
LU TP 95–20
August 1995

(revised version of CERN–TH.7112/93)
(first issued December 1993)

W5035/W5044

PYTHIA 5.7 and JETSET 7.4
Physics and Manual

Torbjörn Sjöstrand

Department of Theoretical Physics,
University of Lund, Sölvegatan 14A,

S-223 62 Lund, Sweden

*......*
*:::!!:::::::::::*

*::::::!!::::::::::::::*
*::::::::!!::::::::::::::::*

*:::::::::!!:::::::::::::::::*
*:::::::::!!:::::::::::::::::*
*::::::::!!::::::::::::::::*!

*::::::!!::::::::::::::* !!
!! *:::!!:::::::::::* !!
!! !* -><- * !!
!! !! !!
!! !! !!
!! !!
!! ep !!
!! !!
!! pp !!
!! e+e- !!
!! !!
!!

Important note: this is the long writeup of
T. Sjöstrand, Computer Physics Commun. 82 (1994) 74.

All references should be to the published version.



Copyright Notice

CERNLIB – CERN Program Library Long writeups

c© Copyright CERN, Geneva 1993

Copyright and any other appropriate legal protection of these com-
puter programs and associated documentation reserved in all coun-
tries of the world.

These programs or documentation may not be reproduced by any
method without prior written consent of the Director-General of
CERN or his delegate.

Permission for the usage of any programs described herein is
granted apriori to those scientific institutes associated with the
CERN experimental program or with whom CERN has concluded
a scientific collaboration agreement.

Requests for information should be addressed to:

CERN Program Library Office

CERN-CN Division

CH-1211 Geneva 23

Switzerland

Tel. +41 22 767 4951

Fax. +41 22 767 7155

Bitnet: CERNLIB@CERNVM

DECnet: VXCERN::CERNLIB (node 22.190)

Internet: CERNLIB@CERNVM.CERN.CH

Trademark notice: All trademarks appearing in this guide are
acknowledged as such.



Preface

The Pythia and Jetset programs are frequently used for event generation in high-energy
physics. The emphasis is on multiparticle production in collisions between elementary
particles. This in particular means hard interactions in e+e−, pp and ep colliders, although
also other applications are envisaged. The programs are intended to generate complete
events, in as much detail as experimentally observable ones, within the bounds of our
current understanding of the underlying physics. Many of the components of the programs
represent original research, in the sense that models have been developed and implemented
for a number of aspects not covered by standard theory. Although originally conceived
separately, the Pythia and Jetset programs today are so often used together that it
makes sense to present them here without too much distinction.

Both programs have a long history, and several manuals have come out. The former
round of Pythia/Jetset program descriptions appeared in 1987. Meanwhile a large
number of additions and changes have been made. Recently a new description therefore
appeared in

T. Sjöstrand, Computer Physics Commun. 82 (1994) 74.

This is the one and only correct reference to the current versions of Pythia and Jetset.
The long writeup that you now have before you is an (unpublished) appendix to the
publication above, and need not be separately cited. Instead remember to cite the original
literature on the physics topics of particular relevance for your studies. (There is no reason
to omit references to good physics papers simply because some of their contents have also
been made available as program code.)

Event generators often have a reputation for being ‘black boxes’; if nothing else, this
report should provide you with a glimpse of what goes on inside the programs. Some such
understanding may be of special interest for new users, who have no background in the
field. An attempt has been made to structure the report sufficiently well that many of
the sections can be read independently of each other, so you can pick the sections that
interest you. I have tried to keep together the physics and the manual sections on specific
topics, where practicable, which represents a change of policy compared with previous
manual versions. Any feedback on this and other aspects is welcome.

A large number of persons should be thanked for their contributions. Hans-Uno
Bengtsson is the originator of the Pythia program, and for many years we worked in
parallel on its further development. Mats Bengtsson is the main author of the final-state
parton-shower algorithm. Bo Andersson and Gösta Gustafson are the originators of the
Lund model, and strongly influenced the early development of the programs. Further
comments on the programs have been obtained from users too numerous to be mentioned
here, but who are all gratefully acknowledged. To write programs of this size and com-
plexity would be impossible without a strong user feedback.

The moral responsibility for any remaining errors clearly rests with me. However,
kindly note that this is a ‘University World’ product, distributed ‘as is’, free of charge,
without any binding guarantees. And always remember that the programs do not repre-
sent a dead collection of established truths, but rather one of many possible approaches to
the problem of multiparticle production in high-energy physics, at the frontline of current
research. Be critical!





Contents

1 Introduction 1

2 Physics Overview 9
2.1 Hard Processes and Parton Distributions . . . . . . . . . . . . . . . . . . . 9
2.2 Initial- and Final-State Radiation . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Beam Remnants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Program Overview 20
3.1 Update History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Program Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Program Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Manual Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Getting Started with JETSET . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Getting Started with PYTHIA . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Monte Carlo Techniques 43
4.1 Selection From a Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 The Veto Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 The Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . . 47

5 The Event Record 51
5.1 Particle Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 The Event Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 How The Event Record Works . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 The HEPEVT Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Hard Processes in JETSET 67
6.1 Annihilation Events in the Continuum . . . . . . . . . . . . . . . . . . . . 67
6.2 Decays of Onia Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Routines and Common Block Variables . . . . . . . . . . . . . . . . . . . . 78
6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Process Generation in PYTHIA 86
7.1 Parton Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Kinematics and Cross section for a 2 → 2 Process . . . . . . . . . . . . . . 90
7.3 Resonance Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4 Cross-section Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.5 2 → 3 and 2 → 4 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.6 Resonance Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.7 Nonperturbative Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Physics Processes in PYTHIA 111
8.1 The Process Classification Scheme . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 QCD Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.3 Electroweak Gauge Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.4 Higgs Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.5 Non-Standard Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.6 Main Processes by Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 135



9 The PYTHIA Program Elements 138
9.1 The Main Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.2 Switches for Event Type and Kinematics Selection . . . . . . . . . . . . . . 142
9.3 The General Switches and Parameters . . . . . . . . . . . . . . . . . . . . 147
9.4 General Event Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.5 How to include external processes in PYTHIA . . . . . . . . . . . . . . . . 167
9.6 How to run PYTHIA with varying energies . . . . . . . . . . . . . . . . . . 172
9.7 Other Routines and Common Blocks . . . . . . . . . . . . . . . . . . . . . 174
9.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

10 Initial- and Final-State Radiation 188
10.1 Shower Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.2 Final-State Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.3 Initial-State Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
10.4 Routines and Common Block Variables . . . . . . . . . . . . . . . . . . . . 204

11 Beam Remnants and Underlying Events 210
11.1 Beam Remnants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
11.2 Multiple Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
11.3 Pile-up Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
11.4 Common Block Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

12 Fragmentation 226
12.1 Flavour Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
12.2 String Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
12.3 Independent Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 238
12.4 Other Fragmentation Aspects . . . . . . . . . . . . . . . . . . . . . . . . . 240

13 Particles and Their Decays 242
13.1 The Particle Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
13.2 Masses, Widths and Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.3 Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

14 The JETSET Program Elements 251
14.1 Definition of Initial Configuration or Variables . . . . . . . . . . . . . . . . 251
14.2 The JETSET Physics Routines . . . . . . . . . . . . . . . . . . . . . . . . 253
14.3 Event Study and Data Listing Routines . . . . . . . . . . . . . . . . . . . . 256
14.4 The General Switches and Parameters . . . . . . . . . . . . . . . . . . . . 261
14.5 Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
14.6 Further Parameters and Particle Data . . . . . . . . . . . . . . . . . . . . 275
14.7 Miscellaneous Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
14.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

15 Event Analysis Routines 288
15.1 Event Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
15.2 Cluster Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
15.3 Event Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
15.4 Routines and Common Block Variables . . . . . . . . . . . . . . . . . . . . 298

16 Summary and Outlook 309

References 310

Index of Subprograms and Common Block Variables 320



1 Introduction

Multiparticle production is the most characteristic feature of current high-energy physics.
Today, observed particle multiplicities are typically between ten and a hundred, and with
future machines this range will be extended upwards. The bulk of the multiplicity is
found in jets, i.e. in bunches of hadrons (or decay products of hadrons) produced by the
hadronization of quarks and gluons.

The Complexity of High-Energy Processes

To first approximation, all processes have a simple structure at the level of interactions
between the fundamental objects of nature, i.e. quarks, leptons and gauge bosons. For
instance, a lot can be understood about the structure of hadronic events at LEP just from
the ‘skeleton’ process e+e− → Z0 → qq. Corrections to this picture can be subdivided,
arbitrarily but conveniently, into three main classes.

Firstly, there are bremsstrahlung-type modifications, i.e. the emission of additional
final-state particles by branchings such as e → eγ or q → qg. Because of the largeness
of the strong coupling constant αs, and because of the presence of the triple gluon ver-
tex, QCD emission off quarks and gluons is especially prolific. We therefore speak about
‘parton showers’, wherein a single initial parton may give rise to a whole bunch of par-
tons in the final state. Also photon emission may give sizeable effects in e+e− and ep
processes. The bulk of the bremsstrahlung corrections are universal, i.e. do not depend
on the details of the process studied, but only on one or a few key numbers, such as the
momentum transfer scale of the process. Such universal corrections may be included to
arbitrarily high orders, using a probabilistic language. Alternatively, exact calculations
of bremsstrahlung corrections may be carried out order by order in perturbation the-
ory, but rapidly the calculations then become prohibitively complicated and the answers
correspondingly lengthy.

Secondly, we have ‘true’ higher-order corrections, which involve a combination of loop
graphs and the soft parts of the bremsstrahlung graphs above, a combination needed to
cancel some divergences. In a complete description it is therefore not possible to consider
bremsstrahlung separately, as assumed here. The necessary perturbative calculations are
usually very difficult; only rarely have results been presented that include more than one
non-‘trivial’ order, i.e. more than one loop. As above, answers are usually very lengthy,
but some results are sufficiently simple to be generally known and used, such as the
running of αs, or the correction factor 1 + αs/π + · · · in the partial widths of Z0 → qq
decay channels. For high-precision studies it is imperative to take into account the results
of loop calculations, but usually effects are minor for the qualitative aspects of high-energy
processes.

Thirdly, quarks and gluons are confined. In the two points above, we have used a
perturbative language to describe the short-distance interactions of quarks, leptons and
gauge bosons. For leptons and colourless bosons this language is sufficient. However, for
quarks and gluons it must be complemented with a picture for the hadronization process
(which can be subdivided into fragmentation and decays), wherein the coloured partons
are transformed into jets of colourless hadrons, photons and leptons. This process is
still not yet understood from first principles, but has to be based on models. In one
sense, hadronization effects are overwhelmingly large, since this is where the bulk of the
multiplicity comes from. In another sense, the overall energy flow of a high-energy event is
mainly determined by the perturbative processes, with only a minor additional smearing
caused by the hadronization step. One may therefore pick different levels of ambition,
but in general detailed studies require a detailed modelling of the hadronization process.

The simple structure that we started out with has now become considerably more
complex — instead of maybe two final-state partons we have a hundred final particles.

1



The original physics is not gone, but the skeleton process has been dressed up and is no
longer directly visible. A direct comparison between theory and experiment is therefore
complicated at best, and impossible at worst.

Event Generators

It is here that event generators come to the rescue. In an event generator, the objective
strived for is to use computers to generate events as detailed as could be observed by a
perfect detector. This is not done in one step, but rather by ‘factorizing’ the full prob-
lem into a number of components, each of which can be handled reasonably accurately.
Basically, this means that the hard process is used as input to generate bremsstrahlung
corrections, and that the result of this exercise is thereafter left to hadronize. This sounds
a bit easier than it really is — else this report would be a lot thinner. However, the basic
idea is there: if the full problem is too complicated to be solved in one go, try to subdivide
it into smaller tasks of manageable proportions. In the actual generation procedure, most
steps therefore involve the branching of one object into two, or at least into a very small
number, each of which being free to branch in its turn. A lot of bookkeeping is involved,
but much is of a repetitive nature, and can therefore be left for the computer to handle.

As the name indicates, the output of an event generator should be in the form of
‘events’, with the same average behaviour and the same fluctuations as real data. In
the data, fluctuations arise from the quantum mechanics of the underlying theory. In
generators, Monte Carlo techniques are used to select all relevant variables according to
the desired probability distributions, and thereby ensure randomness in the final events.
Clearly some loss of information is entailed: quantum mechanics is based on amplitudes,
not probabilities. However, only very rarely do (known) interference phenomena appear
that cannot be cast in a probabilistic language. This is therefore not a more restraining
approximation than many others.

Once there, an event generator can be used in many different ways. The five main
applications are probably the following:

• To give physicists a feeling for the kind of events one may expect/hope to find, and
at what rates.

• As a help in the planning of a new detector, so that detector performance is opti-
mized, within other constraints, for the study of interesting physics scenarios.

• As a tool for devising the analysis strategies that should be used on real data, so
that signal-to-background conditions are optimized.

• As a method for estimating detector acceptance corrections that have to be applied
to raw data, in order to extract the ‘true’ physics signal.

• As a convenient framework within which to interpret the observed phenomena in
terms of a more fundamental underlying theory (usually the Standard Model).

Where does a generator fit into the overall analysis chain of an experiment? In ‘real
life’, the machine produces interactions. These events are observed by detectors, and the
interesting ones are written to tape by the data acquisition system. Afterwards the events
may be reconstructed, i.e. the electronics signals (from wire chambers, calorimeters, and
all the rest) may be translated into a deduced setup of charged tracks or neutral energy
depositions, in the best of worlds with full knowledge of momenta and particle species.
Based on this cleaned-up information, one may proceed with the physics analysis. In the
Monte Carlo world, the rôle of the machine, namely to produce events, is taken by the
event generators described in this report. The behaviour of the detectors — how particles
produced by the event generator traverse the detector, spiral in magnetic fields, shower
in calorimeters, or sneak out through cracks, etc. — is simulated in programs such as
Geant [Bru89]. Traditionally, this latter activity is called event simulation, which is
somewhat unfortunate since the same words could equally well be applied to what, here,
we call event generation. A more appropriate term is detector simulation. Ideally, the

2



output of this simulation has exactly the same format as the real data recorded by the
detector, and can therefore be put through the same event reconstruction and physics
analysis chain, except that here we know what the ‘right answer’ should be, and so can
see how well we are doing.

Since the full chain of detector simulation and event reconstruction is very time-
consuming, one often does ‘quick and dirty’ studies in which these steps are skipped
entirely, or at least replaced by very simplified procedures which only take into account
the geometric acceptance of the detector and other trivial effects. One may then use the
output of the event generator directly in the physics studies.

There are still many holes in our understanding of the full event structure, despite
an impressive amount of work and detailed calculations. To put together a generator
therefore involved making a choice on what to include, and how to include it. At best,
the spread between generators can be used to give some impression of the uncertainties
involved. A multitude of approximations will be discussed in the main part of this report,
but already here is should be noted that many major approximations are related to the
almost complete neglect of the second point above, i.e. of the non-‘trivial’ higher-order
effects. It can therefore only be hoped that the ‘trivial’ higher order parts give the bulk of
the experimental behaviour. By and large, this seems to be the case; for e+e− annihilation
it even turns out to be a very good approximation.

The necessity to make compromises has one major implication: to write a good event
generator is an art, not an exact science. It is therefore essential not to blindly trust
the results of any single event generator, but always to make several cross-checks. In
addition, with computer programs of tens of thousands of lines, the question is not whether
bugs exist, but how many there are, and how critical their positions. Further, an event
generator cannot be thought of as all-powerful, or able to give intelligent answers to ill-
posed questions; sound judgement and some understanding of a generator are necessary
prerequisites for successful use. In spite of these limitations, the event generator approach
is the most powerful tool at our disposal if we wish to gain a detailed and realistic
understanding of physics at current or future high-energy colliders.

The Origins of the JETSET and PYTHIA Programs

Over the years, many event generators have appeared. Surveys of generators for e+e−

physics in general and LEP in particular may be found in [Kle89, Sjö89], for high-energy
hadron–hadron (pp) physics in [Ans90, Sjö92, Kno93], and for ep physics in [HER92]. We
refer the reader to those for additional details and references. In this particular report,
the two closely connected programs Jetset and Pythia will be described.

Jetset has its roots in the efforts of the Lund group to understand the hadroniza-
tion process, starting in the late seventies [And83]. The so-called string fragmentation
model was developed as an explicit and detailed framework, within which the long-range
confinement forces are allowed to distribute the energies and flavours of a parton config-
uration among a collection of primary hadrons, which subsequently may decay further.
This model, known as the Lund string model, or ‘Lund’ for short, contained a number of
specific predictions, which were confirmed by data from PETRA and PEP, whence the
model gained a widespread acceptance. The Lund string model is still today the most
elaborate and widely used fragmentation model at our disposal. It remains at the heart
of the Jetset/Pythia programs.

In order to predict the shape of events at PETRA/PEP, and to study the fragmentation
process in detail, it was necessary to start out from the partonic configurations that
were to fragment. The generation of complete e+e− hadronic events was therefore added,
originally based on simple γ exchange and first-order QCD matrix elements, later extended
to full γ∗/Z0 exchange with first-order initial-state QED radiation and second-order QCD
matrix elements. A number of utility routines were also provided early on, for everything

3



from event listing to jet finding.
By the mid-eighties it was clear that the matrix-element approach had reached the

limit of its usefulness, in the sense that it could not fully describe the multijet topologies of
the data. (Later on, the use of optimized perturbation theory was to lead to a resurgence
of the matrix-element approach, but only for specific applications.) Therefore a parton-
shower description was developed [Ben87a] as an alternative to the matrix-element one.
The combination of parton showers and string fragmentation has been very successful,
and forms the main approach to the description of hadronic Z0 events.

In recent years, Jetset has been a fairly stable product, covering the four main areas
of fragmentation, final-state parton showers, e+e− event generation and general utilities.

The successes of string fragmentation in e+e− made it interesting to try to extend this
framework to other processes, and explore possible physics consequences. Therefore a
number of other programs were written, which combined a process-specific description of
the hard interactions with the general fragmentation framework of Jetset. The Pythia
program evolved out of early studies on fixed-target proton–proton processes, addressed
mainly at issues related to string drawing.

With time, the interest shifted towards higher energies, first to the SPS pp collider,
and later to SSC and LHC, in the context of a number of workshops in the USA and
Europe. Parton showers were added, for final-state radiation by making use of the Jetset
routine, for initial-state one by the development of the concept of ‘backwards evolution’,
specifically for Pythia [Sjö85]. Also a framework was developed for minimum-bias and
underlying events [Sjö87a].

Another main change was the introduction of an increasing number of hard processes,
within the Standard Model and beyond. A special emphasis was put on the search for
the Standard Model Higgs, in different mass ranges and in different channels, with due
respect to possible background processes.

The bulk of the machinery developed for hard processes actually depended little on the
choice of initial state, as long as the appropriate parton distributions were there for the
incoming partons and particles. It therefore made sense to extend the program from being
only a pp generator to working also for e+e− and ep. This process was only completed in
1991, again spurred on by physics workshop activities. Currently Pythia should therefore
work equally well for a selection of different possible incoming beam particles.

The tasks of including new processes, and of improving the simulation of already
present ones, are never-ending. Work therefore continues apace.

While Jetset still is formally independent of Pythia, their ties have grown much
stronger over the years, and the border-line between the two programs has become more
and more artificial. It is no coincidence that the two are presented together here; this
way a lot of repetition of common material can be avoided. The price to be paid is that
some differences in philosophy will have to be discussed.

About this Report

As we see, Jetset and Pythia started out as very ideologically motivated programs, de-
veloped to study specific physics questions in enough detail that explicit predictions could
be made for experimental quantities. As it was recognized that experimental imperfec-
tions could distort the basic predictions, the programs were made available for general use
by experimentalists. It thus became feasible to explore the models in more detail than
would otherwise have been possible. As time went by, the emphasis came to shift some-
what, away from the original strong coupling to a specific fragmentation model, towards a
description of high-energy multiparticle production processes in general. Correspondingly,
the use expanded from being one of just comparing data with specific model predictions,
to one of extensive use for the understanding of detector performance, for the deriva-
tion of acceptance correction factors, for the prediction of physics at future high-energy

4



accelerators, and for the design of related detectors.
While the ideology may be less apparent, it is still there, however. This is not some-

thing unique to the programs discussed here, but inherent in any event generator, or at
least any generator that attempts to go beyond the simple parton level skeleton descrip-
tion of a hard process. Do not accept the myth that everything available in Monte Carlo
form represents ages-old common knowledge, tested and true. Ideology is present by
commissions or omissions in any number of details. Programs like Pythia and Jetset
represent a major amount of original physics research, often on complicated topics where
no simple answers are available. As a (potential) program user you must be aware of this,
so that you can form your own opinion, not just about what to trust and what not to
trust, but also how much to trust a given prediction, i.e. how uncertain it is likely to
be. Jetset and Pythia are particularly well endowed in this respect, since a number of
publications exist where most of the relevant physics is explained in considerable detail.
In fact, the problem may rather be the opposite, to find the relevant information among
all the possible places. One main objective of the current report is therefore to collect
much of this information in one single place. Not all the material found in specialized
papers is reproduced, by a wide margin, but at least enough should be found here to
understand the general picture and to know where to go for details.

The current report is therefore intended to replace the previous round of published
physics descriptions and program manuals [Sjö86, Sjö87, Ben87]. The formal new stan-
dard reference is [Sjö94], which is a fairly brief summary of this report — for obvious
reasons the full description is too long to be published in its entirety. Further specification
could include a statement of the type ‘We use Pythia version X.x and Jetset version
Y.y’. (If you are a LATEX fan, you may want to know that the program names in this
report have been generated by the commands \textsc{Jetset} and \textsc{Pythia}.)
Kindly do not refer to Jetset/Pythia as ‘unpublished’, ‘private communication’ or ‘in
preparation’: such phrases are only creating unnecessary confusion.

In addition, remember that many of the individual physics components are docu-
mented in separate publications. If some of these contain ideas that are useful to you,
there is every reason to cite them. A reasonable selection would vary as a function of the
physics you are studying. The criterion for which to pick should be simple: imagine that
a Monte Carlo implementation had not been available. Would you then have cited a given
paper on the grounds of its physics contents alone? If so, do not punish the extra effort
of turning these ideas into publicly available software. (Monte Carlo manuals are good
for nothing in the eyes of many theorists, so often only the acceptance of ‘mainstream’
publications counts.) Here follows a list of some main areas where the Pythia/Jetset
programs contain original research:

• The string fragmentation model [And83].
• The string effect [And80].
• Baryon production (diquark/popcorn) [And82, And85].
• Fragmentation of multiparton systems [Sjö84].
• Fragmentation effects on αs determinations [Sjö84a].
• Initial state parton showers [Sjö85].
• Final state parton showers [Ben87a].
• Photon radiation from quarks [Sjö92c]
• Deep inelastic scattering [And81a, Ben88].
• Photoproduction [Sch93a] and γγ physics [Sch94a].
• Parton distributions of the photon [Sch95].
• Colour flow in hard scatterings [Ben84].
• Elastic and diffractive cross sections [Sch94].
• Minijets (multiple parton–parton interactions) [Sjö87a].
• Rapidity gaps [Dok92].

5



• Jet clustering in k⊥ [Sjö83].
In addition to a physics survey, the current report also contains a complete manual

for the two programs. Such manuals have always been updated and distributed jointly
with the programs. To a first approximation, we therefore do not have much new to offer
here. However, an attempt has been made to group the material more logically according
to physics topics than in previous distributions, to tie it closer to the physics description,
and to improve the layout and therefore the readability. Any feedback is welcome.

A word of warning may be in place. The program description is fairly lengthy, and
certainly could not be absorbed in one sitting. This is not even necessary, since all switches
and parameters are provided with sensible default values, based on our best understanding
(of the physics, and of what you expect to happen if you do not specify any options). As
a new user, you can therefore disregard all the fancy options, and just run the program
with a minimum ado. Later on, as you gain experience, the options that seem useful can
be tried out. No single user is ever likely to find need for more than a fraction of the total
number of possibilities available, yet many of them have been added to meet specific user
requests.

In some instances, not even this report will provide you with all the information you
desire. You may wish to find out about recent versions of the program, know about related
software, pick up a few sample main programs to get going, or get hold of related physics
papers. Some such material can be found if you link to my World Wide Web homepage:
http://thep.lu.se/tf2/staff/torbjorn/Welcome.html
and study the contents there.

Disclaimer

At all times it should be remembered that this is not a commercial product, developed
and supported by professionals. Instead it is a ‘University World’ product, developed
by a very few physicists (mainly the current author) originally for their own needs, and
supplied to other physicists on an ‘as-is’ basis, free of charge. No guarantees are therefore
given for the proper functioning of the programs, nor for the validity of physics results.
In the end, it is always up to you to decide for yourself whether to trust a given result
or not. Usually this requires comparison either with analytical results or with results of
other programs, or with both. Even this is not necessarily foolproof: for instance, if an
error is made in the calculation of a matrix element for a given process, this error will be
propagated both into the analytical results based on the original calculation and into all
the event generators which subsequently make use of the published formulae. In the end,
there is no substitute for a sound physics judgement.

This does not mean that you are all on your own, with a program nobody feels re-
sponsible for. Attempts are made to check processes as carefully as possible, to write
programs that do not invite unnecessary errors, and to provide a detailed and accurate
documentation. All of this while maintaining the full power and flexibility, of course,
since the physics must always take precedence in any conflict of interests. If nevertheless
any errors or unclarities are found, please do communicate them to me, e.g. on phone
+46 – 46 – 222 48 16 or e-mail torbjorn@thep.lu.se. Every attempt will be made to solve
problems as soon as is reasonably possible, given that this support is by one person alone,
who also has other responsibilities.

Appendix: The Historical Pythia

While the origin and connotations of the ‘Jetset’ program name should be commonly
known, the ‘Pythia’ label may need some explanation.

The myth tells how Apollon, the God of Wisdom, killed the powerful dragon-like
monster Python, close to the village of Delphi in Greece. To commemorate this victory,

6



Apollon founded the Pythic Oracle in Delphi, on the slopes of Mount Parnassos. Here
men could come to learn the will of the Gods and the course of the future. The oracle
plays an important rôle in many of the other Greek myths, such as those of Heracles and
of King Oedipus.

Questions were to be put to the Pythia, the ‘Priestess’ or ‘Prophetess’ of the Oracle. In
fact, she was a local woman, usually a young maiden, of no particular religious schooling.
Seated on a tripod, she inhaled the obnoxious vapours that seeped up through a crevice in
the ground. This brought her to a trance-like state, in which she would scream seemingly
random words and sounds. It was the task of the professional priests in Delphi to record
those utterings and edit them into the official Oracle prophecies, which often took the
form of poems in perfect hexameter. In fact, even these edited replies were often less than
easy to interpret. The Pythic oracle acquired a reputation for ambiguous answers.

The Oracle existed already at the beginning of the historical era in Greece, and was
universally recognized as the foremost religious seat. Individuals and city states came to
consult, on everything from cures for childlessness to matters of war. Lavish gifts allowed
the temple area to be built and decorated. Many states supplied their own treasury halls,
where especially beautiful gifts were on display. Sideshows included the Omphalos, a
stone reputedly marking the centre of the Earth, and the Pythic games, second only to
the Olympic ones in importance.

Strife inside Greece eventually led to a decline in the power of the Oracle. A serious
blow was dealt when the Oracle of Zeus Ammon (see below) declared Alexander the Great
to be the son of Zeus. The Pythic Oracle lived on, however, and was only closed by a
Roman Imperial decree in 390 ad, at a time when Christianity was ruthlessly destroying
any religious opposition. Pythia then had been at the service of man and Gods for a
millenium and a half.

The rôle of the Pythic Oracle replies on the course of history is nowhere better de-
scribed than in ‘The Histories’ by Herodotus [Herbc], the classical and captivating de-
scription of the Ancient World at the time of the Great War between Greeks and Persians.
Especially famous is the episode with King Croisus of Lydia. Contemplating a war against
the upstart Persian Empire, he resolves to ask an oracle what the outcome of a potential
battle would be. However, to have some guarantee for the veracity of any prophecy, he
decides to send embassies to all the renowned oracles of the known World. The messengers
are instructed to inquire the various divinities, on the hundredth day after their depar-
ture, what King Croisus is doing at that very moment. From the Pythia the messengers
bring back the reply

I know the number of grains of sand as well as the expanse of the sea,
And I comprehend the dumb and hear him who does not speak,
There came to my mind the smell of the hard-shelled turtle,
Boiled in copper together with the lamb,
With copper below and copper above.

The veracity of the Pythia is thus established by the crafty ruler, who had waited until
the appointed day, slaughtered a turtle and a lamb, and boiled them together in a copper
cauldron with a copper lid. Also the Oracle of Zeus Ammon in the Libyan desert is able
to give a correct reply (lost to posterity), while all others fail. King Croisus now sends a
second embassy to Delphi, inquiring after the outcome of a battle against the Persians.
The Pythia answers

If Croisus passes over the Halys he will dissolve a great Empire.

Taking this to mean he would win, the King collects his army and crosses the border river,
only to suffer a crushing defeat and see his Kingdom conquered. When the victorious King
Cyrus allows Croisus to send an embassy to upbraid the Oracle, the God Apollon answers

7



through his Prophetess that he has correctly predicted the destruction of a great empire
— Croisus’ own — and that he cannot be held responsible if people choose to interpret
the Oracle answers to their own liking.

The history of the Pythia program is neither as long nor as dignified as that of
its eponym. However, some points of contact exist. You must be very careful when
you formulate the questions: any ambiguities will corrupt the reply you get. And you
must be even more careful not to misinterpret the answers; in particular not to pick the
interpretation that suits you before considering the alternatives. Finally, even a perfect
God has servants that are only human: a priest might mishear the screams of the Pythia
and therefore produce an erroneous oracle reply; the current author might unwittingly let
a bug free in the program Pythia.

8



2 Physics Overview

In this section we will try to give an overview of the main physics features of Jetset
and Pythia, and also to introduce some terminology. The details will be discussed in
subsequent sections.

For the description of a typical high-energy event, an event generator should contain
a simulation of several physics aspects. If we try to follow the evolution of an event in
some semblance of a time order, one may arrange these aspects as follows:

1. Initially two beam particles are coming in towards each other. Normally each par-
ticle is characterized by a set of parton distribution functions, which defines the
partonic substructure in terms of flavour composition and energy sharing.

2. One shower initiator parton from each beam starts off a sequence of branchings,
such as q → qg, which build up an initial-state shower.

3. One incoming parton from each of the two showers enters the hard process, where
then a number of outgoing partons are produced, usually two. It is the nature of
this process that determines the main characteristics of the event.

4. Also the outgoing partons may branch, to build up final-state showers.
5. When a shower initiator is taken out of a beam particle, a beam remnant is left

behind. This remnant may have an internal structure, and a net colour charge that
relates it to the rest of the final state.

6. The QCD confinement mechanism ensures that the outgoing quarks and gluons are
not observable, but instead fragment to colour neutral hadrons.

7. Many of the produced hadrons are unstable and decay further.
Conventionally, only quarks and gluons are counted as partons, while leptons and

photons are not. If pushed ad absurdum this may lead to some unwieldy terminology. We
will therefore, where it does not matter, speak of an electron or a photon in the ‘partonic’
substructure of an electron, lump branchings e → eγ together with other ‘parton shower’
branchings such as q → qg, and so on. With this notation, the division into the above
seven points applies equally well to an interaction between two leptons, between a lepton
and a hadron, and between two hadrons.

In the following subsections, we will survey the above seven aspects, not in the same
order as given here, but rather in the order in which they appear in the program execution,
i.e. starting with the hard process.

2.1 Hard Processes and Parton Distributions

In Jetset, only two hard processes are available. The first and main one is e+e− →
γ∗/Z0 → qq. Here the ‘∗’ of γ∗ is used to denote that the photon must be off the mass
shell. The distinction is of some importance, since a photon on the mass shell cannot
decay. Of course also the Z0 can be off the mass shell, but here the distinction is less
relevant (strictly speaking, a Z0 is always off the mass shell). In the following we may not
always use ‘∗’ consistently, but the rule of thumb is to use a ‘∗’ only when a process is
not kinematically possible for a particle of nominal mass. The quark q in the final state
of e+e− → γ∗/Z0 → qq may be u, d, s, c, b or t; the flavour in each event is picked at
random, according to the relative couplings, evaluated at the hadronic c.m. energy. Also
the angular distribution of the final qq pair is included. No parton-distribution functions
are needed.

The other Jetset process is a routine to generate ggg and γgg final states, as expected
in onium 1−− decays such as Υ. Given the current limits on the top mass, toponium will
decay weakly much too fast for these processes to be of any interest, so therefore no new
applications are expected.

9



Pythia contains a much richer selection, with close to a hundred different hard pro-
cesses. These may be classified in many different ways.

One is according to the number of final-state objects: we speak of ‘2 → 1’ processes,
‘2 → 2’ ones, ‘2 → 3’ ones, etc. This aspect is very relevant from a programming point
of view: the more particles in the final state, the more complicated the phase space and
therefore the whole generation procedure. In fact, Pythia is optimized for 2 → 1 and
2 → 2 processes. There is currently no generic treatment of processes with three or more
particles in the final state, but rather a few different machineries, each tailored to the
pole structure of a specific class of graphs. This may be seen as a major limitation, and
indeed is so at times. However, often one can come quite far with only one or two particles
in the final state, since showers will add the required extra activity. The classification
may also be misleading at times, since an s-channel resonance is considered as a single
particle, even if it is assumed always to decay into two final-state particles. Thus the
process e+e− → W+W− → q1q

′
1 q2q

′
2 is classified as 2 → 2, although the decay treatment

of the W pair includes the full 2 → 4 matrix elements.
Another classification is according to the physics scenario. This will be the main theme

of section 8. The following major groups may be distinguished:
• Hard QCD processes, e.g. qg → qg.
• Soft QCD processes, such as diffractive and elastic scattering, and minimum-bias

events.
• Heavy-flavour production, e.g. gg → tt.
• Prompt-photon production, e.g. qg → qγ.
• Photon-induced processes, e.g. γg → qq.
• Deep inelastic scattering, e.g. qℓ→ qℓ.
• W/Z production, such as the e+e− → γ∗/Z0 already found in Jetset, or qq →

W+W−.
• Standard model Higgs production, where the Higgs is reasonably light and narrow,

and can therefore still be considered as a resonance.
• Gauge boson scattering processes, such as WW → WW, when the Standard Model

Higgs is so heavy and broad that resonant and non-resonant contributions have to
be considered together.

• Non-standard Higgs particle production, within the framework of a two-Higgs-
doublet scenario with three neutral and two charged Higgs states.

• Production of new gauge bosons, such as a Z′.
• Production of fourth-generation fermions.
• Leptoquark production.
• Deviations from Standard Model processes, e.g. due to contact interactions or a

strongly interacting gauge boson sector. These scenarios do not always appear as
separate processes, but may just be options to some of the processes above.

This is by no means a survey of all interesting physics. Most notable is the absence
of supersymmetric particle production and decay, but many other examples could be
found. Also, within the scenarios studied, not all contributing graphs have always been
included, but only the more important and/or more interesting ones. In many cases,
various approximations are involved in the matrix elements coded.

The cross section for a given process ij → k is given by

σij→k =
∫

dx1

∫

dx2 f
1
i (x1) f

2
j (x2) σ̂ij→k . (1)

Here σ̂ is the cross section for the hard partonic process, as codified in the matrix elements
for each specific process. For processes with many particles in the final state it would
be replaced by an integral over the allowed final-state phase space. The fai (x) are the
parton-distribution functions, which describe the probability to find a parton i inside

10



beam particle a, with parton i carrying a fraction x of the total a momentum. Actually,
parton distributions also depend on some momentum scale Q2 that characterizes the hard
process.

Parton distributions are most familiar for hadrons, such as the proton. Hadrons are
inherently composite objects, made up of quarks and gluons. Since we do not understand
QCD, a derivation from first principles of hadron parton distributions does not yet exist,
although some progress is being made in lattice QCD studies. It is therefore necessary
to rely on parametrizations, where experimental data are used in conjunction with the
evolution equations for the Q2 dependence, to pin down the parton distributions. Several
different groups have therefore produced their own fits, based on slightly different sets of
data, and with some variation in the theoretical assumptions.

