, pyrr. H-2 and H-5), 4.01 (t, 2H, O-CH,$\left.J=6.2 \mathrm{~Hz}\right), 7.00(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.4 \mathrm{~Hz}$), 7.54 (d, 2H, H-aryl, $J=8.2 \mathrm{~Hz}$), 7.64-7.71 (m, 4H, H-aryl). $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 24.52,26.39,26.81,29.59,29.64,29.75,29.86,49.02,64.56$, 64.82, 68.54, 74.38, 110.33, 115.48, 119.54, 127.45, 128.70, 131.57, 132.94, 145.67. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{BrN}_{2} \mathrm{O}$ (513.55): C 67.82, H 8.05, N 5.45. Found: C 67.48, H 8.37, N 5.11. ESI-MS (methanol, m/z): 433.6, $\left[\mathrm{M}-\mathrm{Br}^{-}\right]^{+}$; 947.2, $\left[\mathrm{M}+\mathrm{M}-\mathrm{Br}^{-}\right]^{+}$. 2a: Yield: $63 \%(2.05 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.99\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.51$ (sextet, 2 H , $\mathrm{CH}_{2}, J=7.4 \mathrm{~Hz}$), 1.79 (quintet, $2 \mathrm{H}, \mathrm{CH}_{2}, J=7.1 \mathrm{~Hz}$), 1.88-2.10 (m, 4H, CH_{2}), 2.24$2.34(\mathrm{~m}, 4 \mathrm{H}$, pyrr.H-3 and $\mathrm{H}-4), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.79-3.89\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right.$ and
pyrr. $\mathrm{H}-2$ and $\mathrm{H}-5), 3.99\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=6.6 \mathrm{~Hz}\right), 4.06\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=5.3 \mathrm{~Hz}\right)$, $6.94(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.2 \mathrm{~Hz}), 7.42-7.49(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\operatorname{aryl}) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $13.99,19.38,21.29,21.81,26.23,31.47,48.79,63.85,64.64,66.93,67.90,114.85$, $114.90,127.73, \quad 127.88, \quad 133.09,133.94,157.73,158.46$. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{BrNO}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (471.47): C 63.69, H 7.91, N 2.97. Found: C 63.52, H 8.07, N 2.93. ESI-MS (methanol, m/z): 382.5, $\left[\mathrm{M}-\mathrm{Br}^{-}\right]^{+}$; $843.4,\left[\mathrm{M}+\mathrm{M}-\mathrm{Br}^{-}\right]^{+} .3 \mathrm{a}:$ Yield: $62 \%(1.80 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 1.23-1.53(\mathrm{~m}$, $\left.14 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73-2.09\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23-2.34(\mathrm{~m}, 4 \mathrm{H}$, pyrr. $\mathrm{H}-3$ and $\mathrm{H}-4), 3.31(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.80-3.89\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right.$ and pyrr. $\mathrm{H}-2$ and $\left.\mathrm{H}-5\right)$, $3.97\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J\right.$ $=6.5 \mathrm{~Hz}), 4.06\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=5.3 \mathrm{~Hz}\right), 6.93(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.2 \mathrm{~Hz}), 7.42-7.48$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}$-aryl). $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 14.26, 21.29, 21.80, 22.82, 26.21, 29.45, 29.55, 29.71, 32.02, 48.76, 63.82, 64.63, 66.91, 68.23, 114.84, 114.90, 127.88, 133.06, 133.97, 157.70, 158.46. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{BrNO}_{2}$ (546.62): C 68.11, H 8.85, N 2.56. Found: C 67.81, H 9.11, N 2.49. ESI-MS (methanol, m/z): 466.8, [M - $\left.\mathrm{Br}^{-}\right]^{+}$; 1011.7, [$\left.\mathrm{M}+\mathrm{M}-\mathrm{Br}^{-}\right]^{+} .4 \mathrm{a}:$ Yield: $58 \%(1.68 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.98\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=\right.$ $7.4 \mathrm{~Hz}), 1.26-1.58\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68-1.84\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23-2.34(\mathrm{~m}, 4 \mathrm{H}$, pyrr.H3 and $\mathrm{H}-4$), $3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$, 3.59-3.67 (m, $2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), 3.73-3.89 (m, 4H, pyrr. $\mathrm{H}-2$ and $\mathrm{H}-5), 3.98\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=6.2 \mathrm{~Hz}\right), 6.94(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.4 \mathrm{~Hz}), 7.46$ (d, 4H, H-aryl, $J=8.6 \mathrm{~Hz}$). $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.01,19.39,21.78,24.22,26.11$, 26.51, 29.37, 29.46, 31.49, 48.74, 64.31, 64.56, 67.90, 68.14, 114.87, 127.75, 133.36, 133.42, 158.31, 158.37. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{BrNO}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (555.63): C 67.01, H 8.89, N 2.52. Found: C 66.60, H 9.01, N 2.56. ESI-MS (methanol, m/z): 466.9, $\left[\mathrm{M}-\mathrm{Br}^{-}\right]^{+}$; 1013.5, $\left[\mathrm{M}+\mathrm{M}-\mathrm{Br}^{-}\right]^{+} .5 \mathrm{a}:$ Yield: $44 \%(0.86 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.88(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.28-1.46\left(\mathrm{~m}, 26 \mathrm{H}, \mathrm{CH}_{2}\right), 1.77-1.79\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ and $\mathrm{N}-$ $\mathrm{CH}_{2}-\mathrm{CH}_{2}$), $2.30(\mathrm{~m}, 4 \mathrm{H}$, pyrr. $\mathrm{H}-3$ and $\mathrm{H}-4), 3.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.63-3.67(\mathrm{~m}, 2 \mathrm{H}$,
$\left.\mathrm{N}-\mathrm{CH}_{2}\right), 3.83-3.85(\mathrm{~m}, 4 \mathrm{H}$, pyrr. $\mathrm{H}-2$ and $\mathrm{H}-5)$, 3.96-4.00 (m, 4H, O-CH2), $6.94(\mathrm{~d}$, $4 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.4 \mathrm{~Hz}), 7.46(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.4 \mathrm{~Hz}) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 14.51, 22.05, 23.06, 24.49, 26.38, 26.45, 26.78, 29.65, 29.71, 29.79, 29.97, 32.29, 49.02, 64.58, 64.82, 68.41, 68.50, 74.39, 115.15; 128.00, 133.61, 133.70, 158.59. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{BrNO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (648.80): C 68.50, H 9.63, N 2.16. Found: C 68.30, H 10.09, N 2.22. ESI-MS (methanol, m/z): 550.7, $\left[\mathrm{M}-\mathrm{Br}^{-}\right]^{+} ; 1181.5,\left[\mathrm{M}+\mathrm{M}-\mathrm{Br}^{-}\right]^{+}$. 6a: Yield: $43 \%(2.73 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.48-$ $1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right), 1.77-1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.94-2.05(\mathrm{~m}, 4 \mathrm{H}$, pyrr. $\mathrm{H}-3$ and $\mathrm{H}-$ 4), 2.29-2.31 (m, 4H, O-CH2-CH2), 3.31 (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.84-3.89 (m, $6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$, pyrr. H-2 and H-5), 4.03-4.10 (m, 4H, O-CH2), 6.95-6.99 (m, 4H, H-aryl), 7.24 (d, $2 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.4 \mathrm{~Hz}$), 7.51 (d, 2H, H-aryl, $J=8.7 \mathrm{~Hz}$), 7.57 (d, 2H, H-aryl, $J=8.4$ $\mathrm{Hz}), 8.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}$-aryl, $J=8.9 \mathrm{~Hz}) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.23,19.59,21.32$, 21.91, 26.18, 31.53, 48.76, 64.67, 64.97, 67.08, 68.42, 114.72, 115.24, 118.13, 121.76, 122.39, 122.57, 128.00, 132.69, 133.46, 138.66, 150.51, 158.62, 164.04, 164.44. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{BrNO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (600.58): C 63.99, H 7.05, N 2.33. Found: C 63.69, H 6.68, N 2.32. ESI-MS (methanol, m/z): 502.5, [M - Br $\left.{ }^{-}\right]^{+} ; 1083.5$, [M + M -$\left.\mathrm{Br}^{-}\right]^{+} .7 \mathrm{a}:$ Yield: $47 \%(1.37 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right)$, 1.28-1.33 (m, 14H, CH $), 1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$,), 1.96-1.99 (m, 4H, O-CH2CH_{2}), 2.30-2.31 (m, 4H, pyrr. H-3 and H-4), 3.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.85-3.90 (m, 6H, $\mathrm{N}-\mathrm{CH}_{2}$, pyrr. H-2 and $\left.\mathrm{H}-5\right), 4.02-4.09$ (m, 4H, O-CH2), 6.95-6.99 (m, 4H, H-aryl), 7.24 (d, 2H, H-aryl, $J=8.3 \mathrm{~Hz}$), 7.52 (d, 2H, H-aryl, $J=8.4 \mathrm{~Hz}$), 7.57 (d, 2H, H-aryl, $J=8.3 \mathrm{~Hz}), 8.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.8 \mathrm{~Hz}) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.53,21.54$, 22.07, 23.07, 26.38, 26.48, 29.49, 29.70, 29.76, 29.95, 32.29, 49.02, 64.12, 64.90, $67.24,68.74,114.72,115.24,121.81,122.52,128.03,128.58,132.68,133.58,138.63$, $150.48,158.56,163.98,165.50$. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{BrNO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (684.74): C 66.65, H
7.95, N 2.05. Found: C 66.31, H 8.36, N 2.16. ESI-MS (methanol, m/z): 586.6, [M -$\mathrm{Br}^{-]^{+}} ; 1253.4,\left[\mathrm{M}+\mathrm{M}-\mathrm{Br}^{-}\right]^{+} .8$ 8: Yield: $42 \%(2.87 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.00(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.32-1.53\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right), 1.77-1.84\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$, pyrr. $\mathrm{H}-3$ and $\mathrm{H}-4), 2.29\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 3.28$ (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.62-3.68 (m, 2H, NCH_{2}), 3.82-3.84 (m, 4H, pyrr. H-2 and H-5), 3.98-4.08 (m, 4H, O-CH2), 6.96-6.99 (m, 4H, H-aryl), 7.24 (d, 2H, H-aryl, $J=8.6 \mathrm{~Hz}$), 7.51 (d, 2H, H-aryl, $J=8.8 \mathrm{~Hz}$), 7.58 $(\mathrm{d}, 2 \mathrm{H}, \mathrm{H}$-aryl, $J=8.6 \mathrm{~Hz}), 8.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.9 \mathrm{~Hz}) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $14.23,19.59,22.03,24.50,26.35,26.80,29.61,29.73,31.52,48.98,64.55,64.80$, $68.42,114.69,115.24,121.85,122.43,128.01,128.46,132.67,133.09,138.85$, 150.39, 159.13, 163.98. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{BrNO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (684.74): C 66.65, H 7.95, N 2.05. Found: C 66.36, H 7.94, N 1.96. ESI-MS (methanol, m/z): 586.6, $\left[\mathrm{M} \mathrm{-} \mathrm{Br}^{-}\right]^{+}$; 1251.7, $\left[\mathrm{M}+\mathrm{M}-\mathrm{Br}^{-}\right]^{+}$. 9a: Yield: $49 \%(1.79 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.89(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.29-1.47\left(\mathrm{~m}, 26 \mathrm{H}, \mathrm{CH}_{2}\right), 1.80-1.85\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ en $\mathrm{N}-\mathrm{CH}_{2}-$ CH_{2}), 2.29 (m, 4H, pyrr. H-3 and H-4), $3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.62-3.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-$ CH_{2}), 3.63-3.87 (m, 4H, pyrr. H-2 and H-5), 4.00-4.07 (m, 4H, O-CH2), 6.96-6.99 (m, 4H, H-aryl), 7.23-7.27 (m, 2H, H-aryl), 7.51 (d, 2H, H-aryl, $J=8.3 \mathrm{~Hz}$), 7.58 (d, 2H, H -aryl, $J=8.3 \mathrm{~Hz}), 8.15$ (d, 2H, H-aryl, $J=8.3 \mathrm{~Hz}) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.53$, 22.03, 23.07, 24.49, 26.37, 26.80, 29.49, 29.62, 29.71, 29.95, 32.29, 48.98, 64.57, $64.82,68.42,68.73,114.69,115.24,121.85,122.43,128.02,128.46,132.67,133.09$, $138.85,150.39,152.62,159.13,163.98$, 165.50. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{BrNO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (786.92): C 67.16, H 8.71, N 1.78. Found: C 66.99, H 8.60, N 1.86. ESI-MS (methanol, m/z): 670.8, $\left[\mathrm{M} \mathrm{-} \mathrm{Br}^{-}\right]^{+}$.

