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There have been ongoing debates about resuscitation fluids because each of
the current fluids has its own disadvantages. The debates essentially reflect an
embarrassing clinical status quo that all fluids are not quite ideal in most clinical
settings. Therefore, a novel fluid that overcomes the limitations of most fluids is
necessary for most patients, particularly diabetic and older patients. Pyruvate is a natural
potent antioxidant/nitrosative and anti-inflammatory agent. Exogenous pyruvate as an
alkalizer can increase cellular hypoxia and anoxia tolerance with the preservation of
classic glycolytic pathways and the reactivation of pyruvate dehydrogenase activity
to promote oxidative metabolism and reverse the Warburg effect, robustly preventing
and treating hypoxic lactic acidosis, which is one of the fatal complications in critically
ill patients. In animal studies and clinical reports, pyruvate has been shown to play
a protective role in multi-organ functions, especially the heart, brain, kidney, and
intestine, demonstrating a great potential to improve patient survival. Pyruvate-enriched
fluids including crystalloids and colloids and oral rehydration solution (ORS) may
be ideal due to the unique beneficial properties of pyruvate relative to anions in
contemporary existing fluids, such as acetate, bicarbonate, chloride, citrate, lactate,
and even malate. Preclinical studies have demonstrated that pyruvate-enriched saline
is superior to 0.9% sodium chloride. Moreover, pyruvate-enriched Ringer’s solution is
advantageous over lactated Ringer’s solution. Furthermore, pyruvate as a carrier in
colloids, such as hydroxyethyl starch 130/0.4, is more beneficial than its commercial
counterparts. Similarly, pyruvate-enriched ORS is more favorable than WHO-ORS in
organ protection and shock resuscitation. It is critical that pay attention first to improving
abnormal saline with pyruvate for ICU patients. Many clinical trials with a high dose of
intravenous or oral pyruvate were conducted over the past half century, and results
indicated its effectiveness and safety in humans. The long-term instability of pyruvate
aqueous solutions and para-pyruvate cytotoxicity is not a barrier to the pharmaceutical
manufacturing of pyruvate-enriched fluids for ICU patients. Clinical trials with sodium
pyruvate-enriched solutions are urgently warranted.
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INTRODUCTION

Fluid therapy is the first and essential treatment in perioperative
and critical care patients. However, the selection of crystalloids
and/or colloids, which depends on the pathophysiologic
mechanism of various diseases; the fluid composition, property,
and availability; and even clinicians’ individual preference,
remains greatly debatable as each anion, such as acetate,
bicarbonate, chloride, citrate, and lactate, in commercial fluid
products has its own limitations in the resuscitation of critical
care patients, generally contributing to iatrogenic resuscitation
injury. In the past 3 decades, it has been well established
that pyruvate, a weak acidic anion and the core element of
glucose metabolism, holds unique beneficial physiological and
pharmacological properties superior to those of the above-
mentioned anions in current commercial fluids including
intravenous (IV) crystalloids and colloids, as well as oral
rehydration solution/salt (ORS). This review focuses on the
essence of current fluid debates and the advantages, necessity, and
potential clinical uses of sodium pyruvate-enriched fluids.

NON-OPTIMALITY OF CURRENT FLUIDS

Normal saline (NS, 0.9% sodium chloride with equal sodium
and chloride, 154 mmol/L) has been the most popular fluid
in clinical practice for approximately 200 years. High-chloride
saline including NS and hypertonic saline has a fatal limitation
in that it induces iatrogenic hyperchloremia (1, 2), which
leads to metabolic acidosis and kidney dysfunction mainly due
to hyperchloremic renal vasocontraction and decline in the
glomerular filtration rate (3, 4). In healthy volunteers, infusion
of NS at 2 L/h results in hyperchloremia and a decrease in renal
blood flow velocity and cortical tissue perfusion but does not
cause any damage (5). However, hyperchloremia may exacerbate
acid–base disorders and organ dysfunction in intensive care unit
(ICU) patients, and hyperchloremia at hospital discharge may
still be associated with the risk of 1-year patient mortality (6).
Therefore, NS is neither optimal nor suitable for perioperative
and ICU patients, but it remains the first choice for the treatment
of hypochloremic alkalosis (1). A consensus states that NS is
neither a normal nor physiological but an abnormal fluid, which
should be replaced by balanced fluids in most patients, if possible.

