
122 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

PySPH: a reproducible and high-performance

framework for smoothed particle hydrodynamics

Prabhu Ramachandran‡§∗

https://youtu.be/6UnuPhTPdnM

✦

Abstract—Smoothed Particle Hydrodynamics (SPH) is a general purpose tech-

nique to numerically compute the solutions to partial differential equations such

as those used to simulate fluid and solid mechanics. The method is grid-free and

uses particles to discretize the various properties of interest (such as density,

fluid velocity, pressure etc.). The method is Lagrangian and particles are moved

with the local velocity.

PySPH is an open source framework for Smoothed Particle Hydrodynamics.

It is implemented in a mix of Python and Cython. It is designed to be easy to use

on multiple platforms, high-performance and support parallel execution. Users

write pure-Python code and HPC code is generated on the fly, compiled, and

executed. PySPH supports OpenMP and MPI for distributed computing, in a way

that is transparent to the user. PySPH is also designed to make it easy to perform

reproducible research. In this paper we discuss the design and implementation

of PySPH.

Background and Introduction

SPH (Smoothed Particle Hydrodynamics) is a general purpose

technique to numerically compute the solutions to partial differ-

ential equations used to simulate fluid and solid mechanics. The

method is grid-free and uses particles to discretize the various

properties of interest. The method is Lagrangian and particles are

moved with the local velocity. The method was originally devel-

oped for astrophysical problems [Luc77], [GM77] (compressible

gas-dynamics) but has since been extended to simulate incom-

pressible fluids [Mon94], solid mechanics [GMS01], free-surface

problems [Mon94] and a variety of other problems. Monaghan

[Mon05], provides a good review of the method.

The SPH method is relatively easy to implement. This has

resulted in a large number of schemes and implementations

proposed by various researchers. SPH schemes differ in the details

of how the governing equations are approximated. It is often

difficult to reproduce published results due to the variety of

implementations. While a few standard packages like SPHysics

[devb], DualSPHysics [deva], JOSEPHINE [CPR12], GADGET-

2 [Spr05] etc. exist, they are usually tailor-made for particular

applications and are not general purpose. They are all implemented

in FORTRAN (77 or 90) or C, and do not have a convenient

Python interface.

* Corresponding author: prabhu@aero.iitb.ac.in

‡ Department of Aerospace Engineering

§ IIT Bombay, Mumbai, India

Copyright © 2016 Prabhu Ramachandran. This is an open-access article

distributed under the terms of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

Our group has been developing PySPH (http://pysph.bitbucket.

org) over the last 5 years. PySPH is open source, and distributed

under the new BSD license. Our initial implementation was based

on Cython [BBC+11] and also featured some parallelization using

MPI. This was presented at SciPy 2010 [RK10]. Unfortunately,

this previous version of PySPH proved difficult to use as users

were forced to implement most of their code in Cython. This was

not a matter of simply writing a few high performance functions

in Cython. The PySPH library is object oriented and supporting

a new SPH formulation would require subclassing one or more

classes and this would need to be done with Cython. This made the

design more rigid as all the types needed to be pre-defined. Writing

all this in Cython meant that users had to manage compilation

and linking the Cython code during development. This made

development with PySPH inconvenient.

It was felt that we might as well have implemented the core

library in C++ and exposed a Python interface to it. A traditional

compiled language has more developer tooling around it. For

example debugging, performance tuning, profiling would all be

easier if everything were written in C or C++. Unfortunately, such

a mixed code-base would not be as easy to use, extend or maintain

as a largely pure Python library. In our experience, a pure Python

library is a lot easier for say an undergraduate student to grasp

and use over a C/C++ code. Others are also finding this to be

true [Per15]. Many of the top US universities are teaching Python

as their first language [Guo14]. This means that a Python library

would also be easier for relatively inexperienced programmers.

It is also true that a Python library would be easier and shorter

to write for the other non-high-performance aspects (which is

often a significant amount of code). So it seemed that our need

for performance was going against our desire for an easy to use

Python library that could be used by programmers who were not

C/C++ developers.

In early 2013, we redesigned PySPH so that users were able to

implement an entire simulation using pure Python. This was done

by auto-generating HPC code from the pure Python code that users

provided. This version ended up being faster than our original

Cython implementation! Since we were auto-generating code,

with a bit of additional effort it was possible to support OpenMP

as well. The external user API did not change so users did not

have to modify their code at all to benefit from this development.

PySPH has thus matured into an easy to use, yet high-performance

framework where users can develop their schemes in pure Python

and yet obtain performance close to that of a lower-level language

implementation. PySPH has always supported running on a cluster

https://youtu.be/6UnuPhTPdnM
mailto:prabhu@aero.iitb.ac.in
http://pysph.bitbucket.org
http://pysph.bitbucket.org

PYSPH: A REPRODUCIBLE AND HIGH-PERFORMANCE FRAMEWORK FOR SMOOTHED PARTICLE HYDRODYNAMICS 123

of machines via MPI. This is seamless and a serial script using

PySPH can be run with almost no changes using MPI.

PySPH features a reasonable test-suite and continuous in-

tegration servers are used to test it on Linux and Windows.