Compound $\mathbf{1 b}$: A suspension of bromide salt $\mathbf{1 a}$ (1 eq.) in water (10 mL) was heated to $60{ }^{\circ} \mathrm{C}$, and methanol was added until a clear solution was formed. A concentrated aqueous solution of $\mathrm{LiNTf}_{2}\left(\mathrm{Tf}=\mathrm{SO}_{2} \mathrm{CF}_{3}\right)(1.5$ eq.) was added dropwise and the turbid reaction mixture was stirred for 3 h at $60^{\circ} \mathrm{C}$. Then the solvent was removed under reduced pressure. The crude product was dissolved in 20 mL of chloroform, and washed three times with 15 mL of water. After removal of chloroform under reduced pressure, a clear (supercooled) liquid remained. The pure product was dried in vacuo at $50^{\circ} \mathrm{C}$. Yield: $91 \%(0.18 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 1.26-1.52 (m, 14H, CH $)_{2}$), 1.71-1.85 (m, 4H, N-CH $-\mathrm{CH}_{2}$ and $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$), 2.22-2.32 (m, 4H, pyrr. H-3 and H-4), 3.04 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.26-3.34 (m, $2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), 3.47$3.57\left(\mathrm{~m}, 4 \mathrm{H}\right.$, pyrr. H-2 and H-5), $4.00\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=6.4 \mathrm{~Hz}\right), 6.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\mathrm{aryl}$, $J=8.5 \mathrm{~Hz}), 7.52(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.7 \mathrm{~Hz}), 7.61-7.71(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\operatorname{aryl}) . \delta_{\mathrm{C}}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 21.67,24.00,26.11,26.29,29.10,29.43,29.55,48.61,64.72,64.97,68.27$, $77.36,110.09,115.21,117.83,119.29,122.09,127.18,128.46,131.32,132.69$, 145.40, 159.93. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (722.80): C 51.51 , H 5.86, N 5.81. Found: C 51.39, H 5.39, N 5.58. ESI-MS (methanol, m/z): 433.6, $\left[\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+}$; 1146.1, $\left[\mathrm{M}+\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+} ; 280.1,\left[\mathrm{NTf}_{2}\right]^{-}$(observed in negative mode); 992.8, $[\mathrm{M}+$ $\left.\left[\mathrm{NTf}_{2}\right]^{-}\right]^{-}$(observed in negative mode).