Also for fundamental particles, such as the electron, is it convenient to introduce parton
distributions. The function f e

e (x) thus parametrizes the probability that the electron that
takes part in the hard process retains a fraction x of the original energy, the rest being
radiated (into photons) in the initial state. Of course, such radiation could equally well be
made part of the hard interaction, but the parton-distribution approach usually is much
more convenient. If need be, a description with fundamental electrons is recovered for
the choice f e

e (x,Q2) = δ(x − 1). Note that, contrary to the proton case, electron parton
distributions are calculable from first principles, and reduce to the δ function above for
Q2 → 0.

The electron may also contain photons, and the photon may in its turn contain quarks
and gluons. The internal structure of the photon is a bit of a problem, since the pho-
ton contains a point-like part, which is perturbatively calculable, and a vector-meson
dominance part, which is not. Normally, the photon parton distributions are therefore
parametrized, just as the hadron ones. Since the electron ultimately contains quarks and
gluons, hard QCD processes like qg → qg therefore not only appear in pp collisions,
but also in ep ones (‘resolved photoproduction’) and in e+e− ones (‘doubly resolved 2γ
events’). The parton distribution function approach here makes it much easier to reuse
one and the same hard process in different contexts.

There is also another kind of possible generalization. The two processes qq → γ∗/Z0,
studied in hadron colliders, and e+e− → γ∗/Z0, studied in e+e− colliders, are really special
cases of a common process, ff → γ∗/Z0, where f denotes a fundamental fermion, i.e. a
quark, lepton or neutrino. The whole structure is therefore only coded once, and then
slightly different couplings and colour prefactors are used, depending on the initial state
considered. Usually the interesting cross section is a sum over several different initial
states, e.g. uu → γ∗/Z0 and dd → γ∗/Z0 in a hadron collider. This kind of summation is
always implicitly done, even when not explicitly mentioned in the text.

2.2 Initial- and Final-State Radiation

In every process that contains coloured and/or charged objects in the initial or final state,
gluon and/or photon radiation may give large corrections to the overall topology of events.
Starting from a basic 2 → 2 process, this kind of corrections will generate 2 → 3, 2 → 4,
and so on, final-state topologies. As the available energies are increased, hard emission
of this kind is increasingly important, relative to fragmentation, in determining the event
structure.

Two traditional approaches exist to the modelling of perturbative corrections. One is
the matrix-element method, in which Feynman diagrams are calculated, order by order.
In principle, this is the correct approach, which takes into account exact kinematics,
and the full interference and helicity structure. The only problem is that calculations
become increasingly difficult in higher orders, in particular for the loop graphs. Only in
exceptional cases have therefore more than one loop been calculated in full, and often
we do not have any loop corrections at all at our disposal. On the other hand, we have

11



indirect but strong evidence that, in fact, the emission of multiple soft gluons plays a
significant rôle in building up the event structure, e.g. at LEP, and this sets a limit to
the applicability of matrix elements. Since the phase space available for gluon emission
increases with the available energy, the matrix-element approach becomes less relevant
for the full structure of events at higher energies. However, the perturbative expansion by
itself is better behaved at higher energies, owing to the running of αs. As a consequence,
inclusive measurements, e.g. of the rate of well-separated jets, should yield more reliable
results.

The second possible approach is the parton-shower one. Here an arbitrary number of
branchings of one parton into two (or more) may be put together, to yield a description
of multijet events, with no explicit upper limit on the number of partons involved. This is
possible since the full matrix-element expressions are not used, but only approximations
derived by simplifying the kinematics, and the interference and helicity structure. Parton
showers are therefore expected to give a good description of the substructure of jets, but in
principle the shower approach has limited predictive power for the rate of well-separated
jets (i.e. the 2/3/4/5-jet composition). In practice, shower programs may be patched
up to describe the hard-gluon emission region reasonably well, in particular for the e+e−

annihilation process. Nevertheless, the shower description is not optimal for absolute αs

determinations.
Thus the two approaches are complementary in many respects, and both have found

use. However, because of its simplicity and flexibility, the parton-shower option is gener-
ally the first choice, while the matrix elements one is mainly used for αs determinations,
angular distribution of jets, triple-gluon vertex studies, and other specialized studies. Ob-
viously, the ultimate goal would be to have an approach where the best aspects of the
two worlds are harmoniously married.

2.2.1 Matrix elements

Matrix elements are especially made use of in the Jetset implementation of the process
e+e− → γ∗/Z0 → qq.

For initial-state QED radiation, a first order (unexponentiated) description has been
adopted. This means that events are subdivided into two classes, those where a photon
is radiated above some minimum energy, and those without such a photon. In the latter
class, the soft and virtual corrections have been lumped together to give a total event rate
that is correct up to one loop. This approach worked fine at PETRA/PEP energies, but
does not do so well for the Z0 line shape, i.e. in regions where the cross section is rapidly
varying and high precision is strived for.

For final-state QCD radiation, several options are available. The default is the parton-
shower one (see below), but the matrix-elements options are also frequently used. In the
definition of 3- or 4-jet events, a cut is introduced whereby it is required that any two
partons have an invariant mass bigger than some fraction of the c.m. energy. 3-jet
events which do not fulfill this requirement are lumped with the 2-jet ones. The first-
order matrix-element option, which only contains 3- and 2-jet events therefore involves
no ambiguities. In second order, where also 4-jets have to be considered, a main issue is
what to do with 4-jet events that fail the cuts. Depending on the choice of recombination
scheme, whereby the two nearby partons are joined into one, different 3-jet events are
produced. Therefore the second-order differential 3-jet rate has been the subject of some
controversy, and Jetset actually contains two different implementations.

By contrast, Pythia does not contain any full higher-order matrix elements, with
loop contributions included. There are a few cases where higher-order matrix elements are
included at the Born level. Consider e.g. the case of W production at a hadron collider,
which is contained in the lowest-order process qq′ → W. In an inclusive description,
additional jets recoiling against the W may be generated by parton showers. Pythia

12



also contains the two first-order processes qg → Wq′ and qq′ → Wg. The cross sections
for these processes are divergent when the p⊥ → 0. In this region a correct treatment
would therefore have to take into account loop corrections, which are not available in
Pythia. Depending on the physics application, one could then use Pythia in one of
two ways. In the region of small p⊥, the preferred option is lowest-order matrix elements
combined with parton showers. For the production of a W at large p⊥, on the other hand,
the shower approach is too imprecise to give the right cross section; additionally the event
selection machinery is very inefficient. Here it is advantageous to generate first-order
events, and then add showers only to describe additional softer radiation.

2.2.2 Parton showers

The separation of radiation into initial- and final-state showers is arbitrary, but very
convenient. There are also situations where it is appropriate: for instance, the process
e+e− → Z0 → qq only contains final-state QCD radiation (QED radiation, however, is
possible both in the initial and final state), while qq → Z0 → e+e− only contains initial-
state QCD one. Similarly, the distinction of emission as coming either from the q or from
the q is arbitrary. In general, the assignment of radiation to a given mother parton is a
good approximation for an emission close to the direction of motion of that parton, but
not for the wide-angle emission in between two jets, where interference terms are expected
to be important.

In both initial- and final-state showers, the structure is given in terms of branchings
a→ bc, specifically e → eγ, q → qg, q → qγ, g → gg, and g → qq. Each of these processes
is characterized by a splitting kernel Pa→bc(z). The branching rate is proportional to the
integral

∫

Pa→bc(z) dz. The z value picked for a branching describes the energy sharing,
with daughter b taking a fraction z and daughter c the remaining 1 − z of the a energy.
Once formed, the daughters b and c may in turn branch, and so on.

Each parton is characterized by some virtuality scale Q2, which gives an approximate
sense of time ordering to the cascade. In the initial-state shower, Q2 values are gradually
increasing as the hard scattering is approached, while Q2 is decreasing in the final-state
showers. Shower evolution is cut off at some lower scale Q0, typically around 1 GeV for
QCD branchings. The same cut-off scale is also used to regularize the soft gluon emission
divergences in the splitting kernels. From above, a maximum scale Qmax is introduced,
where the showers are matched to the hard interaction itself. The relation between Qmax

and the kinematics of the hard scattering is uncertain, and the choice made can strongly
affect the amount of well-separated jets.

Despite a number of common traits, the initial- and final-state radiation machineries
are in fact quite different, and are described separately below. For historical reasons, the
final-state shower is found in Jetset and the initial-state one in Pythia.

Final-state showers are time-like, i.e. partons have m2 = E2 − p2 ≥ 0. The evolution
variable Q2 of the cascade is therefore in Jetset associated with the m2 of the branching
parton, but this choice is not unique. Starting from Q2

max, an original parton is evolved
downwards in Q2 until a branching occurs. The selected Q2 value defines the mass of the
branching parton, and the z of the splitting kernel the parton energy division between
its daughters. These daughters may now, in turn, evolve downwards, in this case with
maximum virtuality already defined by kinematics, and so on down to the Q0 cut-off.

In QCD showers, corrections to the leading-log picture, so-called coherence effects,
lead to an ordering of subsequent emissions in terms of decreasing angles. This does
not follow automatically from the mass-ordering constraint, but is implemented as an
additional requirement on allowed emissions. Photon emission is not affected by angular
ordering. It is also possible to obtain non-trivial correlations between azimuthal angles in
the various branchings, some of which are implemented as options. Finally, the theoretical
analysis strongly suggests the scale choice αs = αs(p

2
⊥) = αs(z(1 − z)m2), and this is the

13



default in the program.
The final-state radiation machinery is applied in the c.m. frame of the hard scattering.

The total energy and momentum of the hard-scattering subsystem is preserved, as is the
direction of the outgoing partons (in that frame).

In contrast to final-state showers, initial-state ones are space-like. This means that,
in the sequence of branchings a → bc that lead up from the shower initiator to the hard
interaction, particles a and b have m2 = E2 − p2 < 0. The ‘side branch’ particle c, which
does not participate in the hard scattering, may be on the mass shell, or have a time-like
virtuality. In the latter case a time-like shower will evolve off it, rather like the final-state
radiation described above. To first approximation, the evolution of the space-like main
branch is characterized by the evolution variable Q2 = −m2, which is required to be
strictly increasing along the shower, i.e. Q2

b > Q2
a. Corrections to this picture have been

calculated, but are basically absent in Pythia.
Initial-state radiation is handled within the backwards evolution scheme. In this ap-

proach, the choice of the hard scattering is based on the use of evolved parton distributions,
which means that the inclusive effects of initial-state radiation are already included. What
remains is therefore to construct the exclusive showers. This is done starting from the
two incoming partons at the hard interaction, tracing the showers ‘backwards in time’,
back to the two shower initiators. In other words, given a parton b, one tries to find the
parton a that branched into b. The evolution in the Monte Carlo is therefore in terms
of a sequence of decreasing space-like virtualities Q2 and increasing momentum fractions
x. Branchings on the two sides are interleaved in a common sequence of decreasing Q2

values.
In the above formalism, there is no real distinction between gluon and photon emission.

Some of the details actually do differ, as will be explained in the full description.
The initial- and final-state radiation shifts around the kinematics of the original hard

interaction. In deep inelastic scattering, this means that the x and Q2 values that can be
derived from the momentum of the scattered lepton do not agree with the values originally
picked. In high-p⊥ processes, it means that one no longer has two jets with opposite and
compensating p⊥, but more complicated topologies. Effects of any original kinematics
selection cuts are therefore smeared out, an unfortunate side-effect of the parton-shower
approach.

2.3 Beam Remnants

In a hadron–hadron collision, the initial-state radiation algorithm reconstructs one shower
initiator in each beam. This initiator only takes some fraction of the total beam energy,
leaving behind a beam remnant which takes the rest. For a proton beam, a u quark
initiator would leave behind a ud diquark beam remnant, with an antitriplet colour charge.
The remnant is therefore colour-connected to the hard interaction, and forms part of
the same fragmenting system. It is further customary to assign a primordial transverse
momentum to the shower initiator, to take into account the motion of quarks inside the
original hadron, basically as required by the uncertainty principle. This primordial k⊥ is
selected according to some suitable distribution, and the recoil is assumed to be taken up
by the beam remnant.

Often the remnant is more complicated, e.g. a g initiator would leave behind a uud
proton remnant system in a colour octet state, which can conveniently be subdivided into
a colour triplet quark and a colour antitriplet diquark, each of which are colour-connected
to the hard interaction. The energy sharing between these two remnant objects, and their
relative transverse momentum, introduces additional degrees of freedom, which are not
understood from first principles.

Näıvely, one would expect an ep event to have only one beam remnant, and an e+e−

event none. This is not always correct, e.g. a γγ → qq interaction in an e+e− event

14



would leave behind the e+ and e− as beam remnants, and a qq → gg interaction in
resolved photoproduction in an e+e− event would leave behind one e± and one q/q in
each remnant. Corresponding complications occur for photoproduction in ep events.

There is another source of beam remnants. If parton distributions are used to resolve
an electron inside an electron, some of the original energy is not used in the hard interac-
tion, but is rather associated with initial-state photon radiation. The initial-state shower
is in principle intended to trace this evolution and reconstruct the original electron before
any radiation at all took place. However, because of cut-off procedures, some small amount
may be left unaccounted. Alternatively the user may have chosen to switch off initial-
state radiation altogether, but still preserved the resolved electron parton distributions.
In either case the remaining energy is given to a single photon of vanishing transverse
momentum, which is then considered in the same spirit as ‘true’ beam remnants.

So far we have assumed that each event only contains one hard interaction, i.e. that
each incoming particle has only one parton which takes part in hard processes, and that all
other constituents sail through unaffected. This is appropriate in e+e− or ep events, but
not necessarily so in hadron–hadron collisions. Here each of the beam particles contains
a multitude of partons, and so the probability for several interactions in one and the
same event need not be negligible. In principle these additional interactions could arise
because one single parton from one beam scatters against several different partons from
the other beam, or because several partons from each beam take place in separate 2 → 2
scatterings. Both are expected, but combinatorics should favour the latter, which is the
mechanism considered in Pythia.

The dominant 2 → 2 QCD cross sections are divergent for p⊥ → 0, and drop rapidly
for larger p⊥. Probably the lowest-order perturbative cross sections will be regularized
at small p⊥ by colour coherence effects: an exchanged gluon of small p⊥ has a large
transverse wave function and can therefore not resolve the individual colour charges of
the two incoming hadrons; it will only couple to an average colour charge that vanishes
in the limit p⊥ → 0. In the program, some effective p⊥min scale is therefore introduced,
below which the perturbative cross section is either assumed completely vanishing or at
least strongly damped. Phenomenologically, p⊥min comes out to be a number of the order
of 1.5–2.0 GeV.

In a typical ‘minimum-bias’ event one therefore expects to find one or a few scatterings
at scales around or a bit above p⊥min, while a high-p⊥ event also may have additional
scatterings at the p⊥min scale. The probability to have several high-p⊥ scatterings in the
same event is small, since the cross section drops so rapidly with p⊥.

The understanding of multiple interaction is still very primitive, and even the exper-
imental evidence that it exists at all is rather weak. Pythia therefore contains several
different options, with a fairly simple one as default. The options differ in particular on
the issue of the ‘pedestal’ effect: is there an increased probability or not for additional
interactions in an event which is known to contain a hard scattering, compared with one
that contains no hard interactions?

2.4 Fragmentation

QCD perturbation theory, formulated in terms of quarks and gluons, is valid at short
distances. At long distances, QCD becomes strongly interacting and perturbation theory
breaks down. In this confinement regime, the coloured partons are transformed into
colourless hadrons, a process called either hadronization or fragmentation. In this paper
we reserve the former term for the combination of fragmentation and the subsequent decay
of unstable particles.

The fragmentation process has yet to be understood from first principles, starting from
the QCD Lagrangian. This has left the way clear for the development of a number of
different phenomenological models. Three main schools are usually distinguished, string

15



fragmentation (SF), independent fragmentation (IF) and cluster fragmentation (CF), but
many variants and hybrids exist. Being models, none of them can lay claims to being
‘correct’, although some may be better founded than others. The best that can be aimed
for is internal consistency, a good representation of existing data, and a predictive power
for properties not yet studied or results at higher energies.

Jetset is intimately connected with string fragmentation, in the form of the time-
honoured ‘Lund model’. This is the default for all Jetset/Pythia applications, but
independent fragmentation options also exist, for applications where one wishes to study
the importance of string effects.

All current models are of a probabilistic and iterative nature. This means that the
fragmentation process as a whole is described in terms of one or a few simple underlying
branchings, of the type jet → hadron + remainder-jet, string → hadron + remainder-
string, and so on. At each branching, probabilistic rules are given for the production of
new flavours, and for the sharing of energy and momentum between the products.

To understand fragmentation models, it is useful to start with the simplest possible
system, a colour-singlet qq 2-jet event, as produced in e+e− annihilation. Here lattice
QCD studies lend support to a linear confinement picture (in the absence of dynamical
quarks), i.e. the energy stored in the colour dipole field between a charge and an anticharge
increases linearly with the separation between the charges, if the short-distance Coulomb
term is neglected. This is quite different from the behaviour in QED, and is related to
the presence of a triple-gluon vertex in QCD. The details are not yet well understood,
however.

The assumption of linear confinement provides the starting point for the string model.
As the q and q partons move apart from their common production vertex, the physical
picture is that of a colour flux tube (or maybe colour vortex line) being stretched between
the q and the q. The transverse dimensions of the tube are of typical hadronic sizes,
roughly 1 fm. If the tube is assumed to be uniform along its length, this automatically
leads to a confinement picture with a linearly rising potential. In order to obtain a Lorentz
covariant and causal description of the energy flow due to this linear confinement, the most
straightforward way is to use the dynamics of the massless relativistic string with no
transverse degrees of freedom. The mathematical, one-dimensional string can be thought
of as parametrizing the position of the axis of a cylindrically symmetric flux tube. From
hadron spectroscopy, the string constant, i.e. the amount of energy per unit length, is
deduced to be κ ≈ 1 GeV/fm. The expression ‘massless’ relativistic string is somewhat
of a misnomer: κ effectively corresponds to a ‘mass density’ along the string.

Let us now turn to the fragmentation process. As the q and q move apart, the potential
energy stored in the string increases, and the string may break by the production of a
new q′q′ pair, so that the system splits into two colour-singlet systems qq′ and q′q. If the
invariant mass of either of these string pieces is large enough, further breaks may occur.
In the Lund string model, the string break-up process is assumed to proceed until only
on-mass-shell hadrons remain, each hadron corresponding to a small piece of string with
a quark in one end and an antiquark in the other.

In order to generate the quark–antiquark pairs q′q′ which lead to string break-ups, the
Lund model invokes the idea of quantum mechanical tunnelling. This leads to a flavour-
independent Gaussian spectrum for the p⊥ of q′q′ pairs. Since the string is assumed to
have no transverse excitations, this p⊥ is locally compensated between the quark and the
antiquark of the pair. The total p⊥ of a hadron is made up out of the p⊥ contributions
from the quark and antiquark that together form the hadron. Some contribution of very
soft perturbative gluon emission may also effectively be included in this description.

The tunnelling picture also implies a suppression of heavy-quark production, u : d : s :
c ≈ 1 : 1 : 0.3 : 10−11. Charm and heavier quarks hence are not expected to be produced
in the soft fragmentation, but only in perturbative parton-shower branchings g → qq.

When the quark and antiquark from two adjacent string breakings are combined to

16



form a meson, it is necessary to invoke an algorithm to choose between the different
allowed possibilities, notably between pseudoscalar and vector mesons. Here the string
model is not particularly predictive. Qualitatively one expects a 1 : 3 ratio, from counting
the number of spin states, multiplied by some wave-function normalization factor, which
should disfavour heavier states.

A tunnelling mechanism can also be used to explain the production of baryons. This
is still a poorly understood area. In the simplest possible approach, a diquark in a
colour antitriplet state is just treated like an ordinary antiquark, such that a string can
break either by quark–antiquark or antidiquark–diquark pair production. A more complex
scenario is the ‘popcorn’ one, where diquarks as such do not exist, but rather quark–
antiquark pairs are produced one after the other. This latter picture gives a less strong
correlation in flavour and momentum space between the baryon and the antibaryon of a
pair.

In general, the different string breaks are causally disconnected. This means that it is
possible to describe the breaks in any convenient order, e.g. from the quark end inwards.
One therefore is led to write down an iterative scheme for the fragmentation, as follows.
Assume an initial quark q moving out along the +z axis, with the antiquark going out in
the opposite direction. By the production of a q1q1 pair, a meson qq1 is produced, leaving
behind an unpaired quark q1. A second pair q2q2 may now be produced, to give a new
meson q1q2, etc. At each step the produced hadron takes some fraction of the available
energy and momentum. This process may be iterated until all energy is used up, with
some modifications close to the q end of the string in order to make total energy and
momentum come out right.

The choice of starting the fragmentation from the quark end is arbitrary, however.
A fragmentation process described in terms of starting at the q end of the system and
fragmenting towards the q end should be equivalent. This ‘left–right’ symmetry constrains
the allowed shape of the fragmentation function f(z), where z is the fraction of the
remaining light-cone momentum E ± pz (+ for the q jet, − for the q one) taken by
each new particle. The resulting ‘Lund symmetric fragmentation function’ has two free
parameters, which are determined from data.

If several partons are moving apart from a common origin, the details of the string
drawing become more complicated. For a qqg event, a string is stretched from the q
end via the g to the q end, i.e. the gluon is a kink on the string, carrying energy and
momentum. As a consequence, the gluon has two string pieces attached, and the ratio of
gluon to quark string force is 2, a number which can be compared with the ratio of colour
charge Casimir operators, NC/CF = 2/(1 − 1/N2

C) = 9/4. In this, as in other respects,
the string model can be viewed as a variant of QCD where the number of colours NC

is not 3 but infinite. Note that the factor 2 above does not depend on the kinematical
configuration: a smaller opening angle between two partons corresponds to a smaller
string length drawn out per unit time, but also to an increased transverse velocity of the
string piece, which gives an exactly compensating boost factor in the energy density per
unit string length.

The qqg string will fragment along its length. To first approximation this means that
there is one fragmenting string piece between q and g and a second one between g and
q. One hadron is straddling both string pieces, i.e. sitting around the gluon corner.
The rest of the particles are produced as in two simple qq strings, but strings boosted
with respect to the overall c.m. frame. When considered in detail, the string motion
and fragmentation is more complicated, with the appearance of additional string regions
during the time evolution of the system. These corrections are especially important for
soft and collinear gluons, since they provide a smooth transition between events where
such radiation took place and events where it did not. Therefore the string fragmentation
scheme is ‘infrared safe’ with respect to soft or collinear gluon emission.

For events that involve many partons, there may be several possible topologies for

17



their ordering along the string. An example would be a qqg1g2 (the gluon indices are here
used to label two different gluon-momentum vectors), where the string can connect the
partons in either of the sequences q−g1−g2−q and q−g2−g1−q. The matrix elements
that are calculable in perturbation theory contain interference terms between these two
possibilities, which means that the colour flow is not always well-defined. Fortunately, the
interference terms are down in magnitude by a factor 1/N2

C , where NC = 3 is the number
of colours, so approximate recipes can be found. In the leading log shower description,
on the other hand, the rules for the colour flow are well-defined. A final comment: in the
argumentation for the importance of colour flows there is a tacit assumption that soft-
gluon exchanges between partons will not normally mess up the original colour assignment;
this is likely the case but has not been proven.

2.5 Decays

A large fraction of the particles produced by fragmentation are unstable and subsequently
decay into the observable stable (or almost stable) ones. It is therefore important to in-
clude all particles with their proper mass distributions and decay properties. Although
involving little deep physics, this is less trivial than it may sound: while a lot of ex-
perimental information is available, there is also very much that is missing. For charm
mesons, it is necessary to put together measured exclusive branching ratios with some
inclusive multiplicity distributions to obtain a consistent and reasonably complete set of
decay channels, a rather delicate task. For bottom, so far only a rather simple phase-space
type of generator has been used for hadronic decays.

Normally it is assumed that decay products are distributed according to phase space,
i.e. that there is no dynamics involved in their relative distribution. However, in many
cases additional assumptions are necessary, e.g. for semileptonic decays of charm and
bottom hadrons one needs to include the proper weak matrix elements. Particles may
also be produced polarized and impart a non-isotropic distribution to their decay products.
Many of these effects are not at all treated in the program. In fact, spin information is
not at all carried along, but has to be reconstructed explicitly when needed.

The normal decay treatment is handled by Jetset, making use of a set of tables where
branching ratios and decay modes are stored. In Pythia a separate decay treatment
exists, used exclusively for a specific list of particles: Z0, W±, H0, Z′0, W′±, H′0, A0, H±,
η0tech, R0, q∗, ℓ∗, and the leptoquark LQ. Together we call these resonances, and contrast
the ‘particle decay’ treatment of Jetset with the ‘resonance decay’ one of Pythia. Of
course, this is just a matter of terminology: a particle like the ρ could also be called a
resonance. What characterizes a (Pythia) resonance is that partial widths and branching
ratios are calculated dynamically, as a function of the actual mass of a particle. Therefore
not only do branching ratios change between an H0 of nominal mass 100 GeV and one
of 200 GeV, but also for a Higgs of nominal mass 200 GeV, the branching ratios would
change between an actual mass of 190 GeV and 210 GeV, say. This is particularly relevant
for reasonably broad resonances, and in threshold regions. For an approach like this to
work, it is clearly necessary to have perturbative expressions available for all partial
widths, which is one reason why a corresponding treatment would not be the same for an
ordinary hadronic resonance, like the ρ.

The decay products of Pythia resonances are typically quarks, leptons, or other
resonances, e.g. W → qq′ or H0 → W+W−. In decays to quarks, parton showers are
automatically added to give a more realistic multijet structure, and one may also allow
photon emission off leptons. If the decay products in turn are resonances, further decays
are necessary. Often spin information is available in resonance decay matrix elements,
contrary to the normal state of affairs in ordinary particle decays. This means that
the angular orientations in the two decays of a W+W− pair are properly correlated.
Occasionally, the information is not available, and then resonances decay isotropically.

18



The top quark is a special problem. The original machinery is based on the assumption
that the t is long-lived, so that top hadrons have time to form in the fragmentation process,
and afterwards these mesons decay weakly. With current ‘best bet’ mass values, this is
not correct, but one should rather consider top decay before fragmentation. Top should
then be handled like one of the above resonances. Therefore the program now contains
an alternative along these lines, which is the preferred option.

19



3 Program Overview

This section contains a diverse collection of information. The first part is an overview
of previous Jetset and Pythia versions. The second gives instructions for installation
of the programs and describes their philosophy: how they are constructed and how they
are supposed to be used. It also contains some information on how to read this manual.
The third and final part contains several examples of pieces of code or short programs,
to illustrate the general style of program usage. The last part is mainly intended as an
introduction for completely new users, and can be skipped by more experienced ones.

Since the Jetset and Pythia programs today are so closely connected, and are
gradually coalescing, they are presented together in this report. However, they still appear
as separate entities, with slightly different style and emphasis.

Jetset is the older of the two, and is at the origin of the whole ‘Lund’ family of
event generators. It can be subdivided in two parts. The larger is a generic package for
jet fragmentation, particle decays, final-state parton showers, event-analysis routines, and
other utitilies. This package can be used in the context of any hard process, provided one
is willing to buy the underlying assumption of jet universality, i.e. that the fragmentation
process is fundamentally the same whether one is considering an e+e− or a pp event, and
that the only differences are to be found in the parton-level processes involved. This pack-
age is not only used by all other ‘Lund’ programs, but also by numerous other programs
written to study specific processes. The smaller part of Jetset is a generator for e+e−

annihilation events, according to either a parton-shower or a matrix-element approach.
The Jetset program is completely selfcontained.

Pythia is a program made to generate hard or soft processes in collisions between
leptons, hadrons and photons, especially at e+e−, ep and pp colliders. Where Jetset is a
loose collection of routines that you can combine as desired, Pythia is a more structured
program, where you initially set up what processes you want to study, and thereafter all
events will be generated according to this specification. Included is an extensive library
of hard subprocess differential cross sections, a library of parton distributions, a process
generation machinery, treatment of initial-state showers and beam remnants, and a few
odds and ends. Jetset is used for final-state showers, fragmentation and decay, but no
other external libraries are needed. An interface to external parton-distribution function
libraries is provided, however.

Many programs written by other persons make use of Jetset, and a few also of
Pythia. It is not my intention to give a complete list here. A majority of these programs
are specific to given collaborations, and therefore not publicly distributed. Below we give
a list of a few public programs from the ‘Lund group’, which may have a somewhat wider
application. None of them are supported by the current author, so any requests should
be directed to the persons mentioned.

• Ariadne is a generator for dipole emission, written mainly by L. Lönnblad [Pet88].
The dipole provides an alternative formulation of initial- and final-state showers.
Jetset or Pythia can be used to generate the hard process and Jetset to do the
fragmentation.

• Aroma is a generator for heavy-flavour processes in leptoproduction, written by
G. Ingelman and G. Schuler [Ing88]. It uses Jetset for fragmentation.

• Fritiof is a generator for hadron–hadron, hadron–nucleus and nucleus–nucleus col-
lisions [Nil87], which makes use of Pythia to generate hard QCD scatterings and of
Jetset for fragmentation. Currently H. Pi is responsible for program development.

• Lepto is a leptoproduction event generator, written mainly by G. Ingelman [Ing80].
It can generate parton configurations in deep inelastic scattering according to a
number of possibilities. It makes use of Jetset for fragmentation and additionally
has a parton-shower option based on Pythia.

• Lucifer is a photoproduction generator written by G. Ingelman and A. Weigend

20



[Ing87a]. It is a modification of an earlier version of Pythia and makes use of
Jetset.

• Pompyt is a generator for pomeron interactions written by P. Bruni and G. In-
gelman [Bru93]. This program defines parton distributions, flux factors and other
aspects specific to the pomeron, which is combined with the standard Pythia ma-
chinery for process generation.

• Twister is a generator for higher-twist processes, written by G. Ingelman [Ing87].
It is a modification of an earlier version of Pythia and makes use of Jetset.

One should also note that a version of Pythia has been modified to include the effects
of longitudinally polarized incoming protons. This is the work of St. Güllenstern et al.
[Gül93].

3.1 Update History

Both Jetset and Pythia are by now fairly old and well-established programs, but they
are still steadily being improved on. While evolution was especially rapid for Jetset in
the early days, that program has by now reached a certain level of maturity, and the pace
of change has dropped significantly. Pythia, on the other hand, has been continually
extended in recent years, and may still see further growth, although most of the basic
structure should be in place by now.

In earlier days, before the advent of electronic mail, programs were only infrequently
distributed, and version numbers corresponded to distinct new upgrades. Today, the
evolutionary process is more continuous and so is the distribution of new versions. In
particular, the introduction of a new process or feature is often done on short notice, if
no problems of backwards compatibility are involved. With this distribution, the sub-
version numbers have therefore been expanded to three digits, where the last two give
sub-subversions. For every change made in the public file, the sub-subversion number is
updated, together with the ‘last date of change’. In most referencing the shorter ‘Jetset
version 7.4’ could still be preferable to e.g. ‘Jetset version 7.412’.

For the record, in Tables 1 and 2 we list the official main versions of Jetset and
Pythia, respectively, with some brief comments.

All versions preceding Jetset 7.3 and Pythia 5.6 should now be considered obsolete,
and are no longer supported. For stable applications, the earlier combination Jetset 6.3
and Pythia 4.8 could still be used, however.

Jetset version 7 and Pythia version 5 have been evolved in parallel, so some of
the processes added in later versions of Pythia make use of particle data only found in
Jetset from that time onwards. Although it would be possible to combine Pythia 5.7
with Jetset 7.3, e.g., it is not recommended. From the current versions onwards, checks
have therefore been introduced to detect the use of (potentially) incompatible subversions,
with warnings issued at initialization if that should be the case.

Previous versions of the manuals have contained detailed lists of modifications from
one version to the next, see e.g. [Sjö92d]. Below we only reproduce the updates that
appear with the most recent versions of the programs. Some of them were introduced
in later editions of Pythia 5.6 with Jetset 7.3, while others are completely new. If
nothing is explicitly said, these changes do not affect backwards compatibility, but only
add new features.

3.1.1 Updates in JETSET 7.4

Changes from version 7.3 to 7.4 are not so large, although the impact of the updated
particle data and parameter default values may need to be studied.

• Particle data have been updated in accordance with the 1992 Review of Particle
Properites [PDG92]. (As usual, with a free interpretation of inconsistencies, unclar-

21



Table 1: The main versions of Jetset, with their date of appearance, published
manuals, and main changes from previous versions.

No. Date Publ. Main new or improved features

1 Nov 78 [Sjö78] single-quark jets
2 May 79 [Sjö79] heavy-flavour jets

3.1 Aug 79 — 2-jets in e+e−, preliminary 3-jets
3.2 Apr 80 [Sjö80] 3-jets in e+e− with full matrix elements,

toponium → ggg decays
3.3 Aug 80 — softer fragmentation spectrum
4.1 Apr 81 — baryon production and diquark fragmentation,

fourth-generation quarks, larger jet systems
4.2 Nov 81 — low-p⊥ physics
4.3 Mar 82 [Sjö82] 4-jets and QFD structure in e+e−,

Jul 82 [Sjö83] event-analysis routines
5.1 Apr 83 — improved string fragmentation scheme, symmetric

fragmentation, full 2nd order QCD for e+e−

5.2 Nov 83 — momentum-conservation schemes for IF,
initial-state photon radiation in e+e−

5.3 May 84 — ‘popcorn’ model for baryon production
6.1 Jan 85 — common blocks restructured, parton showers
6.2 Oct 85 [Sjö86] error detection
6.3 Oct 86 [Sjö87] new parton-shower scheme
7.1 Feb 89 — new particle codes and common block structure,

more mesons, improved decays, vertex information,
Abelian gluon model, Bose–Einstein effects

7.2 Nov 89 — interface to new standard common block,
photon emission in showers

7.3 May 90 [Sjö92d] expanded support for non-standard particles
7.4 Dec 93 [Sjö94] updated particle data and defaults

ities and other gaps in the knowledge.) Changes are especially drastic for charm
and bottom. In the bottom sector the decay properties are now given individually
for B0, B+, B0

s , B+
c and Λ0

b, i.e. the generic data for ‘pseudoparticle’ 85 are only
used for other weakly decaying B baryons.

• Also a few other Standard Model parameters have been updated, such as the Z0

and W± masses and widths, sin2θW and the CKM matrix elements.
• Fragmentation and parton shower parameters have been modified to reflect current

LEP knowledge [LEP90], i.e. a minor retuning starting from an average of the ‘best’
parameter values obtained by the four LEP collaborations. Bose-Einstein effects
are still left out. Flavour composition is unchanged, except for a suppression of η′

production. Affected by the change are MSTJ(11), PARJ(21), PARJ(23), PARJ(24),
PARJ(41), PARJ(42), PARJ(54)–PARJ(58) and PARJ(81).

• Several other default values have been changed for switches and parameters in the
e+e−, parton shower and fragmentation parts of the programs. These changes are
intended to reflect our current best knowledge. See MSTJ(26), MSTJ(27), MSTJ(41),
MSTJ(46), MSTJ(50), MSTJ(110), PARJ(26), and PARJ(121)–PARJ(125).

22



Table 2: The main versions of Pythia, with their date of appearance, published
manuals, and main changes from previous versions.

No. Date Publ. Main new or improved features

1 Dec 82 [Ben84] synthesis of predecessors Compton, Highpt and
Kassandra

2 —
3.1 —
3.2 —
3.3 Feb 84 [Ben84a] scale-breaking parton distributions
3.4 Sep 84 [Ben85] more efficient kinematics selection
4.1 Dec 84 initial- and final-state parton showers, W and Z
4.2 Jun 85 multiple interactions
4.3 Aug 85 WW, WZ, ZZ and R processes
4.4 Nov 85 γW, γZ, γγ processes
4.5 Jan 86 H0 production, diffractive and elastic events
4.6 May 86 angular correlation in resonance pair decays
4.7 May 86 Z′0 and H+ processes
4.8 Jan 87 [Ben87] variable impact parameter in multiple interactions
4.9 May 87 gH+ process
5.1 May 87 massive matrix elements for heavy quarks
5.2 Jun 87 intermediate boson scattering
5.3 Oct 89 new particle and subprocess codes, new common block

structure, new kinematics selection, some
lepton–lepton and lepton–hadron interactions,
new subprocesses

5.4 Jun 90 s-dependent widths, resonances not on the mass shell,
new processes, new parton distributions

5.5 Jan 91 improved e+e− and ep, several new processes
5.6 Sep 91 [Sjö92d] reorganized parton distributions, new processes,

user-defined external processes
5.7 Dec 93 [Sjö94] new total cross sections, photoproduction, top decay

• A common title page for Jetset and Pythia has been introduced with the LULOGO
routine. Sub-subversion numbers are also given.