The documentation is hosted at http://pysph.readthedocs.org. The

framework supports several of the standard SPH schemes. A suite

of about 30 examples are provided. These are shipped as part

of the sources and installed when a user does a pip install. The

examples are written in a way that makes it easy to extend and

also perform comparisons between schemes. These features make

PySPH well suited for reproducible numerical work. In fact one

of the author’s recent papers [RP16] was written such that every

figure in the paper is automatically generated using PySPH.

In this paper we discuss the use, design, and implementation

of PySPH. In the next section we provide a high-level overview of

the SPH method.

Smoothed Particle Hydrodynamics

The SPH method works by approximating the identity:

f (x) =
∫

f (x′)δ (x− x′)dx′,

where, δ is the Dirac Delta distribution. This identity is approxi-

mated using:

f (x)≈
∫

f (x′)W (x− x′,h)dx′, (1)

where W is a smooth and compact function and is called the

kernel. It is an approximate Dirac delta distribution that is

parametrized on the parameter h and W → δ as h → 0. h is

called the smoothing length or smoothing radius of the kernel.

The kernel typically will need to satisfy a few properties if this

approximation is to be accurate. Notably, its area should be unity

and if it is symmetric, it can be shown that the approximation is at

least second order in h. The above equation can be discretized as,

f (x)≈ 〈 f (x)〉= ∑
j∈N (x)

W (x− x j,h) f (x j)∆x j, (2)

where x j is the position of the particle j, ∆x j is the volume

associated with this particle. N (x) is the set of particle indices

that are in the neighborhood of x. In SPH each particle carries a

mass m and associated density ρ with it and the particle volume

is typically chosen as ∆x j = m j/ρ j. This results in the following

SPH approximation for a function,

< f (x)>= ∑
j∈N (x)

m j

ρ j

W (x− x j,h) f (x j). (3)

Derivatives of functions at a location xi are readily approximated

by taking the derivative of the smooth kernel. This results in,

∂ fi

∂xi

= ∑
j∈N (x)

m j

ρ j

(f j − fi)
∂Wi j

∂xi

. (4)

Here Wi j = W (xi − x j). Similar discretizations exist for the di-

vergence and curl operators. Given that derivatives can be ap-

proximated one can solve differential equations fairly easily. For

example the conservation of mass equation for a fluid can be

written as,
dρ

dt
=−ρ∇ ·~v, (5)

where v is the velocity of the fluid and the LHS is the material or

total derivative of the density. The equation 5 is in a Lagrangian

form, in that it represents the rate of change of density as one

is moving locally with the fluid. If an SPH discretization of this

equation were performed we would get,

dρi

dt
=−ρi ∑

j∈N (x)

m j

ρ j

~v ji ·∇iWi j, (6)

where ~v ji = ~v j −~vi. This equation is typical of most SPH dis-

cretizations. SPH can therefore be used to discretize any differen-

tial equation. This works particularly well for a variety of contin-

uum mechanics problems. Consider the momentum equation for

an inviscid fluid,
d~u

dt
=−

1

ρ
∇p (7)

A typical SPH discretization of this could be written as,

d~ui

dt
=−∑

j

m j

(

p j

ρ2
j

+
pi

ρ2
i

)

∇Wi j (8)

More details of these and various other equations can be seen in

the review by Monaghan [Mon05]. It is easy to see that equations

6 and 8 are ordinary differential equations that govern the rate of

change of the density and velocity of a fluid particle. In principle,

one can integrate these ODEs to obtain the flow solution given a

suitable initial condition and appropriate boundary conditions.

Numerical implementation

As discussed in the previous section, in an SPH scheme, the

field properties are first discretized into particles carrying them.

Partial differential equations are reduced to a system of coupled

ordinary differential equations (ODEs) and discretized using an

SPH approximation. This results in a system of ODEs for each

particle. These ODEs need to be integrated in time along with

suitable boundary and initial conditions in order to solve a partic-

ular problem. To summarize, a typical SPH computation proceeds

as follows,

• Given an initial condition, the field variables are dis-

cretized into particles carrying the various properties.

• Depending on the scheme used to integrate the ODEs, the

RHS of the ODEs needs to be computed (see equations

6 and 8). These RHS terms are called "accelerations" or

"acceleration terms".

• Once the RHS is computed, the ODE can be integrated

using a suitable scheme and the fluid properties are found

at the next timestep.

The RHS is typically computed as follows:

• Initalize the particle accelerations (i.e. the RHS terms).

• For each particle in the flow, identify the neighbors of the

particle which will influence the particle.

• For each neighbor compute the acceleration due to that

particle and increment the acceleration.

Given the total accelerations, the ODEs can be readily inte-

grated with a variety of schemes. Any general purpose abstraction

of the SPH method must hence provide functionality to:

1) Easily represent the discretized properties of particles.

This is easily done with numpy arrays representing the

property values in Python.

2) Given a particle, identify the neighbors that influence the

particle. This is typically called Nearest Neighbor Particle

Search (NNPS) in the literature.

http://pysph.readthedocs.org

124 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

3) Define the interactions between the particles, i.e. an easy

way to specify the inter particle accelerations. In PySPH

these are called "Equations".

4) Define how the ODEs should be integrated.