Compounds $2 \boldsymbol{b}-\mathbf{9 b}$: A solution of the appropriate bromide salt (compounds 2a9a) (1 eq.) in methanol (40 mL) was heated to $65^{\circ} \mathrm{C}$. A concentrated aqueous solution of LiNTf_{2} (2 eq.) was added dropwise and the reaction mixture was stirred for 3 h at $65^{\circ} \mathrm{C}$. Methanol was then removed under reduced pressure. The white precipitate was filtered off, washed with water and dried in vacuo at $50^{\circ} \mathrm{C} .2 \mathbf{2 b}$: Yield: $76 \%(0.23 \mathrm{~g})$.
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 1.01\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.53$ (sextet, $2 \mathrm{H}, \mathrm{CH}_{2}, J=7.4$ Hz), 1.80 (quintet, $2 \mathrm{H}, \mathrm{CH}_{2}, J=7.0 \mathrm{~Hz}$), 1.87-1.97 (m, 2H, CH ${ }_{2}$), 1.98-2.11 (m, 2 H , CH_{2}), 2.25-2.35 (m, 4H, pyrr.H-3 and H-4), $3.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.40-3.48(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{N}-\mathrm{CH}_{2}$), 3.49-3.58 (m, 4H, pyrr. H-2 and H-5), $4.02\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=6.4 \mathrm{~Hz}\right), 4.10$ (t, 2H, O-CH ${ }_{2}, J=5.5 \mathrm{~Hz}$), 6.98 (m, 4H, H-aryl), 7.47-7.55 (m, 4H, H-aryl). $\delta_{\mathrm{C}}(75$ $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 13.91, 19.50, 21.38, 21.90, 26.16, 31.62, 48.98, 64.89, 65.15, 66.98, $68.05,114.93,114.99,118.02,122.27,127.75,127.84,133.04,133.93,157.97$, 158.70. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ (662.70): C 48.93, H 5.48, N 4.23. Found: C 49.01, H 5.17, N 4.19. ESI-MS (methanol, m/z): 382.6, $\left[\mathrm{M}-\left[\mathrm{NTf}_{2}\right]\right]^{+}$; 1044.3, $[\mathrm{M}+$ $\left.\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+} . \mathbf{3 b}:$ Yield: $82 \%(0.19 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=\right.$ $7.0 \mathrm{~Hz}), 1.23-1.52\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73-2.04\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.18-2.29(\mathrm{~m}, 4 \mathrm{H}$, pyrr.H3 and $\mathrm{H}-4$), $3.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.37-3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 3.46-3.55(\mathrm{~m}, 4 \mathrm{H}$, pyrr. $\mathrm{H}-2$ and $\mathrm{H}-5), 3.97\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=6.6 \mathrm{~Hz}\right), 4.03\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=5.4 \mathrm{~Hz}\right), 6.89-$ 6.96 (m, 4H, H-aryl), 7.42-7.49 (m, 4H, H-aryl). $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.26,21.15$, 21.70, 22.82, 25.94, 26.20, 29.46, 29.55, 29.72, 32.05, 48.65, 64.78, 66.74, 68.24, 114.81, 114.92, 127.73, 127.87, 133.14, 133.70, 158.49. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ (746.86): C 53.07, H 6.48, N 3.75. Found: C 53.38, H 6.63, N 3.62. ESI-MS (methanol, m/z): 466.7, $\left[\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+} ; 1212.3,\left[\mathrm{M}+\mathrm{M}-\left[\mathrm{NTf}_{2}\right]\right]^{+} .4 b:$ Yield: 74% $(0.20 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 1.01\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.33-1.58(\mathrm{~m}, 14 \mathrm{H}$, CH_{2}), 1.73-1.87 (m, 6H, CH $)_{2}$, 2.24-2.32 (m, 4H, pyrr.H-3 and H-4), $3.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-$ CH_{3}), 3.23-3.33 (m, 2H, N-CH2 $)$, 3.43-3.56 (m, 4H, pyrr. H-2 and H-5), $4.01(\mathrm{t}, 4 \mathrm{H}$, $\left.\mathrm{O}_{-\mathrm{CH}_{2},}, J=6.6 \mathrm{~Hz}\right), 6.96(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.6 \mathrm{~Hz}), 7.50(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.6 \mathrm{~Hz})$. $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 13.91,19.51,21.87,24.13,26.22,26.44,29.21,29.52,31.62$, $48.95,65.07,65.33,68.05,68.31,114.96,118.02,122.27,127.70,133.24,133.29$, 158.60. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ (746.86): C 53.07, H 6.48, N 3.75. Found: C
53.12, H 6.17, N 3.70. ESI-MS (methanol, m/z): 466.8, $\left[\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+} ; 1212.5,[\mathrm{M}+$ $\left.\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+} .5 \mathbf{b}:$ Yield: $77 \%(0.17 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=\right.$ $7.4 \mathrm{~Hz}), 1.28-1.46\left(\mathrm{~m}, 26 \mathrm{H}, \mathrm{CH}_{2}\right), 1.74-1.81\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ en $\left.\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, $2.26(\mathrm{~m}, 4 \mathrm{H}$, pyrr.H-3 and $\mathrm{H}-4), 3.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.26-3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right)$, 3.50-3.51 (m, 4H, pyrr. H-2 and H-5), $3.98\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}, J=6.5 \mathrm{~Hz}\right), 6.94(\mathrm{~d}, 4 \mathrm{H}$, H -aryl, $J=8.5 \mathrm{~Hz}$), $7.46(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.5 \mathrm{~Hz}) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.53$, 21.94, 23.09, 24.26, 26.38, 26.47, 26.54, 29.34, 29.56, 29.62, 29.67, 29.73, 29.82, $29.99,32.30,48.86,64.98,65.23,68.42,68.51,74.39,115.15,118.10,122.37$, 128.01, 133.61, 133.67, 158.62. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ (831.02): C 56.37, H 7.28, N 3.37. Found: C 56.00, H 7.33, N 3.32. ESI-MS (methanol, m/z): 550.7, [M -$\left.\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+} ; 1380.3,\left[\mathrm{M}+\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+} . \mathbf{6 b}:$ Yield: $62 \%(0.18 \mathrm{~g}) . \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}\right), 1.51-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.79-1.91(\mathrm{~m}, 6 \mathrm{H}, \mathrm{N}-$ $\mathrm{CH}_{2}-\mathrm{CH}_{2}$, pyrr. H-3 and H-4), 2.25-2.26 (m, 4H, O-CH2-CH2), 3.05 (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.41-3.52 (m, $6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$, pyrr. H-2 and H-5), 4.03-4.07 (m, 4H, O-CH $)_{2}$, 6.94-6.99 (m, 4H, H-aryl), 7.23 (d, 2H, H-aryl, $J=8.5 \mathrm{~Hz}$), 7.51 (d, 2H, H-aryl, $J=8.4 \mathrm{~Hz}$), 7.57 (d, 2H, H-aryl, $J=8.6 \mathrm{~Hz}$), 8.14 (d, 2H, H-aryl, $J=8.9 \mathrm{~Hz}$). $\delta_{\mathrm{C}}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 13.78,19.16,21.13,21.67,26.07,31.11,48.65,63.73,64.51,66.81,68.00$, $114.29,114.83,121.45,122.07,127.61,128.19,132.26,133.27,138.21,150.11$, 158.13, 163.57, 165.05. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$ (782.81): C 52.17, H 5.15, N 3.85. Found: C 52.04, H 4.92, N 3.49. ESI-MS (methanol, m/z): 502.5, [M - [NTf $\left.{ }_{2}\right]^{-}$ $]^{+} ; 1284.2,\left[\mathrm{M}+\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+} .7 \mathrm{~b}:$ Yield: $84 \%(0.17 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.89$ $\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.28-1.52\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right), 1.80-2.00\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ and $\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$), 2.25-2.26 (m, 4H, pyrr. H-3 and H-4), $3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.41-3.53$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right.$ and pyrr. $\mathrm{H}-2$ and $\left.\mathrm{H}-5\right), 4.02-4.08\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 6.96-6.98(\mathrm{~m}, 4 \mathrm{H}$, H-aryl), 7.24 (d, 2H, H-aryl, $J=8.6 \mathrm{~Hz}$), 7.51 (d, 2H, H-aryl, $J=8.5 \mathrm{~Hz}$), 7.57 (d, 2H,