• Several options have been added for the LUSHOW shower routine. See MSTJ(41),
MSTJ(47) and MSTJ(50).

• A b quark produced in the decay of a top hadron is allowed to radiate according to
the standard parton shower scheme.

• The scalar gluon option contains the full electroweak angular distribution of 3-jet
events.

• The LUCOMP routine has been modified. Among other things, the B+
c now appears

as a separate compressed code, further codes for diffractive states have been added
to the current list, and the pomeron (reggeon, ηtechni) has been added as particle 29
(28, 38).

• A minimum threshold for calorimeter cell energy has been introduced for the LUCELL
routine.

23



• All obsolescent features of the Fortran 90 standard have been removed, i.e. the
program should work well either with a Fortran 77 compiler or with a Fortran 90
one.

• A few minor errors have been corrected.
The following changes have been made since the beginning of 1994, i.e. since the

original distribution 7.400:
1. Jetset version 7.401, 11 February 1994:

• Protect against overflow in LUZDIS (needed on some machines).
2. Jetset version 7.402, 7 April 1994:

• New option to suppress either hard or soft radiation in LUSHOW, see MSTJ(40).
• A generic interface to an external τ decay library has been introduced, see
MSTJ(28) and SUBROUTINE LUTAUD.

• In a few places, a dot has been moved from the end of one line to the beginning
of the next continuation line, or the other way around, to keep together tokens
such as .EQ. or .AND., since some debuggers may otherwise complain.

• A source of (harmless) division by zero in LUSHOW has been removed.
3. Jetset version 7.403, 15 July 1994:

• Leptons and photons which are unrelated to the system feeling the Bose-
Einstein effects do not have their energies and momenta changed in the global
rescaling step of LUBOEI. (Example: W+W− events, where one W decays lep-
tonically; before these lepton momenta could be slightly changed, but now
not.) Further, the LUBOEI routine has been changed to avoid an unintentional
gap in the limits of the very first bin.

• The option LUEDIT(16) (used e.g. from PYEVNT) has been improved with a
more extensive search for missing daughter pointers.

• The KLU(I,16) procedure for finding rank has been rewritten to work in the
current Jetset version, which it did not before. However, note that it will
only work for MSTU(16)=2. As a general comment, the options 14–17 of KLU
were written at a time when possible event histories were less complex, and
can not be guaranteed always to work today.

4. Jetset version 7.404, 25 August 1994:
• LUSHOW has been corrected, so that if t, l or h quarks (or d∗ or u∗ quarks

masked as l or h ones) are given with masses that vary from event to event (a
Breit-Wigner shape, e.g.), the current mass rather than the nominal mass is
used to define the cut-off scales of parton shower evolution.

• LULOGO has been modified to take into account that a new Pythia/Jetset
description has been published in
T. Sjöstrand, Computer Phys. Commun. 82 (1994) 74
and is from now on the standard reference to these two programs.

5. Jetset version 7.405, 27 January 1995:
• LUCELL has been corrected, in that in the option with smearing of energy rather

than transverse energy, the conversion factor between the two was applied in
the wrong direction.

• LUSHOW has been corrected in one place where the PMTH array was addressed
with the wrong order of the indices. This affected quark mass corrections in
the matching to the three-jet matrix elements.

• An additional check has been included in LUBOEI that there are at least two
particles involved in the Bose-Einstein effects. (No problem except in some
bizarre situations.)

6. Jetset version 7.406, 20 February 1995:
• A new option has been added for the behaviour of the running αem(Q2) in

24



ULALEM. This is not added as a true physics scenario, but only to produce results
with a given, fixed value for the hard events, while still keeping the conventional
value in the Q2 = 0 limit. See MSTU(101), PARU(103), PARU(104). Addition-
ally, the GF constant has been added to the parameter list, see PARU(105).

• The LULOGO routine has been updated to reflect my change of affiliation.
7. Jetset version 7.407, 21 June 1995:

• Header and LULOGO have been updated with respect to phone number and
WWW access.

• The PHEP and VHEP variables in the /HEPEVT/ common block are now assumed
to be in DOUBLE PRECISION, in accord with the proposed LEP 2 workshop
addendum to the standard.

• In LUTEST a missing decimal point on the energy check has been reinstated.
• In LUINDF an expression has been protected against vanishing denominator.

8. Jetset version 7.408, 23 August 1995:
• Check against division by zero in LUSHOW.

3.1.2 Updates in PYTHIA 5.7

The updates from version 5.6 to 5.7 are all minor, and just about any program that ran
with version 5.6 will also work with Pythia 5.7. However, as for Jetset, it should be
noted that some important default values have been changed.

• New parametrizations of the total cross sections of hadronic reactions, based in
Donnachie–Landshoff [Don92], which replace the old ones.

• New parametrizations of elastic and single and double diffractive cross sections of
hadronic reactions, based on Schuler–Sjöstrand [Sch94, Sch93a], which replace the
old ones. Also the slope parameters, the diffractive mass distributions and other
aspects of the event generation have been changed accordingly.

• A possibility to give own total, elastic and diffractive cross sections.
• The single diffractive cross section has been split into its two constituents, AB →
XB and AB → AX. As a consequence, the diffractive subprocess codes 92–94 have
received changed meaning.

• A new common block PYINT7 has been added for the expanded total cross section
information, and this information has been partly removed from other common
blocks.

• A much extended description of photoproduction physics, with the possibility to
simulate separately VMD, anomalous and direct processes [Sch93, Sch93a].

• The selection of proton parton distributions that come with the program has been
updated with the CTEQ2 ones, while some others have been removed. New default
is the leading-order fit CTEQ2L.

• Since the Pdflib library now has been expanded to contain also parton-distribution
functions for the photon, the interfaces to the Pakpdf and Phopdf libraries have
been removed. In addition, the interface to Pdflib has been modified, and is now
for appropriate for Pdflib version 4.

• An extension of hadron parton distributions into the low-x and low-Q2 region
[Sch93a].

• The top quark can be made to decay before it has time to fragment. In view of
the current best estimate for the top mass, this is the expected behaviour, and is
therefore now default. Further, a parton shower is allowed to evolve in the top
decay. Also fourth generation quarks are allowed to decay before they fragment,
and so on.

• It is possible to call PYEVNT with energies that vary from one event to the next,
without the need to reinitialize.

25



• Improved scheme for post-factor conservation of x and Q2 in deep inelastic scatter-
ing.

• Processes 15, 19, 30 and 35 have been expanded to cover γ∗ production in addition
to the Z0 one, with full interference.

• New process 80, qγ → q′π±.
• New process 110, ff → γH0.
• New process 149, gg → ηtechni.
• New option for initial state radiation to restrict angular range of emission in accor-

dance with coherence considerations.
• Some options have been added or removed, and default values have been changed.

This includes KFIN (top parton distributions off by default), MSTP(7), MSTP(11),
MSTP(14), MSTP(23), MSTP(30) (removed), MSTP(31), MSTP(34), MSTP(45),
MSTP(48), MSTP(49), MSTP(62), MSTP(67), MSTP(101), PARP(13), PARP(81),
PARP(82), PARP(47) and PARP(101).

• All obsolescent features of the Fortran 90 standard have been removed, i.e. the
program should work well either with a Fortran 77 compiler or with a Fortran 90
one.

• A few minor errors have been corrected.
The following changes have been made since the beginning of 1994, i.e. since the

original distribution 5.700:
1. Pythia version 5.701, 27 January 1994:

• The machinery to handle γγ interactions is expanded to the level already avail-
able for γp. This in particular means that a number of new options appear for
MSTP(14). Affected are also MINT(105), MINT(107), MINT(108), MINT(109),
VINT(282) (removed), VINT(283) and VINT(284). Parametrizations are intro-
duced for meson–meson total, elastic and diffractive cross sections, needed for
the VMD part of the photon. The treatment of cross sections for hard pro-
cesses, of initial state radiation, of beam remnants and of other aspects are also
expanded to cover the new possibilities. A first study of the relevant physics
aspects is found in [Sch94a].

• An option is introduced to modify the Q2 scale of the anomalous part of the
photon parton distributions, see MSTP(59) and PARP(59).

• Correction of an error, where the generation of jet and low-p⊥ events could give
incorrect cross section information with PYSTAT(1) at low energies. The event
generation itself was correct. (The error was introduced as a consequence of
allowing variable energies.)

• A rejection is introduced for top events where the top mass (selected according
to a Breit-Wigner) is too low to allow the decay into a W on the mass shell.

• The correction of a few other minor bugs, probably harmless.
2. Pythia version 5.702, 13 February 1994:

• The interface to Pdflib has been modified to reflect that TMAS should no longer
be set except in first PDFSET call. (Else a huge amount of irrelevant warning
messages are generated by Pdflib.)

• The STOP statement in a few dummy routines has been modifed to avoid irrel-
evant compilation warning messages on IBM mainframes.

• A few labels have been renumbered.
3. Pythia version 5.703, 22 February 1994:

• Removal of a bug in PYRESD, which could give (under some specific conditions)
errors in the colour flow.

4. Pythia version 5.704, 7 April 1994:
• Process 11 has been corrected, for the part that concerns anomalous couplings

26



(contact interactions) in the qq′ → qq′ process. The error was present in the
expression for ud → ud and obvious permutations, while ud → ud, uu → uu
and the others were correct.

• The option with post-facto (x,Q2) conservation in deep inelastic scattering can
give infinite loops when applied to process 83, in particular if one asks for the
production of a top. (Remember that the standard DIS kinematics is defined
for massless quarks.) Therefore the switch MSTP(23) has been modifed so that
by default only process 10 is affected.

• PYRESD is modified to ensure isotropic angular distributions in the decays of
the top or a fourth generation particle, i.e. in t → bW+. This may not be the
correct distribution but, unless explicit knowledge exists for a given process,
this should always be the default.

• In processes 16, 20, 31 and 36 the W propagator has been modified to include
s-dependent widths in the Breit-Wigner shape. The most notable effect is a
suppression of the low-mass tail of the W mass spectrum.

• When Pdflib is used, PDFSET is now only called whenever a different structure
function is requested. For pp events therefore only one call is made, while γp
interactions still involve a call to PDFSET for each STRUCTM one, since γ and p
structure functions have to be called alternatingly. MINT(93) is used to keep
track of latest structure function called.

• In a few places, a dot has been moved from the end of one line to the beginning
of the next continuation line, or the other way around, to keep together tokens
such as .EQ. or .AND., since some debuggers may otherwise complain.

• A number of minor errors have been corrected.
5. Pythia version 5.705, 15 July 1994:

• A completely new possibility to have Pythia mix different allowed processes
(direct, VMD and anomalous) in γp and γγ interactions. This option can be
accessed with MSTP(14)=10. The relevant physics description and program-
ming details may be found in sections 7.7.2 and 8.3.2. This facility is still
not definitive, in that it is hoped to gradually enhance it with further features.
The cross-section output of the PYSTAT has been expanded to reflect the further
subdivision of the total cross section.

• The new facility above has required a major restructuring of some of the
code: the routine PYEVKI has been removed, new routines PYINBM, PYINPR
and PYSAVE created, and some material has been moved to or from PYINIT,
PYINRE and PYINKI. New variables include MSTI(9), MINT(121), MINT(122),
MINT(123) and VINT(285).

• The GRV leading-order dynamically generated parton distributions for the p
and π have been included as options, see MSTP(51) and MSTP(53).

• A parametrization of the homogeneous solution to the anomalous photon par-
ton distributions have been added as an option, see MSTP(56)=3.

• The treatment of the anomalous photon component can be modified with the
new switch MSTP(15) and variable PARP(17); at the same time MSTP(59) and
PARP(59) have been removed. The new options are mainly intended for com-
parative studies and should not normally be touched.

• The option MSTP(92)=5 for beam remnant treatment erroneously missed some
statements which now have been inserted. Further, new options have been
added for the beam remnant splitting of momentum between a hadron and a
quark/diquark jet, where MSTP(94) should now be used rather than MSTP(92).

• In PYDIFF the recoiling gluon energy is calculated in a numerically more stable
fashion.

6. Pythia version 5.706, 25 August 1994:

27



• New processes 167 and 168, qq′ → q′′d∗ and qq′ → q′′d∗, respectively, have
been introduced. These contact interaction production processes of excited
quarks complement the quark–gluon fusion ones in processes 147 and 148, and
obey the same general rules, see section 8.5.5.

• The option MSTP(57)=3 now also allows a dampening of π± parton distribu-
tions.

• A few minor errors have been corrected.
7. Pythia version 5.707, 20 October 1994:

• A major bug discovered in processes 121 and 122 (and thus also affecting 181,
182, 186 and 187), gg(qq) → QQH: the kinematics was incorrectly handed
on to the Kunszt matrix elements. This affected the default option Q = t,
but effects were especially dramatic when the alternative Q = b was used.
The choice of appropriate Q2 scale for structure functions introduces a further
uncertainty in cross sections for the processes above. So long as only t quarks
are considered, the t mass is a reasonable choice, but for the Q = b alternative
this is presumably too low. Therefore new options have been introduced in
MSTP(39), with the default behaviour changed.

• Another important bug corrected in the calculation of the reduction of tt cross
section when decay modes are forced. This occured when both t and t produced
a W, and W+ and W− decay modes were set differently.

8. Pythia version 5.708, 25 October 1994:
• A few further places changed to make processes 181, 182, 186 and 187 work

(see version 5.707 above).
9. Pythia version 5.709, 26 October 1994:

• The matrix element for ff → W+W− has been replaced, using the formulae of
D. Bardin, M. Bilenky, D. Lehner, A. Olchevski and T. Riemann, CERN-
TH.7295/94,
but with the dependence on the t̂ variable not integrated out (D. Bardin,
private communication). This avoids some problems encountered in the old
expressions when one or both W’s were far off the mass shell.

• Change in calls to Pdflib, so that the input Q is always at least the Qmin of
the respective set.

• Extra protection against infinite loops in PYSSPA.
10. Pythia version 5.710, 27 January 1995:

• The dimensions of the HGZ array in PYRESD has been expanded to avoid acci-
dental writing outside the bounds.

• VINT(41)-VINT(66) are saved and restored in PYSCAT, for use in low-p⊥ events,
when beam remnant treatment has failed (with nonzero MINT(57)).

• The routine PYSTGH has been replaced by the routine PYSTHG. This contains
an improved parametrization of the homogeneous evolution of an anomalous
photon from some given initial scale. The argument NF of the PYSTGH routine
has been removed; now Λ is always automatically converted to the relevant
nf -flavour value from its 4-flavour one, at flavour thresholds.

11. Pythia version 5.711, 20 February 1995:
• New possibilities have been added to switch between electroweak couplings

being expressed in terms of a running αem(Q2) or in terms of a fixed Fermi
constant GF. This affects both decay widths and process cross sections, in the
routines PYINRE, PYRESD, PYWIDT and PYSIGH. See MSTP(8) for details; default
corresponds to old behaviour.

• The option MSTP(37)=1, with running quark masses in couplings to Higgs
bosons, only works when αs is allowed to run (so one can define a Λ value).

28



Therefore a check has been introduced in PYWIDT and PYSIGH that the option
MSTP(37)=1 is only executed if additionally MSTP(2)≥ 1.

• Some non-physics changes have been made in the RKBBV and STRUCTM codes so
as to avoid some (in principle harmless) compiler warnings.

12. Pythia version 5.712, 15 March 1995:
• A serious error has been corrected in the MSTP(173)=1 option, i.e. when the

program is run with user-defined weights that should compensate for a biased
choice of variable beam energies. This both affected the relative admixture of
low- and high-p⊥ events and the total cross section obtained by Monte Carlo
integration. (PYRAND changed.)

• In order to improve the flexibility and efficiency of the variable-energy option,
the user should now set PARP(174) before the PYINIT call, and thereafter
not change it. This allows PARP(173) weights of arbitrary size. (PYRAND and
PYMAXI changed.)

• MSTI(5) (and MINT(5)) are now changed so they count the number of suc-
cessfully generated events, rather than the number of tries made. This change
only affects runs with variable energies, MSTP(171)=1 and MSTP(172)=2, where
MSTI(61)=1 signals that a user-provided energy has been rejected in the weight-
ing. This change also affects PARI(2), which becomes the cross section per fully
generated event. (PYEVNT changed.)

• The option MSTP(14)=10 has now been extended so that it also works for deep
inelastic scattering of an electron off a (real) photon, i.e. subprocess 10. What
is obtained is a mixture of the photon acting as a vector meson and it acting as
an anomalous state. This should therefore be the sum of what can be obtained
with MSTP(14)=2 and =3. It is distinct from MSTP(14)=1 in that different sets
are used for the parton distributions — in MSTP(14)=1 all the contributions to
the photon distributions are lumped together, while they are split in VMD and
anomalous parts for MSTP(14)=10. Also the beam remnant treatment is differ-
ent, with a simple Gaussian distribution (at least by default) for MSTP(14)=1
and the VMD part of MSTP(14)=10, but a powerlike distribution dk2⊥)/k2⊥ be-
tween PARP(15) and Q for the anomalous part of MSTP(14)=10. (PYINIT,
PYINPR and PYSTAT changed.)
To access this option for e and γ as incoming beams, it is only necessary to
set MSTP(14)=10 and keep MSEL at its default value. Unlike the corresponding
option for γp and γγ, no cuts are overwritten, i.e. it is still the responsabil-
ity of the user to set these appropriately. Those especially appropriate for
DIS usage are CKIN(21)-CKIN(22) or CKIN(23)-CKIN(24) for the x range
(former or latter depending on which side is the incoming real photon), and
CKIN(35)-CKIN(36) for the Q2 range. A further new option has been added
(in PYKLIM) to set the W 2 range as well, see CKIN(39)-CKIN(40).
A warning about the usage of Pdflib for photons. So long as MSTP(14)=1, i.e.
the photon is not split up, Pdflib is accessed by MSTP(56)=2 and MSTP(55)
the parton distribution set, as described in the manual. However, when the
VMD and anomalous pieces are split, the VMD part is based on a rescaling of
pion distributions by VMD factors (except for the SaS sets, that already come
with a separate VMD piece). Therefore, to access Pdflib for MSTP(14)=10, it
is not correct to set MSTP(56)=2 and a photon distribution in MSTP(55). In-
stead, one should put MSTP(56)=2, MSTP(54)=2 and a pion distribution code in
MSTP(53), while MSTP(55) has no function. The anomalous part is still based
on the SaS parametrization, with PARP(15) as main free parameter.

• A change has been made in PYREMN to reduce the possibility of infinite loops.
13. Pythia version 5.713, 22 March 1995:

29



• The SaS parton distributions of the photons are now available, see [Sch95].
There are four new sets. These differ in that two use a Q0 = 0.6 GeV and two
a Q0 = 2 GeV, and in that two use the DIS and two the MS conventions for
the dominant non-leading contributions. (However, the fits are formally still
leading-order, in that not all next-to-leading contributions have been included.)
New default is the SaS 1D set. Furthermore, for the definition of F γ

2 , additional
terms appear that do not form part of the parton distributions itself. To partly
take this into account, an additional doubling of the possibilities has been
included. These eight possibilites can be accesed with MSTP(55). The default
value of PARP(15) has been changed from 0.5 to 0.6 GeV, for consistency with
SaS 1D.
The generic routine PYSTFU has been rewritten to handle the interfacing. The
old routines PYSTAG, PYSTGS, PYDILN and PYSTHG have been removed. Instead
the routines of the SaSgam library have been inserted. In order to avoid any
clashes, the routines SAS*** have been renamed PYG***. Thus new routines
are PYGGAM, PYGVMD, PYGANO, PYGBEH and PYGDIR. The common block SASCOM
is renamed PYINT8. If you want to use the parton distributions for standalone
purposes, you are encouraged to use the original SaSgam routines rather than
going the way via the Pythia adaptations.

• PYDOCU has been corrected so that PARI(2) refers to the full cross section for
γp and γγ processes, rather than that of the latest subprocess considered.

• An additional check has been inserted into PYREMN.
14. Pythia version 5.714, 22 March 1995:

• Some minor modifications to PYSTFU and PYGGAM in the wake of the changes
of the previous version.

15. Pythia version 5.715, 24 April 1995:
• An unfortunate choice of default values has been corrected: the old MSTP(3)=2

value implied that ΛQCD was entirely based on the Λ value of the proton struc-
ture function; also e.g. for e+e− annihilation events. Thus the Λ in PARJ(81)
was overwritten, i.e. did not keep the value required by standard phenomenol-
ogy, which typically gave too narrow jets. (While switching to MSTP(3)=1 it
worked fine.) In the modified option MSTP(3)=2 this has been corrected, to bet-
ter agree with user expectations. Since further changes were made in version
5.716, we refer below for additional comments.

• The form for PTMANO, the p⊥min for anomalous processes, as used in PYINPR
when processes are mixed for γp or γγ events, has been updated to match (as
well as can be expected) the SaS 1D photon distributions.

16. Pythia version 5.716, 30 June 1995:
• The strategy for the changes to Λ in version 5.715 above have been modified

for better transparency. Now PARJ(81) is used for resonance decays (including
e.g. Z0 decay, from which it is determined), and PARP(72) for other time-
like showers. PARJ(81) is not overwritten for MSTP(3)=2, but only for =3.
Changes affect PYINIT, PYEVNT and PYRESD.

• A new multiplicative factor has been introduced for the Q2 scale choice of the
hard scattering in PYSIGH, affecting parton distributions and αs, see PARP(34).

• PYREMN has been corrected for occasional too large boost factors.
• An error in PYSIGH for process 148 has been corrected.
• The MSTP(62)=1 option of PYSSPA is modified to avoid division by zero.
• Header has been updated with WWW-information.

17. Pythia version 5.717, 23 August 1995:
• MIN1, MIN2, MAX1, MAX2, MINA and MAXA in PYSIGH have had an extra M prefixed

to avoid confusion with Fortran functions.

30



• Protect against MDCY(0,1) being accessed in PYSIGH.
• Protect against THB=0 in PYRAND.
• Protect against YSTMAX-YSTMIN = 0 in PYSIGH.
• Check for moved leptoquark at beginning of PYRESD just like for other particles

with colour.

3.2 Program Installation

Several ‘authorized’ sources of the programs exist. The ‘master copy’ of the programs is
the one found on my World Wide Web homepage
http://thep.lu.se/tf2/staff/torbjorn/Welcome.html
There you have:

jetset74.f the Jetset code,
pythia57.f the Pythia code,
pythia57.tex this common Pythia/Jetset manual, and
update57.notes plain text update notes to the manual.

In addition to these, one may also find older versions of the program and manuals, sample
main programs and other pieces of related software, and other physics papers.

The lack of stable versions may make it less convenient to rely on the above files.
New versions are introduced in the general distribution of the CERN program library,
maybe once a year. These versions are better checked before release, and should be useful
for most applications. However, clearly, they may be less up-to-date. Read the CERN
Computer Newsletter for announcements. Copies of the programs are also available via
anonymous ftp, e.g. from the asisftp server at CERN.

The programs are written entirely in standard Fortran 77, and should run on any
machine with such a compiler. To a first approximation, program compilation should
therefore be straightforward.

Unfortunately, experience with many different compilers has been uniform: the options
available for obtaining optimized code actually produce erroneous code (e.g. operations
inside DO loops are moved out before them, where some of the variables have not yet been
properly set). Therefore the general advice is to use a low optimization level. Note that
this is often not the default setting.

SAVE statements have been included in accordance with the Fortran standard. Since
most ordinary machines take SAVE for granted, this part is not particularly well tried out,
however.

All default settings and particle and process data are stored in BLOCK DATA LUDATA for
Jetset and BLOCK DATA PYDATA for Pythia. These subprograms must be linked for a
proper functioning of the other routines. On some machines this is not done automatically
but must be forced by you, in particular if Jetset and Pythia are maintained as libraries
from which routines are to be loaded only when they are needed. In this connection we
note that the library approach does not give any significant space advantages over a
loading of the packages as a whole, since a normal run will call on most of the routines
anyway, directly or indirectly.

Since most machines in current use are 32-bit ones, this is the precision normally
assumed. A few pieces of code have therefore had to be written in double precision. As
a rule of thumb, double-precision variables have as first character D, but there are a few
exceptions.

For applications at very high energies, such as LHC, the use of single precision for any
real variable is a problem. It might then be necessary to rewrite the program completely,
i.e. to have a declaration IMPLICIT DOUBLE PRECISION(A-H,O-Z) at the beginning of
each subprogram, and to change all real constants to double precision. Needless to say,

31



the latter is a major undertaking. In some cases, shortcuts are available. On the IBM,
for instance, the AUTODBL compiler option for automatic precision doubling works fine,
provided only that an even number of integers precede real numbers in common blocks. In
Jetset you therefore need to introduce an additional integer variable (NPAD, say) directly
after N in the LUJETS common block, and in Pythia an additional integer (MSEPAD) after
MSEL in the PYSUBS common block. Some pieces of code will then actually run in quadruple
precision.

A test program, LUTEST, is included in the Jetset package. It is disguised as a
subroutine, so you have to run a main program

CALL LUTEST(1)
END

This program will generate six hundred events of different types, under a variety of con-
ditions. If Jetset has not been properly installed, this program is likely to crash, or
at least generate a number of erroneous events. This will then clearly be marked in the
output, which otherwise will just contain a few sample event listings and a table of the
number of different particles produced. To switch off the output of normal events and
final table, use LUTEST(0) instead of LUTEST(1). The final tally of errors detected should
read 0.

In exactly the same vein, a test program PYTEST comes with the Pythia package.
You then have to run a program

CALL PYTEST(1)
END

As before the alternative PYTEST(0) will give a less extensive listing. No errors should
appear during execution.

3.3 Program Philosophy

The Monte Carlo programs are built as slave systems, i.e. you, the user, have to supply
the main program. From this the various subroutines are called on to execute specific
tasks, after which control is returned to the main program. Some of these tasks may be
very trivial, whereas the ‘high-level’ routines by themselves may make a large number of
subroutine calls. Many routines are not intended to be called directly by you, but only
from higher-level routines such as LUEXEC, LUEEVT, PYINIT or PYEVNT.

Basically, this means that there are three ways by which you communicate with the
programs. First, by setting common block variables, you specify the details of how the
programs should perform specific tasks, i.e. which subprocesses should be generated (for
Pythia), which particle masses should be assumed, which coupling constants used, which
fragmentation scenarios, and so on with hundreds of options and parameters. Second,
by calling subroutines you tell the programs to generate events according to the rules
established above. Normally there are few subroutine arguments, and those are usually
related to details of the physical situation, such as what c.m. energy to assume for events.
Third, you can either look at the common block LUJETS to extract information on the
generated event, or you can call on various functions and subroutines to analyse the event
further for you.

It should be noted that, while the physics content is obviously at the centre of at-
tention, the Jetset/Pythia package also contains a very extensive setup of auxiliary
service routines. The hope is that this will provide a comfortable working environment,
where not only events are generated, but where you also linger on to perform a lot of the
subsequent studies. Of course, for detailed studies, it may be necessary to interface the
output directly to a detector simulation program.

32



The general rule is that all routines have names that are six characters long, beginning
with LU for Jetset routines and PY for Pythia ones. Real-valued functions in Jetset
begin with UL instead. There are three exceptions to both the length and the initial
character rules: KLU, PLU and RLU. The former two functions are strongly coupled to the
K and P matrices in the LUJETS common block, the latter uses R to emphasize the rôle as
a random-number generator. Also common block names are six characters long and start
with LU or PY.

On the issue of initialization, Jetset and Pythia behave quite differently. Most
Jetset routines work without any initialization (except for the one implied by the pres-
ence of BLOCK DATA LUDATA, see above), i.e. each event and each task stand on their own.
Current common block values are used to perform the tasks in specific ways, and those
rules can be changed from one event to the next (or even within the generation of one
and the same event) without any penalty. The random-number generator is initialized at
the first call, but usually this is transparent. Therefore the two Jetset routines LUEEVT
(and some of the routines called by it) and LUONIA are basically the only ones to contain
some elements of initialization, where there are a few advantages if events are generated
in a coherent fashion, but even here the penalty for not doing it is small.

In Pythia, on the other hand, a sizeable amount of initialization is performed in the
PYINIT call, and thereafter the events generated by PYEVNT all obey the rules established
at that point. Therefore common block variables that specify methods to be used have to
be set before the PYINIT call and then not be changed afterwards, with few exceptions.
Of course, it is possible to perform several PYINIT calls in the same run, but there is a
significant time overhead involved, so this is not something one would do for each new
event.

Apart from writing a title page, giving a brief initialization information, printing error
messages if need be, and responding to explicit requests for listings, all tasks of the
programs are performed ‘silently’. All output is directed to unit MSTU(11), by default
6, and it is up to you to set this unit open for write. The only exceptions are RLUGET,
RLUSET and LUUPDA where, for obvious reasons, the input/output file number is specified
at each call. Here you again have to see to it that proper read/write access is set.

The programs are extremely versatile, but the price to be paid for this is having a
large number of adjustable parameters and switches for alternative modes of operation.
No single user is ever likely to need more than a fraction of the available options. Since
all these parameters and switches are assigned sensible default values, there is no reason
to worry about them until the need arises.

Unless explicitly stated (or obvious from the context) all switches and parameters can
be changed independently of each other. One should note, however, that if only a few
switches/parameters are changed, this may result in an artificially bad agreement with
data. Many disagreements can often be cured by a subsequent retuning of some other
parameters of the model, in particular those that were once determined by a comparison
with data in the context of the default scenario. For example, for e+e− annihilation, such
a retuning could involve one QCD parameter (αs or Λ), the longitudinal fragmentation
function, and the average transverse fragmentation momentum.

The programs contain a number of checks that requested processes have been imple-
mented, that flavours specified for jet systems make sense, that the energy is sufficient to
allow hadronization, that the memory space in LUJETS is large enough, etc. If anything
goes wrong that the program can catch (obviously this may not always be possible), an
error message will be printed and the treatment of the corresponding event will be cut
short. In serious cases, the program will abort. As long as no error messages appear on
the output, it may not be worthwhile to look into the rules for error checking, but if but
one message appears, it should be enough cause for alarm to receive prompt attention.
Also warnings are sometimes printed. These are less serious, and the experienced user
might deliberately do operations which go against the rules, but still can be made to

33



make sense in their context. Only the first few warnings will be printed, thereafter the
program will be quiet. By default, the program is set to stop execution after ten errors,
after printing the last erroneous event.

It must be emphasized that not all errors will be caught. In particular, one tricky ques-
tion is what happens if an integer-valued common block switch or subroutine/function
argument is used with a value that is not defined. In some subroutine calls, a prompt
return will be expedited, but in most instances the subsequent action is entirely unpre-
dictable, and often completely haywire. The same goes for real-valued variables that are
assigned values outside the physically sensible range. One example will suffice here: if
PARJ(2) is defined as the s/u suppression factor, a value > 1 will not give more profuse
production of s than of u, but actually a spillover into c production. Users, beware!

3.4 Manual Conventions

In the manual parts of this report, some conventions are used. All names of subprograms,
common blocks and variables are given in upper-case ‘typewriter’ style, e.g. MSTP(111)=0.
Also program examples are given in this style.

If a common block variable must have a value set at the beginning of execution, then
a default value is stored in one of the block data subprograms LUDATA and PYDATA. Such
a default value is usually indicated by a ‘(D=. . . )’ immediately after the variable name,
e.g.
MSTJ(1) : (D=1) choice of fragmentation scheme.

All variables in the Jetset common blocks (with very few exceptions, clearly marked)
can be freely changed from one event to the next, or even within the treatment of one
single event. In the Pythia common blocks the situation is more complicated. The
values of many switches and parameters are used already in the PYINIT call, and cannot
be changed after that. The problem is mentioned in the preamble to the afflicted common
blocks, which in particular means /PYPARS/ and /PYSUBS/. For the variables which may
still be changed from one event to the next, a ‘(C)’ is added after the ‘(D=. . . )’ statement.

Normally, variables internal to the program are kept in separate common blocks and
arrays, but in a few cases such internal variables appear among arrays of switches and
parameters, mainly for historical reasons. These are denoted by ‘(R)’ for variables you
may want to read, because they contain potentially interesting information, and by ‘(I)’
for purely internal variables. In neither case may the variables be changed by you.

In the description of a switch, the alternatives that this switch may take are often
enumerated, e.g.
MSTJ(1) : (D=1) choice of fragmentation scheme.

= 0 : no jet fragmentation at all.
= 1 : string fragmentation according to the Lund model.
= 2 : independent fragmentation, according to specification in MSTJ(2) and

MSTJ(3).
If you then use any value other than 0, 1 or 2, results are unpredictable. The action could
even be different in different parts of the program, depending on the order in which the
alternatives are identified.

It is also up to you to choose physically sensible values for parameters: there is no
check on the allowed ranges of variables. We gave an example of this at the end of the
preceding section.

Subroutines you are expected to use are enclosed in a box at the point where they are
defined:

CALL LULIST(MLIST)

34



This is followed by a description of input or output parameters. The difference between
input and output is not explicitly marked, but should be obvious from the context. In
fact, the event-analysis routines of section 15.4 return values, while all the rest only have
input variables.

Routines that are only used internally are not boxed in. However, we use boxes for all
common blocks, so as to enhance the readability.

3.5 Getting Started with JETSET

As a first example, assume that you want to study the production of uu 2-jet systems at
20 GeV energy. To do this, write a main program

CALL LU2ENT(0,2,-2,20.)
CALL LULIST(1)
END

and run this program, linked together with Jetset. The routine LU2ENT is specifically
intended for storing two entries (jets or particles). The first argument (0) is a command
to perform fragmentation and decay directly after the entries have been stored, the second
and third that the two entries are u (2) and u (−2), and the last that the c.m. energy of
the pair is 20 GeV. When this is run, the resulting event is stored in the LUJETS common
block. This information can then be read out by you. No output is produced by LU2ENT
itself, except for a title page which appears once for every Jetset/Pythia run.

Instead the second command, to LULIST, provides a simple visible summary of the
information stored in LUJETS. The argument (1) indicates that the short version should
be used, which is suitable for viewing the listing directly on an 80-column terminal screen.
It might look as shown here.