Of the above, the NNPS algorithm is usually a well-known

algorithm. For incompressible flows where the smoothing radius

of the particles, h, is constant, a simple bin-based linked list

implementation is standard. For cases where h varies, a tree-

based algorithm is typically used. Users usually do not need to

experiment or modify the NNPS. PySPH allows the rest of the

tasks to be all implemented in pure Python.

The PySPH framework

PySPH allows a user to specify the inter-particle interactions as

well as the ODE integration in pure Python with a rather simple

and low-level syntax. This is described in greater detail further

below. As discussed in the introduction, with older versions of

PySPH as discussed in [RK10], these interactions would all need

to be written in Cython. This was not very easy or convenient. It

was also rather limiting.

The current version of PySPH supports the following:

• Define a complete SPH simulation entirely in Python.

• High-performance code is generated from this high-level

Python code automatically and called. The performance

of this code is comparable to hand-written FORTRAN

solvers.

• PySPH can use OpenMP seamlessly. Users do not need to

modify their code at all to use this. This works on Linux,

OS X, and Windows, and produces good scale-up.

• PySPH also works with MPI and once again this is

transparent to the user in that the user does not have

to change code to use multiple machines. This feature

requires mpi4py and Zoltan to be installed.

• PySPH provides a built-in 3D viewer for the particle data

generated. The viewer requires Mayavi [RV11] To be

installed.

• PySPH is also open-source and currently hosted at http:

//pysph.bitbucket.org

Currently, PySPH supports the simulation of compressible

and incompressible fluid flows (with and without free-surfaces),

simple rigid-body motion, and elastic dynamics for solids. It does

not support astro-physical simulations since it lacks the tree-code

needed to simulate graviational forces. This can be added but is

not the current focus.

In the following subsection we provide a high-level overview

of PySPH and see how it can be used by a user. Subsequent

subsections discuss the design and implementation in greater

detail.

High-level overview

PySPH is tested to work with Python-2.6.x to 2.7.x and also with

Python 3.4/3.5. PySPH is a typical Python package and can be

installed fairly easily by running:

$ pip install pysph

PySPH will require a C++ compiler. On Linux, this is trivial

to get and usually pre-installed. On OS X, clang will work as

will gcc (which can be easily installed using brew). On Windows

the Visual C++ Compiler for Python will need to be installed.

Detailed instructions for all these are available from the PySPH

documentation.

If one wishes to use OpenMP,

• On Linux one needs to have libgomp installed.

• On OS X one needs to install OpenMP for clang or one

could use GCC which supports OpenMP via brew.

• On Windows, just having the Visual C++ computer for

Python will work.

If one wishes to use MPI for distributed computing, one must

install Zoltan which is typically easy to install. PySPH provides a

simple script for this. mpi4py is also needed in this case. Zoltan is

used for load-balancing and distributing the particles efficiently

on distributed machines. Unfortunately, MPI is not tested on

Windows by us currently. PySPH also provides an optional 3D

viewer and this depends on Mayavi.

In summary, PySPH is easy to install if one has a C++ compiler

installed. MPI support is a little involved due to the requirement

to install Zoltan.

Once PySPH is installed an executable called pysph is avail-

able. This is a convenient entry point for various tasks. Running

pysph -h will provide a listing of these possible tasks. For

example, the test suite can be run using:

$ pysph test

This uses nose internally and can be passed any arguments that

nosetests accepts.

PySPH installs about 30 useful examples along with the

sources and any of these examples can be readily run. For

example:

$ pysph run

1. cavity

Lid driven cavity using the Transport Velocity

formulation. (10 minutes)

[...]

Enter example number you wish to run:

Provides a listing of the examples available and prompts for a

particular one. Each example also provides a convenient (but

rough) time estimate for the example to run to completion in serial.

If the name of the example is known, one may directly specify it

as:

$ pysph run elliptical_drop

The examples will accept a large number of command line

arguments. To find these one can run:

$ pysph run elliptical_drop -h

pysph run will execute the standard example. Note that inter-

nally this is somewhat equivalent to running:

$ python -m pysph.examples.elliptical_drop

The example may therefore be imported in Python and also

extended by users. This is by design.

When the example is run using pysph run, the example

documentation is first printed and then the example is run. The

example will typically dump the output of the computations to

a directory called example_name_output, in the above case

this would be elliptical_drop_output. This output can

be viewed using the Mayavi viewer. This can be done using:

$ pysph view elliptical_drop_output

This will start up the viewer with the saved files dumped in

the directory. Figure 1 shows the viewer in action. The viewer

http://mpi4py.scipy.org
http://www.cs.sandia.gov/zoltan/
http://code.enthought.com/projects/mayavi
http://pysph.bitbucket.org
http://pysph.bitbucket.org
http://brew.sh/
http://pysph.readthedocs.io
http://pysph.readthedocs.io
http://brew.sh/
http://www.cs.sandia.gov/zoltan/
http://mpi4py.scipy.org
http://code.enthought.com/projects/mayavi
http://www.cs.sandia.gov/zoltan/
https://pypi.python.org/pypi/nose

PYSPH: A REPRODUCIBLE AND HIGH-PERFORMANCE FRAMEWORK FOR SMOOTHED PARTICLE HYDRODYNAMICS 125

Fig. 1: The viewer provides a convenient interface to view data
dumped by simulations.

provides a very convenient interface to view the data. On the right

side, one has a standard Mayavi widget which also features a

Mayavi icon on the toolbar. Clicking this will open the Mayavi

UI with which one can easily change the visualization. On the

left pane there are three sub panels. On the top, one can see a

slider for the file count. This can be used to move through the

simulation in time. This can be also animated by checking the

"Play" checkbox which will iterate over the files. The "Directory"

button allows one to view data from a different output directory.