To overcome the limitations of NS, Ringer’s and lactated
Ringer’s solutions were produced around a century ago. Previous

Abbreviations: AGEs, advanced glycation end products; ATP, adenosine
triphosphate; AR, acetated Ringer’s solution; DCA, dichloroacetate; EP,
ethyl pyruvate; GSH/GSSG, glutathione reduced form/oxidative form; HES,
hydroxyethyl starch; HIF-1α-EPO, hypoxia-inducible factor-1α-erythropoietin;
[H+], hydrogen, proton; ICU, intensive care unit; IGDT, individualized
goal-directed therapy; IV, intravenous; LDH, lactate dehydrogenase; L/P,
lactate/pyruvate ratio; L-PDS, lactate-based peritoneal dialysis solution; LR,
lactated Ringer’s solution; NAD+/NADH, nicotinamide adenine dinucleotide
oxidative form/reduced form; NS, normal saline; ORS, oral rehydration
solution/salt; paO2, partial pressure of arterial oxygen; PDH, pyruvate
dehydrogenase; PDK, pyruvate dehydrogenase kinas; PDP2, pyruvate
dehydrogenase phosphatase 2; PC, pyruvate carboxylase; PHD, prolyl hydroxylase
domain; PK, pyruvate kinase; P-PDS, pyruvate-based PDS; RBCs, red blood cells;
TCA, tricarboxylic acid cycle.

evidence shows that balanced fluid (lactated/acetated Ringer’s
solution (LR/AR) or acetate-based Plasma-Lytes) is advantageous
over NS in critically ill adults (7, 8), specifically in patients
with diabetic ketoacidosis (9). However, recent findings with a
large sample of patients reveal that balanced crystalloids (LR
and AR) do not have advantages over NS regarding hospital-
free days in non-critically ill patients (10) and that balanced
fluids show no significant superiority over NS in reducing 90-
day mortality in critically ill patients and kidney transplant graft
function (11, 12). To date, the clinical outcomes of various fluids
are still controversial in this respect, and one of the beneficial
effects of current fluids may depend on specific subgroups of
patient populations.

It has long been known that the serum lactate level is
negatively associated with the reversibility of shock and is an
independent risk factor of patients’ mortality in ICUs (13, 14).
Notably, relative hyperlactatemia within the normal range is also
independently associated with mortality in ICU patients (15).
Regarding LR, there is a rise of 0.93 mmol/L in the mean serum
lactate level in healthy volunteers after a bolus of 30 ml/kg (16).
A large LR infusion likely exacerbates lactate accumulation in the
resuscitation of patients with severe or decompensated shock,
which may interfere with the diagnosis and treatment of lactic
acidosis. Thus, LR is not optimally worthy of recommendation in
critically ill patients (17). However, it is still controversial whether
LR worsens lactic acidosis in ICU patients, including those with
septic shock. Although LR generally does not decrease the lactate
clearance, the persistence of hyperlactatemia during the first 24 h
with a high L/P (lactate/pyruvate) ratio is still associated with a
risk of multi-organ failure and death in clinical septic shock (18).
The recommended solution is rather the acetate-based Plasma-
Lyte solution (17, 19). Nevertheless, in a case report, an AR
infusion of sufficient quantity induced lactic acidosis but did not
cause any adverse effects (20).

Evidently, there is no consensus on the type of IV fluid, either
crystalloids (balanced or non-balanced) or colloids (hydroxyethyl
starch: HES 130/0.4, albumin, or plasma with various crystalloids
as carriers), that is the best for most patients (21), as each fluid
has advantages and disadvantages in the majority of patients.

On the other hand, the volume and speed of fluid
delivery are also a critical concern in various clinical settings.
Individualized goal-directed therapy (IGDT) is currently optimal
in perioperative fluid management and critical care patients,
but it still faces challenges. IGDT did not improve early renal
function in a recent renal transplant study with a porcine
model (22). Although very little or excessive fluid infusion
can induce an immediate hemodynamic compromise and cause
organ dysfunction (22), a recent study with a large sample of
patients found that infusing at a slower (333 ml/h) vs. faster
(999 ml/h) rate did not result in a statistical difference in 90-
day mortality among ICU patients who were randomized in two
groups to receive balanced solutions and NS, respectively (23).

Generally, although current fluids play an important role
in healthcare, the ongoing debates about resuscitation fluids
essentially reflect a crucial embarrassing clinical status quo that all
current fluid products are not quite satisfactory in most clinical
settings as an ideal selection, especially in ICU patients with
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severe and complex comorbidities. Therefore, a novel optimal
fluid that overcomes most of the limitations of current fluids
is warranted for most patients in a wide variety of severe
clinical scenarios, particularly diabetic and elderly patients with
or without organ comorbidities.

ADVANTAGES OF PYRUVATE IN FUTURE
FLUIDS

Pyruvate is a key metabolite of glycolysis, which is reduced
to lactate in anoxia or enters oxidative metabolism in the
tricarboxylic acid (TCA) cycle in normoxia and hypoxia.
The exogenous pyruvate metabolic profile in the intracellular
environment can be simply illustrated, as shown in Figure 1.