Event listing (summary)

I particle/jet KS KF orig p_x p_y p_z E m

1 (u) A 12 2 0 0.000 0.000 10.000 10.000 0.006
2 (u~) V 11 -2 0 0.000 0.000 -10.000 10.000 0.006
3 (string) 11 92 1 0.000 0.000 0.000 20.000 20.000
4 (rho+) 11 213 3 0.098 -0.154 2.710 2.856 0.885
5 (rho-) 11 -213 3 -0.227 0.145 6.538 6.590 0.781
6 pi+ 1 211 3 0.125 -0.266 0.097 0.339 0.140
7 (Sigma0) 11 3212 3 -0.254 0.034 -1.397 1.855 1.193
8 (K*+) 11 323 3 -0.124 0.709 -2.753 2.968 0.846
9 p~- 1 -2212 3 0.395 -0.614 -3.806 3.988 0.938

10 pi- 1 -211 3 -0.013 0.146 -1.389 1.403 0.140
11 pi+ 1 211 4 0.109 -0.456 2.164 2.218 0.140
12 (pi0) 11 111 4 -0.011 0.301 0.546 0.638 0.135
13 pi- 1 -211 5 0.089 0.343 2.089 2.124 0.140
14 (pi0) 11 111 5 -0.316 -0.197 4.449 4.467 0.135
15 (Lambda0) 11 3122 7 -0.208 0.014 -1.403 1.804 1.116
16 gamma 1 22 7 -0.046 0.020 0.006 0.050 0.000
17 K+ 1 321 8 -0.084 0.299 -2.139 2.217 0.494
18 (pi0) 11 111 8 -0.040 0.410 -0.614 0.751 0.135
19 gamma 1 22 12 0.059 0.146 0.224 0.274 0.000
20 gamma 1 22 12 -0.070 0.155 0.322 0.364 0.000
21 gamma 1 22 14 -0.322 -0.162 4.027 4.043 0.000
22 gamma 1 22 14 0.006 -0.035 0.422 0.423 0.000

35



23 p+ 1 2212 15 -0.178 0.033 -1.343 1.649 0.938
24 pi- 1 -211 15 -0.030 -0.018 -0.059 0.156 0.140
25 gamma 1 22 18 -0.006 0.384 -0.585 0.699 0.000
26 gamma 1 22 18 -0.034 0.026 -0.029 0.052 0.000

sum: 0.00 0.000 0.000 0.000 20.000 20.000

(A few blanks have been removed between the columns to make it fit into the format
of this text.) Look in the particle/jet column and note that the first two lines are the
original u and u, where ‘bar’ is actually written ‘∼’ to save space in longer names. The
parentheses enclosing the names, ‘(u)’ and ‘(u~)’, are there as a reminder that these jets
actually have been allowed to fragment. The jets are still retained so that event histories
can be studied. Also note that the KF (flavour code) column contains 2 in the first line
and −2 in the second. These are the codes actually stored to denote the presence of
a u and a u, cf. the LU2ENT call, while the names written are just conveniences used
when producing visible output. The A and V near the end of the particle/jet column
indicate the beginning and end of a string (or cluster, or independent fragmentation)
parton system; any intermediate entries belonging to the same system would have had an
I in that column. (This gives a poor man’s representation of an up-down arrow, l.)

In the orig (origin) column, the zeros indicate that u and u are two initial entries.
The subsequent line, number 3, denotes the fragmenting uu string system as a whole, and
has origin 1, since the first parton of this string system is entry number 1. The particles
in lines 4–10 have origin 3 to denote that they come directly from the fragmentation of
this string. In string fragmentation it is not meaningful to say that a particle comes from
only the u quark or only the u one. It is the string system as a whole that gives a ρ+, a
ρ−, a π+, a Σ0, a K∗+, a p−, and a π−. Note that some of the particle names are again
enclosed in parentheses, indicating that these particles are not present in the final state
either, but have decayed further. Thus the π− in line 13 and the π0 in line 14 have origin
5, as an indication that they come from the decay of the ρ− in line 5. Only the names
not enclosed in parentheses remain at the end of the fragmentation/decay chain, and
are thus experimentally observable. The actual status code used to distinguish between
different classes of entries is given in the KS column; codes in the range 1–10 correspond
to remaining entries, and those above 10 to those that have fragmented or decayed.

The columns with p x, p y, p z, E and m are quite self-explanatory. All momenta,
energies and masses are given in units of GeV, since the speed of light is taken to be c = 1.
Note that energy and momentum are conserved at each step of the fragmentation/decay
process (although there exist options where this is not true). Also note that the z axis
plays the rôle of preferred direction, along which the original partons are placed. The final
line is intended as a quick check that nothing funny happened. It contains the summed
charge, summed momentum, summed energy and invariant mass of the final entries at the
end of the fragmentation/decay chain, and the values should agree with the input implied
by the LU2ENT arguments. (In fact, warnings would normally appear on the output if
anything untoward happened, but that is another story.)

The above example has illustrated roughly what information is to be had in the event
record, but not so much about how it is stored. This is better seen by using a 132-column
format for listing events. Try e.g. the following program

CALL LU3ENT(0,1,21,-1,30.,0.9,0.7)
CALL LULIST(2)
CALL LUEDIT(3)
CALL LULIST(2)
END

where a 3-jet dgd event is generated in the first line and listed in the second. This listing
will contain the numbers as directly stored in the common block LUJETS

36



COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5)

For particle I, K(I,1) thus gives information on whether or not a jet or particle has
fragmented or decayed, K(I,2) gives the particle code, K(I,3) its origin, K(I,4) and
K(I,5) the position of fragmentation/decay products, and P(I,1)–P(I,5) momentum,
energy and mass. The number of lines in current use is given by N, i.e. 1 ≤ I ≤ N. The V
matrix contains decay vertices; to view those LULIST(3) has to be used. It is important
to learn the rules for how information is stored in LUJETS.

The third line in the program illustrates another important point about Jetset: a
number of routines are available for manipulating the event record after the event has
been generated. Thus LUEDIT(3) will remove everything except stable charged particles,
as shown by the result of the second LULIST call. More advanced possibilities include
things like sphericity or clustering routines.

Apart from the input arguments of subroutine calls, control on the doings of Jetset
may be imposed via the LUDAT1, LUDAT2, LUDAT3 and LUDAT4 common blocks. Here
sensible default values are always provided. A user might want to switch off all particle
decays by putting MSTJ(21)=0 or increase the s/u ratio in fragmentation by putting
PARJ(2)=0.40, to give but two examples. It is by exploring the possibilities offered here
that Jetset can be turned into an extremely versatile tool, even if all the nice physics is
already present in the default values.

As a final, semirealistic example, assume that the p⊥ spectrum of π+ particles is to
be studied in 91.2 GeV e+e− annihilation events, where p⊥ is to be defined with respect
to the sphericity axis. Using the HBOOK package (version 4, watch out for version- or
installation-specific differences) for histogramming, a complete program might look like

C...Common blocks.
COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5)
COMMON/PAWC/HMEMOR(10000)

C...Reserve histogram memory and book histograms.
CALL HLIMIT(10000)
CALL HBOOK1(1,’pT spectrum of pi+’,100,0.,5.,0.)

C...Number of events to generate. Loop over events.
NEVT=100
DO 110 IEVT=1,NEVT

C...Generate event. List first one.
CALL LUEEVT(0,91.2)
IF(IEVT.EQ.1) CALL LULIST(1)

C...Find sphericity axis and rotate event so sphericity along z axis.
CALL LUSPHE(SPH,APL)
CALL LUEDIT(31)

C...Loop over all particles, but skip if not pi+.
DO 100 I=1,N
IF(K(I,2).NE.211) GOTO 100

C...Calculate pT and fill in histogram.
PT=SQRT(P(I,1)**2+P(I,2)**2)
CALL HF1(1,PT,1.)

C...End of particle and event loops.

37



100 CONTINUE
110 CONTINUE

C...Normalize histogram properly and list it.
CALL HOPERA(1,’+’,1,1,20./NEVT,0.)
CALL HISTDO

END

Study this program, try to understand what happens at each step, and run it to check
that it works. You should then be ready to look at the relevant sections of this report
and start writing your own programs.

3.6 Getting Started with PYTHIA

A Pythia run has to be more strictly organized than a Jetset one, in that it is necessary
to initialize the generation before events can be generated, and in that it is not possible
to change switches and parameters freely during the course of the run. A fairly precise
recipe for how a run should be structured can therefore be given.

Thus, the usage of Pythia can be subdivided into three steps.
1. The initialization step. It is here that all the basic characteristics of the coming

generation are specified. The material in this section includes the following.
• Common blocks, at least the following, and maybe some more:

COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5)
COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)
COMMON/PYSUBS/MSEL,MSUB(200),KFIN(2,-40:40),CKIN(200)
COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

• Selection of required processes. Some fixed ‘menus’ of subprocesses can be
selected with different MSEL values, but with MSEL=0 it is possible to compose
‘à la carte’, using the subprocess numbers. To generate processes 14, 18 and
29, for instance, one needs

MSEL=0
MSUB(14)=1
MSUB(18)=1
MSUB(29)=1

• Selection of kinematics cuts in the CKIN array. To generate hard scatterings
with 5 GeV ≤ p⊥ ≤ 10 GeV, for instance, use

CKIN(3)=5.
CKIN(4)=10.

Unfortunately, initial- and final-state radiation will shift around the kinematics
of the hard scattering, making the effects of cuts less predictable. One therefore
always has to be very careful that no desired event configurations are cut out.

• Definition of underlying physics scenario, e.g. top mass.
• Selection of parton-distribution sets, Q2 definitions, and all other details of the

generation.
• Switching off of generator parts not needed for toy simulations, e.g. fragmen-

tation for parton level studies.
• Initialization of the event generation procedure. Here kinematics is set up,

maxima of differential cross sections are found for future Monte Carlo gen-
eration, and a number of other preparatory tasks carried out. Initialization
is performed by PYINIT, which should be called only after the switches and
parameters above have been set to their desired values. The frame, the beam
particles and the energy have to be specified.

38



CALL PYINIT(’CMS’,’p’,’pbar’,1800.)

• Any other initial material required by the user, e.g. histogram booking.
2. The generation loop. It is here that events are generated and studied. It includes

the following tasks:
• Generation of the next event, with

CALL PYEVNT

• Printing of a few events, to check that everything is working as planned, with
CALL LULIST(1)

• An analysis of the event for properties of interest, either directly reading out
information from the LUJETS common block or making use of a number of
utility routines in Jetset.

• Saving of events on tape, or interfacing to detector simulation.
3. The finishing step. Here the tasks are:

• Printing a table of deduced cross sections, obtained as a by-product of the
Monte Carlo generation activity, with the command

CALL PYSTAT(1)

• Printing histograms and other user output.
To illustrate this structure, imagine a toy example, where one wants to simulate the

production of a 300 GeV Higgs particle. In Pythia, a program for this might look
something like the following.

C...Common blocks.
COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5)
COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)
COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4)
COMMON/LUDAT3/MDCY(500,3),MDME(2000,2),BRAT(2000),KFDP(2000,5)
COMMON/PYSUBS/MSEL,MSUB(200),KFIN(2,-40:40),CKIN(200)
COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)
COMMON/PAWC/HBOOK(10000)

C...Number of events to generate. Switch on proper processes.
NEV=1000
MSEL=0
MSUB(102)=1
MSUB(123)=1
MSUB(124)=1

C...Select t and H masses and kinematics cuts in mass.
PMAS(6,1)=140.
PMAS(25,1)=300.
CKIN(1)=290.
CKIN(2)=310.

C...For simulation of hard process only: cut out unnecessary tasks.
MSTP(61)=0
MSTP(71)=0
MSTP(81)=0
MSTP(111)=0

C...Initialize and list partial widths.
CALL PYINIT(’CMS’,’p’,’p’,16000.)
CALL PYSTAT(2)

39



C...Book histograms.
CALL HLIMIT(10000)
CALL HBOOK1(1,’Higgs mass’,50,275.,325.,0.)

C...Generate events. Look at first few.
DO 200 IEV=1,NEV
CALL PYEVNT
IF(IEV.LE.3) CALL LULIST(1)

C...Loop over particles to find Higgs and histogram its mass.
DO 100 I=1,N

100 IF(K(I,2).EQ.25) HMASS=P(I,5)
CALL HF1(1,HMASS,1.)

200 CONTINUE

C...Print cross sections and histograms.
CALL PYSTAT(1)
CALL HISTDO

END

Here 102, 123 and 124 are the three main Higgs production graphs gg → H, ZZ → H,
and WW → H, and MSUB(ISUB)=1 is the command to switch on process ISUB. Full
freedom to combine subprocesses ‘à la carte’ is ensured by MSEL=0; ready-made ‘menus’
can be ordered with other MSEL numbers. The PMAS commands set the masses of the top
quark and the Higgs itself, and the CKIN variables the desired mass range of the Higgs
— a Higgs with a 300 GeV nominal mass actually has a fairly broad Breit–Wigner type
mass distribution. The MSTP switches that come next are there to modify the generation
procedure, in this case to switch off initial- and final-state radiation, multiple interactions
among beam jets, and fragmentation, to give only the ‘parton skeleton’ of the hard process.
The PYINIT call initializes Pythia, by finding maxima of cross sections, recalculating the
Higgs decay properties (which depend on the Higgs mass), etc. The decay properties can
be listed with PYSTAT(2).

Inside the event loop, PYEVNT is called to generate an event, and LULIST(1) to list
the event. The information used by LULIST(1) is the event record, stored in the common
block LUJETS. Here one finds all produced particles, both final and intermediate ones, with
information on particle species and event history (K array), particle momenta (P array)
and production vertices (V array). In the loop over all particles produced, 1 through N,
the Higgs particle is found by its code, K(I,2)=25, and its mass is stored in P(I,5).

After all events have been generated, PYSTAT(1) gives a summary of the number of
events generated in the various allowed channels, and the inferred cross sections.

In the run above, a typical event listing might look like the following.

Event listing (summary)

I particle/jet KF p_x p_y p_z E m

1 !p+! 2212 0.000 0.000 8000.000 8000.000 0.938
2 !p+! 2212 0.000 0.000-8000.000 8000.000 0.938

======================================================================
3 !g! 21 -0.505 -0.229 28.553 28.558 0.000
4 !g! 21 0.224 0.041 -788.073 788.073 0.000
5 !g! 21 -0.505 -0.229 28.553 28.558 0.000

40



6 !g! 21 0.224 0.041 -788.073 788.073 0.000
7 !H0! 25 -0.281 -0.188 -759.520 816.631 300.027
8 !W+! 24 120.648 35.239 -397.843 424.829 80.023
9 !W-! -24 -120.929 -35.426 -361.677 391.801 82.579

10 !e+! -11 12.922 -4.760 -160.940 161.528 0.001
11 !nu_e! 12 107.726 39.999 -236.903 263.302 0.000
12 !s! 3 -62.423 7.195 -256.713 264.292 0.199
13 !c~! -4 -58.506 -42.621 -104.963 127.509 1.350

======================================================================
14 (H0) 25 -0.281 -0.188 -759.520 816.631 300.027
15 (W+) 24 120.648 35.239 -397.843 424.829 80.023
16 (W-) -24 -120.929 -35.426 -361.677 391.801 82.579
17 e+ -11 12.922 -4.760 -160.940 161.528 0.001
18 nu_e 12 107.726 39.999 -236.903 263.302 0.000
19 s A 3 -62.423 7.195 -256.713 264.292 0.199
20 c~ V -4 -58.506 -42.621 -104.963 127.509 1.350
21 ud_1 A 2103 -0.101 0.176 7971.328 7971.328 0.771
22 d V 1 -0.316 0.001 -87.390 87.390 0.010
23 u A 2 0.606 0.052 -0.751 0.967 0.006
24 uu_1 V 2203 0.092 -0.042-7123.668 7123.668 0.771

======================================================================
sum: 2.00 0.00 0.00 0.00 15999.98 15999.98

The above event listing is abnormally short, in part because some columns of information
were removed to make it fit into this text, in part because all initial- and final-state QCD
radiation, all non-trivial beam jet structure, and all fragmentation was inhibited in the
generation. Therefore only the skeleton of the process is visible. In lines 1 and 2 one
recognizes the two incoming protons. In lines 3 and 4 are incoming partons before initial-
state radiation and in 5 and 6 after — since there is no such radiation they coincide here.
Line 7 shows the Higgs produced by gg fusion, 8 and 9 its decay products and 10–13 the
second-step decay products. Up to this point lines give a summary of the event history,
indicated by the exclamation marks that surround particle names (and also reflected in
the K(I,1) code, not shown). From line 14 onwards come the particles actually produced
in the final states, first in lines 14–16 particles that subsequently decayed, which have
their names surrounded by brackets, and finally the particles and jets left in the end,
including beam remnants. Here this also includes a number of unfragmented jets, since
fragmentation was inhibited. Ordinarily, the listing would have gone on for a few hundred
more lines, with the particles produced in the fragmentation and their decay products.
The final line gives total charge and momentum, as a convenient check that nothing
unexpected happened. The first column of the listing is just a counter, the second gives
the particle name and information on status and string drawing (the A and V), the third
the particle-flavour code (which is used to give the name), and the subsequent columns
give the momentum components.

One of the main problems is to select kinematics efficiently. Imagine for instance that
one is interested in the production of a single Z with a transverse momentum in excess of
50 GeV. If one tries to generate the inclusive sample of Z events, by the basic production
graphs qq → Z, then most events will have low transverse momenta and will have to be
discarded. That any of the desired events are produced at all is due to the initial-state
generation machinery, which can build up transverse momenta for the incoming q and
q. However, the amount of initial-state radiation cannot be constrained beforehand. To
increase the efficiency, one may therefore turn to the higher-order processes qg → Zq
and qq → Zg, where already the hard subprocess gives a transverse momentum to the
Z. This transverse momentum can be constrained as one wishes, but again initial- and
final-state radiation will smear the picture. If one were to set a p⊥ cut at 50 GeV for

41



the hard-process generation, those events where the Z was given only 40 GeV in the hard
process but got the rest from initial-state radiation would be missed. Not only therefore
would cross sections come out wrong, but so might the typical event shapes. In the end,
it is therefore necessary to find some reasonable compromise, by starting the generation
at 30 GeV, say, if one knows that only rarely do events below this value fluctuate up to
50 GeV. Of course, most events will therefore not contain a Z above 50 GeV, and one will
have to live with some inefficiency. It is not uncommon that only one event out of ten
can be used, and occasionally it can be even worse.

If it is difficult to set kinematics, it is often easier to set the flavour content of a process.
In a Higgs study, one might wish, for example, to consider the decay H0 → Z0Z0, with
each Z0 → e+e− or µ+µ−. It is therefore necessary to inhibit all other H0 and Z0 decay
channels, and also to adjust cross sections to take into account this change, all of which
is fairly straightforward. However, if one wanted to consider instead the decay Z0 → cc,
with a D meson producing a lepton, not only would there then be the problem of different
leptonic branching ratios for different D:s (which means that fragmentation and decay
treatments would no longer decouple), but also that of additional cc pair production in
parton-shower evolution, at a rate that is unknown beforehand. In practice, it is therefore
impossible to force D decay modes in a consistent manner.

42



4 Monte Carlo Techniques

Quantum mechanics introduces a concept of randomness in the behaviour of physical
processes. The virtue of event generators is that this randomness can be simulated by
the use of Monte Carlo techniques. In the process, the program authors have to use some
ingenuity to find the most efficient way to simulate an assumed probability distribution.
A detailed description of possible techniques would carry us too far, but in this section
some of the most frequently used approaches are presented, since they will appear in
discussions in subsequent sections. Further examples may be found e.g. in [Jam80].

First of all one assumes the existence of a random number generator. This is a (For-
tran) function which, each time it is called, returns a number R in the range between 0
and 1, such that the inclusive distribution of numbers R is flat in the range, and such that
different numbers R are uncorrelated. The random number generator that comes with
Jetset is described at the end of this section, and we defer the discussion until then.

4.1 Selection From a Distribution

The situation that is probably most common is that we know a function f(x) which
is non-negative in the allowed x range xmin ≤ x ≤ xmax. We want to select an x ‘at
random’ so that the probability for a given x is proportional to f(x). Here f(x) might be
a fragmentation function, a differential cross section, or any of a number of distributions.

One does not have to assume that the integral of f(x) is explicitly normalized to unity:
by the Monte Carlo procedure of picking exactly one accepted x value, normalization is
implicit in the final result. Sometimes the integral of f(x) does carry a physics content
of its own, as part of an overall weight factor we want to keep track of. Consider, for
instance, the case when x represents one or several phase-space variables and f(x) a
differential cross section; here the integral has a meaning of total cross section for the
process studied. The task of a Monte Carlo is then, on the one hand, to generate events
one at a time, and, on the other hand, to estimate the total cross section. The discussion
of this important example is deferred to section 7.4.

If it is possible to find a primitive function F (x) which has a known inverse F−1(x),
an x can be found as follows (method 1):

∫ x

xmin

f(x) dx = R
∫ xmax

xmin

f(x) dx

=⇒ x = F−1(F (xmin) +R(F (xmax) − F (xmin))) . (2)

The statement of the first line is that a fraction R of the total area under f(x) should be
to the left of x. However, seldom are functions of interest so nice that the method above
works. It is therefore necessary to use more complicated schemes.

Special tricks can sometimes be found. Consider e.g. the generation of a Gaussian
f(x) = exp(−x2). This function is not integrable, but if we combine it with the same
Gaussian distribution of a second variable y, it is possible to transform to polar coordinates

f(x) dx f(y) dy = exp(−x2 − y2) dx dy = r exp(−r2) dr dϕ , (3)

and now the r and ϕ distributions may be easily generated and recombined to yield x.
At the same time we get a second number y, which can also be used. For the generation
of transverse momenta in fragmentation, this is very convenient, since in fact we want to
assign two transverse degrees of freedom.

If the maximum of f(x) is known, f(x) ≤ fmax in the x range considered, a hit-or-miss
method will always yield the correct answer (method 2):

1. select an x with even probability in the allowed range, i.e. x = xmin+R(xmax−xmin);

43



2. compare a (new) R with the ratio f(x)/fmax; if f(x)/fmax ≤ R, then reject the x
value and return to point 1 for a new try;

3. otherwise the most recent x value is retained as final answer.
The probability that f(x)/fmax > R is proportional to f(x); hence the correct distribution
of retained x values. The efficiency of this method, i.e. the average probability that an
x will be retained, is (

∫

f(x) dx)/(fmax(xmax − xmin)). The method is acceptable if this
number is not too low, i.e. if f(x) does not fluctuate too wildly.

Very often f(x) does have narrow spikes, and it may not even be possible to define
an fmax. An example of the former phenomenon is a function with a singularity just
outside the allowed region, an example of the latter an integrable singularity just at the
xmin and/or xmax borders. Variable transformations may then be used to make a function
smoother. Thus a function f(x) which blows up as 1/x for x → 0, with an xmin close to
0, would instead be roughly constant if transformed to the variable y = ln x.

The variable transformation strategy may be seen as a combination of methods 1 and
2, as follows. Assume the existence of a function g(x), with f(x) ≤ g(x) over the x range
of interest. Here g(x) is picked to be a ‘simple’ function, such that the primitive function
G(x) and its inverse G−1(x) are known. Then (method 3):

1. select an x according to the distribution g(x), using method 1;
2. compare a (new) R with the ratio f(x)/g(x); if f(x)/g(x) ≤ R, then reject the x

value and return to point 1 for a new try;
3. otherwise the most recent x value is retained as final answer.

This works, since the first step will select x with a probability g(x) dx = dG(x) and the
second retain this choice with probability f(x)/g(x). The total probability to pick a value
x is then just the product of the two, i.e. f(x) dx.

If f(x) has several spikes, method 3 may work for each spike separately, but it may
not be possible to find a g(x) that covers all of them at the same time, and which still
has an invertible primitive function. However, assume that we can find a function g(x) =
∑

i gi(x), such that f(x) ≤ g(x) over the x range considered, and such that the functions
gi(x) each are non-negative and simple, in the sense that we can find primitive functions
and their inverses. In that case (method 4):

1. select an i at random, with relative probability given by the integrals
∫ xmax

xmin

gi(x) dx = Gi(xmax) −Gi(xmin) ; (4)

2. for the i selected, use method 1 to find an x, i.e.

x = G−1
i (Gi(xmin) +R(Gi(xmax) −Gi(xmin))) ; (5)

3. compare a (new) R with the ratio f(x)/g(x); if f(x)/g(x) ≤ R, then reject the x
value and return to point 1 for a new try;

4. otherwise the most recent x value is retained as final answer.
This is just a trivial extension of method 3, where steps 1 and 2 ensure that, on the
average, each x value picked there is distributed according to g(x): the first step picks i
with relative probability

∫

gi(x) dx, the second x with absolute probability gi(x)/
∫

gi(x) dx
(this is one place where one must remember to do normalization correctly); the product
of the two is therefore gi(x) and the sum over all i gives back g(x).

We have now arrived at an approach that is sufficiently powerful for a large selection
of problems. In general, for a function f(x) which is known to have sharp peaks in a few
different places, the generic behaviour at each peak separately may be covered by one
or a few simple functions gi(x), to which one adds a few more gi(x) to cover the basic
behaviour away from the peaks. By a suitable selection of the relative strengths of the
different gi’s, it is possible to find a function g(x) that matches well the general behaviour
of f(x), and thus achieve a reasonable Monte Carlo efficiency.

44



The major additional complication is when x is a multidimensional variable. Usually
the problem is not so much f(x) itself, but rather that the phase-space boundaries may
be very complicated. If the boundaries factorize it is possible to pick phase-space points
restricted to the desired region. Otherwise the region may have to be inscribed in a hyper-
rectangle, with points picked within the whole hyper-rectangle but only retained if they
are inside the allowed region. This may lead to a significant loss in efficiency. Variable
transformations may often make the allowed region easier to handle.

There are two main methods to handle several dimensions, each with its set of vari-
ations. The first method is based on a factorized ansatz, i.e. one attempts to find a
function g(x) which is everywhere larger than f(x), and which can be factorized into
g(x) = g(1)(x1) g

(2)(x2) · · · g(n)(xn), where x = (x1, x2, . . . , xn). Here each g(j)(xj) may

in its turn be a sum of functions g
(j)
i , as in method 4 above. First, each xj is selected

independently, and afterwards the ratio f(x)/g(x) is used to determine whether to retain
the point.

The second method is useful if the boundaries of the allowed region can be written in
a form where the maximum range of x1 is known, the allowed range of x2 only depends
on x1, that of x3 only on x1 and x2, and so on until xn, whose range may depend on all
the preceding variables. In that case it may be possible to find a function g(x) that can
be integrated over x2 through xn to yield a simple function of x1, according to which x1 is
selected. Having done that, x2 is selected according to a distribution which now depends
on x1, but with x3 through xn integrated over. In particular, the allowed range for x2 is
known. The procedure is continued until xn is reached, where now the function depends
on all the preceding xj values. In the end, the ratio f(x)/g(x) is again used to determine
whether to retain the point.

4.2 The Veto Algorithm

The ‘radioactive decay’ type of problems is very common, in particular in parton showers,
but it is also used, e.g. in the multiple interactions description in Pythia. In this kind
of problems there is one variable t, which may be thought of as giving a kind of time axis
along which different events are ordered. The probability that ‘something will happen’
(a nucleus decay, a parton branch) at time t is described by a function f(t), which is
non-negative in the range of t values to be studied. However, this näıve probability is
modified by the additional requirement that something can only happen at time t if it
did not happen at earlier times t′ < t. (The original nucleus cannot decay once again
if it already did decay; possibly the decay products may decay in their turn, but that is
another question.)

The probability that nothing has happened by time t is expressed by the function
N (t) and the differential probability that something happens at time t by P(t). The
basic equation then is

P(t) = −dN
dt

= f(t)N (t) . (6)

For simplicity, we shall assume that the process starts at time t = 0, with N (0) = 1.
The above equation can be solved easily if one notes that dN /N = d lnN :

N (t) = N (0) exp
{

−
∫ t

0
f(t′) dt′

}

= exp
{

−
∫ t

0
f(t′) dt′

}

, (7)

and thus

P(t) = f(t) exp
{

−
∫ t

0
f(t′) dt′

}

. (8)

With f(t) = c this is nothing but the textbook formulae for radioactive decay. In partic-
ular, at small times the correct decay probability, P(t), agrees well with the input one,

45



f(t), since the exponential factor is close to unity there. At larger t, the exponential
gives a dampening which ensures that the integral of P(t) never can exceed unity, even
if the integral of f(t) does. The exponential can be seen as the probability that nothing
happens between the original time 0 and the final time t. In the parton-shower language,
this is (almost) the so-called Sudakov form factor.

If f(t) has a primitive function with a known inverse, it is easy to select t values
correctly:

∫ t

0
P(t′) dt′ = N (0) −N (t) = 1 − exp

{

−
∫ t

0
f(t′) dt′

}

= 1 −R , (9)

which has the solution

F (0) − F (t) = lnR =⇒ t = F−1(F (0) − lnR) . (10)

If f(t) is not sufficiently nice, one may again try to find a better function g(t), with
f(t) ≤ g(t) for all t ≥ 0. However to use method 3 with this g(t) would not work, since
the method would not correctly take into account the effects of the exponential term in
P(t). Instead one may use the so-called veto algorithm:

1. start with i = 0 and t0 = 0;
2. add 1 to i and select ti = G−1(G(ti−1) − lnR), i.e. according to g(t), but with the

constraint that ti > ti−1,
3. compare a (new) R with the ratio f(ti)/g(ti); if f(ti)/g(ti) ≤ R, then return to

point 2 for a new try;
4. otherwise ti is retained as final answer.
It may not be apparent why this works. Consider, however, the various ways in which

one can select a specific time t. The probability that the first try works, t = t1, i.e. that
no intermediate t values need be rejected, is given by

P0(t) = exp
{

−
∫ t

0
g(t′) dt′

}

g(t)
f(t)

g(t)
= f(t) exp

{

−
∫ t

0
g(t′) dt′

}

, (11)

where the exponential times g(t) comes from eq. (8) applied to g, and the ratio f(t)/g(t)
is the probability that t is accepted. Now consider the case where one intermediate time
t1 is rejected and t = t2 is only accepted in the second step. This gives

P1(t) =
∫ t

0
dt1 exp

{

−
∫ t1

0
g(t′) dt′

}

g(t1)

[

1 − f(t1)

g(t1)

]

exp
{

−
∫ t

t1
g(t′) dt′

}

g(t)
f(t)

g(t)
, (12)

where the first exponential times g(t1) gives the probability that t1 is first selected, the
square brackets the probability that t1 is subsequently rejected, the following piece the
probability that t = t2 is selected when starting from t1, and the final factor that t is
retained. The whole is to be integrated over all possible intermediate times t1. The
exponentials together give an integral over the range from 0 to t, just as in P0, and the
factor for the final step being accepted is also the same, so therefore one finds that

P1(t) = P0(t)
∫ t

0
dt1 [g(t1) − f(t1)] . (13)

This generalizes. In P2 one has to consider two intermediate times, 0 ≤ t1 ≤ t2 ≤ t3 = t,
and so

P2(t) = P0(t)
∫ t

0
dt1 [g(t1) − f(t1)]

∫ t

t1
dt2 [g(t2) − f(t2)]

= P0(t)
1

2

(∫ t

0
[g(t′) − f(t′)] dt′

)2

. (14)

46



The last equality is most easily seen if one also considers the alternative region 0 ≤ t2 ≤
t1 ≤ t, where the rôles of t1 and t2 have just been interchanged, and the integral therefore
has the same value as in the region considered. Adding the two regions, however, the
integrals over t1 and t2 decouple, and become equal. In general, for Pi, the i intermediate
times can be ordered in i! different ways. Therefore the total probability to accept t, in
any step, is

P(t) =
∞
∑

i=0

Pi(t) = P0(t)
∞
∑

i=0

1

i!

(∫ t

0
[g(t′) − f(t′)] dt′

)i

= f(t) exp
{

−
∫ t

0
g(t′) dt′

}

exp
{∫ t

0
[g(t′) − f(t′)] dt′

}

= f(t) exp
{

−
∫ t

0
f(t′) dt′

}

, (15)

which is the desired answer.
If the process is to be stopped at some scale tmax, i.e. if one would like to remain

with a fraction N (tmax) of events where nothing happens at all, this is easy to include in
the veto algorithm: just iterate upwards in t at usual, but stop the process if no allowed
branching is found before tmax.

Usually f(t) is a function also of additional variables x. The methods of the preceding
subsection are easy to generalize if one can find a suitable function g(t, x) with f(t, x) ≤
g(t, x). The g(t) used in the veto algorithm is the integral of g(t, x) over x. Each time
a ti has been selected also an xi is picked, according to g(ti, x) dx, and the (t, x) point is
accepted with probability f(ti, xi)/g(ti, xi).

4.3 The Random Number Generator

The construction of a good, portable (pseudo)random generator is not a trivial task.
Therefore Jetset has traditionally stayed away from that area, and just provided the
routine RLU as an interface, which the user could modify to call on an existing routine,
implemented on the actual machine being used.

In recent years, progress has been made in constructing portable generators with large
periods and other good properties; see the review [Jam90]. Therefore the current version
contains a random number generator based on the algorithm proposed by Marsaglia,
Zaman and Tsang [Mar90]. This routine should work on any machine with a mantissa
of at least 24 digits, i.e. all common 32-bit (or more) computers. Given the same initial
state, the sequence will also be identical on different machines. This need not mean
that the same sequence of events will be generated on an IBM and a VAX, say, since
the different treatments of roundoff errors in numerical operations will lead to slightly
different real numbers being tested against these random numbers in IF statements. Also
code optimization may lead to a divergence. Apart from nomenclature issues, and the
coding of RLU as a function rather than a subroutine, the only difference between the
Jetset code and the code given in [Jam90] is that slightly different algorithms are used
to ensure that the random number is not equal to 0 or 1 within the machine precision.

The generator has a period of over 1043, and the possibility to obtain almost 109 dif-
ferent and disjoint subsequences, selected by giving an initial integer number. The price
to be paid for the long period is that the state of the generator at a given moment cannot
be described by a single integer, but requires about 100 words. Some of these are real
numbers, and are thus not correctly represented in decimal form. The normal procedure,
which makes it possible to restart the generation from a seed value written to the run
output, is therefore not convenient. The CERN library implementation keeps track of the
number of random numbers generated since the start. With this value saved, in a subse-
quent run the random generator can be asked to skip ahead the corresponding number of

47



random numbers. Jetset is a heavy user of random numbers, however: typically 30% of
the full run time is spent on random number generation. Of this, half is overhead coming
from the function call administration, but the other half is truly related to the speed of
the algorithm. Therefore a skipping ahead would take place with 15% of the time cost of
the original run, i.e. an uncomfortably high figure.

Instead a different solution is chosen here. Two special routines are provided for
writing and reading the state of the random number generator (plus some initialization
information) on a sequential file, in a machine-dependent internal representation. The file
used for this purpose has to be specified by you, and opened for read and write. A state
is written as a single record, in free format. It is possible to write an arbitrary number of
states on a file, and a record can be overwritten, if so desired. The event generation loop
might then look something like:

1. save the state of the generator on file (using flag set in point 3 below),
2. generate an event,
3. study the event for errors or other reasons why to regenerate it later; set flag to

overwrite previous generator state if no errors, otherwise set flag to create new
record;

4. loop back to point 1.
With this procedure, the file will contain the state before each of the problematical events.
An alternative approach might be to save the state every 100 events or so. If the events
are subsequently processed through a detector simulation, you may have to save also other
sets of seeds, naturally.

In addition to the service routines, the common block which contains the state of the
generator is available for manipulation, if you so desire. In particular, the initial seed
value is by default 19780503, i.e. different from the Marsaglia/CERN default 54217137.
It is possible to change this value before any random numbers have been generated, or
to force reinitialization in mid-run with any desired new seed. Inside Jetset/Pythia,
some initialization may take place in connection with the very first event generated in a
run, so sometimes it may be necessary to generate one ordinary event before reading in a
saved state to generate an interesting event. In the current Pythia version, some of the
multiple interaction machinery options contain an element of learning, which means that
the event sequence may be broken.

It should be noted that, of course, the appearance of a random number generator
package inside Jetset does in no way preclude the use of other routines. You can easily
revert to the old approach, where RLU is nothing but an interface to an arbitrary external
random number generator; e.g. to call a routine RNDM all you need to have is

FUNCTION RLU(IDUMMY)
100 RLU=RNDM(IDUMMY)

IF(RLU.LE.0..OR.RLU.GE.1.) GOTO 100
RETURN
END

The random generator subpackage consists of the following components.

R = RLU(IDUMMY)

Purpose: to generate a (pseudo)random number R uniformly in the range 0<R<1, i.e.
excluding the endpoints.

IDUMMY : dummy input argument; normally 0.

CALL RLUGET(LFN,MOVE)

48



Purpose: to dump the current state of the random number generator on a separate file,
using internal representation for real and integer numbers. To be precise, the
full contents of the LUDATR common block are written on the file, with the
exception of MRLU(6).

LFN : (logical file number) the file number to which the state is dumped. You must
associate this number with a true file (with a machine-dependent name), and
see to it that this file is open for write.

MOVE : choice of adding a new record to the file or overwriting old record(s). Normally
only options 0 or −1 should be used.

= 0 (or > 0) : add a new record to the end of the file.
= -1 : overwrite the last record with a new one (i.e. do one BACKSPACE before

the new write).
= −n : back up n records before writing the new record. The records following

after the new one are lost, i.e. the last n old records are lost and one
new added.

