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Abstract 
PySAL is an open source library for spatial analysis written in the object-oriented language 
Python. It is built upon shared functionality in two exploratory spatial data analysis packages––
GeoDA and STARS––and is intended to leverage the shared development of these components. 
This paper presents an overview of the motivation behind and the design of PySAL, as well as 
suggestions for how the library can be used with other software projects. Empirical illustrations of 
several key components in a variety of spatial analytical problems are given, and plans for future 
development of PySAL are discussed.   
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1.  INTRODUCTION 
 

This paper describes PySAL, an open source library for spatial analysis written in the 
object-oriented language Python. PySAL grew out of the software development activities 
that were part of the Center for Spatially Integrated Social Sciences Tools Project 
(Goodchild et al. 2000). This National Science Foundation infrastructure project had as 
its goals to:  
 

• facilitate dissemination of spatial analysis software to social sciences;  
• develop a library of spatial data analysis modules;  
• develop prototypes implementing state of the art methods; and  
• initiate and nurture a community of open source developers.  

 
PySAL is a collaborative effort between Luc Anselin’s research group at UIUC and 
Sergio Rey’s research group at SDSU to develop a cross-platform library of spatial 
analysis functions written in Python. This combines the development activities of 
GeoDA/PySpace (Anselin, Syabri, and Kho 2006) and STARS––Space Time Analysis of 
Regional Systems (Rey and Janikas 2006). Both will continue to exist and exploit a 
common library of functions.  
 

One particular subcomponent of PySAL is referred to as PySpace, an open source 
software development effort focused on the implementation of spatial statistical methods 
in general and spatial regression analysis in particular using Python and Numerical 
Python. Current activities deal with a set of classes and methods to carry out diagnostics 
for spatial correlation in linear regression models and to estimate spatial lag and spatial 
error specifications.  

 
The goal of PySAL is to leverage existing software tools development underlying 

GeoDA/PySpace and STARS to yield a core library and application programming inter-
face (API) that will serve three needs. First, to avoid duplication of effort in the develop-
ment of core spatial data analysis functions, the teams are collaborating on key modules 
that can be shared across the different projects. As a result of this reorganization, the two 
projects will be able to focus on increased specialization and modularization of related 
functionality. For example, PySpace development can focus on advanced spatial econo-
metric methods while STARS development can continue implementing new space-time 
methods, yet both will draw on jointly developed spatial weights classes. This avoids the 
need for separate but largely parallel efforts and also increases standardization of core 
classes and methods.1 By pooling developer time on the shared weights classes, we have 
freed up resources that are being used for advances along specialized interests of the two 
projects.  
 

The third need that PySAL seeks to address is a current void in the Python commu-
nity where advanced spatial analytic modules are largely absent. While much work is 

 
1 We provide illustrations of this in Section 3. 
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being done on cartographic and GIS libraries in Python (Coles, Wagner, and Koormann 
2004; Butler and Gillies 2005; Gillies and Lautaportti 2006), functionality dealing with 
state of the art spatial statistical and spatial econometric analysis is largely absent. Filling 
this void is important given the rapidly growing scientific community that has adopted 
Python as the language of choice.2  
 

The existing Python-related cartographic and GIS efforts are part of a much larger 
movement in Open Source Geographic Information Systems. A recent inventory of open 
source packages that are designed to deal with spatial data identified over 237 such 
efforts (Lewis 2007). However, a close examination of the objectives of the projects 
listed reveals that the vast majority focus on spatial data manipulation and presentation. 
There is still a dearth of functionality that implements spatial statistical, econometric, and 
modeling techniques. This lack of software tools for geospatial analysis in the open 
source GIS movement mimics the early days of commercial GIS development. This then 
prompted many scholars to identify the lack of software support as an impediment for the 
dissemination of spatial analysis methods in empirical research (e.g., Haining 1989) and 
led to considerable efforts to remedy the situation (for a review, see Fischer and Getis 
1997; Anselin 2005). The advantage of the current open source GIS efforts is that the 
very open source nature of the different projects facilitates their extension and integration 
with other software tools. Specifically, this provides opportunities to develop geospatial 
analysis tools that can be readily integrated with a wide range of mapping and other GIS 
functionality.  