Exogenous pyruvate in aqueous solutions is a unique anion
that has pluripotent beneficial physiological and pharmacological
properties to protect multi-organ structures and functions against
various noxious insults, such as cardiogenic, hemorrhagic,
traumatic, and septic shock. Specifically, pyruvate is a potent
alkalizer used in preventing and treating hypoxic lactic acidosis,
which is not only lethal but also lacks an ideal treatment
agent in clinical practice (17). Recently, its beneficial properties
over current anions in medical fluids, as mentioned before, are
increasingly being recognized in fluid resuscitation, mainly due
to the following beneficial bioactive characteristics.

Increase in Cellular Hypoxia Tolerance
An experiment conducted in 2012 showed that pyruvate protects
the function of red blood cells (RBCs), which are the most
abundant tissues in humans and exclusively depend on anaerobic
glycolysis to produce glycolytic ATP due to the absence of
mitochondria (24). Moreover, the delayed decline in ATP levels
and ATPase activities of dogs’ RBCs in the extracorporeal
circuit primed with sodium pyruvate/chloride saline vs. sodium
chloride saline demonstrates that pyruvate alone is beneficial
for cell metabolism throughout the body, even in anoxia (24).
This investigation validates two previous findings: (1) pyruvate
preserved brain ATP levels and prolonged survival in rats
subjected to anoxia by exploring a pure nitrogen atmosphere
in the 1960s (25), and (2) pyruvate protected against anoxic
injury in the anoxic perfusion of hepatocytes, as indicated by
decreases in superoxide generation and lactate dehydrogenase
(LDH) release, and against reoxygenation injury in rats in the
1990s (26). Recently, infusion of RBCs with pyruvate restoration
from storage-induced damage robustly alleviated liver injury in
rats, indicating the potential significance of pyruvate protection
of RBCs in clinical resuscitation (27). Evidently, it also preserves
ATP generation in hypoxia (28, 29). These findings substantiate
a fundamental and core fact that exogenous pyruvate preserves
canonical glycolysis and glycolytic ATP, which is essential for each
cell in both hypoxia and anoxia (see below).

Reactivation of Pyruvate Dehydrogenase
and Reversal of Warburg Effect
Pyruvate stimulates pyruvate dehydrogenase (PDH) via
the direct inhibition of PDH kinase (PDK), similar to

dichloroacetate (DCA, a classic PDH stimulator) (30, 31),
and probably via the enhancement of PDH phosphatase 2
(PDP2) expression (32). Recent findings further demonstrated
that pyruvate preserved the nicotinamide adenine dinucleotide
oxidative form/reduced form (NAD+/NADH) ratio, restored
pyruvate kinase (PK), and retarded the sorbitol pathway
by the competitive inhibition of aldose reductase, resulting
in the promotion of classic glycolytic pathways (Figure 1).
It also accelerated glucose oxidative phosphorylation by
rejuvenating the suppressed PDH and pyruvate carboxylase
(PC) activities in traumatic brain injured and hemorrhagic
rats and diabetic db/db mice (31, 33). Alternatively, it can
inhibit LDH-A activity, which is usually overexpressed in
hypoxia, diabetes, and cancer, facilitating oxidative metabolism
in cells (34–36).

Several pieces of preclinical evidence revealed that pyruvate
protected from diabetic cataract and retinopathy and increased
blood insulin levels (33, 37, 38). Preliminary case reports also
confirmed the findings that pyruvate protected against diabetes
by reducing daily insulin doses in type 1 diabetes (39, 40).
Accordingly, it can reverse glucometabolic disorders in diabetes
and trauma and hemorrhage, turning the vicious circle of diabetic
glucometabolic disturbance into a virtuous circle (33) as it
reversed the Warburg effect by DCA in cancer.

Correction of Severe Metabolic Acidosis
Pyruvate is a potent alkalizer via the rapid metabolic
consumption of hydrogen ions (proton, [H+]) through the
LDH reduction reaction, which is a systemic alkalizing enzymatic
reaction, coupled with an increase in the NAD+/NADH
ratio, and the gluconeogenesis pathway in the cytosol in
addition to oxidative phosphorylation in the mitochondria
(Figure 1). Although it is a weaker acidic anion of sodium
salt with a low buffer capacity of pKa 2.49, pyruvate favors a
rise in blood plasma pH accordingly (17, 41). Pyruvate has
the potential to effectively correct hypoxic lactic acidosis in
critically ill patients, as repeatedly demonstrated with IV or
oral pyruvate in small or large animal studies, which resulted
in approximately doubled survival (42–45). A case report
described the effectiveness of a high dose of oral sodium
pyruvate in robustly attenuating continuous severe lactic acidosis
in a child with Leigh syndrome due to a novel mutation in
the PDH E1α gene (46). Another study involving 11 adult
patients with the mitochondrial disease also revealed significant
decreases in plasma and lateral ventricular lactate and the
L/P ratio accompanied by clinical improvements as a result
of pyruvate therapy (47). Therefore, pyruvate enriched IV
and oral solutions are excellent in preventing and treating
severe metabolic lactic acidosis in various severe clinical
scenarios, although no data from clinical resuscitation have
yet been reported.