CALL RLUSET(LFN,MOVE)

Purpose: to read in a state for the random number generator, from which the subsequent
generation can proceed. The state must previously have been saved by a
RLUGET call. Again the full contents of the LUDATR common block are read,
with the exception of MRLU(6).

LFN : (logical file number) the file number from which the state is read. You must
associate this number with a true file previously written with a RLUGET call,
and see to it that this file is open for read.

MOVE : positioning in file before a record is read. With zero value, records are read one
after the other for each new call, while non-zero values may be used to navigate
back and forth, and e.g. return to the same initial state several times.

= 0 : read the next record.
= +n : skip ahead n records before reading the record that sets the state of the

random number generator.
= −n : back up n records before reading the record that sets the state of the

random number generator.

COMMON/LUDATR/MRLU(6),RRLU(100)

Purpose: to contain the state of the random number generator at any moment (for
communication between RLU, RLUGET and RLUSET), and also to provide the
user with the possibility to initialize different random number sequences, and
to know how many numbers have been generated.

MRLU(1) : (D=19780503) the integer number that specifies which of the possible subse-
quences will be initialized in the next RLU call for which MRLU(2)=0. Allowed
values are 0≤MRLU(1)≤900 000 000, the original Marsaglia (and CERN library)
seed is 54217137. The MRLU(1) value is not changed by any of the Jetset
routines.

MRLU(2) : (D=0) initialization flag, put to 1 in the first RLU call of run. A reinitialization
of the random number generator can be made in mid-run by resetting MRLU(2)
to 0 by hand. In addition, any time the counter MRLU(3) reaches 1000000000,
it is reset to 0 and MRLU(2) is increased by 1.

MRLU(3) : (D=0) counter for the number of random numbers generated from the begin-
ning of the run. To avoid overflow when very many numbers are generated,
MRLU(2) is used as described above.

49



MRLU(4), MRLU(5) : I97 and J97 of the CERN library implementation; part of the state
of the generator.

MRLU(6) : (D=0) current position, i.e. how many records after beginning, in the file;
used by RLUGET and RLUSET.

RRLU(1) - RRLU(97) : the U array of the CERN library implementation; part of the
state of the generator.

RRLU(98) - RRLU(100) : C, CD and CM of the CERN library implementation; the first
part of the state of the generator, the latter two constants calculated at ini-
tialization.

50



5 The Event Record

The event record is the central repository for information about the particles produced
in the current event: flavours, momenta, event history, and production vertices. It plays
a very central rôle: without a proper understanding of what the record is and how infor-
mation is stored, it is meaningless to try to use either Jetset or Pythia. The record
is stored in the common block LUJETS. Almost all the routines thatthe user calls can be
viewed as performing some action on the record: fill a new event, let partons fragment or
particles decay, boost it, list it, find clusters, etc.

In this section we will first describe the KF flavour code, subsequently the LUJETS
common block, and then give a few comments about the rôle of the event record in the
programs.

To ease the interfacing of different event generators, a HEPEVT standard common block
structure for the event record has been agreed on. For historical reasons the standard
common blocks are not directly used in Jetset, but a conversion routine comes with the
program, and is described at the end of this section.

5.1 Particle Codes

The new particle code now adopted by the Particle Data Group [PDG88, PDG92] is used
consistently throughout the program, and is referred to as the KF particle code. This
code you have to be thoroughly familiar with. It is described below.

Note that a few inconsistencies between the KF and the PDG codes are known, which
stem from differences of interpretation of the rules agreed on when developing the stan-
dard. These rules form the basis of the PDG tables and (independently) of the Jetset
tables. (Of course, my private opinion is that I follow the original agreement, and the
PDG deviate from it.) Hopefully, this should have few practical consequences, since only
rarely-produced particles are affected. Anyway, here is a list of the known discrepancies:

1. The PDG has not allowed for the existence of an ηb, which in Jetset is included
with code 551. This code is reserved for χ0b by the PDG, a particle which appears as
10551 in Jetset. (We agree to have ηc as 441, which illustrates the basic difference:
I use the additional recurrence figure to refer to a whole multiplet, whether all
particles of that multiplet have been found or not; the PDG, on the other hand,
does not reserve space for particles which we know should be there but have not yet
been discovered, which means that members of a multiplet need not go together.)

2. The PDG has not allowed for the existence of an h1c, which in Jetset is represented
by 10443. Therefore χ1c is the PDG code 10443 but Jetset code 20443. Further
ψ′ is either 20443 or 30443, and Υ′ = Υ(2S) either 20553 or 30553. (Comment as
for point 1.)

3. Different conventions for spin 1/2 baryons with one heavy flavour (charm, bottom,
top), one strange flavour, and one light (u or d). Here two states exist, e.g. Ξ+

c and
Ξ′+
c , both with flavour content csu. By analogy with the Λ0–Σ pair, Jetset uses

the decreasing order of flavour content for the heavier state and inversed order of
the two lighter flavours for the lighter state, while the PDG tables use the opposite
convention. Thus in Jetset Ξ+

c is 4232 and Ξ′+
c 4322, while in PDG it is the other

way around.
There are no plans to change the Jetset rules to agree with the PDG ones in either of
the cases above.

The KF code is not convenient for a direct storing of masses, decay data, or other
particle properties, since the KF codes are so spread out. Instead a compressed code KC
between 1 and 500 is used here, where the most frequently used particles have a separate
code, but many heavy-flavour hadrons are lumped together in groups. Normally this code
is only used at very specific places in the program, not visible to the user. If need be, the

51



Table 3: Quark and lepton codes.

KF Name Printed KF Name Printed
1 d d 11 e− e-

2 u u 12 νe nu e

3 s s 13 µ− mu-

4 c c 14 νµ nu mu

5 b b 15 τ− tau-

6 t t 16 ντ nu tau

7 l l 17 χ− chi-

8 h h 18 νχ nu chi

9 19
10 20

correspondence can always be obtained by using the function LUCOMP, KC = LUCOMP(KF).
It is therefore not intended that you should ever need to know any KC codes at all. It
may be useful to know, however, that for codes smaller than 80, KF and KC agree.

The particle names printed in the tables in this section correspond to the ones obtained
with the routine LUNAME, which is used extensively, e.g. in LULIST. Greek characters
are spelt out in full, with a capital first letter to correspond to a capital Greek letter.
Generically the name of a particle is made up of the following pieces:

1. The basic root name. This includes a * for most spin 1 (L = 0) mesons and spin
3/2 baryons, and a ′ for some spin 1/2 baryons (where there are two states to be
distinguished, cf. Λ–Σ0). The rules for heavy baryon naming are in accordance with
the 1986 Particle Data Group conventions [PDG86]. For mesons with one unit of
orbital angular momentum, K (D, B, . . . ) is used for quark-spin 0 and K* (D*, B*,
. . . ) for quark-spin 1 mesons; the convention for ‘*’ may here deviate slightly from
the one used by the PDG.

2. Any lower indices, separated from the root by a . For heavy hadrons, this is the
additional heavy-flavour content not inherent in the root itself. For a diquark, it is
the spin.

3. The character ∼ (alternatively bar, see MSTU(15)) for an antiparticle, wherever the
distinction between particle and antiparticle is not inherent in the charge informa-
tion.

4. Charge information: ++, +, 0, −, or −−. Charge is not given for quarks or diquarks.
Some neutral particles which are customarily given without a 0 also here lack it,
such as neutrinos, g, γ, and flavour-diagonal mesons other than π0 and ρ0. Note
that charge is included both for the proton and the neutron. While non-standard,
it is helpful in avoiding misunderstandings when looking at an event listing.

Below follows a list of KF particle codes. The list is not complete; a more extensive
one may be obtained with CALL LULIST(11). Particles are grouped together, and the
basic rules are described for each group. Whenever a distinct antiparticle exists, it is
given the same KF code with a minus sign (whereas KC codes are always positive).

1. Quarks and leptons, Table 3.
This group contains the basic building blocks of matter, arranged according to
family, with the lower member of weak isodoublets also having the smaller code
(thus d precedes u, contrary to the ordering in previous Jetset versions). A fourth
generation is included for future reference. The quark codes are used as building
blocks for the diquark, meson and baryon codes below.

2. Gauge bosons and other fundamental bosons, Table 4.

52



Table 4: Gauge boson and other fundamental boson codes.

KF Name Printed KF Name Printed
21 g g 31
22 γ gamma 32 Z′0 Z’0

23 Z0 Z0 33 Z′′0 Z"0

24 W+ W+ 34 W′+ W’+

25 H0 H0 35 H′0 H’0

26 36 A0 A0

27 37 H+ H+

28 IR reggeon 38 ηtechni eta tech0

29 IP pomeron 39 LQ LQ

30 40 R0 R0

This group includes all the gauge and Higgs bosons of the standard model, as well
as some of the bosons appearing in various extensions of it. The latter are not
covered by the standard PDG codes. They correspond to one extra U(1) group
and one extra SU(2) one, a further Higgs doublet, a (scalar, colour octet) techni-
η, a (scalar) leptoquark LQ, and a horizontal gauge boson R (coupling between
families). Additionally, we here include the pomeron IP and reggeon IR ‘particles’,
which are important e.g. in the description of diffractive scattering, but have no
obvious position anywhere in the classification scheme.

3. Free space.
The positions 41–80 are currently unused. In the future, they might come to be
used, e.g. for supersymmetric partners of the particles above, or for some other
kind of new physics. At the moment, they are at your disposal.

4. Various special codes, Table 5.
In a Monte Carlo, it is always necessary to have codes that do not correspond to
any specific particle, but are used to lump together groups of similar particles for
decay treatment, or to specify generic decay products. These codes, which again
are non-standard, are found between numbers 81 and 100. Several are not found in
the event record, and therefore properly belong only to the KC group of codes.

5. Diquark codes, Table 6.
A diquark made up of a quark with code i and another with code j, where i ≥ j,
and with total spin s, is given the code

KF = 1000i+ 100j + 2s+ 1 , (16)

i.e. the tens position is left empty (cf. the baryon code below). Some of the most
frequently used codes are listed in the table. All the lowest-lying spin 0 and 1
diquarks are included in the program.
The corresponding KC code is 90, and it is mainly used to store colour charge.

6. Meson codes, Tables 7 and 8.
A meson made up of a quark with code i and an antiquark with code −j, j 6= i,
and with total spin s, is given the code

KF = {100 max(i, j) + 10 min(i, j) + 2s+ 1} sign(i− j) (−1)max(i,j) . (17)

Note the presence of an extra − sign if the heaviest quark is a down-type one. This is
in accordance with the particle–antiparticle distinction adopted in the 1986 Review
of Particle Properties [PDG86]. It means for example that a B meson contains a b
antiquark rather than a b quark.

53



Table 5: Various special codes.

KF Printed Meaning
81 specflav Spectator flavour; used in decay-product listings
82 rndmflav A random u, d, or s flavour; possible decay product
83 phasespa Simple isotropic phase-space decay
84 c-hadron Information on decay of generic charm hadron
85 b-hadron Information on decay of generic bottom hadron
86 t-hadron Information on decay of generic top hadron
87 l-hadron Information on decay of generic low hadron
88 h-hadron Information on decay of generic high hadron
89 Wvirt Off-mass-shell W in weak decays of t, l, h or χ
90 diquark Generic code for diquark colour information
91 cluster Parton system in cluster fragmentation
92 string Parton system in string fragmentation
93 indep. Parton system in independent fragmentation
94 CMshower Four-momentum of time-like showering system
95 SPHEaxis Event axis found with LUSPHE

96 THRUaxis Event axis found with LUTHRU

97 CLUSjet Jet (cluster) found with LUCLUS

98 CELLjet Jet (cluster) found with LUCELL

99 table Tabular output from LUTABU

100

The flavour-diagonal states are arranged in order of ascending mass. The standard
rule of having the last digit of the form 2s + 1 is broken for the K0

S–K0
L system,

where it is 0, and this convention should carry over to mixed states in the B meson
system. For higher multiplets with the same spin, ±10000, ±20000, etc., are added
to provide the extra distinction needed. Some of the most frequently used codes are
given below.
The full lowest-lying pseudoscalar and vector multiplets are included in the program,
Table 7.
Also the lowest-lying orbital angular momentum L = 1 mesons are included, Table 8:
one pseudovector multiplet obtained for total quark-spin 0 (L = 1, S = 0 ⇒ J = 1)
and one scalar, one pseudovector and one tensor multiplet obtained for total quark-
spin 1 (L = 1, S = 1 ⇒ J = 0, 1 or 2), where J is what is conventionally called the
spin s of the meson. Any mixing between the two pseudovector multiplets is not

Table 6: Diquark codes.

KF Name Printed KF Name Printed
1103 dd1 dd 1

2101 ud0 ud 0 2103 ud1 ud 1

2203 uu1 uu 1

3101 sd0 sd 0 3103 sd1 sd 1

3201 su0 su 0 3203 su1 su 1

3303 ss1 ss 1

54



Table 7: Meson codes, part 1.

KF Name Printed KF Name Printed
211 π+ pi+ 213 ρ+ rho+

311 K0 K0 313 K∗0 K*0

321 K+ K+ 323 K∗+ K*+

411 D+ D+ 413 D∗+ D*+

421 D0 D0 423 D∗0 D*0

431 D+
s D s+ 433 D∗+

s D* s+

511 B0 B0 513 B∗0 B*0

521 B+ B+ 523 B∗+ B*+

531 B0
s B s0 533 B∗0

s B* s0

541 B+
c B c+ 543 B∗+

c B* c+

111 π0 pi0 113 ρ0 rho0

221 η eta 223 ω omega

331 η′ eta’ 333 φ phi

441 ηc eta c 443 J/ψ J/psi

551 ηb eta b 553 Υ Upsilon

661 ηt eta t 663 Θ Theta

130 K0
L K L0

310 K0
S K S0

taken into account. Please note that some members of these multiplets have still
not been found, and are included here only based on guesswork. Even for known
ones, the information on particles (mass, width, decay modes) is highly incomplete.
Only two radial excitations are included, the ψ′ = ψ(2S) and Υ′ = Υ(2S).
The corresponding meson KC codes, used for organizing mass and decay data, range
between 101 and 240.

7. Baryon codes, Table 9.
A baryon made up of quarks i, j and k, with i ≥ j ≥ k, and total spin s, is given
the code

KF = 1000i+ 100j + 10k + 2s+ 1 . (18)

An exception is provided by spin 1/2 baryons made up of three different types of
quarks, where the two lightest quarks form a spin-0 diquark (Λ-like baryons). Here
the order of the j and k quarks is reversed, so as to provide a simple means of
distinction to baryons with the lightest quarks in a spin-1 diquark (Σ-like baryons).
For hadrons with heavy flavours, the root names are Lambda or Sigma for hadrons
with two u or d quarks, Xi for those with one, and Omega for those without u or d
quarks.
Some of the most frequently used codes are given in Table 9. The full lowest-lying
spin 1/2 and 3/2 multiplets are included in the program.
The corresponding KC codes, used for organizing mass and decay data, range be-
tween 301 and 400, with some slots still free.

8. Diffractive states, Table 10.
These codes are not standard ones: they have been defined by analogy to be used
for denoting diffractive states in Pythia, as part of the event history. The first two
or three digits give flavour content, while the last one is 0, to denote the somewhat
unusual character of the code. Only a few codes have been introduced; depending
on circumstances these also have to double up for other diffractive states.

55



Table 8: Meson codes, part 2.

KF Name Printed KF Name Printed
10213 b1 b 1+ 10211 a+

0 a 0+

10313 K0
1 K 10 10311 K∗0

0 K* 00

10323 K+
1 K 1+ 10321 K∗+

0 K* 0+

10413 D+
1 D 1+ 10411 D∗+

0 D* 0+

10423 D0
1 D 10 10421 D∗0

0 D* 00

10433 D+
1s D 1s+ 10431 D∗+

0s D* 0s+

10113 b0
1 b 10 10111 a0

0 a 00

10223 h0
1 h 10 10221 f00 f 00

10333 h′0
1 h’ 10 10331 f ′00 f’ 00

10443 h0
1c h 1c0 10441 χ0

0c chi 0c0

20213 a+
1 a 1+ 215 a+

2 a 2+

20313 K∗0
1 K* 10 315 K∗0

2 K* 20

20323 K∗+
1 K* 1+ 325 K∗+

2 K* 2+

20413 D∗+
1 D* 1+ 415 D∗+

2 D* 2+

20423 D∗0
1 D* 10 425 D∗0

2 D* 20

20433 D∗+
1s D* 1s+ 435 D∗+

2s D* 2s+

20113 a0
1 a 10 115 a0

2 a 20

20223 f01 f 10 225 f02 f 20

20333 f ′01 f’ 10 335 f ′02 f’ 20

20443 χ0
1c chi 1c0 445 χ0

2c chi 2c0

30443 ψ′ psi’

30553 Υ′ Upsilon’

9. Free compressed codes. The positions 401–500 of mass and decay arrays are left
open. Here a user may map any new kind of particle from the ordinary KF codes,
which probably are above 10000, into a more manageable KC range for mass and
decay data information. The mapping must be implemented in the LUCOMP function.

5.2 The Event Record

Each new event generated is in its entirety stored in the common block LUJETS, which
thus forms the event record. Here each jet or particle that appears at some stage of
the fragmentation or decay chain will occupy one line in the matrices. The different
components of this line will tell which jet/particle it is, from where it originates, its
present status (fragmented/decayed or not), its momentum, energy and mass, and the
space–time position of its production vertex. Note that K(I,3)–K(I,5) and the P and V
vectors may take special meaning for some specific applications (e.g. sphericity or cluster
analysis), as described in those connections.

The event history information stored in K(I,3)–K(I,5) should not be taken too lit-
erally. In the particle decay chains, the meaning of a mother is well-defined, but the
fragmentation description is more complicated. The primary hadrons produced in string
fragmentation come from the string as a whole, rather than from an individual parton.
Even when the string is not included in the history (see MSTU(16)), the pointer from
hadron to parton is deceptive. For instance, in a qgq event, those hadrons are pointing
towards the q (q) parton that were produced by fragmentation from that end of the string,
according to the random procedure used in the fragmentation routine. No particles point

56



Table 9: Baryon codes.

KF Name Printed KF Name Printed
1114 ∆− Delta-

2112 n n0 2114 ∆0 Delta0

2212 p p+ 2214 ∆+ Delta+

2224 ∆++ Delta++

3112 Σ− Sigma- 3114 Σ∗− Sigma*-

3122 Λ0 Lambda0

3212 Σ0 Sigma0 3214 Σ∗0 Sigma*0

3222 Σ+ Sigma+ 3224 Σ∗+ Sigma*+

3312 Ξ− Xi- 3314 Ξ∗− Xi*-

3322 Ξ0 Xi0 3324 Ξ∗0 Xi*0

3334 Ω− Omega-

4112 Σ0
c Sigma c0 4114 Σ∗0

c Sigma* c0

4122 Λ+
c Lambda c+

4212 Σ+
c Sigma c+ 4214 Σ∗+

c Sigma* c+

4222 Σ++
c Sigma c++ 4224 Σ∗++

c Sigma* c++

4132 Ξ0
c Xi c0

4312 Ξ′0
c Xi’ c0 4314 Ξ∗0

c Xi* c0

4232 Ξ+
c Xi c+

4322 Ξ′+
c Xi’ c+ 4324 Ξ∗+

c Xi* c+

4332 Ω0
c Omega c0 4334 Ω∗0

c Omega* c0

5112 Σ−
b Sigma b- 5114 Σ∗−

b Sigma* b-

5122 Λ0
b Lambda b0

5212 Σ0
b Sigma b0 5214 Σ∗0

b Sigma* b0

5222 Σ+
b Sigma b+ 5224 Σ∗+

b Sigma* b+

to the g. This assignment seldom agrees with the visual impression, and is not intended
to.

The common block LUJETS has expanded with time, and can now house 4000 entries.
This figure may seem ridiculously large, but actually the previous limit of 2000 was
often reached in studies of high-p⊥ processes at the LHC and SSC. This is because the
event record contains not only the final particles, but also all intermediate partons and
hadrons, which subsequenty showered, fragmented or decayed. Included are also a wealth
of photons coming from π0 decays; the simplest way of reducing the size of the event

Table 10: Diffractive state codes.

KF Printed Meaning
110 rho diff0 Diffractive π0/ρ0/γ state
210 pi diffr+ Diffractive π+ state
220 omega di0 Diffractive ω state
330 phi diff0 Diffractive φ state
440 J/psi di0 Diffractive J/ψ state
2110 n diffr Diffractive n state
2210 p diffr+ Diffractive p state

57



record is actually to switch off π0 decays by MDCY(LUCOMP(111),1)=0. Also note that
some routines, such as LUCLUS and LUCELL, use memory after the event record proper as
a working area. Still, to change the size of the common block, upwards or downwards, is
easy: just do a global substitute in the common block and change the MSTU(4) value to the
new number. If more than 10000 lines are to be used, the packing of colour information
should also be changed, see MSTU(5).

COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5)

Purpose: to contain the event record, i.e. the complete list of all partons and particles
in the current event.

N : number of lines in the K, P and V matrices occupied by the current event. N
is continuously updated as the definition of the original configuration and the
treatment of fragmentation and decay proceed. In the following, the individual
parton/particle number, running between 1 and N, is called I.

K(I,1) : status code KS, which gives the current status of the parton/particle stored in
the line. The ground rule is that codes 1–10 correspond to currently existing
partons/particles, while larger codes contain partons/particles which no longer
exist, or other kinds of event information.

= 0 : empty line.
= 1 : an undecayed particle or an unfragmented jet, the latter being either a

single jet or the last one of a jet system.
= 2 : an unfragmented jet, which is followed by more jets in the same colour-

singlet jet system.
= 3 : an unfragmented jet with special colour flow information stored in K(I,4)

and K(I,5), such that adjacent partons along the string need not follow
each other in the event record.

= 4 : a particle which could have decayed, but did not within the allowed
volume around the original vertex.

= 5 : a particle which is to be forced to decay in the next LUEXEC call, in the
vertex position given (this code is only set by user intervention).

= 11 : a decayed particle or a fragmented jet, the latter being either a single jet
or the last one of a jet system, cf. =1.

= 12 : a fragmented jet, which is followed by more jets in the same colour-singlet
jet system, cf. =2. Further, a B meson which decayed as a B one, or vice
versa, because of B–B mixing, is marked with this code rather than =11.

= 13 : a jet which has been removed when special colour flow information has
been used to rearrange a jet system, cf. =3.

= 14 : a parton which has branched into further partons, with special colour-
flow information provided, cf. =3.

= 15 : a particle which has been forced to decay (by user intervention), cf. =5.
= 21 : documentation lines used to give a compressed story of the event at the

beginning of the event record.
= 31 : lines with information on sphericity, thrust or cluster search.
= 32 : tabular output, as generated by LUTABU.
= 41 : junction (currently not fully implemented).
< 0 : these codes are never used by the program, and are therefore usually

not affected by operations on the record, such as LUROBO, LULIST and
event-analysis routines (the exception is some LUEDIT calls, where lines
are moved but not deleted). Such codes may therefore be useful in some
connections.

K(I,2) : parton/particle KF code, as described in section 5.1.

58



K(I,3) : line number of parent particle or jet, where known, otherwise 0. Note that the
assignment of a particle to a given jet in a jet system is unphysical, and what
is given there is only related to the way the event was generated.

K(I,4) : normally the line number of the first daughter; it is 0 for an undecayed particle
or unfragmented jet.
For K(I,1) = 3, 13 or 14, instead, it contains special colour-flow information
(for internal use only) of the form
K(I,4) = 200000000*MCFR + 100000000*MCTO + 10000*ICFR + ICTO,
where ICFR and ICTO give the line numbers of the partons from which the
colour comes and to where it goes, respectively; MCFR and MCTO originally
are 0 and are set to 1 when the corresponding colour connection has been traced
in the LUPREP rearrangement procedure. (The packing may be changed with
MSTU(5).) The ‘from’ colour position may indicate a parton which branched
to produce the current parton, or a parton created together with the current
parton but with matched anticolour, while the ‘to’ normally indicates a parton
that the current parton branches into. Thus, for setting up an initial colour
configuration, it is normally only the ‘from’ part that is used, while the ‘to’
part is added by the program in a subsequent call to parton-shower evolution
(for final-state radiation; it is the other way around for initial-state radiation).
Note: normally most users never have to worry about the exact rules for
colour-flow storage, since this is used mainly for internal purposes. However,
when it is necessary to define this flow, it is recommended to use the LUJOIN
routine, since it is likely that this would reduce the chances of making a mis-
take.

K(I,5) : normally the line number of the last daughter; it is 0 for an undecayed particle
or unfragmented jet.
For K(I,1) = 3, 13 or 14, instead, it contains special colour-flow information
(for internal use only) of the form
K(I,5) = 200000000*MCFR + 100000000*MCTO + 10000*ICFR + ICTO,
where ICFR and ICTO give the line numbers of the partons from which the
anticolour comes and to where it goes, respectively; MCFR and MCTO orig-
inally are 0 and are set to 1 when the corresponding colour connection has
been traced in the LUPREP rearrangement procedure. For further discussion,
see K(I,4).

P(I,1) : px, momentum in the x direction, in GeV/c.
P(I,2) : py, momentum in the y direction, in GeV/c.
P(I,3) : pz, momentum in the z direction, in GeV/c.
P(I,4) : E, energy, in GeV.
P(I,5) : m, mass, in GeV/c2. In parton showers, with space-like virtualities, i.e. where

Q2 = −m2 > 0, one puts P(I,5)= −Q.
V(I,1) : x position of production vertex, in mm.
V(I,2) : y position of production vertex, in mm.
V(I,3) : z position of production vertex, in mm.
V(I,4) : time of production, in mm/c (≈ 3.33 × 10−12 s).
V(I,5) : proper lifetime of particle, in mm/c (≈ 3.33 × 10−12 s). If the particle is not

expected to decay, V(I,5)=0. A line with K(I,1)=4, i.e. a particle that could
have decayed, but did not within the allowed region, has the proper non-zero
V(I,5).
In the absence of electric or magnetic fields, or other disturbances, the decay
vertex VP of an unstable particle may be calculated as
VP(j) = V(I,j) + V(I,5)*P(I,j)/P(I,5), j = 1–4.

59



5.3 How The Event Record Works

The event record is the main repository for information about an event. In the generation
chain, it is used as a ‘scoreboard’ for what has already been done and what remains to
be done. This information can be studied by you, to access information not only about
the final state, but also about what came before.

5.3.1 A simple example

The example of section 3.5 may help to clarify what is going on. When LU2ENT is called to
generate a qq pair, the quarks are stored in lines 1 and 2 of the event record, respectively.
Colour information is set to show that they belong together as a colour singlet. The
counter N is also updated to the value of 2. At no stage is the previously generated event
removed. Lines 1 and 2 are overwritten, but lines 3 onwards still contain whatever may
have been there before. This does not matter, since N indicates where the ‘real’ record
ends.

As LUEXEC is called, explicitly by you or indirectly by LU2ENT, the first entry is con-
sidered and found to be the first jet of a system. Therefore the second entry is also found,
and these two together form a jet system, which may be allowed to fragment. The ‘string’
that fragments is put in line 3 and the fragmentation products in lines 4 through 10 (in
this particular case). At the same time, the q and q in the first two lines are marked as
having fragmented, and the same for the string. At this stage, N is 10. Internally there is
another counter with the value 2, which indicates how far down in the record the event
has been studied.

This second counter is gradually increased by one. If the entry in the corresponding line
can fragment or decay, then fragmentation or decay is perfomed. The fragmentation/decay
products are added at the end of the event record, and N is updated accordingly. The
entry is then also marked as having been treated. For instance, when line 3 is considered,
the ‘string’ entry of this line is seen to have been fragmented, and no action is taken. Line
4, a ρ+, is allowed to decay to π+π0; the decay products are stored in lines 11 and 12,
and line 4 is marked as having decayed. Next, entry 5 is allowed to decay. The entry in
line 6, π+, is a stable particle (by default) and is therefore passed by without any action
being taken.

In the beginning of the process, entries are usually unstable, and N grows faster than
the second counter of treated entries. Later on, an increasing fraction of the entries are
stable end products, and the rôles are now reversed, with the second counter growing
faster. When the two coincide, the end of the record has been reached, and the process
can be stopped. All unstable objects have now been allowed to fragment or decay. They
are still present in the record, so as to simplify the tracing of the history.

Notice that LUEXEC could well be called a second time. The second counter would then
start all over from the beginning, but slide through until the end without causing any
action, since all objects that can be treated already have been. Unless some of the relevant
switches were changed meanwhile, that is. For instance, if π0 decays were switched off
the first time around but on the second, all the π0’s found in the record would be allowed
to decay in the second call. A particle once decayed is not ‘undecayed’, however, so if the
π0 is put back stable and LUEXEC is called a third time, nothing will happen.

5.3.2 Applications to PYTHIA

In a full-blown event generated with Pythia, the usage of LUJETS is more complicated,
although the general principles survive. LUJETS is used extensively both by the Pythia
and the Jetset routines; indeed it provides the bridge that allows the general utility
routines in Jetset to be used also for Pythia events. The Pythia event listing begins
(optionally) with a few lines of event summary, specific to the hard process simulated

60



and thus not described in the overview above. These specific parts are covered in the
following.

In most instances, only the partons and particles actually produced are of interest. For
MSTP(125)=0, the event record starts off with the parton configuration existing after hard
interaction, initial- and final-state radiation, multiple interactions and beam remnants
have been considered. The partons are arranged in colour singlet clusters, ordered as
required for string fragmentation. Also photons and leptons produced as part of the hard
interaction (e.g. from qq → gγ or uu → Z0 → e+e−) appear in this part of the event
record. These original entries appear with pointer K(I,3)=0, whereas the products of the
subsequent fragmentation and decay have K(I,3) numbers pointing back to the line of
the parent.

The standard documentation, obtained with MSTP(125)=1, includes a few lines at the
beginning of the event record, which contain a brief summary of the process that has taken
place. The number of lines used depends on the nature of the hard process and is stored
in MSTI(4) for the current event. These lines all have K(I,1)=21. For all processes, lines
1 and 2 give the two incoming hadrons. When listed with LULIST, these two lines will be
separated from subsequent ones by a sequence of ‘======’ signs, to improve readability.
For diffractive and elastic events, the two outgoing states in lines 3 and 4 complete the
list. Otherwise, lines 3 and 4 contain the two partons that initiate the two initial-state
parton showers, and 5 and 6 the end products of these showers, i.e. the partons that
enter the hard interaction. With initial-state radiation switched off, lines 3 and 5 and
lines 4 and 6 coincide. For a simple 2 → 2 hard scattering, lines 7 and 8 give the two
outgoing partons/particles from the hard interaction, before any final-state radiation. For
2 → 2 processes proceeding via an intermediate resonance such as γ∗/Z0, W± or H0, the
resonance is found in line 7 and the two outgoing partons/particles in 8 and 9. In some
cases one of these may be a resonance in its own right, or both of them, so that further
pairs of lines are added for subsequent decays. If the decay of a given resonance has
been switched off, then no decay products are listed either in this initial summary or in
the subsequent ordinary listing. Whenever partons are listed, they are assumed to be on
the mass shell for simplicity. The fact that effective masses may be generated by initial-
and final-state radiation is taken into account in the actual parton configuration that is
allowed to fragment, however. A special case is provided by W+W− or Z0Z0 fusion to an
H0. Then the virtual W’s or Z’s are shown in lines 7 and 8, the H0 in line 9, and the
two recoiling quarks (that emitted the bosons) in 10 and 11, followed by the Higgs decay
products. Since the W’s and Z’s are space-like, what is actually listed as the mass for
them is −

√
−m2. The listing of the event documentation closes with another line made

up of ‘======’ signs.
A few examples may help clarify the picture. For a single diffractive event pp → pdiffrp,

the event record will start with
I K(I,1) K(I,2) K(I,3) comment
1 21 2212 0 incoming p
2 21 -2212 0 incoming p

========================= not part of record; appears in listings
3 21 27 1 outgoing pdiffr

4 21 -2212 2 outgoing p
========================= again not part of record

The typical QCD 2 → 2 process would be
I K(I,1) K(I,2) K(I,3) comment
1 21 2212 0 incoming p
2 21 -2212 0 incoming p

=========================
3 21 2 1 u picked from incoming p
4 21 -1 2 d picked from incoming p

61



5 21 21 3 u evolved to g at hard scattering
6 21 -1 4 still d at hard scattering
7 21 21 0 outgoing g from hard scattering
8 21 -1 0 outgoing d from hard scattering

=========================
Note that, where well defined, the K(I,3) code does contain information as to which

side the different partons come from, e.g. above the gluon in line 5 points back to the u
in line 3, which points back to the proton in line 1. In the example above, it would have
been possible to associate the scattered g in line 7 with the incoming one in line 5, but
this is not possible in the general case, consider e.g. gg → gg. As a final example, W+W−

fusion to an H0 in process 8 (not process 124, which is lengthier) might look like
I K(I,1) K(I,2) K(I,3) comment
1 21 2212 0 first incoming p
2 21 2212 0 second incoming p

=========================
3 21 2 1 u picked from first p
4 21 21 2 g picked from second p
5 21 2 3 still u after initial-state radiation
6 21 -4 4 g evolved to c
7 21 24 5 space-like W+ emitted by u quark
8 21 -24 6 space-like W− emitted by c quark
9 21 25 0 Higgs produced by W+W− fusion

10 21 1 5 u turned into d by emission of W+

11 21 -3 6 c turned into s by emission of W−

12 21 23 9 first Z0 coming from decay of H0

13 21 23 9 second Z0 coming from decay of H0

14 21 12 12 νe from first Z0 decay
15 21 -12 12 νe from first Z0 decay
16 21 5 13 b quark from second Z0 decay
17 21 -5 13 b antiquark from second Z0 decay
=========================

After these lines with the initial information, the event record looks the same as
for MSTP(125)=0, i.e. first comes the parton configuration to be fragmented and, after
another separator line ‘======’ in the output (but not the event record), the products
of subsequent fragmentation and decay chains. The K(I,3) pointers for the partons, as
well as leptons and photons produced in the hard interaction, are now pointing towards
the documentation lines above, however. In particular, beam remnants point to 1 or 2,
depending on which side they belong to, and partons emitted in the initial-state parton
showers point to 3 or 4. In the second example above, the partons produced by final-
state radiation will be pointing back to 7 and 8; as usual, it should be remembered that
a specific assignment to 7 or 8 need not be unique. For the third example, final-state
radiation partons will come both from partons 10 and 11 and from partons 16 and 17,
and additionally there will be a neutrino–antineutrino pair pointing to 14 and 15. The
extra pairs of partons that are generated by multiple interactions do not point back to
anything, i.e. they have K(I,3)=0.

There exists a third documentation option, MSTP(125)=2. Here the history of initial-
and final-state parton branchings may be traced, including all details on colour flow. This
information has not been optimized for user-friendliness, and cannot be recommended for
general usage. With this option, the initial documentation lines are the same. They are
followed by blank lines, K(I,1)=0, up to line 20 (can be changed in MSTP(126)). From
line 21 onwards each parton with K(I,1)= 3, 13 or 14 appears with special colour-flow
information in the K(I,4) and K(I,5) positions. For an ordinary 2 → 2 scattering, the
two incoming partons at the hard scattering are stored in lines 21 and 22, and the two

62



outgoing in 23 and 24. The colour flow between these partons has to be chosen according to
the proper relative probabilities in cases when many alternatives are possible, see section
8.2.1. If there is initial-state radiation, the two partons in lines 21 and 22 are copied down
to lines 25 and 26, from which the initial-state showers are reconstructed backwards step
by step. The branching history may be read by noting that, for a branching a → bc,
the K(I,3) codes of b and c point towards the line number of a. Since the showers are
reconstructed backwards, this actually means that parton b would appear in the listing
before parton a and c, and hence have a pointer to a position below itself in the list.
Associated time-like partons c may initiate time-like showers, as may the partons of
the hard scattering. Again a showering parton or pair of partons will be copied down
towards the end of the list and allowed to undergo successive branchings c → de, with
d and e pointing towards c. The mass of time-like partons is properly stored in P(I,5);
for space-like partons −

√
−m2 is stored instead. After this section, containing all the

branchings, comes the final parton configuration, properly arranged in colour, followed by
all subsequent fragmentation and decay products, as usual.