 
PySAL is intended to fill a particular niche in the growing field of spatial data analy-

sis software.3 There are currently two broad classes of implementation of spatial analysis 
packages. The first is those that are self-contained and implement a subset of analytical 
methods in user-friendly graphical interfaces. Chief among these are GeoDa, GeoVista 
Studio (Takatsuka and Gahegan 2002), CommonGIS (Andrienko and Andrienko 2005; 
Andrienko, Andrienko, and Voss 2003), among others. At the other extreme are efforts at 
implementing spatial analysis methods in packages for particular programming and data 
analysis environments. Prominent examples here include the R-Geo project (Bivand and 
Gebhardt 2000) and the econometrics toolbox for MATLAB (LeSage 1999). PySAL is 
envisaged as supporting both types of efforts, since the Python environment lends itself to 
command line execution through its interpreter as well as the bundling of code in user-
friendly executables with a graphical user interface.  

 
In the remainder of the paper we first briefly outline the overall design and main 

components of the library. We next provide several illustrations of how the modules in 
the library can be combined and delivered in a number of ways to address various spatial 
analytical questions, including computational geometry, the study of spatial dynamics, 

                                                 
2 For example, see Langtangen (2006). Also, an overview of scientific computing projects using  
Python is given in wiki.python.org/moin/NumericAndScientific. 
3 For a recent overview of the field of spatial analysis software for the social sciences see Rey and 
Anselin (2006). 
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smoothing of rates, regionalization, spatial econometrics, and spatial analytical Web 
services. We close with some concluding comments.  

 
2. DESIGN AND COMPONENTS 
 

PySAL is not intended to reinvent a complete Geographic Information System. 
Rather, it is designed as a library that would enable sophisticated spatial analysis through 
various delivery formats. This ranges from simple command line interactive scripts, to 
self-contained packages with a graphical user interface and add-on modules to commer-
cial off-the-shelf programs (e.g., to augment the spatial statistical toolbox of the ArcGIS 
software). The functionality of the library is geared to facilitate spatial statistical explora-
tion and spatial econometric modeling and to avoid duplication of basic GIS function-
ality. The modular structure of the Python language effectively allows us to build upon 
other efforts in geovisualization and spatial data manipulation of the open source GIS 
movement.  

 
We designed the modules in PySAL to be agnostic of the delivery mechanism, so that 

they can be flexibly integrated with alternative GUIs (e.g., Tkinter or wxPython), com-
bined as external libraries with other software (e.g., ArcGIS), or mixed and matched with 
existing modules developed by others. The set of components in PySAL is designed to 
cover all steps of a spatial data analysis process, starting with reading various data 
formats and carrying out basic computational geometry, and moving on to a collection of 
specialized methods useful in spatial exploratory analysis and modeling. Intentionally, a 
key feature of PySAL is that it is self-contained and does not have any tight dependencies 
on external libraries beyond those available within Python. At the same time, because it is 
a library, components of PySAL can be combined with functionality from a different GIS 
or analytical package to carry out specialized analyses. Moreover, PySAL gains the high 
degree of portability across different platforms and operating systems inherent in the 
Python language.  

 
A graphical overview of the key components of the current incarnation of PySAL is 

presented in Figure 1. It is organized into six main categories of functionality dealing 
with basic data operations such as the construction and manipulation of spatial weights 
and essential computational geometry functions, data exploration such as clustering 
methods and exploratory spatial data analysis, and spatial modeling such as spatial 
dynamics and spatial econometrics. Table 1 provides a complementary classification of 
the functionality included in PySAL. Here, a distinction is made between data analytic 
functions, intended to ease the reading, manipulation, and writing of common spatial data 
formats, and ESDA and modeling functions.  