Inhibition of Oxidative/Nitrosative Stress
and Inflammation
Endogenous pyruvate is a natural and potent antioxidant
agent. It is widely known that it can effectively exert a dual
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FIGURE 1 | Exogenous pyruvate metabolism in cellular hypoxia. Exogenous pyruvate enters cell plasma with [H+]. The pyruvate or glycolytic pyruvate with [H+]
spontaneously reduces to lactate with LDH free of energy in anoxia, leading to [H+] consumption and increment of the NAD+/NADH ratio that promotes the
glycolytic pathway at glyceraldehyde-3-phosphate dehydrogenase. Exogenous pyruvate also facilitates glycolysis by stimulating the HIF-1α-EPO signal pathway,
increasing G-6PD activity, thereby preserving the PPP pathway and GSH/GSSG ratio. It inhibits AR activity in the sorbitol pathway likely by competing inhibition,
enhancing NAD+/NADH also in the second step of sorbitol pathway. Thus, pyruvate sustains canonical glycolytic pathways and glycolytic ATP. It also inhibits LDH-A
to decline the pyruvate reduction to lactate. Pyruvate enters mitochondria with [H+] and oxidates in hypoxia and normoxia by renovating inhibited PDH in the TCA
cycle, resulting in mitochondrial ATP generation and [H+] consumption. Also, it promotes the TCA cycle via anaplerosis with preservation of PC and ME activities.
Hence, pyruvate reverses the Warburg effect. Pyruvate-based gluconeogenesis consumes additional [H+] in relation to lactate-based one in cytosol. Pyruvate has
the most powerful energetics with the least oxygen consumption in equal molar ATP generation among lactate, acetate, citrate, and malate oxidation. AR, aldose
reductase; ATP, adenosine triphosphate; G-3-PD, glyceraldehyde-3-phosphate dehydrogenase; G-6-PD, glucose-6-phosphate dehydrogenase; GSH/GSSG,
glutathione (reduced/oxidized); HIF-1-EPO, hypoxia-inducible factor-1-erythropoienin; [H+], hydrogen in cellular hydrogen pool; [H+], hydrogen consumed in a molar
basis; LDH, lactate dehydrogenase; ME, malic enzyme; NADH/NAD+, nicotinamide adenine dinucleotide (reduced/oxidized); PC, pyruvate carboxylase; PDH,
pyruvate dehydrogenase; PFK-1, phosphofructokinase-1; PPP, pentose phosphate pathway; SP, sorbitol pathway; TCA cycle, tricarboxylic acid cycle with oxidative
phosphorylation; TKA, thiokinase.

effect of antioxidant/nitrosative stress by directly interacting
with reactive oxygen/nitrogen species via a non-enzymatic
stoichiometric reaction and indirect action with redox potentials,
mainly NAD+/NADH and GSH/GSSG (glutathione-reduced
form/oxidative form) (48). A recent comprehensive review
clearly illustrated the critical significance of reducing equivalents,
including NAD+ and GSH, in maintaining cellular redox
homeostasis and modulating cellular metabolism (49). There
are numerous pieces of evidence that show pyruvate robustly
increases both NAD+/NADH and GSH/GSSG ratios in tissues in
various injuries (33, 42, 50). In addition, it inhibits inflammatory
reactions, including both infiltration of inflammatory cells and
secretion of inflammatory mediators, such as cytokines including

IL-2 and IL-6, TNF-α, and high-mobility group box-1 (HMGB-
1) (43).

Stimulation of HIF-1 and Protection of
the Mitochondria
As previously discovered, pyruvate can directly stimulate
the hypoxia-inducible factor-1α-erythropoietin (HIF-1α-EPO)
signal pathway by inhibiting the HIF-prolyl hydroxylase domain
(PHD) to avoid HIF-1α proteasomal degradation in both
hypoxia and normoxia and the subsequent elevation of the
gene expression and content of EPO (51, 52). The activation
of the HIF-1α-EPO pathway further stimulates the downstream
enzymes to improve energy metabolism and mitochondrial
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energetics. On the other hand, it also protects the mitochondrial
structure and endoplasmic reticulum function and protects
against cellular apoptosis in various insults (53–55). Therefore,
the effects of pyruvate can continue for at least several hours
after the rapid decline in the peak plasma level to normal
in approximately 1 h following the termination of pyruvate
infusion (51). In addition, pyruvate can inhibit the formation and
deposition of advanced glycation end products (AGEs), which are
one of the major pathogenic triggers in organ complications, in
hypoxia and diabetes as an AGE antagonist (33, 56).