Hitting the refresh button will rescan the directory to check for

any new files. This makes it convenient to visualize the results

from a running simulation. The "Connection" tab can be used

when the visualization is in "Live mode" when it can connect to

a running simulation and view the data live. While this is very

useful in principle, it is seldom used in practice as it is a lot

more efficient to just view the dumped files and use the "Refresh"

button is convenient. Regardless, it does show another feature of

PySPH in that one can actually pause a running simulation and

query it if needed. Below this pane is a "Solver" pane which

shows the various solver parameters of interest. The "Movie" tab

allows a user to dump screenshots and easily produce a movie

if needed. At the bottom of the interface are two panels called

"Particle arrays" and "Interpolator". The particle arrays lists all the

particles and different scalar properties associated with the SPH

simulation. Selecting different scalars will display those scalars.

The interpolator tab allows a user to specify a rectilinear region on

which the particle properties may be interpolated and visualized --

for example if one wishes to see a contour of velocity magnitudes

this would be useful. Right at the bottom is a button to launch

a Python shell. This can be used for advanced scripting and is

seldom used by beginners. This entire viewer is written using

about 1024 lines of code and ships with PySPH.

PySPH output can be dumped either in the form of .npz files

(which are generated by NumPy) or HDF5 files if h5py is installed.

These files can be viewed using other tools or with Python scripts

if desired. The HDF5 in particular can be viewed more easily. In

addition, the pysph dump_vtk command can be used to dump

VTK output files that can be used to visualize the output using any

tool that supports VTK files like ParaView etc. This can use either

Mayavi or can use pyvisfile which has no dependency on VTK.

Finally, the saved data files can be loaded in Python very easily,

for example:

from pysph.solver.utils import load

data = load('elliptical_drop_100.hdf5')

if one has only npz files the syntax is the same.

data = load('elliptical_drop_100.npz')

This provides a dictionary from which one can obtain the particle

arrays and solver data:

particle_arrays = data['arrays']

solver_data = data['solver_data']

fluid = particle_arrays['fluid']

p = fluid.p

where particle_arrays is a dictionary of all the PySPH

particle arrays. solver_data is another dictionary with solver

properties and p is a NumPy array of the pressure of each particle.

Particle arrays are described in greater detail in the following

sections. Our intention here is to show that the dumped data can

be very easily loaded into Python if desired.

As discussed earlier, PySPH supports OpenMP and MPI. To

use multiple cores on a computer one can simply run an example

or script as:

$ pysph run elliptical_drop --openmp

This will use OpenMP transparently and should work for all the

PySPH examples. PySPH will honor the OMP_NUM_THREADS

environment variable to pick the number of threads. If PySPH is

installed with MPI support through Zoltan, then one may run for

example:

$ mpirun -np 4 pysph run dam_break_3d

This will run the dam_break_3d example with 4 processors.

The amount of scale-up depends on the size of the problem and

the network. OpenMP will scale fairly well for moderately sized

problems. Note that for a general PySPH script written by the user,

the command to run would simply be:

$ mpirun -np 4 python my_script.py

Similarly when using OpenMP:

$ python my_example.py --openmp

This provides a very high-level introduction to PySPH in general.

The next section discusses some essential software engineering

used in the development of PySPH. This is followed by details on

the underlying design of PySPH.

Essential software engineering

PySPH follows several of the standard software development

practices that most modern open source implementations follow.

For example:

• Our sources are hosted on bitbucket (http://pysph.

bitbucket.org). We are thinking of shifting to GitHub be-

cause GitHub has much better integration with continuous

integration services and this is a rather frustrating pain

point with bitbucket.

• We use pull requests to review all new features and bug

fixes. At this point there is only a single reviewer (the

author) but this should hopefully increase over time.

• PySPH has a reasonable set of unit tests and functional

tests. Each time a bug is found, a test case is first created

http://numpy.scipy.org
http://www.h5py.org
http://mathema.tician.de/software/pyvisfile
http://pysph.bitbucket.org
http://pysph.bitbucket.org

126 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

(when possible or reasonable), and then fixed. nose is used

for discovering and executing tests. One of our functional

tests runs one time step of every single example that

ships with PySPH. tox based tests are also supported. This

makes it easy to test on Python 2.6, 2.7 and 3.x.

• We use continuous integration services from http://

shippable.com for Linux, http://appveyor.com for Win-

dows and http://codeship.com for faster Linux builds.

• Our documentation is generated using Sphinx and hosted

online on http://pysph.readthedocs.io.

• Releases are pushed to the Python Package Index (PyPI).

• The pysph-users mailing list is also available where users

can post their questions. Unfortunately, the response time

is currently slow as the author does not have the time for

this but we are hoping this will improve as more graduate

students start getting involved with PySPH.