 
The weights module includes functionality to construct spatial weights from a range 

of input formats (including the standard ESRI shape files) and store the information effi-
ciently in an internal data structure. This can then be exported to different file formats 
such as the GAL and GWT formats used by GeoDa and R and the MAT format used by 
the Matlab spatial econometric libraries. The computational geometry module supports  
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FIGURE 1. PySAL Components 
 
 

various other modules in providing basic manipulations of spatial data such as the con-
struction of Voronoi diagrams (Thiessen polygons), convex hulls, and minimum spanning 
trees. These underlie the derivation of network-based spatial weights as well as various 
computations in the clustering module.  
 

Data exploration is supported by the clustering and ESDA modules. The clustering 
module implements a range of regionalization methods that can be used to simplify the 
data and provide alternatives to rate smoothing operations (in the ESDA module). They 
also form the basis for the construction of alternative spatial weights structures. The 
ESDA module contains different methods to implement the smoothing of rates as well as 
standard LISA functionality such as the Moran scatter plot, local Moran, and Gi statistics.  
 

Spatial modeling is implemented in the spatial dynamics and spatial econometrics 
modules. The former contains a number of tools to track the change over time of spatial 
structure, developed with an eye towards applications in studies of regional economic 
convergence.   These  include  spatial  Markov  analysis  as well as  spatial θ and spatial τ  
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TABLE 1 

PySAL Functionality By Component 
Component Capabilities 

  Data Analytic Functions 
File Input-Output Read and write common spatial data formats  
Map Calculations Map algebra  
Computational Geometry Geometric summaries of spatial patterns  
Spatial Weights Efficient construction/manipulation of spatial weights matrices  
Rate Smoothing Spatial and nonspatial smoothing of rate data   
  

  ESDA and Modeling Functions 
Spatial Autocorrelation Local and global spatial autocorrelation  
Space-Time Correlation Spatial and temporal correlation measures  
Markov and Mobility Spatial Markov and distributional dynamics  
Regionalization Spatially constrained clustering  
Spatial Regression Classic spatial econometric methods  
Spatial Panel Regression Spatial methods for panel data  

 
 
measures of convergence. The spatial econometrics module contains a collection of diag-
nostics for spatial effects, specification tests, and estimation methods as well as simula-
tion tools to embed various forms of spatial dependence in artificial data sets. Detailed 
illustrations of selected functionality are provided in the next section. 
 
3.  EMPIRICAL ILLUSTRATIONS 
 

We present a selection of applications of modules within PySAL and illustrate how 
they can be exposed through various delivery mechanisms, including alternative GUIs. 
The examples are intended to be suggestive, not exhaustive, and highlight how particular 
core modules, jointly developed in PySAL, have been integrated into the two ongoing 
projects, GeoDA/PySpace and STARS.  
 
3.1 Computational Geometry and Spatial Weights 
 

Figure 2 contains the nearest neighbor graph for a point distribution. Here we have 
implemented efficient nearest neighbor algorithms for general k-nearest neighbor deter-
mination in large point sets. Combining these methods together with classes in the spatial 
weights module, we can generate alternative spatial weights matrices based on nearest 
neighbor relations for both point data sets as well as areal/polygon data sets where repre-
sentative points are used in developing the topological relationships.  
 

The spatial weights module also supports additional graph-based definitions of 
weights using point data. These include Gabriel, sphere of influence, and relative 
neighbor criteria. For polygon-based shape files, the module also contains efficient 
classes for derivation of queen- and rook-based contiguity matrices on the fly. These 
classes free the user from the tedious and error-prone task of constructing weight  
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FIGURE 2. Nearest Neighbor Graphs 
 
 

matrices by hand. For all of these spatial weights, the associated classes implement 
manipulation and summarization methods that are commonly needed in spatial analysis, 
including measures of sparseness, connectivity, and various eigenvalue-based metrics, 
among many others. The weights module also supports the reading and writing of 
common spatial weights matrices formats including GAL, GWT, and full matrices.  
 