Stimulation of Insulin Secretion
Sodium pyruvate like methyl pyruvate works as an insulin
stimulator. Pyruvate metabolism in the mitochondria is
intimately involved in glucose-stimulated insulin secretion
(GSIS) and the PC activity, on which pyruvate oxidative
metabolism partially depends. PC facilitates the anaplerotic
flux, which also plays a critical role in insulin secretion from
pancreatic islets (57, 58). It can effectively control diabetes
progression and organ complications with restored insulin
levels in db/db mice (33). Therefore, exogenous pyruvate
enhances insulin secretion in islet β-cells even in type 1 diabetic
patients to the extent of hypoglycemia (39, 40). Intriguingly,
in children with citrin deficiency, oral pyruvate induces
significant enhancements of fasting insulin levels for months
(59). Furthermore, in rats subjected to severe scald with multiple
organ dysfunction syndrome, direct peritoneal resuscitation
with pyruvate-based peritoneal dialysis solution (P-PDS)
containing glucose still effectively protects the function of the
islet β-cells, as demonstrated by a higher homeostasis model
assessment of β-cell (HOMA-β) level without hyperglycemia
(60). Thus, pyruvate is beneficial in the resuscitation of
critical care patients, specifically those with diabetes and
elders (61).

Exertion of Anti-aging
The decrease in NAD+ cellular levels and the increase in
senescence cells (a permanent cell cycle arrest but living cell)
in tissues are closely associated with natural aging (62, 63).
Pyruvate can spontaneously generate NAD+, mainly through
the LDH reduction reaction coupled with NADH oxidation
free of oxygen and energy, enhancing NAD+ levels in the
cytosol on an equimolar basis. Alternatively, the clearance of
senescence cells by a senolytic improved multi-organ (kidney
and heart) functions and extended the healthy lifespan in mice.
A pilot study in patients with idiopathic pulmonary fibrosis first
showed promising clinical improvements with oral senolytics
(64). Importantly, a cellular study found that pyruvate prevented
cellular senescence in normal human fibroblasts by increasing
NAD+ generation in vitro and mimicking human skin in vivo
(53). Notably, it also showed the protection of DNA repair
in rodents and human cells (65). Therefore, pyruvate acts
generally as both a novel NAD+ substitute and a new senolytic
substance, although further exploration and demonstrable data
are warranted (66).

The unique properties of pyruvate described above are
superior to those of the anions currently found in fluids used

for ICU patients, which lack the properties of pyruvate or have
much inferior ones; even malate shows the capacity to effectively
eliminate hypoxic lactic acidosis in sufficient amounts cannot
be metabolized in anoxia (67), leading to no protection of
RBCs. It also possesses the lowest oxygen consumption rate per
ATP generation among acetate, citrate, lactate, and malate (17).
Therefore, pyruvate is more metabolically protective, especially
regarding glucometabolic and acid–base balance and multi-organ
function, predominantly in the heart, brain, liver, kidney, and
intestine, than current anions in various pathogenic attacks.
Alternatively, hypoxia, glucometabolic disturbance, metabolic
acidosis, oxidative stress and inflammation, mitochondrial
dysfunction, and cellular apoptosis, against which pyruvate
protects in multiple organs, are all pathophysiological processes
that are shared in most critical illnesses. Accordingly, the
favorable pleiotropic bioactivities of pyruvate effectively meet the
clinical needs and are beneficial in most patients with or without
parenchymatous organ comorbidities.

PYRUVATE SALINE SUPERIOR TO
NORMAL SALINE

Intriguingly and significantly, pyruvate saline, sodium pyruvate
50 mM plus sodium chloride 104 mM, is advantageous over 0.9%
sodium chloride (NS, 154 mM) in preserving ATP generation
and ATPase activity in the RBCs of dogs simulated bypass
surgical procedures in vitro (24). The ATP product from RBCs
is glycolytic ATP, an essential component of ATPase in all
cells in the body for several basic cellular functions, such
as ion polarization of plasma membranes and maintenance
of membrane integrity by Na+-K+-ATPase, and organelle pH
regulation by vacuolar ATPase (V-ATPase). The data also
demonstrate the inhibition of inflammatory reactions of RBCs by
pyruvate, as shown by the reduction of endothelial nitric oxide
synthase (eNOS) and nitric oxide (NO) in plasma (24). RBCs as
an oxygen sensor that triggers the dilation of the microvascular
circulation by releasing glycolytic ATP in addition to oxygen
delivery are intimately associated with oxygen supply in tissues
(68). As aforementioned, RBCs rejuvenated by pyruvate could
attenuate liver injury after the blood infusion, indicating the
improvement of tissue hypoxia in rats (27). In this respect,
its protective effects on stored RBCs were also displayed early
in rat models of renal oxygenation and in clinical bypass
surgery studies (24). Furthermore, either a high or regular
(28 mM) pyruvate concentration preserved the partial pressure
of arterial oxygen (paO2) and systemic and cerebral oxygen
delivery and consumption in shock IV resuscitation, further
demonstrating the attenuation of tissue hypoxia by pyruvate (42,
44). Oral pyruvate also resulted in the preservation of paO2 in
severe shock rehydration (69). Additionally, preliminary data
showed that it might also improve the RBC oxygen–hemoglobin
dissociation curve against peroxide stress (70). The pyruvate
effect on paO2 in shock resuscitation should be specifically and
intensively investigated.