These greatly improve the quality, reliability and usability of

the software and also encourage open collaboration.

Design overview

In the previous sections a high-level description of the project

was provided. This section provides more design details of how

PySPH works internally. The general approach used in PySPH is

as follows:

1) Create particles: discretize the initial materials into parti-

cles with suitable properties.

2) Choose an appropriate kernel for the SPH approximation.

3) Create equations: write out the equations that specify the

inter-particle interactions.

4) Setup the integrator and specify the integration steps, for

example one could use an Euler scheme or a predictor-

corrector scheme and each of these involve slightly differ-

ent integration steps. These need to be specified explicitly.

PySPH allows a user to do all of these from pure Python.

1) In PySPH, particles of a particular kind are managed by a

ParticleArray instance. A particle array is assigned

a unique name and manages a collection of properties.

Each property is internally represented as a contiguous

block of memory. All properties have the same number

of elements. A particle array may also have any number

of "constants" associated with it. Each constant can be a

scalar or an array but its size is independent of the number

of particles.

2) The kernels are implemented in pure Python and

a default collection of kernels is available in

pysph.base.kernels. A new kernel class would

implement the following methods, note that the default

arguments have no meaning except that they help the code

generator use the correct types:

class MyKernel(object):

def __init__(self, dim):

...

def kernel(self, xij=[0., 0, 0], rij=1.0,

h=1.0):

...

def gradient(self, xij=[0., 0, 0], rij=1.0,

h=1.0, grad=[0, 0, 0]):

...

3) In PySPH, the equations can also be created in pure

Python and this is discussed in detail in the following.

4) The integrators are split into two parts, an integrator and

an integrator step. This is also written in pure Python and

discussed with an example further below.

A typical example is considered first to

illustrate the design. Consider the example

pysph/pysph/examples/elliptical_drop.py.

When installed, this may be imported as import

pysph.examples.elliptical_drop. This example

simulates the evolution of a fluid drop that is initially circular and

imposed an initial velocity field of the form ~V =−100xî+100y ĵ.

This problem is a simple benchmark problem that was first solved

in the context of SPH by [Mon94]. The key parts of the example

are shown below:

from numpy import array, ones_like, mgrid, sqrt

PySPH base and carray imports

from pysph.base.utils import get_particle_array

from pysph.base.kernels import Gaussian

PySPH solver and integrator

from pysph.solver.application import Application

from pysph.sph.integrator import EPECIntegrator

from pysph.sph.scheme import WCSPHScheme

class EllipticalDrop(Application):

def initialize(self):

...

def create_particles(self):

...

def create_scheme(self):

...

def post_process(self, info_file_or_dir):

...

if __name__ == '__main__':

app = EllipticalDrop()

app.run()

app.post_process(app.info_filename)

This illustrative example deliberately excludes several details to

focus on the general structure and API. There are a few common

imports at the top starting with NumPy specific imports first. The

next imports are PySPH specific:

• get_particle_array is a convenient function that

helps create a ParticleArray instance.

• The Gaussian kernel is used for the SPH simulation.

• The Application class is subclassed to create the new

example.

• The WCSPHScheme encapsulates a particular scheme, in

this case this class abstracts out the requirements for a

weakly-compressible scheme applied to incompressible

flows. Internally the WCSPH scheme is responsible to

setup the equations and the integrator. By abstracting this

into a scheme it becomes easy to reuse this instead of

spelling out the equations for each example.

The typical entry point for a user is to subclass

Application to solve their particular problem. The methods

listed above are:

• initialize, this is automatically called by

Application.__init__ and is typically not

used but sometimes useful when one wishes to have some

common attributes setup.

https://pypi.python.org/pypi/nose
https://pypi.python.org/pypi/tox
http://shippable.com
http://shippable.com
http://appveyor.com
http://codeship.com
http://pysph.readthedocs.io
https://groups.google.com/forum/#!forum/pysph-users

PYSPH: A REPRODUCIBLE AND HIGH-PERFORMANCE FRAMEWORK FOR SMOOTHED PARTICLE HYDRODYNAMICS 127

• create_particles generates the initial particle dis-

tribution and returns a sequence of ParticleArray

instances.

• create_scheme creates the particular scheme. A

SchemeChooser is also available which can be given

multiple schemes and allows the user to switch between

them via command line arguments.

• the post_process method is run in the end to compute

any useful quantities that may be used to check the accu-

racy of the simulation or facilitate comparisons between

different schemes.

The if __name__ block is listed to just illustrate how

this application can be used. When run is called, the command

line arguments are parsed, the various objects involved are suit-

ably configured and the simulation executed. At the end, the

post_process method is called. This also shows that a user

could potentially rewrite the post processing code and simply

rerun that part instead of re-running the simulation (which can

sometimes run for days).

We next look inside the create_particles and

create_scheme methods:

1 def create_particles(self):

2 x, y = mgrid[-1.:1.05:dx,-1.:1.05:dx]

3 x, y = x.ravel(), y.ravel()

4 m = ones_like(x)*dx*dx

5 h = ones_like(x)*hdx*dx

6 # ...