H -aryl, $J=8.6 \mathrm{~Hz}), 8.14(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\operatorname{aryl}, J=8.7 \mathrm{~Hz}) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.09$, 20.94, 21.56, 22.66, 25.79, 25.97, 29.10, 29.30, 29.36, 29.54, 31.88, 48.46, 64.32, $64.62,66.68,68.36,114.34,114.85,118.26,121.40,121.46,122.13,127.59,128.15$, 132.27, 133.16, 138.56, 150.14, 158.18, 163.63, 165.13. Calcd. for $\mathrm{C}_{40} \mathrm{H}_{52} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$ (866.97): C 55.41, H 6.05, N 3.23. Found: C 55.49, H 6.11, N 3.24. ESI-MS (methanol, m/z): 586.5, $\left[\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+} ; 1452.2,\left[\mathrm{M}+\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+}$. 8b: Yield: 90% $(0.19 \mathrm{~g}) \cdot \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.32-1.53(\mathrm{~m}, 14 \mathrm{H}$, CH_{2}), 1.77-1.84 (m, 6H, N-CH2-CH2, pyrr. H-3 and H-4), $2.29\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, $3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.62-3.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 3.82-3.84(\mathrm{~m}, 4 \mathrm{H}$, pyrr. $\mathrm{H}-2$ and $\mathrm{H}-$ 5), 3.98-4.08 (m, 4H, O-CH2), 6.96-6.99 (m, 4H, H-aryl), 7.24 (d, 2H, H-aryl, $J=8.6$ Hz), 7.51 (d, 2H, H-aryl, $J=8.8 \mathrm{~Hz}$), 7.58 (d, 2H, H-aryl, $J=8.6 \mathrm{~Hz}$), 8.15 (d, 2H, Haryl, $J=8.9 \mathrm{~Hz}) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.23,19.59,21.90,24.24,26.32,26.53$, 29.34, 29.44, 29.57, 29.64, 31.53, 48.78, 64.94, 65.22, 68.43, 114.72, 115.27, 118.13, $121.83,122.37,122.49,123.63,128.00,128.46,128.71,132.70,133.03,133.12$, 138.88, 150.42, 158.20, 164.01, 165.56. Calcd. for $\mathrm{C}_{40} \mathrm{H}_{52} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$ (866.97): C 55.41, H 6.05, N 3.23. Found: C 54.99, H 5.79, N 3.14. ESI-MS (methanol, m/z): 586.5, $\left[\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+} ; 1452.8,\left[\mathrm{M}+\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+} .9$ b: Yield: 42% (0.13 g). $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.28-1.52\left(\mathrm{~m}, 26 \mathrm{H}, \mathrm{CH}_{2}\right), 1.74-1.85(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ and $\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$), $2.26(\mathrm{~m}, 4 \mathrm{H}$, pyrr. $\mathrm{H}-3$ and $\mathrm{H}-4$), $3.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-$ CH_{3}), 3.27-3.32 (m, 2H, N-CH2), 3.50-3.51 (m, 4H, pyrr. H-2 and H-5), 3.98-4.07 (m, 4H, O-CH2), 6.95-6.99 (m, 4H, H-aryl), 7.24 (d, 2H, H-aryl, $J=8.7 \mathrm{~Hz}$), 7.51 (d, 2H, H-aryl, $J=8.5 \mathrm{~Hz}$), 7.58 (d, 2H, H-aryl, $J=8.7 \mathrm{~Hz}$), $8.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-\mathrm{aryl}, J=8.9 \mathrm{~Hz})$. $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.53,23.09,24.24,26.32,26.38,26.55,29.34,29.50,29.56$, 29.64, 29.71, 29.76, 29.95, 30.10, 32.29, 48.80, 64.94, 65.19, 68.44, 68.76, 74.39, 114.72, 115.27, 118.10, 121.82, 122.37, 122.47, 128.00, 128.45, 132.69, 133.03,
150.40 , 159.16, 164.01, 165.57. Calcd. for $\mathrm{C}_{46} \mathrm{H}_{64} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$ (951.13): C 58.05, H 6.78, N 2.95. Found: C 57.71, H 6.81, N 2.89. ESI-MS (methanol, m/z): 670.7, [M $\left.\left[\mathrm{NTf}_{2}\right]^{+}\right]^{+} ; 1620.2,\left[\mathrm{M}+\mathrm{M}-\left[\mathrm{NTf}_{2}\right]^{-}\right]^{+}$.

Synthesis of compounds $\mathbf{1 c}$ - 9 c

Compounds $\mathbf{1 c}$ - $7 \boldsymbol{c}$: 2-Thenoyltrifluoroacetone (4 eq.) was dissolved in ethanol (20 mL), and NaOH (4 eq., $1 \mathrm{~mol} \mathrm{~L}^{-1}$ aqueous solution) was added. The mixture was stirred for 10 min . Then the appropriate bromide salt (compounds $\mathbf{1 a - 7 a}$) (1 eq.) was added. The mixture was heated to 60 or $65^{\circ} \mathrm{C}$ and stirred until a clear solution was formed. A saturated aqueous solution of $\mathrm{EuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (1 eq.) was added dropwise and the mixture was stirred for 1.5 h at 60 or $65^{\circ} \mathrm{C}$ with exclusion of light. A pale yellow precipitate was formed, filtered off and washed with water and with warm ethanol. The pure product was dried in vacuo at $50{ }^{\circ} \mathrm{C}$. 1c: Yield: 33% (0.11 g). Calcd. for $\mathrm{C}_{61} \mathrm{H}_{57} \mathrm{EuF}_{12} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}_{4}$ (1470.32): C 49.83, H 3.91, N 1.91. Found: C 49.57, H 3.71, N 1.92. ESI-MS (methanol, m/z): 433.5, $\left[\mathrm{M}-\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]^{-}\right]^{+} ; 221.6$, $[\mathrm{tta}]^{-}$(observed in negative mode); 1037.0, $\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]^{-}$(observed in negative mode). 3c: Yield: 46% (0.14 g). Calcd. for $\mathrm{C}_{63} \mathrm{H}_{64} \mathrm{EuF}_{12} \mathrm{NO}_{10} \mathrm{~S}_{4}$ (1503.39): C 50.33, H 4.29, N 0.93. Found: C 49.98, H 3.99, N 0.93. ESI-MS (methanol, m/z): 466.8, $\left[\mathrm{M}-\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]^{-}\right]^{+} ; 221.6,[\mathrm{tta}]^{-}$ (observed in negative mode); 1037.0, $\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]^{-}$(observed in negative mode). 5c: Yield: $28 \%(0.10 \mathrm{~g})$. Calcd. for $\mathrm{C}_{69} \mathrm{H}_{76} \mathrm{EuF}_{12} \mathrm{NO}_{10} \mathrm{~S}_{4}$ (1587.55): C 52.20, H 4.83, N 0.88. Found: C 52.22, H 5.04, N 0.97. ESI-MS (methanol, m/z): 550.7, [M -$\left.\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]^{-}\right]^{+} ; 221.6,[\mathrm{tta}]^{-}$(observed in negative mode); 1037.0, $\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]^{-}$(observed in negative mode). 6c: Yield: 22% (0.11 g). Calcd. for $\mathrm{C}_{64} \mathrm{H}_{56} \mathrm{EuF}_{12} \mathrm{NO}_{12} \mathrm{~S}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (1557.35): C 49.36, H 3.75, N 0.90. Found: C 49.47, H 3.74, N 1.00. ESI-MS
(methanol, m/z): 502.3, $\left[\mathrm{M}-\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]^{-}\right]^{+} ; 221.6,[\mathrm{tta}]^{-}$(observed in negative mode); 1037.0, $\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]^{-}$(observed in negative mode). 7c: Yield: 36% (0.15 g). Calcd. for $\mathrm{C}_{70} \mathrm{H}_{68} \mathrm{EuF}_{12} \mathrm{NO}_{12} \mathrm{~S}_{4}$ (1623.49): C 51.79, H 4.22, N 0.86. Found: C 51.53, H 4.17, N 0.95. ESI-MS (methanol, m/z): 586.4, $\left[\mathrm{M}-\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]^{-}\right]^{+}$; 221.6, [tta] ${ }^{-}$(observed in negative mode); 1037.0, $\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]^{-}$(observed in negative mode).