Furthermore, IV pyruvate saline protection of the kidney
was first preliminarily reported in China a decade ago in rats
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subjected to burn shock with 50% TBSA III (total body surface
area, full-thickness scald), compared to an equal volume of
NS infusion, although pyruvate renoprotection had been earlier
investigated (71, 72); the kidney vascular permeability, tissue
water content, hematocrit, and serum creatinine levels 4 h after
the scald were significantly increased in the NS group compared
to the pyruvate group, while no significant difference was found
between the pyruvate group and the sham group (72). Although
the histopathological alteration was not investigated, the results
apparently revealed that pyruvate might not only prevent kidney
injury generally induced by NS due to hyperchloremia in severe
shock resuscitation, but also protect the kidney function from
burn shock. Its renoprotection was further appreciated afterward,
including the protection against diabetic nephropathy (33, 73).
In addition, pyruvate also protects systemic endothelial cells in
addition to RBCs and neutrophils against oxidative stress (74).
These findings provide a convincing basis for using pyruvate
saline, rather than NS in ICU patients in future clinical practice,
although further intensive studies are required. Therefore, the
predictable advantages of pyruvate saline are that it prevents
iatrogenic hyperchloremia and protects multi-organ function as
a therapeutic agent of organ metabolic and functional aberrances
and a volume expander in fluid resuscitation. In these terms, 1.7%
sodium pyruvate (154 mM) also showed more promising results
than 0.9% sodium chloride by 90 vs. 30% survival at 90 min
after fluid infusion during resuscitation for a severe hemorrhagic
shock in a rodent model (75).

On the other hand, studies have demonstrated the advantages
of PR over LR in shock resuscitation, particularly in effectively
correcting hypoxic lactic acidosis, inhibiting apoptosis, and
prolonging survival in animal studies (43, 44, 76).

It is worth noting that the regular pyruvate concentration
(28 mM) with a low dose was as efficient as high doses for
metabolic improvement and multi-organ protection in early
reports (42, 43).

Importantly, a very small amount of pyruvate in cardioplegia
showed apparent cardio-protection in clinical bypass surgery
(77). In parallel, pyruvate-enriched ORS (Pyr-ORS; 0.35%:
equimolar pyruvate replacement of bicarbonate or citrate in
WHO-ORS I, II, and III) is superior to the latter three ORSs in
correcting lactic acidosis, protecting multiorgan, and increasing
survival in the shock rehydration of rats and dogs (Table 1) (45,
51, 69, 78).

Furthermore, early studies documented that pyruvate-
based PDS (P-PDS) was much more effective than regular
commercial lactate-based PDS (L-PDS) in improving human
blood neutrophils’ intracellular pH and superoxide generation
(79, 80). Regarding direct peritoneal resuscitation, recent animal
studies also found that P-PDS was significantly advantageous
over L-PDS in reversing visceral hypoperfusion, correcting
metabolic acidosis, and protecting the intestinal barrier (81–83).
Furthermore, as an example of colloids, pyruvate as a novel
carrier in HES 130/0.4 significantly demonstrated kidney
protection (as well as the intestinal barrier preservation:
unpublished data) in the fluid resuscitation of rats subjected to
lethal burn shock, compared to regular carriers in commercial
HES 130/0.4 products (21).

All these indicate that pyruvate replacement of current
anions, such as acetate, chloride, and lactate, in carrier solutions
of colloids would robustly improve the clinical benefits of
synthetic or natural colloids, although malate has not been
compared till now.

It is rational and expected that on a monolithic view, pyruvate
as a novel component in fluid therapy would greatly ameliorate
the prognosis of diseases and clinical outcomes, particularly
under IGDT, in perioperative fluid management and ICU
patients, especially those with diabetes and elders, as the initial
clinical indication. For example, clinical studies demonstrate that
major abdominal surgery can induce a substantial PDH decrease
with glucose metabolic dysregulation in muscles, probably due
to an increase in PDK activity and insulin resistance (84, 85).
Thus, pyruvate-enriched fluids would be an optimal selection
to prevent postoperative hyperglycemia, probably due to its
preservation of PDH and islet function (30–33, 60). At present, if
pyruvate solutions were compassionately used in severe COVID-
19 patients, clinical outcomes might have greatly improved (86,
87). In the future, pyruvate-enriched fluids may encompass other
medical solutions specifically used for RBC storage, cell salvage,
organ preservation, cardioplegia, peritoneal dialysis, priming
fluid for cardiopulmonary bypass circuits, and others (24, 27, 77,
80, 88).