7 u = -100*x

8 v = 100*y

9

10 # remove particles outside the circle

11 indices = []

12 for i in range(len(x)):

13 dist = sqrt(x[i]*x[i] + y[i]*y[i])

14 if dist - 1 > 1e-10:

15 indices.append(i)

16

17 pa = get_particle_array(

18 x=x, y=y, m=m, rho=rho, h=h, p=p,

19 u=u, v=v, cs=cs, name='fluid')

20 pa.remove_particles(indices)

21 self.scheme.setup_properties([pa])

22 return [pa]

23

24 def create_scheme(self):

25 s = WCSPHScheme(

26 ['fluid'], [], dim=2, rho0=self.ro, c0=co,

27 h0=self.dx*self.hdx, hdx=self.hdx,

28 gamma=7.0, alpha=0.1, beta=0.0

29)

30 kernel = Gaussian(dim=2)

31 dt = 5e-6; tf = 0.0076

32 s.configure_solver(

33 kernel=kernel,

34 integrator_cls=EPECIntegrator,

35 dt=dt, tf=tf, adaptive_timestep=True,

36 cfl=0.3, n_damp=50,

37)

38 return s

The create_particles method above is straightforward.

NumPy arrays are created that set the position, mass, smoothing

radius h, the velocity etc. The arrays are all one dimensional. The

indices that are outside the circle are identified between lines 11

and 14 and these are removed in line 20. This could have also been

done with pure NumPy indexing. In Line 17 the particle array

instance is created and is called 'fluid'. Line 22 delegates to

the scheme to setup any additional properties for the particle

array and finally a list of particle arrays is returned.

The create_scheme method is fairly simple. A

WCSPHScheme is instantiated and passed arguments as defaults.

The kernel is created and this is all passed to a scheme method

called configure_solver, this also specifies the integrator

to use, the timestep to use, the time for which the simulation is

to be run etc. To someone who is familiar with SPH, these are

fairly obvious parameters. The scheme may also allow a user to

set these parameters via command line arguments. This can be

found by simply running:

$ pysph run elliptical_drop -h

The post_process method is also fairly straightforward and is

entirely optional. With just this code, one may run the example.

As soon as this is done, PySPH will generate high-performance

code, compile it, and use that code to run the example.

The scheme in this case is really doing a lot of work because

it encapsulates the creation of the equations and the integrators.

In order to understand this better, we look at a lower-level

implementation of the same example. This example also ships with

PySPH and is called elliptical_drop_no_scheme.py.

Unsurprisingly, this example can be run as:

$ pysph run elliptical_drop_no_scheme

This implementation does not use a scheme but instead cre-

ates the equations and the Solver instance directly. The ex-

ample differs from the elliptical_drop in that there is

no create_scheme method but instead there are two addi-

tional methods: - create_equations which explicitly cre-

ates the equations. - create_solver which sets up the

solver, stepper and integrators. The create_particles and

post_process etc. are all identical. The code is listed below:

def create_equations(self):

equations = [

Group(equations=[

TaitEOS(

dest='fluid', sources=None,

rho0=self.ro, c0=self.co, gamma=7.0),

], real=False),

Group(equations=[

ContinuityEquation(

dest='fluid', sources=['fluid',]),

MomentumEquation(

dest='fluid', sources=['fluid'],

alpha=self.alpha, beta=0.0,

c0=self.co),

XSPHCorrection(dest='fluid',

sources=['fluid']),

]),

]

return equations

As can be seen, the equations are simply instantiated. We look

closer at equations further below but at this stage it can be seen

that:

• Each equation has a destination dest and a list of sources.

A destination is a particle on which the acceleration is to

be computed a source is one that influences the particle.

In this problem there is only one destination and source,

"fluid". Note that the names of the arrays are used here

to determine the appropriate particle array.

• The TaitEOS is an equation of state, i.e. it does not

depend on any neighbors and is simply an equation of

128 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

the form p = (ρ − ρ0)c
2 or something along those lines.

This does not require any "sources".

• Equations can be "grouped" using a Group. Each time

the acceleration is computed, all equations in a group

are evaluated for all the particles before the next group

is considered. This is important in the above case as an

equation of state is needed to compute the pressure. The

pressure must be found for all particles before the other

accelerations are evaluated.

• The other equations describe the physics of the

problem, namely, continuity and momentum. The

XSPHCorrection is an SPH-specific correction (see

[Mon05]).

• The group containing TaitEOS has an additional argu-

ment real=False this is only used when the example

is run via MPI and specifies that the equation of state be

computed for all particles local and remote.

def create_solver(self):

kernel = Gaussian(dim=2)

integrator = EPECIntegrator(fluid=WCSPHStep())

dt = 5e-6; tf = 0.0076

solver = Solver(

kernel=kernel, dim=2, integrator=integrator,

dt=dt, tf=tf, adaptive_timestep=True,

cfl=0.3, n_damp=50,

output_at_times=[0.0008, 0.0038])

return solver

The create_solver method simply instantiates a

EPECIntegrator and asks that the fluid particles be stepped

with the WCSPHStep stepper. A solver is then constructed which

combines the kernel, integrator, and any integration parameters.

The scheme automatically creates the equations and solver.