3.2 Spatial Dynamics 
 

With the increasing availability of spatial longitudinal data sets, there is a growing 
demand for exploratory methods that integrate both the spatial and temporal dimensions 
of the data. The spatial dynamics component of PySAL implements a number of new 
exploratory space-time data analysis measures.  

 
These new measures approach the issue of space-time analysis in two different ways. 

The first introduces a spatial dimension into what are classic measures of mobility or 
dynamics. For example, in the study of regional income distributions popular approaches 
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to measure economic mobility include rank concordance statistics, rank correlation 
statistics, and Markov models. All of these generate indicators that summarize the 
amount of movement within the variate distribution over time. However, like many 
classic statistics they are silent about the role of geography in the dynamics. In PySAL, 
the spatial dynamic module implements spatialized versions of these three mobility indi-
cators, including a spatial-τ statistic, spatial-Θ (Rey 2004), and spatial-Markov model 
(Rey 2001). Each of these methods speaks to the role of spatial clustering and context in 
the evolution of the distribution of interest. That is, they investigate the extent to which 
the dynamics of the process are spatially dependent.  

 
The second approach to spatial dynamics in PySAL starts with exploratory spatial 

data analysis methods and extends these measures to integrate the time dimension. One 
example of this is the spatial time path, two examples of which are shown in Figure 3. 
The time path can be viewed as a dynamic extension of a LISA statistic (Anselin, 1995) 
in that the Y-axis of the graph corresponds to the value of the spatial lag of the variable 
while the X-axis is the original value for a particular spatial unit. In contrast to a Moran 
scatter plot (upper-right panel of Figure 3), which displays the (yi, Wyi) values for all 
locations at one point in time, the time path focuses on a single location i but displays the 
(yi,t, Wyi,t) over all time periods.  

 
These measures look at spatial dynamics from a slightly different perspective from 

the first in that they focus on the spatial dimension and explore its evolution over time. 
They can be used for comparative analyses such as in Figure 3 where the paths for per-
capita incomes for California (bottom left) and Florida (bottom right) are contrasted. The 
spatial dynamics for Florida are more erratic than is the case for California. At the same 
time, a casual glance suggests the relationships are similar in that there is positive corre-
lation between each state’s income and that of its regional neighbors over time. However, 
by exploiting the interactive capabilities of the software, temporal animation reveals that 
the directionality of the dynamics is different in the two cases with Florida and its 
neighbors moving upward towards the center of the distribution, while California and its 
neighbors are moving downwards towards the mean.  
 

In addition to the time paths, the spatial dynamics module includes a number of other 
new measures that are extensions of ESDA methods to incorporate time. These include a 
bi-variate LISA, which allows for consideration of space-time lags between two different 
variables as well as space-time principal components, which is a multivariate extension 
of the bi-variate LISA. 

 
As with most of the modules in PySAL, the spatial dynamics classes can be 

combined with other modules to accomplish a complex analytical task. An example of 
this is seen in Figure 4 where a new type of spatial weights matrix is obtained through a 
consideration  of the time  series  covariance of per capita  incomes for each pair of states 
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FIGURE 3.  Spatial Time Paths



The Review of Regional Studies, Vol. 37, No. 1, 2007, pp. 5 − 27 14 
 
over a 72-year period. The join structure for the original simple contiguity matrix is 
presented as a simple network, yet each join is now colored to signify whether that pair of 
states displays strong (blue) or weak (red) temporal co-movement. A hybrid contiguity 
matrix could be defined by only using the strong links. Also included on the figure is the 
spider graph for Colorado. These blue links show states with which Colorado has its 
strongest temporal correlation. This suggests a second type of hybrid contiguity matrix 
based on the intersection of the simple contiguity and the spider contiguity joins. 
 