Compounds $8 c-9 c$: Unfortunately, we did not succeed in obtaining complexes $8 \mathbf{c}$ and $9 \mathbf{c}$ in sufficient purity. Different synthetic routes were tested: (i) mixing Htta, $\mathrm{NaOH}\left(1 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ aqueous solution), 8a/9a, and $\mathrm{EuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in warm ethanol (with exclusion of light); (ii) mixing $\mathbf{8 a} / \mathbf{9 a}$ and 2 equivalents of $[\mathrm{Na}]\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]$ in dry dichloromethane or in dry dichloromethane/ethanol (3:2) (with exclusion of light); (iii) mixing $\mathbf{8 a} / \mathbf{9 a}$ and 2 equivalents of $[\mathrm{Ag}]\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]$ in dry dichloromethane/ethanol (3:2) (with exclusion of light) ($[\mathrm{Ag}]\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]$ does not dissolve well in pure dichloromethane); (iv) mixing $\mathbf{8 a} / \mathbf{9 a}$ and 2 equivalents of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]$ in dry dichloromethane (with exclusion of light) (both $\left[\mathrm{NH}_{4}\right]\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]$ and $\mathbf{8 a} / \mathbf{9 a}$ are soluble in dichloromethane). Although compounds 8a and 9a are soluble in ethanol at temperatures above approximately $60^{\circ} \mathrm{C}$, method (i) did not work (unreacted 8a/9a was recovered after filtration), while complexes $\mathbf{1 c} \mathbf{c} \mathbf{7 c}$ could be obtained in this way. Method (ii) probably failed because the interaction of the Na^{+}cation with the metalcontaining anion, $\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]^{-}$, is too strong. Method (iii) unfortunately led to a mixture of the desired complex with remaining starting bromide (as confirmed by CHN elemental analysis), which could not be separated. Method (iv) afforded luminescent products that yielded satisfactory CHN and MS results. However, examination by POM and DSC revealed that these products were not entirely pure: between 40 and 50 ${ }^{\circ} \mathrm{C}$ part of the sample liquefied, but this liquid did not mix with the rest of the sample at the melting point, indicating two different products. In any way, these (impure)
products were not liquid-crystalline. Solubility differences between compounds $\mathbf{6 a}$ and $7 \mathbf{a}$, and $8 \mathbf{a}$ and $9 \mathbf{a}$, respectively, seem to be a major reason why no pure $8 \mathbf{c}$ and $9 \mathbf{c}$ could be obtained. Attempts to fully exhange the bromide anion of compounds 8a and 9a for a 2-thenoyltrifluoroacetonate anion ([tta] $]^{-}$) failed. Otherwise, these 2thenoyltrifluoroacetonate pyrrolidinium salts could be mixed with $\mathrm{Eu}(\mathrm{tta})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ to obtain the desired complexes.

Synthesis of compounds 1d-9d

A warm solution of $\mathrm{UO}_{2} \mathrm{Br}_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$ (1 eq.) in ethanol (7.5 mL) was added dropwise to a stirred solution of the appropriate bromide salt (2 eq.) in ethanol (15 mL) (compounds 1a-3a, 6a and 7a) or ethanol/1-butanol (2:1) (15 mL) (compounds $\mathbf{5 a}, \mathbf{8 a}$ and $\mathbf{9 a}$) at $60^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at $70^{\circ} \mathrm{C}$. The yellow precipitate was filtered off while the reaction mixture was still moderately hot, and washed with (warm) ethanol. After further purification (see below), the yellow solid was dried in vacuo at $50{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the uranyl complexes that dissolve in CDCl_{3} or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (not reported here) are similar to those obtained for the parent halide salts in CDCl_{3} or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. 1d: After filtration, the crude product was stirred for 30 min . in ethanol at $70^{\circ} \mathrm{C}$, and filtered off while the suspension was still moderately hot. Yield: $33 \%(0.15 \mathrm{~g})$. Calcd. for $\mathrm{C}_{58} \mathrm{H}_{82} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{U}$ (1456.94): C 47.81, H 5.67, N 3.85. Found: C 47.62, H 5.52, N 3.71. 2d: After filtration, the crude product was recrystallized from ethanol. Yield: 27% (0.13 g). Calcd. for $\mathrm{C}_{50} \mathrm{H}_{72} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{U}$ (1354.76): C 44.33, H 5.36, N 2.07. Found: C 44.23, H 5.50, N 2.04. 3d: After filtration, the crude product was stirred for 30 min . in ethanol at $70^{\circ} \mathrm{C}$, and filtered off while the suspension was still moderately hot. Yield: 40% (0.14 g). Calcd. for
$\mathrm{C}_{62} \mathrm{H}_{96} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{U}$ (1523.08): C 48.89, H 6.35, N 1.84. Found: C 49.17, H 6.38, N 1.79. 5d: After filtration, the crude product was stirred for 30 min . in 1-butanol at 70 ${ }^{\circ} \mathrm{C}$, and filtered off while the suspension was still moderately hot. Yield: 22% (0.12 g). Calcd. for $\mathrm{C}_{74} \mathrm{H}_{120} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{U}$ (1691.40): C 52.55, H 7.15, N 1.66. Found: C 52.41, H 7.51, N 1.57. 6d: After filtration, the crude product was stirred for 30 min . in chloroform at $50^{\circ} \mathrm{C}$, and filtered off while the suspension was still moderately hot. Yield: 27% (0.12 g). Calcd. for $\mathrm{C}_{64} \mathrm{H}_{80} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{U}$ (1594.97): C 48.19, H 5.06, N 1.76. Found: C 48.29, H 4.97, N 1.82. 7d: After filtration, the crude product was stirred for 30 min . in chloroform at $50^{\circ} \mathrm{C}$, and filtered off while the suspension was still moderately hot. Yield: 24% (0.14 g). Calcd. for $\mathrm{C}_{76} \mathrm{H}_{104} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{U}$ (1763.29): C 51.77, H 5.94, N 1.59. Found: C 51.65, H 5.79, N 1.68. 8d: After filtration, the crude product was stirred for 30 min . in 1-butanol at $70^{\circ} \mathrm{C}$, and filtered off while the suspension was still moderately hot. Then it was stirred for 30 min . in chloroform at $50{ }^{\circ} \mathrm{C}$, and filtered off. Yield: $47 \%(0.15 \mathrm{~g})$. Calcd. for $\mathrm{C}_{76} \mathrm{H}_{104} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{U}$ (1763.29): C 51.77 , H 5.94, N 1.59. Found: C 51.42 , H 5.57, N 1.69. 9d: After filtration, the crude product was recrystallized from chloroform. Yield: 36% (0.13 g). Calcd. for $\mathrm{C}_{88} \mathrm{H}_{128} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{U}$ (1931.61): C 54.72, H 6.68, N 1.45. Found: C $54.30, \mathrm{H} 6.29, \mathrm{~N}$ 1.48.