Specifying equations directly can be error prone and schemes

make this task a lot easier. Schemes also support command line

arguments which the direct example would require additional

code for.

The only thing that remains is to see how the equations and

steppers are actually implemented. Let us consider the continuity

equation (6) and see how the ContinuityEquation class is

implemented.

class ContinuityEquation(Equation):

def initialize(self, d_idx, d_arho):

d_arho[d_idx] = 0.0

def loop(self, d_idx, d_arho, s_idx,

s_m, DWIJ, VIJ):

vijdotdwij = DWIJ[0]*VIJ[0] + \

DWIJ[1]*VIJ[1] + DWIJ[2]*VIJ[2]

d_arho[d_idx] += s_m[s_idx]*vijdotdwij

In this class there are two methods:

• initialize: this is called first for every destination

particle with index d_idx.

• loop: this is called for every destination source pair.

Thus, internally all the nearest neighbors of the destination

particle are identified and looped over.

There are some simple conventions followed with the variable

names.

• d_* indicates a destination array. The name that follows

d_ is the same as the property name of the array.

• s_* indicates a source array.

• d_idx is a destination index and s_idx the source index.

• A method can take any arguments in arbitrary order and

these are automatically passed in the right order.

Clearly this seems rather low-level, however, it is simple to

write and maps almost exactly with the actual SPH discretized

equation (see equation 6).

The integrator and integrator stepper code is similarly quite

simple and low level. It is written entirely in pure Python.

More details are available in the online PySPH design overview

document.

This approach allows a user to specify new equations and

integration schemes very easily and use them to perform SPH

simulations. The Application class also has several other

convenient methods that can be overridden by the user to perform

a variety of tasks. For example:

• add_user_options can be overridden to add any user-

defined command line arguments. The argument parsing

is done using argparse. Once processed, the options are

available in self.options.

• consume_user_options is used to use any of the

parsed options. This is called after the command line ar-

guments are parsed but before the create_particles

etc.

• create_domain can be used to create a periodic do-

main.

• configure_scheme can be used to configure a created

scheme based on command line arguments. This is also

useful in conjunction with user-defined command line

arguments.

• pre_step, post_step, post_stage are conve-

nient methods which will be called before each timestep,

after each timestep and after each integration stage if these

are defined. These are convenient for a variety of user

defined actions including debugging, adaptive refinement,

checking for errors etc.

Together, these features are extremely powerful and allow a

user a great deal of flexibility.

High performance

While PySPH allows a user to write the code in pure Python,

internally, high-performance Cython code is generated,

compiled, and used to extract as much performance as

possible. This is done using Mako templates. A general

Mako template is written to compute the accelerations, this is

in pysph/sph/acceleration_eval_cython.mako.

The main module is pysph.sph.acceleration_eval

which is implemented in pure Python. A helper class

pysph.sph.acceleration_eval_cython_helper

uses all the high-level information from the user code and

provides several methods that are called from the mako template.

The user Python code is already implemented in a low-

level allowing us to directly inject the sources into the

Cython code. The pysph.base.cython_generator mod-

ule helps with the generation of Cython code from Python

code. The pysph.base.ext_module takes the generated

Cython and compiles this. The extension modules are stored

in ~/.pysph/source in a Python version and architecture

specific directory. The md5sum of the Cython code is checked and

http://pysph.readthedocs.io/en/latest/design/overview.html
https://docs.python.org/3/library/argparse.html
https://pypi.python.org/pypi/Mako

PYSPH: A REPRODUCIBLE AND HIGH-PERFORMANCE FRAMEWORK FOR SMOOTHED PARTICLE HYDRODYNAMICS 129

if an extension for that md5sum exists the code is not recompiled.

Care is taken to look for changes in dependencies of this generated

source.

As a result of this, the code performs almost as well as a

hand-written FOTRAN code. We have compared running both 2D

and 3D problems with the SPHysics serial code. In 2D our code

is about 1.5 times slower. This is in part because by default the

PySPH implementation is 3D. In 3D, PySPH is about 1.3 times

slower. SPHysics symmetrizes the inter-particle computations, i.e.

while computing the interaction of a source on a destination, they

also compute the opposite force and store it. This appears to

provide additional performance gains. Regardless, it is clear that

PySPH is comparable in performance with SPHysics. However,

PySPH is a lot easier to use and much easier to extend.

PySPH also displays good scale-up with OpenMP. Consider

the cube example which considers a cube of a user-defined number

of particles (100000 by default), and takes 5 timesteps. One can

run pysph run cube --disable-output and compare

the time taken to run this with --openmp. On a quad-core

Macbook Pro this produces a speedup of about 4.16. This shows

that the scale up is excellent. Good scale up has been observed in

the distributed case but is not discussed here.

Reproducibility

The object-oriented API of PySPH makes it easy to extend and

use. The design allows for a large amount of code reuse.

We have found that it is extremely important to treat our

examples to be as important as the source itself and that these

should be shipped with the installation as part of the sources. This

forces us to design our examples to be reusable. This is extremely

important as:

• it forces a clean API for an end-user. This drives us to

minimize repetitive code, and simplify the API.

• the examples are all reusable. If a user wishes to try a new

scheme they need to just focus on the new scheme.