5.4 The HEPEVT Standard

A set of common blocks was developed and agreed on within the framework of the 1989
LEP physics study, see [Sjö89]. This standard defines an event record structure which
should make the interfacing of different event generators much simpler.

It would be a major work to rewrite Pythia/Jetset to agree with this standard
event record structure. More importantly, the standard only covers quantities which can
be defined unambiguously, i.e. which are independent of the particular program used.
There are thus no provisions for the need for colour-flow information in models based
on string fragmentation, etc., so the standard common blocks would anyway have to be
supplemented with additional event information. For the moment, the adopted approach
is therefore to retain the LUJETS event record, but supply a routine LUHEPC which can
convert to or from the standard event record. Owing to a somewhat different content
in the two records, some ambiguities do exist in the translation procedure. LUHEPC has
therefore to be used with some judgment.

In this section, the new standard event structure is first presented, i.e. the most im-
portant points in [Sjö89] are recapitulated. Thereafter the conversion routine is described,
with particular attention to ambiguities and limitations.

The standard event record is stored in two common blocks. The second of these is
specifically intended for spin information. Since Jetset never (explicitly) makes use of
spin information, this latter common block is not addressed here. A third common block
for colour flow information has been discussed, but never formalized.

In order to make the components of the standard more distinguishable in user pro-
grams, the three characters HEP (for High Energy Physics) have been chosen to be a part
of all names.

Originally it was not specified whether real variables should be in single or double
precision. At the time, this meant that single precision became the default choice, but
since then the trend has been towards increasing precision. In connection with the 1995
LEP 2 workshop, it was therefore agreed to adopt DOUBLE PRECISION real variables as
part of the standard.

PARAMETER (NMXHEP=2000)
COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),

&JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),VHEP(4,NMXHEP)
DOUBLE PRECISION PHEP, VHEP

63



Purpose: to contain an event record in a Monte Carlo-independent format.
NMXHEP: maximum numbers of entries (partons/particles) that can be stored in the

common block. The default value of 2000 can be changed via the parameter
construction. In the translation, it is checked that this value is not exceeded.

NEVHEP: is normally the event number, but may have special meanings, according to
the description below:

> 0 : event number, sequentially increased by 1 for each call to the main event
generation routine, starting with 1 for the first event generated.

= 0 : for a program which does not keep track of event numbers, as Jetset.
= -1 : special initialization record; not used by Jetset.
= -2 : special final record; not used by Jetset.

NHEP: the actual number of entries stored in the current event. These are found in the
first NHEP positions of the respective arrays below. Index IHEP, 1≤IHEP≤NHEP,
is used below to denote a given entry.

ISTHEP(IHEP): status code for entry IHEP, with the following meanings:
= 0 : null entry.
= 1 : an existing entry, which has not decayed or fragmented. This is the main

class of entries, which represents the ‘final state’ given by the generator.
= 2 : an entry which has decayed or fragmented and is therefore not appearing

in the final state, but is retained for event history information.
= 3 : a documentation line, defined separately from the event history. This

could include the two incoming reacting particles, etc.
= 4 - 10 : undefined, but reserved for future standards.
= 11 - 200 : at the disposal of each model builder for constructs specific to his

program, but equivalent to a null line in the context of any other program.
= 201 - : at the disposal of users, in particular for event tracking in the detector.

IDHEP(IHEP) : particle identity, according to the PDG standard. The four additional
codes 91–94 have been introduced to make the event history more legible, see
section 5.1 and the MSTU(16) description.

JMOHEP(1,IHEP) : pointer to the position where the mother is stored. The value is 0 for
initial entries.

JMOHEP(2,IHEP) : pointer to position of second mother. Normally only one mother
exists, in which case the value 0 is to be used. In Jetset, entries with
codes 91–94 are the only ones to have two mothers. The flavour con-
tents of these objects, as well as details of momentum sharing, have to be
found by looking at the mother partons, i.e. the two partons in positions
JMOHEP(1,IHEP) and JMOHEP(2,IHEP) for a cluster or a shower system, and
the range JMOHEP(1,IHEP)–JMOHEP(2,IHEP) for a string or an independent
fragmentation parton system.

JDAHEP(1,IHEP) : pointer to the position of the first daughter. If an entry has not
decayed, this is 0.

JDAHEP(2,IHEP) : pointer to the position of the last daughter. If an entry has not
decayed, this is 0. It is assumed that daughters are stored sequentially, so
that the whole range JDAHEP(1,IHEP)–JDAHEP(2,IHEP) contains daughters.
This variable should be set also when only one daughter is present, as in
K0 → K0

S decays, so that looping from the first daughter to the last one works
transparently. Normally daughters are stored after mothers, but in backwards
evolution of initial-state radiation the opposite may appear, i.e. that mothers
are found below the daughters they branch into. Also, the two daughters then
need not appear one after the other, but may be separated in the event record.

PHEP(1,IHEP) : momentum in the x direction, in GeV/c.
PHEP(2,IHEP) : momentum in the y direction, in GeV/c.
PHEP(3,IHEP) : momentum in the z direction, in GeV/c.

64



PHEP(4,IHEP) : energy, in GeV.
PHEP(5,IHEP) : mass, in GeV/c2. For space-like partons, it is allowed to use a negative

mass, according to PHEP(5,IHEP)= −
√
−m2.

VHEP(1,IHEP) : production vertex x position, in mm.
VHEP(2,IHEP) : production vertex y position, in mm.
VHEP(3,IHEP) : production vertex z position, in mm.
VHEP(4,IHEP) : production time, in mm/c (≈ 3.33 × 10−12 s).

This completes the brief description of the standard. In Jetset, the routine LUHEPC
is provided as an interface.

CALL LUHEPC(MCONV)

Purpose: to convert between the LUJETS event record and the HEPEVT event record.
MCONV : direction of conversion.

= 1 : translates the current LUJETS record into the HEPEVT one, while leaving
the original LUJETS one unaffected.

= 2 : translates the current HEPEVT record into the LUJETS one, while leaving
the original HEPEVT one unaffected.

The conversion of momenta is trivial: it is just a matter of exchanging the order of the
indices. The vertex information is but little more complicated; the extra fifth component
present in LUJETS can be easily reconstructed from other information for particles which
have decayed. (Some of the advanced features made possible by this component, such as
the possibility to consider decays within expanding spatial volumes in subsequent LUEXEC
calls, cannot be used if the record is translated back and forth, however.) Also, the
particle codes K(I,2) and IDHEP(I) are identical, since they are both based on the PDG
codes.

The remaining, non-trivial areas deal with the status codes and the event history. In
moving from LUJETS to HEPEVT, information on colour flow is lost. On the other hand, the
position of a second mother, if any, has to be found; this only affects lines with K(I,2)=
91–94. Also, for lines with K(I,1)= 13 or 14, the daughter pointers have to be found. By
and large, however, the translation from LUJETS to HEPEVT should cause little problem,
and there should never be any need for user intervention. (We assume that Jetset is run
with the default MSTU(16)=1, otherwise some discrepancies with respect to the proposed
standard event history description will be present.)

In moving from HEPEVT to LUJETS, information on a second mother is lost. Any
codes IDHEP(I) not equal to 1, 2 or 3 are translated into K(I,1)=0, and so all entries
with K(I,1)≥ 30 are effectively lost in a translation back and forth. All entries with
IDHEP(I)=2 are translated into K(I,1)=11, and so entries of type K(I,1) = 12, 13, 14
or 15 are never found. There is thus no colour-flow information available for partons
which have fragmented. For partons with IDHEP(I)=1, i.e. which have not fragmented,
an attempt is made to subdivide the partonic system into colour singlets, as required
for subsequent string fragmentation. To this end, it is assumed that partons are stored
sequentially along strings. Normally, a string would then start at a q (q) or qq (qq) entry,
cover a number of intermediate gluons, and end at a q (q) or qq (qq) entry. Particles
could be interspersed in this list with no adverse effects, i.e. a u − g − γ − u sequence
would be interpreted as a u− g−u string plus an additional photon. A closed gluon loop
would be assumed to be made up of a sequential listing of the gluons, with the string
continuing from the last gluon up back to the first one. Contrary to the previous, open
string case, the appearance of any particle but a gluon would therefore signal the end of
the gluon loop. For example, a g − g − g − g sequence would be interpreted as one single
four-gluon loop, while a g − g − γ − g − g sequence would be seen as composed of two

65



2-gluon systems.
If these interpretations, which are not unique, are not to your liking, it is up to you

to correct them, e.g. by using LUJOIN to tell exactly which partons should be joined, in
which sequence, to give a string. Calls to LUJOIN (or the equivalent) are also necessary if
LUSHOW is to be used to have some partons develop a shower.

For practical applications, one should note that Jetset e+e− events, which have been
allowed to shower but not to fragment, do have partons arranged in the order assumed
above, so that a translation to HEPEVT and back does not destroy the possibility to perform
fragmentation by a simple LUEXEC call. Also the hard interactions in Pythia fulfil this
condition, while problems may appear in the multiple interaction scenario, where several
closed gg loops may appear directly following one another, and thus would be interpreted
as a single multigluon loop after translation back and forth.

66



6 Hard Processes in JETSET

Jetset contains the simulation of two hard processes. The process of main interest is
e+e− → γ∗/Z0 → qq. Higher-order QCD corrections can be obtained either with parton
showers or with second-order matrix elements. The details of the parton-shower evolution
are given in section 10, while this section contains the matrix-element description, includ-
ing a summary of the Jetset algorithm for initial-state photon radiation. Also Pythia
can be used to simulate the process e+e− → γ∗/Z0 → qq, but without the options of
using second-order matrix elements or polarized incoming beams. Some other differences
between the two algorithms are described.

The other hard process in Jetset is Υ decay to ggg or γgg, which is briefly commented
on.

The main sources of information for this chapter are refs. [Sjö83, Sjö86, Sjö89].

6.1 Annihilation Events in the Continuum

The description of e+e− annihilation into hadronic events involves a number of compo-
nents: the s dependence of the total cross section and flavour composition, multijet matrix
elements, angular orientation of events, initial-state photon bremsstrahlung and effects of
initial-state electron polarization. Many of the published formulae have been derived for
the case of massless outgoing quarks. For each of the components described in the fol-
lowing, we will begin by discussing the massless case, and then comment on what is done
to accommodate massive quarks.

6.1.1 Electroweak cross sections

In the standard theory, fermions have the following couplings (illustrated here for the first
generation):

eν = 0, vν = 1, aν = 1,
ee = −1, ve = −1 + 4 sin2θW , ae = −1,
eu = 2/3, vu = 1 − 8 sin2θW/3, aν = 1,
ed = −1/3, vd = −1 + 4 sin2θW/3, ad = −1,

with e the electric charge, and v and a the vector and axial couplings to the Z0. The
relative energy dependence of the weak neutral current to the electromagnetic one is given
by

χ(s) =
1

4 sin2θW cos2θW

s

s−m2
Z + imZΓZ

, (19)

where s = E2
cm. In Jetset the electroweak mixing parameter sin2θW and the Z0 mass

mZ and width ΓZ are considered as constants to be given by you (while Pythia itself
calculates an s-dependent width).

Although the incoming e+ and e− beams are normally unpolarized, we have included
the possibility of polarized beams, following the formalism of [Ols80]. Thus the incoming
e+ and e− are characterized by polarizations P± in the rest frame of the particles:

P± = P±
T ŝ± + P±

L p̂± , (20)

where 0 ≤ P±
T ≤ 1 and −1 ≤ P±

L ≤ 1, with the constraint

(P±)2 = (P±
T )2 + (P±

L )2 ≤ 1 . (21)

Here ŝ± are unit vectors perpendicular to the beam directions p̂±. To be specific, we
choose a right-handed coordinate frame with p̂± = (0, 0,∓1), and standard transverse

67



polarization directions (out of the machine plane for storage rings) ŝ± = (0,±1, 0), the
latter corresponding to azimuthal angles ϕ± = ±π/2. As free parameters in the program

we choose P+
L , P−

L , PT =
√

P+
T P

−
T and ∆ϕ = (ϕ+ + ϕ−)/2.

In the massless QED case, the probability to produce a flavour f is proportional to e2f ,
i.e up-type quarks are four times as likely as down-type ones. In lowest-order massless
QFD the corresponding relative probabilities are given by [Ols80]

hf(s) = e2e (1 − P+
L P

−
L ) e2f + 2ee

{

ve(1 − P+
L P

−
L ) − ae(P

−
L − P+

L )
}

ℜχ(s) efvf +

+
{

(v2e + a2e)(1 − P+
L P

−
L ) − 2veae(P

−
L − P+

L )
}

|χ(s)|2
{

v2f + a2f
}

, (22)

where ℜχ(s) denotes the real part of χ(s). The hf(s) expression depends both on the s
value and on the longitudinal polarization of the e± beams in a non-trivial way.

The cross section for the process e+e− → γ∗/Z0 → ff may now be written as

σf(s) =
4πα2

em

3s
Rf(s) , (23)

where Rf gives the ratio to the lowest-order QED cross section for the process e+e− →
µ+µ−,

Rf(s) = NC RQCD hf(s) . (24)

The factor of NC = 3 counts the number of colour states available for the qq pair. The
RQCD factor takes into account QCD loop corrections to the cross section. For nf effective
flavours (normally nf = 5)

RQCD ≈ 1 +
αs

π
+ (1.986 − 0.115nf )

(

αs

π

)2

+ · · · (25)

in the MS renormalization scheme [Din79]. Note that RQCD does not affect the relative
quark-flavour composition, and so is of peripheral interest in Jetset. (For leptons the
NC and RQCD factors would be absent, i.e. NC RQCD = 1, but leptonic final states are
not generated in Jetset.)

Neglecting higher-order QCD and QFD effects, the corrections for massive quarks are

given in terms of the velocity vq of a quark with mass mq, vq =
√

1 − 4m2
q/s, as follows.

The vector quark current terms in hf (proportional to e2f , efvf , or v2f ) are multiplied by a
threshold factor vq(3 − v2q)/2, while the axial vector quark current term (proportional to

a2f ) is multiplied by v3q. While inclusion of quark masses in the QFD formulae decreases
the total cross section, first-order QCD corrections tend in the opposite direction [Jer81].
Näıvely, one would expect one factor of vq to get cancelled. So far, the available options
are either to include threshold factors in full or not at all.

Given that all five quarks are light at the scale of the Z0, the issue of quark masses
is not really of interest at LEP. Here, however, purely weak corrections are important, in
particular since they change the b quark partial width differently from that of the other
ones [Küh89]. No such effects are included in the program.

6.1.2 First-order QCD matrix elements

The Born process e+e− → qq is modified in first-order QCD by the probability for the q or
q to radiate a gluon, i.e. by the process e+e− → qqg. The matrix element is conveniently
given in terms of scaled energy variables in the c.m. frame of the event, x1 = 2Eq/Ecm,

68



x2 = 2Eq/Ecm, and x3 = 2Eg/Ecm, i.e. x1 + x2 + x3 = 2. For massless quarks the matrix
element reads [Ell76]

1

σ0

dσ

dx1 dx2
=
αs

2π
CF

x21 + x22
(1 − x1)(1 − x2)

, (26)

where σ0 is the lowest-order cross section, CF = 4/3 is the appropriate colour factor, and
the kinematically allowed region is 0 ≤ xi ≤ 1, i = 1, 2, 3. By kinematics, the xk variable
for parton k is related to the invariant mass mij of the other two partons i and j by
yij = m2

ij/E
2
cm = 1 − xk.

The strong coupling constant αs is in first order given by

αs(Q
2) =

12π

(33 − 2nf ) ln(Q2/Λ2)
. (27)

Conventionally Q2 = s = E2
cm; we will return to this issue below. The number of flavours

nf is 5 for LEP applications, and so the Λ value determined is Λ5 (while e.g. most deep
inelastic scattering studies refer to Λ4, the energies for these experiments being below the
bottom threshold). The αs values are matched at flavour thresholds, i.e. as nf is changed
the Λ value is also changed. It is therefore the derivative of αs that changes at a threshold,
not αs itself.

In order to separate 2-jets from 3-jets, it is useful to introduce jet-resolution param-
eters. This can be done in several different ways. Most famous are the y and (ǫ, δ)
procedures. We will only refer to the y cut, which is the one used in the program. Here
a 3-parton configuration is called a 2-jet event if

min
i,j

(yij) = min
i,j

(

m2
ij

E2
cm

)

< y . (28)

The cross section in eq. (26) diverges for x1 → 1 or x2 → 1 but, when first-order
propagator and vertex corrections are included, a corresponding singularity with opposite
sign appears in the qq cross section, so that the total cross section is finite. In analytical
calculations, the average value of any well-behaved quantity Q can therefore be calculated
as

〈Q〉 =
1

σtot
lim
y→0

(

Q(2parton) σ2parton(y) +
∫

yij>y
Q(x1, x2)

dσ3parton
dx1 dx2

dx1 dx2

)

, (29)

where any explicit y dependence disappears in the limit y → 0.
In a Monte Carlo program, it is not possible to work with a negative total 2-jet rate,

and thus it is necessary to introduce a fixed non-vanishing y cut in the 3-jet phase space.
Experimentally, there is evidence for the need of a low y cut, i.e. a large 3-jet rate. For
LEP applications, the recommended value is y = 0.01, which is about as far down as one
can go and still retain a positive 2-jet rate. With αs = 0.12, in full second-order QCD
(see below), the 2 : 3 : 4 jet composition is then approximately 11% : 77% : 12%.

Note, however, that initial-state QED radiation may occasionally lower the c.m. energy
significantly, i.e. increase αs, and thereby bring the 3-jet fraction above unity if y is kept
fixed at 0.01 also in those events. Therefore, at PETRA/PEP energies, y values slightly
above 0.01 are needed. In addition to the y cut, the program contains a cut on the
invariant mass mij between any two partons, which is typically required to be larger than
2 GeV. This cut corresponds to the actual merging of two nearby parton jets, i.e. where a
treatment with two separate partons rather than one would be superfluous in view of the
smearing arising from the subsequent fragmentation. Since the cut-off mass scale

√
yEcm

normally is much larger, this additional cut only enters for events at low energies.

69



For massive quarks, the amount of QCD radiation is slightly reduced [Iof78]:

1

σ0

dσ

dx1 dx2
=

αs

2π
CF

{

x21 + x22
(1 − x1)(1 − x2)

− 4m2
q

s

(

1

1 − x1
+

1

1 − x2

)

− 2m2
q

s

(

1

(1 − x1)2
+

1

(1 − x2)2

)

− 4m4
q

s2

(

1

1 − x1
+

1

1 − x2

)2
}

. (30)

In addition, the phase space for emission is reduced by the requirement

(1 − x1)(1 − x2)(1 − x3)

x23
≥ m2

q

s
. (31)

For b quarks at LEP energies, these corrections are fairly small.

6.1.3 4-jet matrix elements

Two new event types are added in second-order QCD, e+e− → qqgg and e+e− → qqq′q′.
The 4-jet cross section has been calculated by several groups [Ali80a, Gae80, Ell81, Dan82],
which agree on the result. The formulae are too lengthy to be quoted here. In one of the
calculations [Ali80a], quark masses were explicitly included, but Jetset only includes
the massless expressions, as taken from [Ell81]. Here the angular orientation of the event
has been integrated out, so that five independent internal kinematical variables remain.
These may be related to the six yij and the four yijk variables, yij = m2

ij/s = (pi + pj)
2/s

and yijk = m2
ijk/s = (pi + pj + pk)

2/s, in terms of which the matrix elements are given.
The original calculations were for the pure γ-exchange case; it was recently pointed

out [Kni89] that an additional contribution to the e+e− → qqq′q′ cross section arises from
the axial part of the Z0. This term is not included in the program, but fortunately it is
finite and small.

Whereas the way the string, i.e. the fragmenting colour flux tube, is stretched is
uniquely given in qqg event, for qqgg events there are two possibilities: q − g1 − g2 − q
or q − g2 − g1 − q. A knowledge of quark and gluon colours, obtained by perturbation
theory, will uniquely specify the stretching of the string, as long as the two gluons do not
have the same colour. The probability for the latter is down in magnitude by a factor
1/N2

C = 1/9. One may either choose to neglect these terms entirely, or to keep them for the
choice of kinematical setup, but then drop them at the choice of string drawing [Gus82].
We have adopted the latter procedure. Comparing the two possibilities, differences are
typically 10–20% for a given kinematical configuration, and less for the total 4-jet cross
section, so from a practical point of view this is not a major problem.

In higher orders, results depend on the renormalization scheme; we will use MS
throughout. In addition to this choice, several possible forms can be chosen for αs, all
of which are equivalent to that order but differ in higher orders. We have picked the
recommended standard [PDG88]

αs(Q
2) =

12π

(33 − 2nf ) ln(Q2/Λ2
MS

)

{

1 − 6
153 − 19nf
(33 − 2nf )2

ln(ln(Q2/Λ2
MS

))

ln(Q2/Λ2
MS

)

}

. (32)

6.1.4 Second-order 3-jet matrix elements

As for first order, a full second-order calculation consists both of real parton emission
terms and of vertex and propagator corrections. These modify the 3-jet and 2-jet cross
sections. Although there was some initial confusion, everybody soon agreed on the size
of the loop corrections [Ell81, Ver81, Fab82]. In analytic calculations, the procedure

70



of eq. (29), suitably expanded, can therefore be used unambiguously for a well-behaved
variable.

For Monte Carlo event simulation, it is again necessary to impose some finite jet-
resolution criterion. This means that four-parton events which fail the cuts should be
reassigned either to the 3-jet or to the 2-jet event class. It is this area that caused quite a
lot of confusion in the past [Kun81, Got82, Ali82, Zhu83, Gut84, Gut87, Kra88], and where
full agreement does not exist. Most likely, agreement will never be reached, since there
are indeed ambiguous points in the procedure, related to uncertainties on the theoretical
side, as follows.

For the y-cut case, any two partons with an invariant mass m2
ij < yE2

cm should be
recombined into one. If the four-momenta are simply added, the sum will correspond
to a parton with a positive mass, namely the original mij. The loop corrections are
given in terms of final massless partons, however. In order to perform the (partial)
cancellation between the four-parton real and the 3-parton virtual contributions, it is
therefore necessary to get rid of the bothersome mass in the four-parton states. Several
recombinations are used in practice, which go under names such as ‘E’, ‘E0’, ‘p’ and
‘p0’ [OPA91]. In the ‘E’-type schemes, the energy of a recombined parton is given by
Eij = Ei + Ej, and three-momenta may have to be adjusted accordingly. In the ‘p’-
type schemes, on the other hand, three-momenta are added, pij = pi + pj, and then
energies may have to be adjusted. These procedures result in different 3-jet topologies,
and therefore in different second-order differential 3-jet cross sections.

Within each scheme, a number of lesser points remain to be dealt with, in particular
what to do if a recombination of a nearby parton pair were to give an event with a non-qqg
flavour structure.

Jetset contains two alternative second-order 3-jet implementations, GKS and
ERT(Zhu). For historical reasons the former is default, but actually the latter is the
recommended one today. Other parametrizations have also been made available that run
together with Jetset, see [Sjö89, Mag89].

The GKS option is based on the GKS [Gut84] calculation, where some of the original
mistakes in FKSS [Fab82] have been corrected. The GKS formulae have the advantage of
giving the second-order corrections in closed analytic form, as not-too-long functions of
x1, x2, and the y cut. However, it is today recognized, also by the authors, that important
terms are still missing, and that the matrix elements should therefore not be taken too
seriously. The option is thus kept mainly for backwards compatibility.

The ERT(Zhu) generator [Zhu83] is based on the ERT matrix elements [Ell81], with
a Monte Carlo recombination procedure suggested by Kunszt [Kun81] and developed by
Ali [Ali82]. It has the merit of giving corrections in a convenient, parametrized form.
For practical applications, the main limitation is that the corrections are only given for
discrete values of the cut-off parameter y, namely y = 0.01, 0.02, 0.03, 0.04, and 0.05.

The basic approach is the following. Without any loss of generality, the full second-
order 3-jet cross section can be written in terms of the ‘ratio function’ R(X, Y ; y), defined
by

1

σ0

dσtot
3

dX dY
=
αs

π
A0(X, Y )

{

1 +
αs

π
R(X, Y ; y)

}

, (33)

where X = x1 − x2 = xq − xq, Y = x3 = xg, σ0 is the lowest-order hadronic cross
section, and A0(X, Y ) the standard first-order 3-jet cross section, cf. eq. (26). By Monte
Carlo integration, the value of R(X, Y ; y) is evaluated in bins of (X, Y ), and the result
parametrized by a simple function F (X, Y ; y).

In order to obtain the second-order 3-jet rate, a small cut y0 = 10−7 was introduced.
It was assumed that four-parton events which fail this cut can be (partly) cancelled
analytically against the virtual 3-jet events, to give a net ‘regularized virtual’ contribution
to the 3-jet rate. For a given choice of y cut, in the physical range y ≫ y0, an additional

71



‘soft’ contribution comes from four-parton events which survive the y0 cut but fail the y
one.

A large sample (9 000 000) of four-parton events was generated inside the y0 cut region.
For events which failed the more stringent y cuts, the parton pair with the smallest
invariant mass was recombined into an effective jet, using the ‘p0’ recombination scheme.
This means that the individual three-momenta were added, pij = pi + pj, the mass of
the recombined pair was set to zero for the calculation of energy, Eij = |pi + pj|, and
finally all four-momenta were rescaled by a common factor so as to preserve the correct
c.m. frame energy.

In calculating the O(α2
s ) correction functions, care was taken to maintain the flavour

signature of the jets in the recombination process. A quark and a gluon were recombined
into a quark with the same flavour as the original quark, two gluons were recombined to
form a gluon, etc. In some cases the three jets of the final state were not in the standard
qqg configuration. The probability for this to happen corresponded to less than 0.5% of
the total cross section, even for the most stringent cuts used. For these non-qqg final
states, the assignment of q, q and g was done at random.

The sum of ‘regularized virtual’ (1 000 000 3-jet events were generated, with evaluated
second-order weights) and ‘soft’ corrections, normalized to the first-order 3-jet cross sec-
tion, was tabulated in the (X, Y ) plane, using bins of size 0.05 × 0.05. This estimated
R-function behaviour was then fit with a 12-parameter function F ,

F (X, Y ; y) = p1 + p2X
2 + p3X

4 + (p4 + p5X
2)Y + (p6 + p7X

2)Y 2 +

(p8 + p9X
2)Y 3 + p10/(X

2 − Y 2) + p11/(1 − Y ) + p12/Y . (34)

The parameters pi are reproduced in [Sjö89].

6.1.5 The matrix-element event generator scheme

The program contains parametrizations, separately, of the total first-order 3-jet rate, the
total second-order 3-jet rate, and the total 4-jet rate, all as functions of y (with αs as a
separate prefactor). These parametrizations have been obtained as follows:

• The first-order 3-jet matrix element is almost analytically integrable; some small
finite pieces were obtained by a truncated series expansion of the relevant integrand.

• The GKS second-order 3-jet matrix elements were integrated for 40 different y-cut
values, evenly distributed in ln y between a smallest value y = 0.001 and the kine-
matical limit y = 1/3. For each y value, 250 000 phase-space points were generated,
evenly in d ln(1− xi) = dxi/(1− xi), i = 1, 2, and the second-order 3-jet rate in the
point evaluated. The properly normalized sum of weights in each of the 40 y points
were then fitted to a polynomial in ln(y−1 − 2). For the ERT(Zhu) matrix elements
the parametrizations in eq. (34) were used to perform a corresponding Monte Carlo
integration for the five y values available.

• The 4-jet rate was integrated numerically, separately for qqgg and qqq′q′ events, by
generating large samples of 4-jet phase-space points within the boundary y = 0.001.
Each point was classified according to the actual minimum y between any two
partons. The same events could then be used to update the summed weights for
40 different counters, corresponding to y values evenly distributed in ln y between
y = 0.001 and the kinematical limit y = 1/6. In fact, since the weight sums for large
y values only received contributions from few phase-space points, extra (smaller)
subsamples of events were generated with larger y cuts. The summed weights,
properly normalized, were then parametrized in terms of polynomials in ln(y−1−5).
Since it turned out to be difficult to obtain one single good fit over the whole range
of y values, different parametrizations are used above and below y = 0.018. As
originally given, the qqq′q′ parametrization only took into account four q′ flavours,
i.e. secondary bb pairs were not generated, but this has been corrected for LEP.

72



In the generation stage, each event is treated on its own, which means that the αs and
y values may be allowed to vary from event to event. The main steps are the following.

1. The y value to be used in the current event is determined. If possible, this is
the value given by you, but additional constraints exist from the validity of the
parametrizations (y ≥ 0.001 for GKS, 0.01 ≤ y ≤ 0.05 for ERT(Zhu)) and an
extra (user-modifiable) requirement of a minimum absolute invariant mass between
jets (which translates into varying y cuts due to the effects of initial-state QED
radiation).

2. The αs value is calculated.
3. For the y and αs values given, the relative two/three/4-jet composition is deter-

mined. This is achieved by using the parametrized functions of y for 3- and 4-jet
rates, multiplied by the relevant number of factors of αs. In ERT(Zhu), where the
second-order 3-jet rate is available only at a few y values, intermediate results are
obtained by linear interpolation in the ratio of second-order to first-order 3-jet rates.
The 3-jet and 4-jet rates are normalized to the analytically known second-order to-
tal event rate, i.e. divided by RQCD of eq. (25). Finally, the 2-jet rate is obtained
by conservation of total probability.

4. If the combination of y and αs values is such that the total 3- plus 4-jet fraction is
larger than unity, i.e. the remainder 2-jet fraction negative, the y-cut value is raised
(for that event), and the process is started over at point 3.

5. The choice is made between generating a 2-, 3- or 4-jet event, according to the
relative probabilities.

6. For the generation of 4-jets, it is first necessary to make a choice between qqgg
and qqq′q′ events, according to the relative (parametrized) total cross sections. A
phase-space point is then selected, and the differential cross section at this point is
evaluated and compared with a parametrized maximum weight. If the phase-space
point is rejected, a new one is selected, until an acceptable 4-jet event is found.

7. For 3-jets, a phase-space point is first chosen according to the first-order cross sec-
tion. For this point, the weight

W (x1, x2; y) = 1 +
αs

π
R(x1, x2; y) (35)

is evaluated. Here R(x1, x2; y) is analytically given for GKS [Gut84], while it is
approximated by the parametrization F (X, Y ; y) of eq. (34) for ERT(Zhu). Again,
linear interpolation of F (X, Y ; y) has to be applied for intermediate y values. The
weight W is compared with a maximum weight

Wmax(y) = 1 +
αs

π
Rmax(y) , (36)

which has been numerically determined beforehand and suitably parametrized. If
the phase-space point is rejected, a new point is generated, etc.

8. Massive matrix elements are not available in Jetset for second-order QCD (but
are in the first-order option). However, if a 3- or 4-jet event determined above falls
outside the phase-space region allowed for massive quarks, the event is rejected and
reassigned to be a 2-jet event. (The way the yij and yijk variables of 4-jet events
should be interpreted for massive quarks is not even unique, so some latitute has
been taken here to provide a reasonable continuity from 3-jet events.) This proce-
dure is known not to give the expected full mass suppression, but is a reasonable
first approximation.

9. Finally, if the event is classified as a 2-jet event, either because it was initially so
assigned, or because it failed the massive phase-space cuts for 3- and 4-jets, the
generation of 2-jets is trivial.

73



6.1.6 Optimized perturbation theory

Theoretically, it turns out that the second-order corrections to the 3-jet rate are large. It is
therefore not unreasonable to expect large third-order corrections to the 4-jet rate. Indeed,
the experimental 4-jet rate is much larger than second order predicts (when fragmentation
effects have been folded in), if αs is determined based on the 3-jet rate [Sjö84a, JAD88].

The only consistent way to resolve this issue is to go ahead and calculate the full next
order. This is a tough task, however, so people have looked at possible shortcuts. For
example, one can try to minimize the higher-order contributions by a suitable choice of
the renormalization scale [Ste81] — ‘optimized perturbation theory’. This is equivalent
to a different choice for the Q2 scale in αs, a scale which is not unambiguous anyway.
Indeed the standard value Q2 = s = E2

cm is larger than the natural physical scale of
gluon emission in events, given that most gluons are fairly soft. One could therefore pick
another scale, Q2 = fs, with f < 1. The O(αs) 3-jet rate would be increased by such
a scale change, and so would the number of 4-jet events, including those which collapse
into 3-jet ones. The loop corrections depend on the Q2 scale, however, and compensate
the changes above by giving a larger negative contribution to the 3-jet rate.

The possibility of picking an optimized scale f is implemented as follows [Sjö89].
Assume that the differential 3-jet rate at scale Q2 = s is given by the expression

R3 = r1αs + r2α
2
s , (37)

where R3, r1 and r2 are functions of the kinematical variables x1 and x2 and the y cut,
as described above. When the coupling is chosen at a different scale, Q′2 = fs, the 3-jet
rate has to be changed to

R′
3 = r′1α

′
s + r2α

′2
s , (38)

where r′1 = r1,

r′2 = r2 + r1
33 − 2nf

12π
ln f , (39)

and α′
s = αs(fs). Since we only have the Born term for 4-jets, here the effects of a scale

change come only from the change in the coupling constant. Finally, the 2-jet cross section
can still be calculated from the difference between the total cross section and the 3- and
4-jet cross sections.

If an optimized scale is used in the program, the default value is f = 0.002, which is
favoured by the studies in ref. [Bet89]. (In fact, it is also possible to use a correspondingly
optimized RQCD factor, eq. (25), but then the corresponding f is chosen independently
and much closer to unity.) The success of describing the jet rates should not hide the fact
that one is dabbling in (educated, hopefully) guesswork, and that any conclusions based
on this method have to be taken with a pinch of salt.

One special problem associated with the use of optimized perturbation theory is that
the differential 3-jet rate may become negative over large regions of the (x1, x2) phase
space. This problem already exists, at least in principle, even for a scale f = 1, since r2 is
not guaranteed to be positive definite. Indeed, depending on the choice of y cut, αs value
and recombination scheme, one may observe a small region of negative differential 3-jet
rate for the full second-order expression. This region is centred around qqg configurations,
where the q and q are close together in one hemisphere and the g is alone in the other, i.e.
x1 ≈ x2 ≈ 1/2. It is well understood why second-order corrections should be negative in
this region [Dok89]: the q and q of a qqg state are in a relative colour octet state, and thus
the colour force between them is repulsive, which translates into a negative second-order
term.

However, as f is decreased below unity, r′2 receives a negative contribution from the ln f
term, and the region of negative differential cross section has a tendency to become larger,
also after taking into account related changes in αs. In an event-generator framework,

74



where all events are supposed to come with unit weight, it is clearly not possible to
simulate negative cross sections. What happens in the program is therefore that no 3-jet
events at all are generated in the regions of negative differential cross section, and that
the 3-jet rate in regions of positive cross sections is reduced by a constant factor, chosen
so that the total number of 3-jet events comes out as it should. This is a consequence
of the way the program works, where it is first decided what kind of event to generate,
based on integrated 3-jet rates in which positive and negative contributions are added up
with sign, and only thereafter the kinematics is chosen.

Based on our physics understanding of the origin of this negative cross section, the
approach adopted is as sensible as any, at least to that order in perturbation theory (what
one might strive for is a properly exponentiated description of the relevant region). It can
give rise to funny results for low f values, however, as observed by OPAL [OPA92] for
the energy–energy correlation asymmetry.