Single Crystal X-ray Diffraction

Figure S1. Packing in the crystal structure of compound $\mathbf{6 d}$, plotted for a $2 \times 2 \times 2$ supercell.

Thermal Behavior

Figure S2. Stack column graph showing the evolution of the transition temperatures in the series 2a-9a. Values are taken from Table 1, for transitions between enantiotropic mesophases. Abbreviations: $\mathrm{Cr}, \mathrm{Cr}_{1}, \mathrm{Cr}_{2}$ and $\mathrm{Cr}_{3}=$ crystalline phase; X = unidentified highly ordered smectic phase; $\mathrm{E}=$ crystal smectic E phase; $\mathrm{SmC}=$ smectic C phase; $\mathrm{SmA}=$ smectic A phase.

Figure S3. Stack column graph showing the evolution of the transition temperatures in the series 2b-9b. Values are taken from Table 1, for transitions between enantiotropic mesophases. Abbreviations: $\mathrm{Cr}, \mathrm{Cr}_{1}$ and $\mathrm{Cr}_{2}=$ crystalline phase; $\mathrm{SmC}=$ smectic C phase; SmA = smectic A phase.

Figure S4. Stack column graph showing the evolution of the transition temperatures in the series 2d-9d. Values are taken from Table 1, for transitions between enantiotropic mesophases. Abbreviations: $\mathrm{Cr}, \mathrm{Cr}_{1}$ and $\mathrm{Cr}_{2}=$ crystalline phase; $\mathrm{SmI}=$ smectic I phase, $\mathrm{SmF}=$ smectic F phase; $\mathrm{SmC}=$ smectic C phase; $\mathrm{SmA}=$ smectic A phase.

Figure S5. DSC traces of (a) 5a and (b) 9a (heating/cooling rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1} ; \mathrm{He}$ atmosphere). The first cooling run is shown by a dashed line; the second heating run is shown by a solid line. Abbreviations: $\mathrm{Cr}, \mathrm{Cr}_{1}$ and $\mathrm{Cr}_{2}=$ crystalline phase; $\mathrm{X}=$ unidentified highly ordered smectic phase; $\mathrm{E}=$ crystal smectic E phase; $\mathrm{SmC}=$ smectic C phase; $\mathrm{SmA}=$ smectic A phase; I = isotropic liquid. Endothermic peaks point upwards.

Figure S6. DSC traces of (a) 7b and (b) 9b (heating/cooling rate of $10^{\circ} \mathrm{C} \mathrm{min}{ }^{-1} ; \mathrm{He}$ atmosphere). The first heating/cooling cycle is shown by a solid line; the second heating/cooling cycle is shown by a dashed line. Abbreviations: $\mathrm{g}=$ glass; Cr_{1} and Cr_{2} $=$ crystalline phase; $\mathrm{M}=$ unidentified smectic phase; $\mathrm{SmC}=$ smectic C phase; $\mathrm{SmA}=$ smectic A phase; I = isotropic liquid. Endothermic peaks point upwards. For compound $\mathbf{9 b}$, the $\mathrm{SmC} \rightarrow \mathrm{SmA}$ transition was hardly detected by DSC.

Figure S7. DSC trace of $\mathbf{8 d}$ (heating/cooling rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$; He atmosphere): second heating run. Abbreviations: Cr_{1} and $\mathrm{Cr}_{2}=$ crystalline phase; $\mathrm{SmA}=$ smectic A phase; I = isotropic liquid. Endothermic peaks point upwards.
(a)

(b)

Figure S8. Thermograms of selected pyrrolidinium salts (heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$; N_{2} atmosphere). (a) 3a (black line), 3b (red line), 3c (green line) and 3d (blue line); (b) 6a (black line) and 7a (red line); (c) 8a (black line) and 9a (red line). For compound $\mathbf{3 c}$, the weight loss between $275^{\circ} \mathrm{C}$ and $370^{\circ} \mathrm{C}$ corresponds to the gradual decomposition of the metal-containing anion, $\left[\mathrm{Eu}(\mathrm{tta})_{4}\right]^{-}$.

Polarizing Optical Microscopy Textures

Figure S9. Oily streak texture of the SmA phase of 7a at $220{ }^{\circ} \mathrm{C}(200 \times$ magnification).

Figure S10. Focal conic texture of the SmA phase of 5a at $176{ }^{\circ} \mathrm{C}(500 \times$ magnification).

Figure S11. Non-characteristic paramorphotic texture of the crystal smectic E phase of 5a at $156^{\circ} \mathrm{C}$ (bulk of the sample), obtained on cooling from the SmA phase shown in Figure S10 (500× magnification).

Powder X-ray Diffraction

Table S1. Bragg reflections collected from the X-ray diffractograms of the different enantiotropic mesophases.

Compd.	$d_{\text {meas }} / \AA^{\text {a }}$	$I^{\text {b }}$	$h k l^{\text {c }}$	$d_{\text {calc }} / \AA^{\text {a }}$	Parameters of smectic phase ${ }^{\mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}}$
3a	42.29	VS	001	42.15	E: $T=150{ }^{\circ} \mathrm{C}$
	21.07	M	002	21.08	$V_{\mathrm{M}}=993 \AA^{3}$
	$-^{\text {h }}$		003		$A_{\mathrm{M}}=47.2 \AA^{2}$
	10.54	VW	004	10.54	$a=7.48$ £
	8.42	W	005	8.43	$b=6.09 \AA$
	7.01	M	006	7.03	$c=42.15 \AA$
	6.02	W	007	6.02	$L=31.75 \AA$
	5.28	W	008	5.27	$d / L=1.33$
	$4.73{ }^{\text {i }}$	VW	$110^{\text {j }}$	4.72	
	4.68	VW	$009{ }^{\text {j }}$	4.68	
	4.31	VW	114	4.31	
	3.74	VW	$200{ }^{\text {j }}$	3.74	
	3.67	VW	202	3.68	
	3.52	VW	204	3.52	
	3.28	VW	206	3.30	
	49.63	VS	001	49.63	SmA: $T=180$
	24.81	W	002	24.81	${ }^{\circ}{ }^{\circ} \mathrm{C}$
					$V_{\mathrm{M}}=1013 \AA^{3}$
					$A_{\mathrm{M}}=40.8 \AA^{2}$
					$L=31.75 \AA$
					$d / L=1.56$
5a	52.68	VS	001	52.32	E: $T=145{ }^{\circ} \mathrm{C}$
	26.11	M	002	26.16	$V_{M}=1142 \AA^{3}$
	17.46	S	003	17.44	$A_{\mathrm{M}}=43.6 \AA^{2}$
	$-^{\text {h }}$		004		$a=8.24 \AA$
	10.43	M	005	10.46	$b=5.58$ £
	8.72	M	006	8.72	$c=52.32 \AA$
	7.48	M	007	7.47	$L=38.77$ A
	6.54	M	008	6.54	$d / L=1.35$
	5.80	W	009	5.81	
	4.62	W	110	4.62	
	4.58	VW	111	4.60	
	4.34	VW	114	4.36	
	4.22	VW	115	4.23	
	4.12	VW	$200{ }^{\text {k }}$	4.12	
	4.02	VW	203	4.01	
	3.49	VW	208	3.49	