• it makes the library easier to use.

While post-processing results, the post-processed data is

dumped into a separate file. This makes it trivial to com-

pare the output of different schemes. Some simple tools in

pysph.tools.automation are provided which make it easy

to use PySPH in an automation framework.

Recently, we have used these features to make an entire publi-

cation [RP16] completely reproducible. Every figure produced in

the paper (a total of 23 in number) is produced with a single driver

script making it possible to rerun all the simulations with a single

command. This will be described in a future publication. How-

ever, it is important to note that PySPH allows for reproducible

computation with the SPH method.

Plans

In the future, the plan is to develop the following features:

• A GPU backend which should allow effective utilization

of GPUs with minimal changes to the API.

• Cleanup and potential generalization of the parallel code.

• Implement more SPH schemes.

• Better support for variable h.

• Cleanup of many of the current equations implemented.

• Support for implicit SPH schemes and other related parti-

cle methods.

• Advanced algorithms for adaptive resolution.

Conclusions

In this paper a broad overview of the SPH method was provided.

The background and context of the PySPH package was discussed.

A very high-level description of the PySPH features were provided

followed by an overview of the design. From the description it

can be seen that PySPH provides a powerful API and allows

users to focus on the specifics of the SPH scheme which they

are interested in. By abstracting out the high-performance aspects

even inexperienced programmers can use the high-level API and

produce useful simulations that run quickly and scale well with

multiple cores and processors. The paper also discusses how

PySPH facilitates reproducible research.

Acknowledgments

I would like to thank Kunal Puri, Chandrashekhar Kaushik, Pankaj

Pandey and the other PySPH developers and contributors for their

work on PySPH. I thank the department of aerospace engineering,

IIT Bombay for their continued support, excellent academic en-

vironment and academic freedom that they have extended to me

over the years.

REFERENCES

[BBC+11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and
K. Smith. Cython: The best of both worlds. Computing in Science

Engineering, 13(2):31 –39, March-April 2011. URL: http://www.
cython.org, doi:10.1109/MCSE.2010.118.

[CPR12] J.M. Cherfils, G. Pinon, and E. Rivoalen. JOSEPHINE: A parallel
{SPH} code for free-surface flows. Computer Physics Commu-

nications, 183(7):1468 – 1480, 2012. doi:http://dx.doi.

org/10.1016/j.cpc.2012.02.007.
[deva] DualSPHysics developers. Dualsphysics home page. URL: http:

//www.dual.sphysics.org/.
[devb] SPHysics developers. Sphysics home page. URL: https://wiki.

manchester.ac.uk/sphysics/index.php/SPHYSICS_Home_Page.
[GM77] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrody-

namics: Theory and application to non-spherical stars. Monthly

Notices of the Royal Astronomical Society, 181:375–389, 1977.
[GMS01] J.P. Gray, J. J. Monaghan, and R.P. Swift. SPH elastic dynam-

ics. Computer Methods in Applied Mechanics and Engineering,
190:6641–6662, 2001.

[Guo14] Philip Guo. Python is now the most popular introductory
teaching language at top u.s. universit ies, 2014.
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-
the-most-popular-introductory-teaching-language-at-top-us-
universities/fulltext.

[Luc77] L. B. Lucy. A numerical approach to testing the fission hypothesis.
The Astronomical Journal, 82(12):1013–1024, 1977.

[Mon94] J. J. Monaghan. Simulating free surface flows with SPH. Journal

of Computational Physics, 110:399–406, 1994.
[Mon05] J. J. Monaghan. Smoothed Particle Hydrodynamics. Reports on

Progress in Physics, 68:1703–1759, 2005.
[Per15] Jefferey M. Perkel. Pickup Python. Nature, 518:125–126, Febru-

ary 2015.
[RK10] Prabhu Ramachandran and Chandrashekhar Kaushik. PySPH: A

python framework for smoothed particle hydrodynamics. In Stéfan
van der Walt and Jarrod Millman, editors, Proceedings of the 9th

Python in Science Conference, pages 16 – 20, 2010.
[RP16] Prabhu Ramachandran and Kunal Puri. Entropically damped

artificial compressibility for SPH. Under review, 2016.
[RV11] Prabhu Ramachandran and Gaël Varoquaux. Mayavi: 3d visual-

ization of scientific data. Computing in Science and Engineering,
13(2):40–51, 2011.

[Spr05] Volker Springel. The cosmological simulation code gadget-2.
Monthly Notices of the Royal Astronomical Society, 364:1105–
1134, 2005.

http://www.cython.org
http://www.cython.org
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2012.02.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2012.02.007
http://www.dual.sphysics.org/
http://www.dual.sphysics.org/
https://wiki.manchester.ac.uk/sphysics/index.php/SPHYSICS_Home_Page
https://wiki.manchester.ac.uk/sphysics/index.php/SPHYSICS_Home_Page
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-intro ductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-intro ductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-intro ductory-teaching-language-at-top-us-universities/fulltext

	Background and Introduction
	Smoothed Particle Hydrodynamics
	Numerical implementation
	The PySPH framework
	High-level overview
	Essential software engineering
	Design overview
	High performance
	Reproducibility

	Plans
	Conclusions
	Acknowledgments
	References