6.1.7 Angular orientation

While pure γ exchange gives a simple 1 + cos2 θ distribution for the q (and q) direction in
qq events, Z0 exchange and γ∗/Z0 interference results in a forward–backward asymmetry.
If one introduces

h′f(s) = 2ee
{

ae(1 − P+
L P

−
L ) − ve(P

−
L − P+

L )
}

ℜχ(s)efaf

+
{

2veae(1 − P+
L P

−
L ) − (v2e + a2e)(P

−
L − P+

L )
}

|χ(s)|2 vfaf , (40)

then the angular distribution of the quark is given by

dσ

d(cos θf)
∝ hf(s)(1 + cos2 θf) + 2h′f(s) cos θf . (41)

The angular orientation of a 3- or 4-jet event may be described in terms of three angles
χ, θ and ϕ; for 2-jet events only θ and ϕ are necessary. From a standard orientation,
with the q along the +z axis and the q in the xz plane with px > 0, an arbitrary
orientation may be reached by the rotations +χ in azimuthal angle, +θ in polar angle,
and +ϕ in azimuthal angle, in that order. Differential cross sections, including QFD
effects and arbitrary beam polarizations have been given for 2- and 3-jet events in refs.
[Ols80, Sch80]. We use the formalism of ref. [Ols80], with χ→ π−χ and ϕ− → −(ϕ+π/2).
The resulting formulae are tedious, but straightforward to apply, once the internal jet
configuration has been chosen. 4-jet events are approximated by 3-jet ones, by joining the
two gluons of a qqgg event and the q′ and q′ of a qqq′q′ event into one effective jet. This
means that some angular asymmetries are neglected [Ali80a], but that weak effects are
automatically included. It is assumed that the second-order 3-jet events have the same
angular orientation as the first-order ones, some studies on this issue may be found in
[Kör85]. Further, the formulae normally refer to the massless case; only for the QED 2-
and 3-jet cases are mass corrections available.

The main effect of the angular distribution of multijet events is to smear the lowest-
order result, i.e. to reduce any anisotropies present in 2-jet systems. In the parton-shower
option of the program, only the initial qq axis is determined. The subsequent shower
evolution then de facto leads to a smearing of the jet axis, although not necessarily in full
agreement with the expectations from multijet matrix-element treatments.

6.1.8 Initial-state radiation

Initial-state photon radiation has been included using the formalism of ref. [Ber82]. Here
each event contains either no photon or one, i.e. it is a first-order non-exponentiated

75



description. The main formula for the hard radiative photon cross section is

dσ

dxγ
=
αem

π

(

ln
s

m2
e

− 1

)

1 + (1 − xγ)
2

xγ
σ0(ŝ) , (42)

where xγ is the photon energy fraction of the beam energy, ŝ = (1 − xγ)s is the squared
reduced hadronic c.m. energy, and σ0 is the ordinary annihilation cross section at the
reduced energy. In particular, the selection of jet flavours should be done according to
expectations at the reduced energy. The cross section is divergent both for xγ → 1 and
xγ → 0. The former is related to the fact that σ0 has a 1/ŝ singularity (the real photon
pole) for ŝ → 0. An upper cut on xγ can here be chosen to fit the experimental setup.
The latter is a soft photon singularity, which is to be compensated in the no-radiation
cross section. A requirement xγ > 0.01 has therefore been chosen so that the hard-
photon fraction is smaller than unity. In the total cross section, effects from photons
with xγ < 0.01 are taken into account, together with vertex and vacuum polarization
corrections (hadronic vacuum polarizations using a simple parametrization of the more
complicated formulae of ref. [Ber82]).

The hard photon spectrum can be integrated analytically, for the full γ∗/Z0 structure
including interference terms, provided that no new flavour thresholds are crossed and that
the RQCD term in the cross section can be approximated by a constant over the range
of allowed ŝ values. In fact, threshold effects can be taken into account by standard
rejection techniques, at the price of not obtaining the exact cross section analytically, but
only by an effective Monte Carlo integration taking place in parallel with the ordinary
event generation. In addition to xγ, the polar angle θγ and azimuthal angle ϕγ of the
photons are also to be chosen. Further, for the orientation of the hadronic system, a
choice has to be made whether the photon is to be considered as having been radiated
from the e+ or from the e−.

Final-state photon radiation, as well as interference between initial- and final-state
radiation, has been left out of this treatment. The formulae for e+e− → µ+µ− cannot
be simply taken over for the case of outgoing quarks, since the quarks as such only live
for a short while before turning into hadrons. Another simplification in our treatment is
that effects of incoming polarized e± beams have been completely neglected, i.e. neither
the effective shift in azimuthal distribution of photons nor the reduction in polarization is
included. The polarization parameters of the program are to be thought of as the effective
polarization surviving after initial-state radiation.

6.1.9 Alternative matrix elements

The program contains two sets of ‘toy model’ matrix elements, one for an Abelian vector
gluon model and one for a scalar gluon model. Clearly both of these alternatives are
already excluded by data, and are anyway not viable alternatives for a consistent theory
of strong interactions. They are therefore included more as references to show how well
the characteristic features of QCD can be measured experimentally.

Second-order matrix elements are available for the Abelian vector gluon model. These
are easily obtained from the standard QCD matrix elements by a substitution of the
Casimir group factors: CF = 4/3 → 1, NC = 3 → 0, and TR = nf/2 → 3nf . First-order
matrix elements contain only CF ; therefore the standard first-order QCD results may be
recovered by a rescaling of αs by a factor 4/3. In second order the change of NC to 0
means that g → gg couplings are absent from the Abelian model, while the change of TR
corresponds to an enhancement of the g → q′q′ coupling, i.e. to an enhancement of the
qqq′q′ 4-jet event rate.

The second-order corrections to the 3-jet rate turn out to be strongly negative — if
αs is fitted to get about the right rate of 4-jet events, the predicted differential 3-jet rate

76



is negative almost everywhere in the (x1, x2) plane. Whether this unphysical behaviour
would be saved by higher orders is unclear. It has been pointed out that the rate can
be made positive by a suitable choice of scale, since αs runs in opposite directions in an
Abelian model and in QCD [Bet89]. This may be seen directly from eq. (39), where the
term 33 = 11NC is absent in the Abelian model, and therefore the scale-dependent term
changes sign. In the program, optimized scales have not been implemented for this toy
model. Therefore the alternatives provided for you are either to generate only 4-jet events,
or to neglect second-order corrections to the 3-jet rate, or to have the total 3-jet rate set
vanishing (so that only 2- and 4-jet events are generated). Normally we would expect the
former to be the one of most interest, since it is in angular (and flavour) distributions
of 4-jet events that the structure of QCD can be tested. Also note that the ‘correct’
running of αs is not included; you are expected to use the option where αs is just given
as a constant number.

The scalar gluon model is even more excluded than the Abelian vector one, since
differences appear already in the 3-jet matrix element [Lae80]:

dσ

dx1 dx2
∝ x23

(1 − x1)(1 − x2)
(43)

when only γ exchange is included. The axial part of the Z0 gives a slightly different
shape; this is included in the program but does not make much difference. The angular
orientation does include the full γ∗/Z0 interference [Lae80], but the main interest is in the
3-jet topology as such [Ell79]. No higher-order corrections are included. It is recommended
to use the option of a fixed αs also here, since the correct running is not available.

6.2 Decays of Onia Resonances

Many different possibilities are open for the decay of heavy JPC = 1−− onia resonances.
Of special interest are the decays into three gluons or two gluons plus a photon, since
these offer unique possibilities to study a ‘pure sample’ of gluon jets. A routine for this
purpose is included in the program. It was written at a time where the expectations
were to find toponium at PETRA energies. If, as now seems likely, the top mass is above
100 GeV, weak decays will dominate, to the extent that the top quark will decay weakly
even before a bound toponium state is formed, and thus the routine will be of no use for
top. The charm system, on the other hand, is far too low in mass for a jet language to
be of any use. The only application is therefore likely to be for Υ, which unfortunately
also is on the low side in mass.

The matrix element for qq → ggg is (in lowest order) [Kol78]

1

σggg

dσggg
dx1 dx2

=
1

π2 − 9

{

(

1 − x1
x2x3

)2

+
(

1 − x2
x1x3

)2

+
(

1 − x3
x1x2

)2
}

, (44)

where, as before, xi = 2Ei/Ecm in the c.m. frame of the event. This is a well-defined
expression, without the kind of singularities encountered in the qqg matrix elements. In
principle, no cuts at all would be necessary, but for reasons of numerical simplicity we
implement a y cut as for continuum jet production, with all events not fulfilling this cut
considered as (effective) gg events. For ggg events, each gg invariant mass is required to
be at least 2 GeV.

Another process is qq → γgg, obtained by replacing a gluon in qq → ggg by a photon.
This process has the same normalized cross section as the one above, if e.g. x1 is taken
to refer to the photon. The relative rate is [Kol78]

σγgg
σggg

=
36

5

e2q αem

αs(Q2)
. (45)

77



Here eq is the charge of the heavy quark, and the scale in αs has been chosen as the mass
of the onium state. If the mass of the recoiling gg system is lower than some cut-off (by
default 2 GeV), the event is rejected.

In the present implementation the angular orientation of the ggg and γgg events is
given for the e+e− → γ∗ → onium case [Kol78] (optionally with beam polarization effects
included), i.e. weak effects have not been included, since they are negligible at around
10 GeV.

It is possible to start a perturbative shower evolution from either of the two states
above. However, for Υ the phase space for additional evolution is so constrained that not
much is to be gained from that. We therefore do not recommend this possibility. The
shower generation machinery, when starting up from a γgg configuration, is constructed
such that the photon energy is not changed. This means that there is currently no
possibility to use showers to bring the theoretical photon spectrum in better agreement
with the experimental one.

In string fragmentation language, a ggg state corresponds to a closed string triangle
with the three gluons at the corners. As the partons move apart from a common origin,
the string triangle expands. Since the photon does not take part in the fragmentation,
the γgg state corresponds to a double string running between the two gluons.

6.3 Routines and Common Block Variables

6.3.1 e+e− continuum event generation

The only routine a normal user will call to generate e+e− continuum events is LUEEVT.
The other routines listed below, as well as LUSHOW (see section 10.4), are called by LUEEVT.

CALL LUEEVT(KFL,ECM)

Purpose: to generate a complete event e+e− → γ∗/Z0 → qq → parton shower → hadrons
according to QFD and QCD cross sections. As an alternative to parton show-
ers, second-order matrix elements are available for qq + qqg + qqgg + qqq′q′

production.
KFL : flavour of events generated.

= 0 : mixture of all allowed flavours according to relevant probabilities.
= 1 - 8 : primary quarks are only of the specified flavour KFL.

ECM : total c.m. energy of system.
Remark: Each call generates one event, which is independent of preceding ones, with

one exception, as follows. If radiative corrections are included, the shape of
the hard photon spectrum is recalculated only with each LUXTOT call, which
normally is done only if KFL, ECM or MSTJ(102) is changed. A change of e.g.
the Z0 mass in mid-run has to be followed either by a user call to LUXTOT or
by an internal call forced e.g. by putting MSTJ(116)=3.

SUBROUTINE LUXTOT(KFL,ECM,XTOT) : to calculate the total hadronic cross section, in-
cluding quark thresholds, weak, beam polarization, and QCD effects and ra-
diative corrections. In the process, variables necessary for the treatment of
hard photon radiation are calculated and stored.

KFL, ECM : as for LUEEVT.
XTOT : the calculated total cross section in nb.

SUBROUTINE LURADK(ECM,MK,PAK,THEK,PHIK,ALPK) : to describe initial-state hard γ
radiation.

SUBROUTINE LUXKFL(KFL,ECM,ECMC,KFLC) : to generate the primary quark flavour in
case this is not specified by the user.

78



SUBROUTINE LUXJET(ECM,NJET,CUT) : to determine the number of jets (2, 3 or 4) to be
generated within the kinematically allowed region (characterized by CUT = ycut)
in the matrix-element approach; to be chosen such that all probabilities are
between 0 and 1.

SUBROUTINE LUX3JT(NJET,CUT,KFL,ECM,X1,X2) : to generate the internal momentum
variables of a 3-jet event, qqg, according to first- or second-order QCD matrix
elements.

SUBROUTINE LUX4JT(NJET,CUT,KFL,ECM,KFLN,X1,X2,X4,X12,X14) : to generate the
internal momentum variables for a 4-jet event, qqgg or qqq′q′, according to
second-order QCD matrix elements.

SUBROUTINE LUXDIF(NC,NJET,KFL,ECM,CHI,THE,PHI) : to describe the angular orien-
tation of the jets. In first-order QCD the complete QED or QFD formulae are
used; in second order 3-jets are assumed to have the same orientation as in
first, and 4-jets are approximated by 3-jets.

6.3.2 A routine for onium decay

In LUONIA we have implemented the decays of heavy onia resonances into three gluons or
two gluons plus a photon, which are the dominant non-background-like decays of Υ.

CALL LUONIA(KFL,ECM)

Purpose: to simulate the process e+e− → γ∗ → 1−− onium resonance → (ggg or ggγ) →
shower → hadrons.

KFL : the flavour of the quark giving rise to the resonance.
= 0 : generate ggg events alone.
= 1 - 8 : generate ggg and ggγ events in mixture determined by the squared

charge of flavour KFL. Normally KFL= 5 or 6.
ECM : total c.m. energy of system.

6.3.3 Common block variables

The status codes and parameters relevant for the e+e− routines are found in the com-
mon block LUDAT1. This common block also contains more general status codes and
parameters, described elsewhere.

COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters regulating the
performance of the e+e− event generation routines.

MSTJ(101) : (D=5) gives the type of QCD corrections used for continuum events.
= 0 : only qq events are generated.
= 1 : qq + qqg events are generated according to first-order QCD.
= 2 : qq + qqg + qqgg + qqq′q′ events are generated according to second-order

QCD.
= 3 : qq + qqg + qqgg + qqq′q′ events are generated, but without second-order

corrections to the 3-jet rate.
= 5 : a parton shower is allowed to develop from an original qq pair, see

MSTJ(40) - MSTJ(50) for details.
= -1 : only qqg events are generated (within same matrix-element cuts as for

=1). Since the change in flavour composition from mass cuts or radiative

79



corrections is not taken into account, this option is not intended for
quantitative studies.

= -2 : only qqgg and qqq′q′ events are generated (as for =2). The same warning
as for =-1 applies.

= -3 : only qqgg events are generated (as for =2). The same warning as for =-1
applies.

= -4 : only qqq′q′ events are generated (as for =2). The same warning as for
=-1 applies.

Note 1: MSTJ(101) is also used in LUONIA, with
≤ 4 : ggg+γgg events are generated according to lowest-order matrix elements.
≥ 5 : a parton shower is allowed to develop from the original ggg or ggγ con-

figuration, see MSTJ(40) - MSTJ(50) for details.
Note 2: The default values of fragmentation parameters have been chosen to work

well with the default parton-shower approach above. If any of the other
options are used, or if the parton shower is used in non-default mode, it
may be necessary to retune fragmentation parameters. As an example, we
note that the second-order matrix-element approach (MSTJ(101)=2) at
PETRA/PEP energies gives a better description when the a and b param-
eters of the symmetric fragmentation function are set to a =PARJ(41)=1,
b =PARJ(42)=0.7, and the width of the transverse momentum distribu-
tion to σ =PARJ(21)=0.40. In principle, one also ought to change the
joining parameter to PARJ(33)=PARJ(35)=1.1 to preserve a flat rapidity
plateau, but if this should be forgotten, it does not make too much dif-
ference. For applications at TRISTAN or LEP, one must expect to have
to change the matrix-element approach parameters even more, to make
up for additional soft gluon effects not covered in this approach.

MSTJ(102) : (D=2) inclusion of weak effects (Z0 exchange) for flavour production, angu-
lar orientation, cross sections and initial-state photon radiation in continuum
events.

= 1 : QED, i.e. no weak effects are included.
= 2 : QFD, i.e. including weak effects.
= 3 : as =2, but at initialization in LUXTOT the Z0 width is calculated from

sin2θW , αem and Z0 and quark masses (including bottom and top thresh-
old factors for MSTJ(103) odd), assuming three full generations, and the
result is stored in PARJ(124).

MSTJ(103) : (D=7) mass effects in continuum matrix elements, in the form MSTJ(103)
= M1 +2M2 +4M3, where Mi = 0 if no mass effects and Mi = 1 if mass effects
should be included. Here;

M1 : threshold factor for new flavour production according to QFD result;
M2 : gluon emission probability (only applies for |MSTJ(101)|≤ 1, otherwise

no mass effects anyhow);
M3 : angular orientation of event (only applies for |MSTJ(101)|≤ 1 and

MSTJ(102)=1, otherwise no mass effects anyhow).
MSTJ(104) : (D=5) number of allowed flavours, i.e. flavours that can be produced in a

continuum event if the energy is enough. A change to 6 makes top production
allowed above the threshold, etc. Note that in qqq′q′ events only the first five
flavours are allowed in the secondary pair, produced by a gluon breakup.

MSTJ(105) : (D=1) fragmentation and decay in LUEEVT and LUONIA calls.
= 0 : no LUEXEC calls, i.e. only matrix-element and/or parton-shower treat-

ment.
= 1 : LUEXEC calls are made to generate fragmentation and decay chain.
= -1 : no LUEXEC calls and no collapse of small jet systems into one or two

particles (in LUPREP).

80



MSTJ(106) : (D=1) angular orientation in LUEEVT and LUONIA.
= 0 : standard orientation of events, i.e. q along +z axis and q along −z axis

or in xz plane with px > 0 for continuum events, and g1g2g3 or γg2g3 in
xz plane with g1 or γ along the +z axis for onium events.

= 1 : random orientation according to matrix elements.
MSTJ(107) : (D=0) radiative corrections to continuum events.

= 0 : no radiative corrections.
= 1 : initial-state radiative corrections (including weak effects for MSTJ(102)=

2 or 3).
MSTJ(108) : (D=2) calculation of αs for matrix-element alternatives. The MSTU(111)

and PARU(112) values are automatically overwritten in LUEEVT or LUONIA calls
accordingly.

= 0 : fixed αs value as given in PARU(111).
= 1 : first-order formula is always used, with ΛQCD given by PARJ(121).
= 2 : first- or second-order formula is used, depending on value of MSTJ(101),

with ΛQCD given by PARJ(121) or PARJ(122).
MSTJ(109) : (D=0) gives a possibility to switch from QCD matrix elements to some

alternative toy models. Is not relevant for shower evolution, MSTJ(101)=5,
where one can use MSTJ(49) instead.

= 0 : standard QCD scenario.
= 1 : a scalar gluon model. Since no second-order corrections are available in

this scenario, one can only use this with MSTJ(101) = 1 or -1. Also note
that the event-as-a-whole angular distribution is for photon exchange
only (i.e. no weak effects), and that no higher-order corrections to the
total cross section are included.

= 2 : an Abelian vector gluon theory, with the colour factors CF = 1 (= 4/3
in QCD), NC = 0 (= 3 in QCD) and TR = 3nf (= nf/2 in QCD).
If one selects αAbelian = (4/3)αQCD, the 3-jet cross section will agree
with the QCD one, and differences are to be found only in 4-jets. The
MSTJ(109)=2 option has to be run with MSTJ(110)=1 and MSTJ(111)=0;
if need be, the latter variables will be overwritten by the program.
Warning: second-order corrections give a large negative contribution to
the 3-jet cross section, so large that the whole scenario is of doubtful use.
In order to make the second-order options work at all, the 3-jet cross
section is here by hand set exactly equal to zero for MSTJ(101)=2. It is
here probably better to use the option MSTJ(101)=3, although this is not
a consistent procedure either.

MSTJ(110) : (D=2) choice of second-order contributions to the 3-jet rate.
= 1 : the GKS second-order matrix elements, i.e. the old Jetset standard.
= 2 : the Zhu parametrization of the ERT matrix elements, based on the pro-

gram of Kunszt and Ali, i.e. in historical sequence ERT/Kunszt/Ali/Zhu.
The parametrization is available for y = 0.01, 0.02, 0.03, 0.04 and 0.05.
Values outside this range are put at the nearest border, while those in-
side it are given by a linear interpolation between the two nearest points.
Since this procedure is rather primitive, one should try to work at one
of the values given above. Note that no Abelian QCD parametrization
is available for this option.

MSTJ(111) : (D=0) use of optimized perturbation theory for second-order matrix ele-
ments (it can also be used for first-order matrix elements, but here it only
corresponds to a trivial rescaling of the αs argument).

= 0 : no optimization procedure; i.e. Q2 = E2
cm.

= 1 : an optimized Q2 scale is chosen as Q2 = fE2
cm, where f =PARJ(128) for

the total cross section R factor, while f =PARJ(129) for the 3- and 4-jet

81



rates. This f value enters via the αs, and also via a term proportional
to α2

s ln f . Some constraints are imposed; thus the optimized ‘3-jet’ con-
tribution to R is assumed to be positive (for PARJ(128)), the total 3-jet
rate is not allowed to be negative (for PARJ(129)), etc. However, there is
no guarantee that the differential 3-jet cross section is not negative (and
truncated to 0) somewhere (this can also happen with f = 1, but is then
less frequent). The actually obtained f values are stored in PARJ(168)
and PARJ(169), respectively. If an optimized Q2 scale is used, then the
ΛQCD (and αs) should also be changed. With the value f = 0.002, it
has been shown [Bet89] that a ΛQCD = 0.100 GeV gives a reasonable
agreement; the parameter to be changed is PARJ(122) for a second-order
running αs. Note that, since the optimized Q2 scale is sometimes below
the charm threshold, the effective number of flavours used in αs may well
be 4 only. If one feels that it is still appropriate to use 5 flavours (one
choice might be as good as the other), it is necessary to put MSTU(113)=5.

MSTJ(115) : (D=1) documentation of continuum or onium events, in increasing order of
completeness.

= 0 : only the parton shower, the fragmenting partons and the generated
hadronic system are stored in the LUJETS common block.

= 1 : also a radiative photon is stored (for continuum events).
= 2 : also the original e+e− are stored (with K(I,1)=21).
= 3 : also the γ or γ∗/Z0 exchanged for continuum events, the onium state for

resonance events is stored (with K(I,1)=21).
MSTJ(116) : (D=1) initialization of total cross section and radiative photon spectrum

in LUEEVT calls.
= 0 : never; cannot be used together with radiative corrections.
= 1 : calculated at first call and then whenever KFL or MSTJ(102) is changed

or ECM is changed by more than PARJ(139).
= 2 : calculated at each call.
= 3 : everything is reinitialized in the next call, but MSTJ(116) is afterwards

automatically put =1 for use in subsequent calls.
MSTJ(119) : (I) check on need to reinitialize LUXTOT.
MSTJ(120) : (R) type of continuum event generated with the matrix-element option

(with the shower one, the result is always =1).
= 1 : qq.
= 2 : qqg.
= 3 : qqgg from Abelian (QED-like) graphs in matrix element.
= 4 : qqgg from non-Abelian (i.e. containing triple-gluon coupling) graphs in

matrix element.
= 5 : qqq′q′.

MSTJ(121) : (R) flag set if a negative differential cross section was encountered in the
latest LUX3JT call. Events are still generated, but maybe not quite according
to the distribution one would like (the rate is set to zero in the regions of
negative cross section, and the differential rate in the regions of positive cross
section is rescaled to give the ‘correct’ total 3-jet rate).

PARJ(121) : (D=1.0 GeV) Λ value used in first-order calculation of αs in the matrix-
element alternative.

PARJ(122) : (D=0.25 GeV) Λ values used in second-order calculation of αs in the matrix-
element alternative.

PARJ(123) : (D=91.187 GeV) mass of Z0 as used in propagators for the QFD case.
PARJ(124) : (D=2.489 GeV) width of Z0 as used in propagators for the QFD case.

Overwritten at initialization if MSTJ(102)=3.

82



PARJ(125) : (D=0.01) ycut, minimum squared scaled invariant mass of any two partons
in 3- or 4-jet events; the main user-controlled matrix-element cut. PARJ(126)
provides an additional constraint. For each new event, it is additionally
checked that the total 3- plus 4-jet fraction does not exceed unity; if so the
effective y cut will be dynamically increased. The actual y-cut value is stored
in PARJ(150), event by event.

PARJ(126) : (D=2. GeV) minimum invariant mass of any two partons in 3- or 4-jet
events; a cut in addition to the one above, mainly for the case of a radiative
photon lowering the hadronic c.m. energy significantly.

PARJ(127) : (D=1. GeV) is used as a safety margin for small colour-singlet jet systems,
cf. PARJ(32), specifically qq′ masses in qqq′q′ 4-jet events and gg mass in
onium γgg events.

PARJ(128) : (D=0.25) optimized Q2 scale for the QCD R (total rate) factor for the
MSTJ(111)=1 option is given by Q2 = fE2

cm, where f =PARJ(128). For various
reasons the actually used f value may be increased compared with the nominal
one; while PARJ(128) gives the nominal value, PARJ(168) gives the actual one
for the current event.

PARJ(129) : (D=0.002) optimized Q2 scale for the 3- and 4-jet rate for the MSTJ(111)=1
option is given by Q2 = fE2

cm, where f =PARJ(129). For various reasons the
actually used f value may be increased compared with the nominal one; while
PARJ(129) gives the nominal value, PARJ(169) gives the actual one for the
current event. The default value is in agreement with the studies of Bethke
[Bet89].

PARJ(131), PARJ(132) : (D=2*0.) longitudinal polarizations P+
L and P−

L of incoming
e+ and e−.

PARJ(133) : (D=0.) transverse polarization PT =
√

P+
T P

−
T , with P+

T and P−
T transverse

polarizations of incoming e+ and e−.
PARJ(134) : (D=0.) mean of transverse polarization directions of incoming e+ and e−,

∆ϕ = (ϕ+ + ϕ−)/2, with ϕ the azimuthal angle of polarization, leading to a
shift in the ϕ distribution of jets by ∆ϕ.

PARJ(135) : (D=0.01) minimum photon energy fraction (of beam energy) in initial-state
radiation; should normally never be changed (if lowered too much, the fraction
of events containing a radiative photon will exceed unity, leading to problems).

PARJ(136) : (D=0.99) maximum photon energy fraction (of beam energy) in initial-state
radiation; may be changed to reflect actual trigger conditions of a detector (but
must always be larger than PARJ(135)).

PARJ(139) : (D=0.2 GeV) maximum deviation of Ecm from the corresponding value at
last LUXTOT call, above which a new call is made if MSTJ(116)=1.

PARJ(141) : (R) value of R, the ratio of continuum cross section to the lowest-order
muon pair production cross section, as given in massless QED (i.e. three times
the sum of active quark squared charges, possibly modified for polarization).

PARJ(142) : (R) value of R including quark-mass effects (for MSTJ(102)=1) and/or weak
propagator effects (for MSTJ(102)=2).

PARJ(143) : (R) value of R as PARJ(142), but including QCD corrections as given by
MSTJ(101).

PARJ(144) : (R) value of R as PARJ(143), but additionally including corrections from
initial-state photon radiation (if MSTJ(107)=1). Since the effects of heavy
flavour thresholds are not simply integrable, the initial value of PARJ(144) is
updated during the course of the run to improve accuracy.

PARJ(145) - PARJ(148) : (R) absolute cross sections in nb as for the cases PARJ(141)
- PARJ(144) above.

PARJ(150) : (R) current effective matrix element cut-off ycut, as given by PARJ(125),
PARJ(126) and the requirements of having non-negative cross sections for 2-,

83



3- and 4-jet events. Not used in parton showers.
PARJ(151) : (R) value of c.m. energy ECM at last LUXTOT call.
PARJ(152) : (R) current first-order contribution to the 3-jet fraction; modified by mass

effects. Not used in parton showers.
PARJ(153) : (R) current second-order contribution to the 3-jet fraction; modified by

mass effects. Not used in parton showers.
PARJ(154) : (R) current second-order contribution to the 4-jet fraction; modified by

mass effects. Not used in parton showers.
PARJ(155) : (R) current fraction of 4-jet rate attributable to qqq′q′ events rather than

qqgg ones; modified by mass effects. Not used in parton showers.
PARJ(156) : (R) has two functions when using second-order QCD. For a 3-jet event,

it gives the ratio of the second-order to the total 3-jet cross section in the
given kinematical point. For a 4-jet event, it gives the ratio of the modified
4-jet cross section, obtained when neglecting interference terms whose colour
flow is not well defined, to the full unmodified one, all evaluated in the given
kinematical point. Not used in parton showers.

PARJ(157) - PARJ(159) : (I) used for cross-section calculations to include mass thresh-
old effects to radiative photon cross section. What is stored is basic cross
section, number of events generated and number that passed cuts.

PARJ(160) : (R) nominal fraction of events that should contain a radiative photon.
PARJ(161) - PARJ(164) : (I) give shape of radiative photon spectrum including weak

effects.
PARJ(168) : (R) actual f value of current event in optimized perturbation theory for R;

see MSTJ(111) and PARJ(128).
PARJ(169) : (R) actual f value of current event in optimized perturbation theory for 3-

and 4-jet rate; see MSTJ(111) and PARJ(129).
PARJ(171) : (R) fraction of cross section corresponding to the axial coupling of quark

pair to the intermediate γ∗/Z0 state; needed for the Abelian gluon model 3-jet
matrix element.

6.4 Examples

An ordinary e+e− annihilation event in the continuum, at a c.m. energy of 40 GeV, may
be generated with

CALL LUEEVT(0,40.)

In this case a qq event is generated, including weak effects, followed by parton-shower
evolution and fragmentation/decay treatment. Before a call to LUEEVT, however, a number
of default values may be changed, e.g. MSTJ(101)=2 to use second-order QCD matrix
elements, giving a mixture of qq, qqg, qqgg, and qqq′q′ events, MSTJ(102)=1 to have QED
only, MSTJ(104)=6 to allow tt production as well, MSTJ(107)=1 to include initial-state
photon radiation (including a treatment of the Z0 pole), PARJ(123)=92.0 to change the
Z0 mass, PARJ(81)=0.3 to change the parton-shower Λ value, or PARJ(82)=1.5 to change
the parton-shower cut-off. If initial-state photon radiation is used, some restrictions apply
to how one can alternate the generation of events at different energies or with different
Z0 mass, etc. These restrictions are not there for efficiency reasons (the extra time for
recalculating the extra constants every time is small), but because it ties in with the
cross-section calculations (see PARJ(144)).

Most parameters can be changed independently of each other. However, if just one
or a few parameters/switches are changed, one should not be surprised to find a rather
bad agreement with the data, like e.g. a too low or high average hadron multiplicity. It
is therefore usually necessary to retune one parameter related to the perturbative QCD
description, like αs or Λ, one of the two parameters a and b of the Lund symmetric

84



fragmentation function (since they are so strongly correlated, it is often not necessary
to retune both of them), and the average fragmentation transverse momentum — see
Note 2 of the MSTJ(101) description for an example. For very detailed studies it may be
necessary to retune even more parameters.

The three-gluon and gluon–gluon–photon decays of Υ may be simulated by a call

CALL LUONIA(5,9.46)

Unfortunately, with present top-mass limits, this routine will not be of much interest for
toponium studies (weak decays will dominate).

A typical program for analysis of e+e− annihilation events at 100 GeV might look
something like

COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5)
COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)
COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4)
COMMON/LUDAT3/MDCY(500,3),MDME(2000,2),BRAT(2000),KFDP(2000,5)
MDCY(LUCOMP(111),1)=0 ! put pi0 stable
MSTJ(107)=1 ! include initial-state radiation
PARU(41)=1. ! use linear sphericity
..... ! other desired changes
..... ! initialize analysis statistics
DO 100 IEVENT=1,1000 ! loop over events
CALL LUEEVT(0,100.) ! generate new event
IF(IEVENT.EQ.1) CALL LULIST(2) ! list first event
CALL LUTABU(11) ! save particle composition

! statistics
CALL LUEDIT(2) ! remove decayed particles
CALL LUSPHE(SPH,APL) ! linear sphericity analysis
IF(SPH.LT.0.) GOTO 100 ! too few particles in event for

! LUSPHE to work on it (unusual)
CALL LUEDIT(31) ! orient event along axes above
IF(IEVENT.EQ.1) CALL LULIST(2) ! list first treated event
..... ! fill analysis statistics
CALL LUTHRU(THR,OBL) ! now do thrust analysis
..... ! more analysis statistics

100 CONTINUE !
CALL LUTABU(12) ! print particle composition

! statistics
..... ! print analysis statistics
END

85



7 Process Generation in PYTHIA

Much can be said about the hard processes in Pythia and the way they are generated.
Therefore the material has been split into three sections. In the current one the philo-
sophy underlying the event generation scheme is presented. Here we provide a generic
description, where some special cases are swept under the carpet. In the next section,
the existing processes are enumerated, with some comments about applications and limi-
tations. Finally, in the third section the generation routines and common block switches
are described.

The section starts with a survey of parton distributions, followed by a detailed descrip-
tion of the simple 2 → 2 and 2 → 1 hard subprocess generation schemes, including pairs
of resonances. This is followed by a few comments on more complicated configurations.

7.1 Parton Distributions

The parton-distribution function fai (x,Q2) parametrizes the probability to find a parton
i with a fraction x of the beam energy when the beam particle a is probed by a hard
scattering at virtuality scaleQ2. Usually the momentum-weighted combination xfai (x,Q2)
is used, for which the normalization condition

∑

i

∫ 1
0 dx xf

a
i (x,Q2) ≡ 1 normally applies.

The Q2 dependence of parton distributions is perturbatively calculable, see section 10.3.1.
The parton distributions in Pythia come in many shapes, as shown in the following.

7.1.1 Baryons

For protons, many sets exist on the market. These are obtained by fits to experimental
data, constrained so that the Q2 dependence is in accordance with the standard QCD
evolution equations. The (new) default in Pythia is CTEQ2L [Bot93], a modern leading-
order fit. Ten other sets are found in Pythia. The complete list is:

• EHLQ sets 1 and 2 [Eic84];
• DO sets 1 and 2 [Duk82];
• the other CTEQ2 fits, namely CTEQ2M, CTEQ2MS, CTEQ2MF, CTEQ2ML, and

CTEQ2D [Bot93]; and
• the dynamically generated fit GRV LO (updated version) [Glu92].

Of these, EHLQ, DO, CTEQ2L and GRV LO are leading-order parton distributions, while
CTEQ2D are in the next-to-leading-order DIS scheme and the rest in the next-to-leading
order MS scheme. The EHLQ and DO sets are by now rather old, and are kept mainly
for backwards compatibility. Since only Born-level matrix elements are included in the
program, there is no particular reason to use higher-order parton distributions — the
resulting combination is anyway only good to leading-order accuracy. (Some higher-order
corrections are effectively included by the parton-shower treatment, but there is no exact
match.)

There is a steady flow of new parton-distribution sets on the market. To keep track
of all of them is a major work on its own. Therefore Pythia contains an interface to an
external library of parton distribution functions, Pdflib [Plo93]. This is a truly ency-
clopedic collection of almost all proton, pion and photon parton distributions proposed
since the late 70’s. Two dummy routines come with the Pythia package, so as to avoid
problems with unresolved external references if Pdflib is not linked. One should also
note that Pythia does not check the results, but assumes that sensible answers will be
returned, also outside the nominal (x,Q2) range of a set. Only the sets that come with
Pythia have been suitably modified to provide reasonable answers outside their nominal
domain of validity.

From the proton parton distributions, those of the neutron are obtained by isospin
conjugation, i.e. fn

u = fp
d and fn

d = fp
u .

86



The program does allow for incoming beams of a number of hyperons: Λ0, Σ−,0,+,
Ξ−,0 and Ω−. Here one has essentially no experimental information. One could imagine
to construct models in which valence s quarks are found at larger average x values than
valence u and d ones, because of the larger s-quark mass. However, hyperon beams is a
little-used part of the program, included only for a few specific studies. Therefore a simple
approach has been taken, in which an average valence quark distribution is constructed as
fval = (fp

u,val +fp
d,val)/3, according to which each valence quark in a hyperon is assumed to

be distributed. Sea-quark and gluon distributions are taken as in the proton. Any proton
parton distribution set may be used with this procedure.

7.1.2 Mesons and photons

Data on meson parton distributions are scarce, so only very few sets have been con-
structed, and only for the π±. Pythia contains the Owens set 1 and 2 parton distribu-
tions [Owe84], which for a long time were essentially the only sets on the market, and the
more recent dynamically generated GRV LO (updated version) [Glu92a]. The first one is
the default in Pythia. Further sets are found in Pdflib and can therefore be used by
Pythia, just as described above for protons.