					$\text { SmA: } T=170$${ }^{\circ} \mathrm{C}$	
	57.75	VS	001	57.83		
	29.01	W	002	28.92		
	19.25	W	003	19.28	$V_{\mathrm{M}}=1162 \AA^{3}$	
					$A_{\mathrm{M}}=40.2 \AA^{2}$	
					$L=38.77$ A	
					$d / L=1.49$	
6 a	50.04	VS	001	50.04	SmA: $T=210$	
					${ }^{\circ} \mathrm{C}$	
					$V_{M}=1102 \AA^{3}$	
					$A_{\mathrm{M}}=44.0 \AA^{2}$	
					$L=30.63 \AA$	
					$d / L=1.63$	
7a	46.92	VS	001	46.58	$\mathrm{X}: T=170{ }^{\circ} \mathrm{C}^{\text {I }}$	
	23.27	M	002	23.29	$V_{\mathrm{M}}=1228 \AA^{\text {® }}$	
	15.56	W	003	15.53	$A_{\mathrm{M}}=52.8 \AA^{2}$	
	$-^{\text {h }}$		004		$L=38.40 \AA$	
	9.30	W	005	9.32		
	7.75	W	006	7.76		
	6.63	W	007	6.65		
	5.81	W	008	5.82		
	5.16	VW	009	5.18		
	4.31	VW				
	4.22	VW				
	3.98	VW				
	3.61	VW				
	3.36	VW				
	3.24	VW				
	51.77	VS	001	51.47	E: $T=200{ }^{\circ} \mathrm{C}$	
	25.77	M	002	25.73	$V_{\mathrm{M}}=1253 \mathrm{~A}^{3}$	
	17.16	W	003	17.16	$A_{\mathrm{M}}=48.6 \AA^{2}$	
	${ }^{\text {h }}$		004		$\begin{gathered} L=38.40 \AA \\ d / L=1.34 \end{gathered}$	
	10.29	W	005	10.29		
	8.59	W	006	8.58		
	7.33	W	007	7.35		
	6.41	W	008	6.43		
	5.70	VW	009	5.72		
	4.49	VW				
	3.88	VW				
	3.01	$\begin{array}{ll}\text { VW } & \\ \text { VS } & 001\end{array}$				
	59.46				59.62	SmC: $T=205$
	29.87	M	002	29.81	${ }^{\circ} \mathrm{C}$	
	19.88	W	003	19.87	$V_{M}=1257 \AA^{3}$	
					$A_{\mathrm{M}}=42.2 \AA^{2}$	
					$L=38.40$ A	
	67.48	VS	001	67.56	SmA: $T=220$	
	33.73	W	002	33.78	${ }^{\circ} \mathrm{C}$	
	22.57	VW	003	22.52	$V_{M}=1269 \AA^{3}$	
					$A_{\mathrm{M}}=37.6 \AA^{2}$	
					$L=38.40$ Å	
					$d / L=1.76$	

9a	60.06	VS	001	60.00	X: $T=160{ }^{\circ} \mathrm{C}^{\text {1 }}$
	30.02	M	002	30.00	$V_{M}=1373 \AA^{3}$
	20.02	S	003	20.00	$A_{\mathrm{M}}=45.8 \AA^{2}$
	${ }^{\text {h }}$		004		$L=45.41 \AA$
	- ${ }^{\text {b }}$		005		
	9.98	W	006	10.00	
	8.56	W	007	8.57	
	7.50	W	008	7.50	
	6.67	W	009	6.67	
	4.62	M			
	4.57	M			
	4.19	M			
	4.16	M			
	3.09	W			
	57.75	VS	001	58.19	E. $T=188{ }^{\circ} \mathrm{C}$
	29.15	M	002	29.10	$V_{M}=1399 \AA^{3}$
	19.37	S	003	19.40	$A_{\mathrm{M}}=48.0 \AA^{2}$
	${ }_{-}{ }^{\text {h }}$		004		$a=8.33 \AA$
	$-^{\text {h }}$		005		$b=5.60$ A
	9.69	W	006	9.70	$c=58.19$ A
	8.33	M	007	8.31	$L=45.41$ Å
	7.28	M	008	7.27	$d / L=1.28$
	6.48	W	009	6.47	
	4.65	M	$110{ }^{\text {m }}$	4.65	
	4.59	M	112	4.59	
	4.41	W	114	4.43	
	4.16	W	$200{ }^{\text {m }}$	4.16	
	3.73	VW	207	3.72	
	3.62	VW	208	3.61	
	3.51	VW	209	3.50	
	3.16	VW			
	65.28	VS	001	65.12	SmC: $T=205$
	32.63	M	002	32.56	${ }^{\circ} \mathrm{C}$
	21.60	M	003	21.71	$V_{M}=1415 \AA^{3}$
					$A_{\mathrm{M}}=43.4 \AA^{2}$
					$L=45.41 \AA$
	67.48	VS	001	67.26	SmA: $T=216$
	33.54	M	002	33.63	${ }^{\circ} \mathrm{C}{ }^{\text {n }}$
	22.41	M	003	22.42	$V_{M}=1425 \AA^{3}$
					$A_{\mathrm{M}}=42.4 \AA^{2}$
					$L=45.41 \AA$
					$d / L=1.48$
6b	43.51	VS	001	43.51	SmA: $T=105$
	21.76	VW	002	21.76	${ }^{\circ} \mathrm{C}$
					$V_{M}=1378 \AA^{3}$
					$A_{\mathrm{M}}=63.4 \AA^{2}$
					$L=30.63 \AA$
					$d / L=1.42$

7b	$\begin{aligned} & 61.28 \\ & 30.95 \end{aligned}$	$\begin{aligned} & \hline \mathrm{VS} \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 001 \\ & 002 \end{aligned}$	$\begin{aligned} & \hline 61.59 \\ & 30.80 \end{aligned}$	$\begin{gathered} \text { SmA: } T=125 \\ { }^{\circ} \mathrm{C} \\ V_{\mathrm{M}}=1548 \AA^{3} \\ A_{\mathrm{M}}=50.2 \AA^{2} \\ L=38.40 \AA \\ d / L=1.60 \\ \hline \end{gathered}$
9b	$\begin{aligned} & 53.62 \\ & 27.05 \end{aligned}$	$\begin{gathered} \hline \text { VS } \\ \text { S } \end{gathered}$	$\begin{aligned} & 001 \\ & 002 \end{aligned}$	$\begin{aligned} & 53.86 \\ & 26.93 \end{aligned}$	SmC: $T=120$ ${ }^{\circ} \mathrm{C}$ $\begin{gathered} V_{\mathrm{M}}=1692 \AA^{3} \AA^{3}=62.8 \AA^{2} \\ A_{\mathrm{M}}=45.41 \AA \end{gathered}$
	$\begin{aligned} & 54.60 \\ & 27.29 \end{aligned}$	$\begin{gathered} \hline \text { VS } \\ \text { S } \end{gathered}$	$\begin{aligned} & 001 \\ & 002 \end{aligned}$	$\begin{aligned} & 54.59 \\ & 27.30 \end{aligned}$	$\begin{gathered} \hline \text { SmA: } T=135 \\ { }^{\circ} \mathrm{C} \\ V_{\mathrm{M}}=1710 \AA^{3} \\ A_{\mathrm{M}}=62.6 \AA^{2} \\ L=45.41 \AA \\ d / L=1.20 \end{gathered}$
3d	$\begin{aligned} & 50.89 \\ & 25.66 \end{aligned}$	$\begin{aligned} & \hline \mathrm{VS} \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 001 \\ & 002 \end{aligned}$	$\begin{aligned} & 51.11 \\ & 25.55 \end{aligned}$	$\begin{gathered} \text { SmA: } T=140 \\ { }^{\circ} \mathrm{C} \\ V_{\mathrm{M}}=2748 \AA^{3}{ }^{3} \\ A_{\mathrm{M}}=53.8 \AA^{2} \\ L=31.75 \AA \\ d / L=1.61 \end{gathered}$
5d	$\begin{aligned} & 61.28 \\ & 30.64 \\ & 20.42 \end{aligned}$	$\begin{aligned} & \text { VS } \\ & \text { VW } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 001 \\ & 002 \\ & 003 \end{aligned}$	$\begin{aligned} & 61.28 \\ & 30.64 \\ & 20.43 \end{aligned}$	$\begin{gathered} \text { SmC: } T=123 \\ { }^{\circ} \mathrm{C} \\ V_{\mathrm{M}}=3014 \AA^{3}{ }^{3} \\ A_{\mathrm{M}}=49.2 \AA^{2} \\ L=38.77 \AA \\ \hline \end{gathered}$
	$\begin{aligned} & \hline 63.89 \\ & 31.94 \\ & 21.14 \end{aligned}$	$\begin{aligned} & \hline \text { VS } \\ & \text { VW } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \hline 001 \\ & 002 \\ & 003 \end{aligned}$	$\begin{aligned} & 63.73 \\ & 31.87 \\ & 21.24 \end{aligned}$	$\begin{gathered} \text { SmA: } T=140 \\ { }^{\circ} \mathrm{C} \\ V_{\mathrm{M}}=3052 \AA^{3} \\ A_{\mathrm{M}}=47.9 \AA^{2} \\ L=38.77 \AA \\ d / L=1.64 \end{gathered}$
6d	45.49	VS	001	45.49	$\begin{gathered} \text { SmA: } T=225 \\ { }^{\circ} \mathrm{C} \\ V_{\mathrm{M}}=3046 \AA^{3} \\ A_{\mathrm{M}}=67.0 \AA^{2} \\ L=30.63 \AA \\ d / L=1.49 \end{gathered}$
7d	63.89	VS	001	63.89	$\begin{gathered} \text { SmA: } T=195 \\ { }^{\circ} \mathrm{C} \\ V_{\mathrm{M}}=3302 \AA^{3} \\ A_{\mathrm{M}}=51.7 \AA^{2} \\ L=38.40 \AA \\ d / L=1.66 \end{gathered}$