3.3 Smoothing of Rates 
 

An important aspect of exploratory spatial analysis of rates or proportions is to 
correct for the inherent variance instability of the rates. Ignoring this aspect may lead to 
spurious indications of outliers and clusters due to higher variance when the population at 
risk is small. Several techniques for smoothing rates have been incorporated into PySAL 
modules. They consist of a porting of the rate smoothing functionality in GeoDa (imple-
mented in C++) to Python (for a more extensive discussion, see also Anselin, Kim, and 
Syabri 2004; Anselin, Syabri, and Kho 2006). 
 

Functionality of the rate smoothing modules can be classified into three major cate-
gories: data input, rate computation, and smoothing. The first includes the capacity to 
read in data on counts of events (e.g., number of diseased persons) and population at risk 
from various file formats, including SEER, either as aggregates or by age group. Rate 
computation takes the data and computes rates for individual spatial units (e.g., counties) 
as well as for aggregates (e.g., all the counties in a state) and implements both direct and 
indirect age standardization. Rate smoothing implements a number of common methods, 
including Empirical Bayes and spatial rate smoothing. The latter is an interesting instance 
where the modular nature of PySAL is exploited since it requires functionality from the 
spatial weights module to implement the spatial averaging of rates.  

 
Figure 5 illustrates an application of spatial rate smoothing to age-standardized pros-

tate cancer rates in counties covered by the Appalachian Cancer Network. This applica-
tion utilizes the core rate manipulation and smoothing functionality of the library coupled 
to a graphical front end implemented in wxPython. This is an example of delivery of the 
functionality where the user is completely shielded from the Python programming 
environment, even though it is readily accessible if desired.  

 
The wxPython graphical user interface is cross-platform and provides a local look 

and feel on each platform. It consists of a Python wrapper around the well known C++ 
wxWidgets library. In Figure 5, the particular look and feel is that of the Mac OS X oper-
ating system. Using simple menus, the user can select the data, spatial weights (for spatial 
rate smoothing), and smoothing technique and the result is presented on a map, as shown 
in the figure. Functionality such as this can also be readily delivered in compiled form, in 
which case the user no longer would have access to the original source code.  
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FIGURE 4. Spider and Temporal Contiguity Graphs
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The same smoothing modules can also be used in conjunction with a different 

graphical user interface. For example, rate smoothing is included in STARS, which uses 
the Tkinter Python GUI. In addition, using the command line in with the Python inter-
preter, specific smoothing functions can be used individually in an interactive computing 
environment.  

 
3.4 Regionalization 
 

The regionalization and clustering module of PySAL implements a number of new 
and existing methods that can be used to define groupings of fundamental units according 
to a variety of constraints. These methods include contiguity constrained clustering, 
Automatic Zoning Procedure (AZP), and the max-p region algorithm (Duque, Anselin, 
and Rey 2007). Figure 6 demonstrates the application of the AZP method to U.S. income 
dynamics.  

 
 

 
 

 
 

FIGURE 5. Spatial Smoothing of ACN County Prostate Rates 
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FIGURE 6. Regionalization of State Incomes using AZP 
 
 

The regionalization module can also be used together with other modules in PySAL 
to develop new approaches to spatial analytical problems. One example is the integration 
of the spatially constrained clustering algorithms together with the spatial smoothing 
module to develop new approaches towards spatial rate estimation (Rey et al. 2007). This 
work explored alternative ways in which the variance instability problem (see Section 3) 
could be addressed by defining the neighborhood smoothing regions using the 
constrained clustering algorithms.  
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3.5 Spatial Econometrics 
 

The spatial econometric modules in PySAL are primarily intended to provide support 
for two types of activities: (1) to allow rapid prototyping of newly suggested techniques, 
and (2) to put together customized combinations of tests and estimation methods. The 
development efforts are focused on general method of moments estimators, semi-
parametric approaches, spatial panel data models, and specifications with discrete 
dependent variables. In this sense, these modules complement the spatial econometric 
functionality of GeoDa, which is aimed at providing a user-friendly environment for 
more established spatial econometric techniques such as Maximum Likelihood 
estimation. 