SAFETY AND FEASIBILITY OF
PYRUVATE FLUIDS

Sodium pyruvate has been intravenously infused in humans
since the 1930s. One early study used IV 3.5 g% pyruvate
at 10 mg/kg (20 ml/70 kg) for 1–1.5 min in 21 healthy
subjects and 27 patients subjected to Vit B1 deficiency (89);
another study used 18.8 g of 12% pyruvate in three non-
psychotic and four schizophrenic patients (90). Then, 10 g of
pyruvate (100 ml of 10% solution) was infused in 18 non-
diabetic subjects and 19 diabetic patients to investigate the
secretion of pyruvate in urine in 1960 (91). No unexpected
effects were observed in all these subjects. Subsequently, many
clinical reports with high pyruvate doses in product qualities
at the time demonstrated its safety with the absence of adverse
effects. In 1996, the first IV pyruvate treatment of chronic liver
diseases was reported in 11 patients with pyruvate 54–86.4 g/d
for 10 days, followed by a consecutive report; the results showed
a promising improvement in liver functions and pathological
alterations (92, 93). The first intracoronary pyruvate infusion
(totally 1.53 g and 3.05 g in 30 min, according to the calculation)
was studied in eight patients with dilated cardiomyopathy in
the Lancet in 1999; the hemodynamic measurements, including
increases in the cardiac index and stroke volume and a decrease
in pulmonary capillary wedge pressure, demonstrated the clinical
cardio-protection due to pyruvate with a favorable inotropic
effect (94). Additional reports on severe heart failure with
intracoronary pyruvate of approximately 6.0 g in 30 min and
others with cardioplegia on small doses of pyruvate and several
IV loading tests of 10.0 g/4 min or 0.5 g/kg in 10 min
all further demonstrated its clinical effectiveness and safety
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TABLE 1 | Compositions of oral rehydration salt.

Alkalizer (g/L) NaCl (g/L) KCl (g/L) Glucose (g/L) mOsm/L Acidosis correction

WHO-ORS (I) Bicarbonate 2.5 3.5 1.5 20.0 331 No effect on hypoxic LA

WHO-ORS (II) Citrate 2.9 3.5 1.5 20.0 311 Ibid

WHO-ORS (III) Citrate 2.9 2.5 1.5 13.5 245 Ibid

Pyr-ORS Pyruvate 3.5 3.5 1.5 20.0 335 Hypoxic LA correction

(regular osmolarity)

Pyr-ORS Pyruvate 3.5 2.0 1.5 13.5 247 Ibid

(low osmolarity)

WHO-ORS, World health organization-guided oral rehydration salt; Pyr-ORS, pyruvate-enriched oral rehydration salt; LA, lactic acidosis.

(77, 95–97). The highest oral dose (initially 0.25 g/kg t.i.d.
with a maintenance dose of 0.5 g/kg t.i.d.) in 11 patients
subjected to mitochondriopathy for 11 months and the same
dose in a case with Leigh syndrome for years showed clinical
improvements without adverse effects (46, 47). The reported
clinical side effects were local pain induced by IV pyruvate at
high concentrations and gut irritation or dizziness due to oral
pyruvate at high doses (39, 91). The only report presents the
case of a child with restrictive cardiomyopathy who received
pyruvate infusion and died shortly after the pyruvate loading test
(98); however, the causation between pyruvate and death was not
confirmed (99).

However, the U.S. FDA has not verified its clinical use to
date. The FDA approved a pyruvate-based product (Rejuvesol) in
the 1990s, which was the sole commercial pyruvate-compounded
solution stored at 4◦C for the rejuvenation of stored RBCs in vitro
before infusion (100). Early data regarding its acute toxicology
showed that oral pyruvate LD50 was over 10.0 g/kg in rats, and
IV pyruvate LD50 was over 1.25 g/kg in mice; thus, pyruvate was
considered non-toxic in humans (39, 92).

The most crucial issue is the instability of pyruvate aqueous
solutions at room temperature (101). Several patents on pyruvate
clinical uses including fluid therapy were filed or issued
during the last decades (102, 103), strongly indicating that the
pivotal role of pyruvate in clinical medicine has been well
recognized. However, no pharmaceutical manufacturers can
produce pyruvate aqueous solutions worldwide to date. Although
pyruvate dimers, such as para-pyruvate, which are cytotoxic in
cell experiments in vitro (104), are spontaneously generated in
pyruvate aqueous solutions at room temperature, the appropriate
acidic environment can inhibit the non-enzymatic aldol-type
condensation reaction (101). A patent on the long-term stability
of pyruvate aqueous solutions was issued a decade ago following
the experimental data of over 99.0% of pyruvate in water with
a pH of approximately 4.5 at 25◦C for 2 years (US patent:
8,835,508 B2, 2014). To date, there have not been any data
regarding para-pyruvate cytotoxicity in humans in vivo. The
purity of sodium pyruvate powders was merely over 98.0%, which
probably included approximately 1.0% para-pyruvate, several
decades ago when high doses of the product were safely infused
in several hundreds of patients and healthy adults without acute
adverse effects, as mentioned before, indicating that the toxicity
of pyruvate aqueous solutions in humans is not realistically
true, which is inaccurately referred in many references of ethyl