8d	48.82	VS	001	48.82	$\begin{gathered} \text { SmA: } T=210 \\ { }^{\circ} \mathrm{C} \\ V_{\mathrm{M}}=3335 \AA^{3} \\ A_{\mathrm{M}}=68.3 \AA^{2} \\ L=38.23 \AA \\ d / L=1.28 \\ \hline \end{gathered}$
9d	57.75	VS	001	57.70	$\begin{gathered} \text { SmF/SmI: } T= \\ 170{ }^{\circ} \mathrm{C} \\ V_{\mathrm{M}}=3557 \AA^{3} \\ A_{\mathrm{M}}=61.7 \AA^{2} \\ L=45.41 \AA \end{gathered}$
	28.59	W	002	28.85	
	19.25	S	003	19.23	
	$-^{\text {h }}$		004		
	11.55	M	005	11.54	
	9.63	M	006	9.62	
	8.26	M	007	8.24	
	7.23	W	008	7.21	
	6.41	W	009	6.41	
	5.48	VW	110	5.48	
	4.53	VW	$h_{\text {hexagonal }}$		
	3.91	VW	200	3.87	
	3.49	VW	210	3.46	
	61.28	VS	001	61.92	SmC: $T=210$
	31.27	VW	002	30.96	${ }^{\circ} \mathrm{C}$
	20.85	W	003	20.64	$V_{M}=3653 \AA^{3}$
	15.32	VW	004	15.48	$A_{\mathrm{M}}=59.0 \AA^{2}$
					$L=45.41$ A
	63.89	VS	001	63.89	SmA: $T=230$
					$V_{\mathrm{M}}=3701 \AA^{\circ} \mathrm{C}$
					$A_{\mathrm{M}}=57.9 \AA^{2}$
					$L=45.41 \AA$

${ }^{\text {a }} d_{\text {meas. }}$ and $d_{\text {calc. }}$ are the measured and calculated diffraction spacings, respectively. ${ }^{b} I$ is the intensity of the reflections: VS, very strong; S, strong; M, medium; W, weak; VW, very weak; br, broad reflection. ${ }^{c} h k l$ are the Miller indices of the reflections. $h_{\text {hexagonal }}$ denotes the wide-angle reflection that was indexed as the (10) reflection on a two-dimensional hexagonal lattice. ${ }^{\mathrm{d}} T$ is the temperature at which the X-ray diffractogram was recorded. ${ }^{\mathrm{e}} V_{\mathrm{M}}$ is the molecular volume, A_{M} is the molecular area (for the bromide and bis(trifluoromethylsulfonyl)imide salts: $A_{\mathrm{M}}=2 V_{\mathrm{M}} / d$; for the tetrabromouranyl salts: $A_{\mathrm{M}}=$ $\left.V_{\mathrm{M}} / d\right) .{ }^{\mathrm{f}} a, b$ and c are the dimensions of the orthorhombic unit cell in the crystal smectic E phase. Because indexation of the powder X-ray diffractogram of 7 a at $200^{\circ} \mathrm{C}$ was not straightforward, no values are given for a, b and $c .{ }^{g} L$ is the calculated length of the relevant pyrrolidinium cation in its most extended conformation (estimated with Chem3D; the structure of the pyrrolidinium cation was energy-minimized via an MM2 calculation within Chem3D). ${ }^{\text {h }}$ Not detected because of overlap with the diffraction signal produced by the covering foil, used in the experimental set-up (this signal occurs at $2 \theta=5.7-7.6 \AA$). ${ }^{\text {i }}$ This reflection partly overlaps with the (009) reflection. ${ }^{j}$ The (111) and (201) reflections are probably not fully resolved from the (110) and (009) reflections, and from the (200) reflection, respectively. ${ }^{k}$ The (201) reflection is probably not fully resolved from the (200) reflection. ${ }^{1}$ Some additional, extremely weak wide-angle reflections were visible in the powder X-ray diffractogram, but these are not reported here. ${ }^{\mathrm{m}}$ The (111) and (201) reflections are probably not fully resolved from the (110) and (200) reflections, respectively. ${ }^{\text {n }}$ During the temperature scan of the X-ray diffraction measurement, the SmA phase was observed at somewhat lower temperatures than indicated by DSC (Table 1). This might point to a slight decomposition of the sample at high temperatures.

Figure S12. Evolution of the layer thickness, d, of the SmA phases shown by selected compounds, as a function of the temperature.

Figure S13. Evolution of the layer thickness, d, of the different mesophases shown by $\mathbf{7 a}$ (red symbols) and $\mathbf{9 d}$ (green symbols) as a function of the temperature (linear fit of the SmA layer thickness data for 7a: $d=-0.15(\pm 0.03) T+101.5(\pm 0.6))$.

Figure S14. Hypothetical structural model for the SmA phase exhibited by compound 3a, discarded because of an inefficient space-filling (indicated by the dashed ellipses). Bromide anions are represented by grey spheres, but cations are not displayed in space-filling mode.

References

1. Mitsunobu, O. Synthesis-Stuttgart 1981, 1-28.
2. Menschutkin, N. Z. Phys. Chem. 1890, 6, 41-57.
3. Cardinaels, T.; Driesen, K.; Parac-Vogt, T. N.; Heinrich, B.; Bourgogne, C.; Guillon, D.; Donnio, B.; Binnemans, K. Chem. Mater. 2005, 17, 6589-6598.
4. Orzeszko, B.; Melon-Ksyta, D.; Orzeszko, A. Synth. Commun. 2002, 32, 34253429.
5. Bialecka-Florjanczyk, E.; Orzeszko, A.; Sledzinska, I.; Gorecka, E. J. Mater. Chem. 1999, 9, 371-374.
6. González, Y.; Ros, M. B.; Serrano, J. L. Chem. Mater. 1994, 6, 1516-1525.