 
For example, PySAL implements code to estimate regression models containing a 

spatially lagged dependent variable (a spatial lag model) by means of the spatial two-
stage least squares method (Anselin 1988; Kelejian and Prucha 1998). In addition to the 
traditional estimates of standard errors and a heteroskedastic robust form (White 1980; 
Anselin 1988), this also implements the recently suggested heteroskedastic and spatial 
autocorrelation robust form, or HAC estimator (Kelejian and Prucha 2007). The latter 
takes a non-parametric approach to allow for remaining spatial error autocorrelation of 
unspecified form using a kernel estimation method.  

 
The PySAL code for the HAC estimator was recently applied in Anselin and Lozano-

Gracia (2007) to estimate a spatial hedonic model with over 100,000 observations, using 
a spatial lag model that included other endogenous variables as well. In addition to 
allowing for remaining spatial error autocorrelation in a spatial lag model, the spatial 
two-stage least squares approach in PySAL is also not constrained to intrinsically sym-
metric spatial weights, as is the case for the ML estimators in GeoDa.  

 
Figures 7 through 9 illustrate an application of the spatial econometric module to a 

replication of the analysis of U.S. county homicides in Baller et al. (2001). The imple-
mentation uses the command line only, taking the model specification information from a 
separate module that contains all the information on the data set, variables, and spatial 
weights. For example, in Figure 7 the contents of such a model are shown, including a 
dictionary for the model variables and for the data (respectively, spec and data) as well as 
two lists of dictionaries with spatial weights needed for the spatial lag (mweights) and for 
the kernel estimation (kweights). Each of these dictionaries contains several attributes of 
the data and weights needed by the modules that implement data input and spatial 
weights construction. The module can be edited by means of a text editor and imported 
into the current session to be used by the spatial regression module. In the current 
example, an asymmetric spatial weights matrix for five nearest neighbors is used to 
construct the spatial lag.  

 
The central element in the spatial econometric functionality is the spmodel class, 

similar in concept to the object-oriented design of model classes in the R language. 
Figure 8 illustrates the construction of an object model of the spmodel class in the spreg 



Rey/Anselin:  PySAL:  A Python Library of Spatial Analytical Methods 19 

module. Some of the arguments that are passed to the constructor include a data object 
(spreg.db), a model specification object (spreg.spec) as well as weights objects and some 
model options, e.g., the specification of a lag spatial model, using gmm as the estimation 
method and hac as the option for the variance-covariance estimator. Once the model 
object is created, its attributes can be accessed using the familiar dot notation. For 
example, in Figure 8, the name of the input data set, number of observations, number of 
variables, the model specification, and the spatial weights are illustrated. Note how the 
spatial weights are themselves instances of the weights class constructed in the spatial 
weights modules.  

 
 

 

 
 

FIGURE 7. Spatial Regression Model Specification 
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FIGURE 8. Spatial Regression Model Object Attributes 
 
 

The estimation results are obtained by invoking one of the methods in the spmodel 
class. In Figure 9 this is illustrated for the twosls method. It is invoked on the command 
line by means of the dot notation, applied to the model instance of the spmodel class. 
This yields the output of the estimates, standard errors and measures of fit, in the familiar 
GeoDa format. Three tables are listed, for the traditional standard errors, the heteroske-
dastic robust form and the HAC. The latter is implemented using an Epanechnikov kernel 
function with an adaptive bandwidth for the 20 nearest neighbors. The standard errors 
increase slightly relative to the classic estimate.  

 
In the example, one diagnostic is included by default (it can also be invoked sepa-

rately as a method of the spmodel class), the Anselin and Kelejian (1997) generalized 
Moran’s I test for residuals in a spatial lag model. As shown in Figure 9, the null 
hypothesis is strongly rejected, providing a solid motivation for the use of the HAC 
standard errors.  

 
3.6 Spatial Analytical Web Services 
 

The core libraries are designed in such a way as to enable a variety of front ends 
through which users can interface with the functionality in PySAL. In previous examples, 
we have illustrated the use of two different GUIs and the shell/command line. A third 
form of user interface is the Web browser, where the PySAL functionality is delivered in 
the form of a spatial analytical Web service.  