pyruvate (EP) studies (105). Accordingly, pyruvate saline and
pyruvate Ringer’s solution with pH 4.5–5.0 would be a long-term
stable solution at room temperature without cytotoxicity as 5%
glucose-NS but with a similar acidic pH in the clinical scenario.
Furthermore, the pyruvate raw product is cheaper, and thus there
are many suppliers. It is highly possible and essential to consider
pharmaceutically manufacturing pyruvate-enriched fluids with a
long-term shelf life for clinical practices today. At least, an IV
preparation of sodium pyruvate powder injection should first be
feasibly considered for emergency or compassionate use (77, 86).

On the other hand, oral pyruvate (0.35%) in a modified
Pyr-ORS formula, which increases intestinal mucosal blood
flow, energy metabolism, and Na+-K+-ATPase activity, protects
intestinal barrier structure and function and enhances sodium
and water absorption, thus resulting in lactic acidosis correction,
multi-organ protection, and survival prolongation, relative to
WHO-ORS counterparts (45, 69, 78, 106). Pyr-ORS as a pyruvate-
containing beverage (107), which is approved by the FDA as
a dietary supplement, may be efficient in prehospital rescue
to take advantage of the “golden window” in the rehydration
of acutely injured patients, particularly in an ambulance or
resource-poor settings, in a large scale such as during earthquakes
and terrorist attacks, as pointed out previously (51, 78). Recently,
an experienced pyruvate research team strongly recommended
the clinical use of pyruvate again (108). Taken together, although
prior case reports with pyruvate applications were not sufficiently
of high quality and did not have large group sizes, the overall
results strongly demonstrate an irrefutable fact that pyruvate
is clinically promising relative to all the drawbacks of the
major anions found in contemporary resuscitation solutions.
Pyruvate-enriched fluids may be a preferred choice via IV, oral,
or peritoneal administration in the future for clinical shock
resuscitation and the first choice for hemorrhagic shock (109).
ORS therapy has been demonstrated in a top hospital to be
effective in the patients of the whole hospital including those
in the emergency room (110); however, Pyr-ORS has been
shown to be more effective than WHO-ORS in various illnesses.
Nevertheless, there has been no clinical study yet about the
effects of IV or oral pyruvate on shock resuscitation, but novel
oral pyruvate combined with nicotinamide has demonstrated
its effectiveness in improving retinal ganglion cell function in
human glaucoma (111).

Based on the current understanding of fluid therapy in ICU
patients, it is recommended to prescribe fluids based on the
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condition of each individual patient and to understand the
benefits of each solution regarding an individual ICU patient,
as both are crucial (112). In contrast to existing commercial
fluids, novel pyruvate-enriched fluids would be both a volume
expander and a therapeutic agent in fluid resuscitation and will be
appealing to clinicians as they could simply select them in various
clinical settings.

Finally, numerous animal studies demonstrated that EP (a
lipophilic ester derivative of pyruvate) in fluid resuscitation, such
as the Ringer’s ethyl pyruvate solution (REPS), functions as well
as sodium pyruvate (105), which strongly supports the effects of
sodium pyruvate in the novel fluids. However, EP cannot correct
severe metabolic acidosis, even if hyperlactatemia is improved
(113), probably due to its hydrolysis to the pyruvate moiety with
[H+] production. It is worth noting that EP works in animals but
not in humans (114), and it was failed in a phase II clinical trial
in 2009 (115). Moreover, a recent doubt was also raised about
its clinical use (116), whereas sodium pyruvate is demonstrably
effective and safe in humans, as indicated in many clinical tests
over the last half century.

CONCLUSION

Pyruvate is a multifactorial beneficial anion superior to the
current anions, such as acetate, bicarbonate, chloride, citrate,
lactate, and others, found in crystalloids and colloid fluids used
for resuscitation. Pyruvate can protect metabolic homeostasis
and multi-organ function in varying injuries in addition to
avoiding iatrogenic adverse effects, such as resuscitation injury, of
current fluids used in clinical resuscitation. Regarding the overall
concept, the clinical advent of pyruvate-enriched formulations
introduces a novel generation of fluid therapy to overcome the
limitations of current fluids and be the first preferable fluid
employed in most patients. Pyruvate applications would end
the fluid debate; profoundly improve prognostic outcomes in

ICU patients, especially those with diabetes and older patients;
shorten the hospital stay; and enhance the quality of social
healthcare. Clinicians and drug manufacturers should recognize
that the long-term instability of pyruvate aqueous solutions and
para-pyruvate cytotoxicity in vitro are almost not limitations
or barriers to the pharmaceutical manufacturing of pyruvate-
enriched fluids for clinical use. Randomized clinical trials of
pyruvate in fluid resuscitation are urgently warranted.
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