 
A straightforward way to accomplish this is to include components of the library as 

common gateway interface (cgi) scripts on a Web server. The user interacts with this 
through a Web page, which sends a form to the server that includes all the parameters 
needed to carry out the analysis. The results are then delivered as a new Web page. To 
the user, the experience is similar to an interactive GUI on the desktop.  
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FIGURE 9. Spatial Two Stage Least Squares with HAC Error Variance 
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As an illustration, Figure 10 shows the results from the regionalization and clustering 
component of PySAL applied to define regional industrial clusters in the state of 
California (Rey et al. 2005). In this work, network and graph theoretical constructs were 
used in conjunction with spatially constrained clustering to identify groups of function-
ally interdependent industries within a regional economy. A Web-based front end allows 
for the exploration of different dimensions of a cluster. For example, clicking on one of 
the nodes (industry) in the cluster graph (left panel) generates a map of the spatial distri-
bution of that industry within the state (center panel) as well as a view of its supply chain 
in San Diego County (right panel). Other Web-based views (not shown here) allow for 
the exploration of the location of individual firms as well as pattern-based text searches 
of firm profiles and capabilities. 

 
A more elaborate form of a Web interface can be developed by exploiting the HTTP 

and SOAP (simple object access protocol) Web service functionality built into the Python 
language and extension modules. Figure 11 illustrates the architecture of a prototype 
spatial analytical Web service to construct spatial weights from ESRI shape files, using 
standards supported by the Open GIS Consortium (OGC). This combines three compo-
nents, that each can operate on a different physical server, allowing for a distributed 
system.  

 
The front end is the Web interface (shown in Figure 12) through which the user inter-

acts with the system by means of a set of Python cgi scripts that manage information 
flows between the front end and the two other components, the Data Server and the 
Analysis Server. Through the interface, a Web feature service (Data Server, using the 
Mapserver cgi) is queried for a list of available data sources, which then become avail-
able in a drop down list on the Web interface, transparent to the user. This could easily be 
generalized to query a collection of Web feature services for available data sets. Alterna-
tively, users can specify the URL for the data source explicitly, which can be anywhere 
on the Internet, including other compliant Web feature services. In addition, the type of 
weights matrix (rook or queen) can be selected.  

 
The information on the data source and weights type is then passed to the Analysis 

Server, using the SOAP protocol. This back-end operation consists of a set of Python 
scripts to handle the interaction between the different services and to interface with the 
PySAL library for the actual computation of the weights. The data are extracted from the 
data server, the weights are computed and stored on the analytical server, and the URL of 
this location is passed back to the user interface. The weights information can also be 
transferred in other ways, using a standard XML format, as illustrated in Figure 13. 
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FIGURE 10. Regional Industrial Clustering 
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FIGURE 11. Architecture of Spatial Weights Web Service 
 
 
 
 

 
 

FIGURE 12. Weights Web Service User Interface 
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FIGURE 13. Weights in XML Format 

 
 

4. CONCLUSION 
 
The main efforts thus far have been on the development of the core analytical func-

tionality and coupling these modules with the graphical toolkits used in the two source 
projects: Tkinter for STARS and wxPython for OpenGeoDa/PySpace. Future work will 
explore use of PySAL with alternative front-ends including jython (Pedroni and Rappin 
2002), RPy (Moriera and Warnes 2004), and ArcGIS. Additionally, we are investigating 
alternative shell/command line environments beyond the basic Python interpretor, such as 
iPython (Pérez 2006). At the same time we will regularly be integrating new develop-
ments in spatial analysis into the computational classes within PySAL.  

 
Our plans are to continue refining the core components of the library and the associ-

ated application programming interface (API). We are also evaluating alternative 
licensing schemes with an eye towards leveraging the strengths of the open source and 
spatial analysis communities. We envisage a formal release of PySAL in the near future.  
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