Sets of photon parton distributions have been obtained as for hadrons; an additional
complication comes from the necessity to handle the matching of the vector meson dom-
inance (VMD) and the perturbative pieces in a consistent manner. New sets have been
produced where this division is explicit and therefore especially well suited for applications
to event generation[Sch95]. The Schuler and Sjöstand set 1D is the default. Although the
vector-meson philosophy is at the base, the details of the fits do not rely on pion data,
but only on F γ

2 data. Here follows a brief summary of relevant details.
Photons obey a set of inhomogeneous evolution equations, where the inhomogeneous

term is induced by γ → qq branchings. The solution can be written as the sum of two
terms,

fγa (x,Q2) = fγ,NP
a (x,Q2;Q2

0) + fγ,PTa (x,Q2;Q2
0) , (46)

where the former term is a solution to the homogeneous evolution with a (non-
perturbative) input at Q = Q0 and the latter is a solution to the full inhomogeneous
equation with boundary condition fγ,PTa (x,Q2

0;Q
2
0) ≡ 0. One possible physics interpreta-

tion is to let fγ,NP
a correspond to γ ↔ V fluctuations, where V = ρ0, ω, φ, . . . is a set of

vector mesons, and let fγ,PTa correspond to perturbative (‘anomalous’) γ ↔ qq fluctua-
tions. The discrete spectum of vector mesons can be combined with the continuous (in
virtuality k2) spectrum of qq fluctuations, to give

fγa (x,Q2) =
∑

V

4παem

f 2
V

fγ,Va (x,Q2) +
αem

2π

∑

q

2e2q

∫ Q2

Q2
0

dk2

k2
fγ,qqa (x,Q2; k2) , (47)

where each component fγ,V and fγ,qq obeys a unit momentum sum rule.
In sets 1 the Q0 scale is picked at a low value, 0.6 GeV, where an identification of the

non-perturbative component with a set of low-lying mesons appear natural, while sets 2
use a higher value, 2 GeV, where the validity of perturbation theory is better established.
The data are not good enough to allow a precise determination of ΛQCD. Therefore we
use a fixed value Λ(4) = 200 MeV, in agreement with conventional results for proton
distributions. In the VMD component the ρ0 and ω have been added coherently, so that
uu : dd = 4 : 1 at Q0.

Unlike the p, the γ has a direct component where the photon acts as an unresolved
probe. In the definition of F γ

2 this adds a component Cγ, symbolically

F γ
2 (x,Q2) =

∑

q

e2q
[

fγq + fγq
]

⊗ Cq + fγg ⊗ Cg + Cγ . (48)

87



Since Cγ ≡ 0 in leading order, and since we stay with leading-order fits, it is permissible
to neglect this complication. Numerically, however, it makes a non-negligible difference.
We therefore make two kinds of fits, one DIS type with Cγ = 0 and one MS type including
the universal part of Cγ.

When jet production is studied for real incoming photons, the standard evolution
approach is reasonable also for heavy flavours, i.e. predominantly the c, but with a lower
cut-off Q0 ≈ mc for γ → cc. Moving to deep inelastic scattering, eγ → eX, there is an
extra kinematical constraint: W 2 = Q2(1 − x)/x > 4m2

c. It is here better to use the
‘Bethe-Heitler’ cross section for γ∗γ → cc. Therefore each distribution appears in two
variants. For applications to real γ’s the parton distributions are calculated as the sum of
a vector-meson part and an anomalous part including all five flavours. For applications
to DIS, the sum runs over the same vector-meson part, an anomalous part and possibly
a Cγ part for the three light flavours, and a Bethe-Heitler part for c and b.

In addition to the SaS sets, Pythia also contains the Drees–Grassie set of parton
distributions [Dre85] and, as for the proton, there is an interface to the Pdflib library
[Plo93]. However, these sets do not allow a subdivision of the photon parton distributions
into one VMD part and one anomalous part. This subdivision is necessary a sophisticated
modelling of γp and γγ events, see above and section 7.7.2. As an alternative, for the
VMD part alone, the ρ0 parton distribution can be found from the assumed equality

fρ
0

i = fπ
0

i =
1

2
(fπ

+

i + fπ
−

i ) . (49)

Thus any π+ parton distribution set, from any library, can be turned into a VMD ρ0 set.
The ω parton distribution is assumed the same, while the φ and J/ψ ones are handled

in the very crude approximation fφs,val = fπ
+

u,val and fφsea = fπ
+

sea . therefore is default. The
VMD part needs to be complemented by an anomalous part to make upp a full photon
distribution. The latter is fully perturbatively calculable, given the lower cut-off scale
Q0. The SaS parametrization of the anomalous part is therefore used throughout for this
purpose. The Q0 scale can be set freely in the PARP(15) parameter.

The fγ,anomi distribution can be further decomposed, by the flavour and the p⊥ of
the original branching γ → qq. The flavour is distributed according to squared charge
(plus flavour thresholds for heavy flavours) and the p⊥ according to dp2⊥/p

2
⊥ in the range

Q0 < p⊥ < Q. At the branching scale, the photon only consists of a qq pair, with x
distribution ∝ x2 + (1 − x)2. A component fγ,qqa (x,Q2; k2), characterized by its k ≈ p⊥
and flavour, then is evolved homogeneously from p⊥ to Q. For theoretical studies it is
convenient to be able to access a specific component of this kind. Therefore also leading-
order parametrizations of these decomposed distributions are available [Sch95].

7.1.3 Leptons

Contrary to the hadron case, there is no necessity to introduce the parton-distribution
function concept for leptons. A lepton can be considered as a point-like particle, with
initial-state radiation handled by higher-order matrix elements. However, the parton
distribution function approach offers a slightly simplified but very economical description
of initial-state radiation effects for any hard process, also those for which higher-order
corrections are not yet calculated.

Parton distributions for electrons have been introduced in Pythia, but not yet for
muons, i.e. currently fµµ (x,Q2) = δ(x−1). Also for the electron one is free to use a simple

‘unresolved’ e, f e
e (x,Q2) = δ(x− 1), where the e retains the full original momentum.

Electron parton distributions are calculable entirely from first principles, but different
levels of approximation may be used. The parton-distribution formulae in Pythia are
based on a next-to-leading-order exponentiated description, see ref. [Kle89], p. 34. The

88



approximate behaviour is

f e
e (x,Q2) ≈ β

2
(1 − x)β/2−1 ;

β =
2αem

π

(

ln
Q2

m2
e

− 1

)

. (50)

The form is divergent but integrable for x→ 1, i.e. the electron likes to keep most of the
energy. To handle the numerical precision problems for x very close to unity, the parton
distribution is set, by hand, to zero for x > 0.999999, and is rescaled upwards in the range
0.9999 < x < 0.999999, in such a way that the total area under the parton distribution is
preserved:

(

f e
e (x,Q2)

)

mod
=























f e
e (x,Q2) 0 ≤ x ≤ 0.9999

100β/2

100β/2 − 1
f e
e (x,Q2) 0.9999 < x ≤ 0.999999

0 x > 0.999999 .

(51)

The branchings e → eγ, which are responsible for the softening of the f e
e parton

distribution, also gives rise to a flow of photons. In photon-induced hard processes, the f e
γ

parton distribution can be used to describe the equivalent flow of photons. The formula
used in the program is the simple first-order expression. There is some ambiguity in the
choice of Q2 range over which emissions should be included. The näıve (default) choice is

f e
γ(x,Q2) =

αem

2π

1 + (1 − x)2

x
ln

(

Q2

m2
e

)

. (52)

Here it is assumed that only one scale enters the problem, namely that of the hard
interaction, and that the scale of the branching e → eγ is bounded from above by the
hard interaction scale. For a pure QCD or pure QED shower this is an appropriate
procedure, cf. section 10.1.3, but in other cases it may not be optimal. In particular, for
photoproduction the alternative that is probably most appropriate is [Ali88]:

f e
γ(x,Q2) =

αem

2π

1 + (1 − x)2

x
ln

(

Q2
max(1 − x)

m2
e x

2

)

. (53)

Here Q2
max is a user-defined cut for the range of scattered electron kinematics that is

counted as photoproduction. Note that we now deal with two different Q2 scales, one
related to the hard subprocess itself, which appears as the argument of the parton dis-
tribution, and the other related to the scattering of the electron, which is reflected in
Q2

max.
In resolved photoproduction or resolved γγ interactions, one has to include the parton

distributions for quarks and gluons inside the photon inside the electron. There are no
published sets where results are directly presented in terms of quark and gluon distribu-
tions inside the electron. In the program, the f e

q,g are therefore obtained by a numerical
convolution according to

f e
q,g(x,Q

2) =
∫ 1

x

dxγ
xγ

f e
γ(xγ, Q

2) fγq,g

(

x

xγ
, Q2

)

, (54)

with f e
γ as discussed above. The necessity for numerical convolution makes this parton

distribution evaluation rather slow compared with the others; one should therefore only
have it switched on for resolved photoproduction studies.

89



One can obtain the positron distribution inside an electron, which is also the electron
sea parton distribution, by a convolution of the two branchings e → eγ and γ → e+e−;
the result is [Che75]

f e−

e+ (x,Q2) =
1

2

{

αem

2π

(

ln
Q2

m2
e

− 1

)}2
1

x

(

4

3
− x2 − 4

3
x3 + 2x(1 + x) ln x

)

. (55)

Finally, the program also contains the distribution of a transverse W− inside an elec-
tron

f e
W(x,Q2) =

αem

2π

1

4 sin2θW

1 + (1 − x)2

x
ln

(

1 +
Q2

m2
W

)

. (56)

7.2 Kinematics and Cross section for a 2 → 2 Process

In this section we begin the description of kinematics selection and cross-section calcula-
tion. The example is for the case of a 2 → 2 process, with final-state masses assumed to
be vanishing. Later on we will expand to finite fixed masses, and to resonances.

Consider two incoming beam particles in their c.m. frame, each with energy Ebeam.
The total squared c.m. energy is then s = 4E2

beam. The two partons that enter the
hard interaction do not carry the total beam momentum, but only fractions x1 and x2,
respectively, i.e. they have four-momenta

p1 = Ebeam(x1; 0, 0, x1) ,

p2 = Ebeam(x2; 0, 0,−x2) . (57)

There is no reason to put the incoming partons on the mass shell, i.e. to have time-like
incoming four-vectors, since partons inside a particle are always virtual and thus space-
like. These space-like virtualities are introduced as part of the initial-state parton-shower
description, see section 10.3.3, but do not affect the formalism of this section. The one
example where it would be appropriate to put a parton on the mass shell is for an incoming
lepton beam, but even here the massless kinematics description is adequate as long as the
c.m. energy is correctly calculated with masses.

The squared invariant mass of the two partons is defined as

ŝ = (p1 + p2)
2 = x1 x2 s . (58)

Instead of x1 and x2, it is often customary to use τ and either y or xF:

τ = x1x2 =
ŝ

s
; (59)

y =
1

2
ln
x1
x2

; (60)

xF = x1 − x2 . (61)

In addition to x1 and x2, two additional variables are needed to describe the kinematics
of a scattering 1 + 2 → 3 + 4. One corresponds to the azimuthal angle ϕ of the scattering
plane around the beam axis. This angle is always isotropically distributed for unpolarized
incoming beam particles, and so need not be considered further. The other variable can
be picked as θ̂, the polar angle of parton 3 in the c.m. frame of the hard scattering. The
conventional choice is to use the variable

t̂ = (p1 − p3)
2 = (p2 − p4)

2 = − ŝ
2

(1 − cos θ̂) , (62)

90



with θ̂ defined as above. In the following, we will make use of both t̂ and θ̂. It is also
customary to define û,

û = (p1 − p4)
2 = (p2 − p3)

2 = − ŝ
2

(1 + cos θ̂) , (63)

but û is not an independent variable since

ŝ+ t̂+ û = 0 . (64)

If the two outgoing particles have masses m3 and m4, respectively, then the four-
momenta in the c.m. frame of the hard interaction are given by

p̂3,4 =

(

ŝ± (m2
3 −m2

4)

2
√
ŝ

,±
√
ŝ

2
β34 sin θ̂, 0,±

√
ŝ

2
β34 cos θ̂

)

, (65)

where

β34 =

√

√

√

√

(

1 − m2
3

ŝ
− m2

4

ŝ

)2

− 4
m2

3

ŝ

m2
4

ŝ
. (66)

Then t̂ and û are modified to

t̂, û = −1

2

{

(ŝ−m2
3 −m2

4) ∓ ŝ β34 cos θ̂
}

, (67)

with
ŝ+ t̂+ û = m2

3 +m2
4 . (68)

The cross section for the process 1 + 2 → 3 + 4 may be written as

σ =
∫ ∫ ∫

dx1 dx2 dt̂ f1(x1, Q
2) f2(x2, Q

2)
dσ̂

dt̂

=
∫ ∫ ∫ dτ

τ
dy dt̂ x1f1(x1, Q

2) x2f2(x2, Q
2)

dσ̂

dt̂
. (69)

The choice of Q2 scale is ambiguous, and several alternatives are available in the
program. For massless outgoing particles the default is the squared transverse momentum

Q2 = p̂2⊥ =
ŝ

4
sin2 θ̂ =

t̂û

ŝ
, (70)

which is modified to

Q2 =
1

2
(m2

⊥3 +m2
⊥4) =

1

2
(m2

3 +m2
4) + p̂2⊥ =

1

2
(m2

3 +m2
4) +

t̂û−m2
3m

2
4

ŝ
(71)

when masses are introduced. The mass term is selected such that, for m3 = m4 = m, the
expression reduces to the squared transverse mass, Q2 = m̂2

⊥ = m2 + p̂2⊥.
The dσ̂/dt̂ expresses the differential cross section for a scattering, as a function of the

kinematical quantities ŝ, t̂ and û. It is in this function that the physics of a given process
resides.

The performance of a machine is measured in terms of its luminosity L, which is
directly proportional to the number of particles in each bunch and to the bunch crossing
frequency, and inversely proportional to the area of the bunches at the collision point.
For a process with a σ as given by eq. (69), the differential event rate is given by σL, and
the number of events collected over a given period of time

N = σ
∫

L dt . (72)

The program does not calculate the number of events, but only the integrated cross
sections.

91



7.3 Resonance Production

The simplest way to produce a resonance is by a 2 → 1 process. If the decay of the
resonance is not considered, the cross-section formula does not depend on t̂, but takes the
form

σ =
∫ ∫ dτ

τ
dy x1f1(x1, Q

2) x2f2(x2, Q
2) σ̂(ŝ) . (73)

Here the physics is contained in the cross section σ̂(ŝ). The Q2 scale is usually taken to
be Q2 = ŝ.

In published formulae, cross sections are often given in the zero-width approximation,
i.e. σ̂(ŝ) ∝ δ(ŝ − m2

R), where mR is the mass of the resonance. Introducing the scaled
mass τR = m2

R/s, this corresponds to a delta function δ(τ − τR), which can be used to
eliminate the integral over τ .

However, what we normally want to do is replace the δ function by the appropriate
Breit–Wigner shape. For a resonance width ΓR this is achieved by the replacement

δ(τ − τR) → s

π

mRΓR
(sτ −m2

R)2 +m2
RΓ2

R

. (74)

In this formula the resonance width ΓR is a constant.
An improved description of resonance shapes is obtained if the width is made ŝ-

dependent (occasionally also referred to as mass-dependent width, since ŝ is not always the
resonance mass), see e.g. [Ber89]. To first approximation, this means that the expression
mRΓR is to be replaced by ŝΓR/mR. To be more precise, in the program the quantity
HR(ŝ) is introduced, and the Breit–Wigner is written as

δ(τ − τR) → s

π

HR(sτ)

(sτ −m2
R)2 +H2

R(sτ)
. (75)

The HR factor is evaluated as a sum over all possible final-state channels, HR =
∑

f H
(f)
R .

Each decay channel may have its own ŝ dependence, as follows.
A decay to a fermion pair, R → ff, gives no contribution below threshold, i.e. for

ŝ < 4m2
f . Above threshold, H

(f)
R is proportional to ŝ, multiplied by a threshold factor

β(3− β2)/2 for the vector part of a spin 1 resonance, by β3 for the axial vector part, and

again by β3 for a spin 0 resonance. Here β =
√

1 − 4m2
f /ŝ. For the decay into unequal

masses, e.g. of the W+, corresponding but more complicated expressions are used.
For decays into a quark pair, the universal first-order strong correction factor 1 +

αs(ŝ)/π is included in H
(f)
R . The second-order corrections are often known, but then

are specific to each resonance, and are not included. An option exists for the γ/Z0/Z′0

resonances, where threshold effects due to qq bound-state formation are taken into account
in a smeared-out, average sense, see eq. (117).

For other decay channels, not into fermion pairs, the ŝ dependence is typically more
complicated. For instance, the decay H0 → W+W− has a partial width proportional to ŝ2,
with a threshold factor β3. Since a Higgs with mH < 2mW could still decay in this channel,
it is in fact necessary to perform a two-dimensional integral over the W± Breit–Wigner
mass distributions to obtain the correct result (and this has to be done numerically, at
least in part). Fortunately, a Higgs particle lighter than 2mW is sufficiently narrow that
the integral only needs to be performed once and for all at initialization (whereas most
other partial widths are recalculated whenever needed). Channels that proceed via loops,
such as H → gg, also display complicated threshold behaviours.

The coupling structure within the electroweak sector is usually (re)expressed in terms
of gauge boson masses, αem and sin2θW , i.e. factors of GF are replaced according to

√
2GF =

π αem

sin2θW m2
W

. (76)

92



Having done that, αem is allowed to run [Kle89], and is evaluated at the ŝ scale. Thereby
the relevant electroweak loop correction factors are recovered at the mW/mZ scale. How-
ever, the option exists to go the other way and eliminate αem in favour of GF. Currently
sin2θW is not allowed to run. For the Higgs particle, the couplings to fermions are pro-
portional to the fermion masses; then also the masses are evaluated at the ŝ scale.

In summary, we see that an ŝ dependence may enter several different ways into the

H
(f)
R expressions from which the total HR is built up. Also note that, with the exception

of the term (sτ −m2
R)2 in the denominator of the Breit–Wigner, no memory remains of

the nominal mR mass: everywhere else, what enters is the actual resonance mass
√
ŝ.

When only decays to a specific final state f are considered, the HR in the denominator
remains the sum over all allowed decay channels, but the numerator only contains the

H
(f)
R term of the final state considered.

If the combined production and decay process i → R → f is considered, the same ŝ
dependence is implicit in the coupling structure of i→ R as one would have had in R → i,
i.e. to first approximation there is a symmetry between couplings of a resonance to the
initial and to the final state. The cross section σ̂ is therefore, in the program, written in
the form

σ̂i→R→f (ŝ) ∝ π

ŝ

H
(i)
R (ŝ)H

(f)
R (ŝ)

(ŝ−m2
R)2 +H2

R(ŝ)
. (77)

As a simple example, the cross section for the process e−νe → W− → µ−νµ can be written
as

σ̂(ŝ) = 12
π

ŝ

H
(i)
W (ŝ)H

(f)
W (ŝ)

(ŝ−m2
W)2 +H2

W(ŝ)
, (78)

where

H
(i)
W (ŝ) = H

(f)
W (ŝ) =

αem(ŝ)

24 sin2θW
ŝ . (79)

If the effects of several initial and/or final states are studied, it is straightforward to
introduce an appropriate summation in the numerator.

The analogy between the H
(f)
R and H

(i)
R cannot be pushed too far, however. The

two differ in several important aspects. Firstly, colour factors appear reversed: the decay
R → qq contains a colour factor NC = 3 enhancement, while qq → R is instead suppressed
by a factor 1/NC = 1/3. Secondly, the 1 + αs(ŝ)/π first-order correction factor for the
final state has to be replaced by a more complicated K factor for the initial state. This
factor is not usually known, or it is known (to first non-trivial order) but too lengthy to
be included in the program. Thirdly, incoming partons as a rule are space-like. All the
threshold suppression factors of the final state expressions are therefore irrelevant when

production is considered. In sum, the H
(f)
R –H

(i)
R analogy is mainly useful as a consistency

cross-check, while the two usually are calculated separately. Exceptions include the rather
messy loop structure involved in gg → H0 and H0 → gg, which is only coded once.

It is of some interest to consider the observable resonance shape when the effects of
parton distributions are included. In a hadron collider, to first approximation, parton
distributions tend to have a behaviour roughly like f(x) ∝ 1/x for small x — this is why
f(x) is replaced by xf(x) in eq. (69). Instead, the basic parton-distribution behaviour
is shifted into the factor of 1/τ in the integration phase space dτ/τ , cf. eq. (73). When
folded with the Breit–Wigner shape, two effects appear. One is that the overall resonance
is tilted: the low-mass tail is enhanced and the high-mass one suppressed. The other
is that an extremely long tail develops on the low-mass side of the resonance: when
τ → 0, eq. (77) with HR(ŝ) ∝ ŝ gives a σ̂(ŝ) ∝ ŝ ∝ τ , which exactly cancels the 1/τ
factor mentioned above. Näıvely, the integral over y,

∫

dy = − ln τ , therefore gives a net
logarithmic divergence of the resonance shape when τ → 0. Clearly, it is then necessary

93



to consider the shape of the parton distributions in more detail. At not-too-small Q2, the
evolution equations in fact lead to parton distributions more strongly peaked than 1/x,
typically with xf(x) ∝ x−0.3, and therefore a divergence like τ−0.3 in the cross-section
expression. Eventually this divergence is regularized by a closing of the phase space,
i.e. that HR(ŝ) vanishes faster than ŝ, and by a less drastic small-x parton-distribution
behaviour when Q2 ≈ ŝ→ 0.

The secondary peak at small τ may give a rather high cross section, which can even
rival that of the ordinary peak around the nominal mass. This is the case, for instance,
with W production. Such a peak has never been observed experimentally, but this is not
surprising, since the background from other processes is overwhelming at low ŝ. Thus
a lepton of one or a few GeV of transverse momentum is far more likely to come from
the decay of a charm or bottom hadron than from a ‘W’ of a mass of a few GeV. When
resonance production is studied, it is therefore important to set limits on the mass of the
resonance, so as to agree with the experimental definition, at least to first approximation.
If not, cross-section information given by the program may be very confusing.

Another problem is that often the matrix elements really are valid only in the resonance
region. The reason is that one usually includes only the simplest s-channel graph in the
calculation. It is this ‘signal’ graph that has a peak at the position of the resonance, where
it (usually) gives much larger cross sections than the other ‘background’ graphs. Away
from the resonance position, ‘signal’ and ‘background’ may be of comparable order, or
the ‘background’ may even dominate. There is a quantum mechanical interference when
some of the ‘signal’ and ‘background’ graphs have the same initial and final state, and this
interference may be destructive or constructive. When the interference is non-negligible,
it is no longer meaningful to speak of a ‘signal’ cross section. As an example, consider the
scattering of longitudinal W’s, W+

L W−
L → W+

L W−
L , where the ‘signal’ process is s-channel

exchange of a Higgs. This graph by itself is ill-behaved away from the resonance region.
Destructive interference with ‘background’ graphs such as t-channel exchange of a Higgs
and s- and t-channel exchange of a γ/Z is required to save unitarity at large energies.

In e+e− colliders, the f e
e parton distribution is peaked at x = 1 rather than at x = 0.

The situation therefore is the opposite, if one considers e.g. Z0 production in a machine
running at energies above mZ: the tail towards lower masses is suppressed and the one
towards higher masses enhanced, with a sharp secondary peak at around the nominal
energy of the machine. Also in this case, an appropriate definition of cross sections
therefore is necessary — with additional complications due to the interference between γ∗

and Z0. When other processes are considered, problems of interference with background
appears also here. Numerically the problems may be less pressing, however, since the
secondary peak is occuring in a high-mass region, rather than in a more complicated
low-mass one. Further, in e+e− there is little uncertainty from the shape of the parton
distributions.

In 2 → 2 processes where a pair of resonances are produced, e.g. e+e− → Z0H0, cross
section are almost always given in the zero-width approximation for the resonances. Here
two substitutions of the type

1 =
∫

δ(m2 −m2
R) dm2 →

∫ 1

π

mRΓR
(m2 −m2

R)2 +m2
RΓ2

R

dm2 (80)

are used to introduce mass distributions for the two resonance masses, i.e. m2
3 and m2

4.
In the formula, mR is the nominal mass and m the actually selected one. The phase-
space integral over x1, x1 and t̂ in eq. (69) is then extended to involve also m2

3 and m2
4.

The effects of the mass-dependent width is only partly taken into account, by replacing
the nominal masses m2

3 and m2
4 in the dσ̂/dt̂ expression by the actually generated ones

(also e.g. in the relation between t̂ and cos θ̂), while the widths are evaluated at the
nominal masses. This is the equivalent of a simple replacement of mRΓR by ŝΓR/mR in

94



the numerator of eq. (74), but not in the denominator. In addition, the full threshold
dependence, i.e. the β-dependent factors, is not reproduced.

There is no particular reason why the full mass-dependence could not be introduced,
except for the extra work and time consumption needed for each process. In fact, the
matrix elements for several γ∗/Z0 production processes do contain the full expressions.
On the other hand, the matrix elements given in the literature are often valid only when
the resonances are almost on the mass shell, since some graphs have been omitted. As an
example, the process qq → e−νeµ

+νµ is dominated by qq → W−W+ when each of the two
lepton pairs is close to mW in mass, but in general also receives contributions e.g. from
qq → Z0 → e+e−, followed by e+ → νeW

+ and W+ → µ+νµ. The latter contributions are
neglected in cross sections given in the zero-width approximation.

Processes with one final-state resonance and another ordinary final-state product, e.g.
qg → W+q′, are treated in the same spirit as the 2 → 2 processes with two resonances,
except that only one mass need be selected according to a Breit–Wigner.

7.4 Cross-section Calculations

In the program, the variables used in the generation of a 2 → 2 process are τ , y and
z = cos θ̂. For a 2 → 1 process, the z variable can be integrated out, and need therefore
not be generated as part of the hard process, except when the allowed angular range of
decays is restricted. In unresolved lepton beams, i.e. when f e

e (x) = δ(x−1), the variables
τ and/or y may be integrated out. We will cover all these special cases towards the end
of the section, and here concentrate on ‘standard’ 2 → 2 and 2 → 1 processes.

7.4.1 The simple 2 → 2 processes

In the spirit of section 4.1, we want to select simple functions such that the true τ , y and
z dependence of the cross sections is approximately modelled. In particular, (almost) all
conceivable kinematical peaks should be represented by separate terms in the approximate
formulae. If this can be achieved, the ratio of the correct to the approximate cross sections
will not fluctuate too much, but allow reasonable Monte Carlo efficiency.

Therefore the variables are generated according to the distributions hτ (τ), hy(y) and
hz(z), where normally

hτ (τ) =
c1
I1

1

τ
+
c2
I2

1

τ 2
+
c3
I3

1

τ(τ + τR)
+
c4
I4

1

(sτ −m2
R)2 +m2

RΓ2
R

+
c5
I5

1

τ(τ + τR′)
+
c6
I6

1

(sτ −m2
R′)2 +m2

R′Γ2
R′

, (81)

hy(y) =
c1
I1

(y − ymin) +
c2
I2

(ymax − y) +
c3
I3

1

cosh y
, (82)

hz(z) =
c1
I1

+
c2
I2

1

a− z
+
c3
I3

1

a+ z
+
c4
I4

1

(a− z)2
+
c5
I5

1

(a+ z)2
. (83)

Here each term is separately integrable, with an invertible primitive function, such that
generation of τ , y and z separately is a standard task, as described in section 4.1. In the
following we describe the details of the scheme, including the meaning of the coefficients
ci and Ii, which are separate for τ , y and z.

The first variable to be selected is τ . The range of allowed values, τmin ≤ τ ≤ τmax,
is generally constrained by a number of user-defined requirements. A cut on the allowed
mass range is directly reflected in τ , a cut on the p⊥ range indirectly. The first two terms
of hτ are intended to represent a smooth τ dependence, as generally obtained in processes
which do not receive contributions from s-channel resonances. Also s-channel exchange

95



of essentially massless particles (γ, g, light quarks and leptons) are accounted for, since
these do not produce any separate peaks at non-vanishing τ . The last four terms of
hτ are there to catch the peaks in the cross section from resonance production. These
terms are only included when needed. Each resonance is represented by two pieces, a first
to cover the interference with graphs which peak at τ = 0, plus the variation of parton
distributions, and a second to approximate the Breit–Wigner shape of the resonance itself.
The subscripts R and R′ denote values pertaining to the two resonances, with τR = m2

R/s.
Currently there is only one process where the full structure with two resonances is used,
namely ff → γ∗/Z0/Z′0. Otherwise either one or no resonance peak is taken into account.

The kinematically allowed range of y values is constrained by τ , |y| ≤ −1
2

ln τ , and
you may impose additional cuts. Therefore the allowed range ymin ≤ y ≤ ymax is only
constructed after τ has been selected. The first two terms of hy give a fairly flat y depen-
dence — for processes which are symmetric in y ↔ −y, they will add to give a completely
flat y spectrum between the allowed limits. In principle, the natural subdivision would
have been one term flat in y and one forward–backward asymmetric, i.e. proportional to
y. The latter is disallowed by the requirement of positivity, however. The y − ymin and
ymax − y terms actually used give the same amount of freedom, but respect positivity.
The third term is peaked at around y = 0, and represents the bias of parton distributions
towards this region.

The allowed z = cos θ̂ range is näıvely −1 ≤ z ≤ 1. However, most cross sections are
divergent for z → ±1, so some kind of regularization is necessary. Normally one requires
p⊥ ≥ p⊥min, which translates into z2 ≤ 1 − 4p2⊥min/(τs) for massless outgoing particles.
Since again the limits depend on τ , the selection of z is done after that of τ . Additional
requirements may constrain the range further. In particular, a p⊥max constraint may split
the allowed z range into two, i.e. z−min ≤ z ≤ z−max or z+min ≤ z ≤ z+max. An unsplit
range is represented by z−max = z+min = 0. For massless outgoing particles the parameter
a = 1 in hz, such that the five terms represent a piece flat in angle and pieces peaked as 1/t̂,
1/û, 1/t̂2, and 1/û2, respectively. For non-vanishing masses one has a = 1 + 2m2

3m
2
4/ŝ

2.
In this case, the full range −1 ≤ z ≤ 1 is therefore available — physically, the standard t̂
and û singularities are regularized by the masses m3 and m4.

For each of the terms, the Ii coefficients represent the integral over the quantity
multiplying the coefficient ci; thus, for instance:

hτ : I1 =
∫ dτ

τ
= ln

(

τmax

τmin

)

,

I2 =
∫ dτ

τ 2
=

1

τmin

− 1

τmax

;

hy : I1 =
∫

(y − ymin) dy =
1

2
(ymax − ymin)2 ;

hz : I1 =
∫

dz = (z−max − z−min) + (z+max − z+min),

I2 =
∫ dz

a− z
= ln

(

(a− z−min)(a− z+min)

(a− z−max)(a− z−min)

)

. (84)

The ci coefficients are normalized to unit sum for hτ , hy and hz separately. They
have a simple interpretation, as the probability for each of the terms to be used in the
preliminary selection of τ , y and z, respectively. The variation of the cross section over
the allowed phase space is explored in the initialization procedure of a Pythia run, and
based on this knowledge the ci are optimized so as to give functions hτ , hy and hz that
closely follow the general behaviour of the true cross section. For instance, the coefficient
c4 in hτ is to be made larger the more the total cross section is dominated by the region
around the resonance mass.

96



The phase-space points tested at initialization are put on a grid, with the number of
points in each dimension given by the number of terms in the respective h expression,
and with the position of each point given by the median value of the distribution of one
of the terms. For instance, the dτ/τ distribution gives a median point at

√
τminτmax, and

dτ/τ 2 has the median 2τminτmax/(τmin + τmax). Since the allowed y and z ranges depend
on the τ value selected, then so do the median points defined for these two variables.

With only a limited set of phase-space points studied at the initialization, the ‘optimal’
set of coefficients is not uniquely defined. To be on the safe side, 40% of the total weight is
therefore assigned evenly between all allowed ci, whereas the remaining 60% are assigned
according to the relative importance surmised, under the constraint that no coefficient is
allowed to receive a negative contribution from this second piece.

After a preliminary choice has been made of τ , y and z, it is necessary to find the
weight of the event, which is to be used to determine whether to keep it or generate
another one. Using the relation dt̂ = ŝ β34 dz/2, eq. (69) may be rewritten as

σ =
∫ ∫ ∫ dτ

τ
dy

ŝβ34
2

dz x1f1(x1, Q
2) x2f2(x2, Q

2)
dσ̂

dt̂

=
π

s

∫

hτ (τ) dτ
∫

hy(y) dy
∫

hz(z) dz β34
x1f1(x1, Q

2) x2f2(x2, Q
2)

τ 2hτ (τ)hy(y) 2hz(z)

ŝ2

π

dσ̂

dt̂

=

〈

π

s

β34
τ 2hτ (τ)hy(y) 2hz(z)

x1f1(x1, Q
2) x2f2(x2, Q

2)
ŝ2

π

dσ̂

dt̂

〉

. (85)

In the middle line, a factor of 1 = hτ/hτ has been introduced to rewrite the τ integral in
terms of a phase space of unit volume:

∫

hτ (τ) dτ = 1 according to the relations above.
Correspondingly for the y and z integrals. In addition, factors of 1 = ŝ/(τs) and 1 = π/π
are used to isolate the dimensionless cross section (ŝ2/π) dσ̂/dt̂. The content of the last
line is that, with τ , y and z selected according to the expressions hτ (τ), hy(y) and hz(z),
respectively, the cross section is obtained as the average of the final expression over all
events. Since the h’s have been picked to give unit volume, there is no need to multiply
by the total phase-space volume.

As can be seen, the cross section for a given Monte Carlo event is given as the product
of four factors, as follows:

1. The π/s factor, which is common to all events, gives the overall dimensions of the
cross section, in GeV−2. Since the final cross section is given in units of mb, the
conversion factor of 1 GeV−2 = 0.3894 mb is also included here.

2. Next comes the ‘Jacobian’, which compensates for the change from the original to
the final phase-space volume.

3. The parton-distribution function weight is obtained by making use of the parton
distribution libraries in Pythia or externally. The x1 and x2 values are obtained
from τ and y via the relations x1,2 =

√
τ exp(±y).

4. Finally, the dimensionless cross section (ŝ2/π) dσ̂/dt̂ is the quantity that has to be
coded for each process separately, and where the physics content is found.

Of course, the expression in the last line is not strictly necessary to obtain the cross
section by Monte Carlo integration. One could also have used eq. (69) directly, selecting
phase-space points evenly in τ , y and t̂, and averaging over those Monte Carlo weights.
Clearly this would be much simpler, but the price to be paid is that the weights of
individual events could fluctuate wildly. For instance, if the cross section contains a
narrow resonance, the few phase-space points that are generated in the resonance region
obtain large weights, while the rest do not. With our procedure, a resonance would
be included in the hτ (τ) factor, so that more events would be generated at around the
appropriate τR value (owing to the hτ numerator in the phase-space expression), but with

97



these events assigned a lower, more normal weight (owing to the factor 1/hτ in the weight
expression). Since the weights fluctuate less, fewer phase-space points need be selected to
get a reasonable cross-section estimate.

In the program, the cross section is obtained as the average over all phase-space points
generated. The events actually handed on to the user should have unit weight, however
(an option with weighted events exists, but does not represent the mainstream usage). At
initialization, after the ci coefficients have been determined, a search inside the allowed
phase-space volume is therefore made to find the maximum of the weight expression in
the last line of eq. (85). In the subsequent generation of events, a selected phase-space
point is then retained with a probability equal to the weight in the point divided by
the maximum weight. Only the retained phase-space points are considered further, and
generated as complete events.

The search for the maximum is begun by evaluating the weight in the same grid of
points as used to determine the ci coefficients. The point with highest weight is used as
starting point for a search towards the maximum. In unfortunate cases, the convergence
could be towards a local maximum which is not the global one. To somewhat reduce
this risk, also the grid point with second-highest weight is used for another search. After
initialization, when events are generated, a warning message will be given by default at
any time a phase-space point is selected where the weight is larger than the maximum,
and thereafter the maximum weight is adjusted to reflect the new knowledge. This means
that events generated before this time have a somewhat erroneous distribution in phase
space, but if the maximum violation is rather modest the effects should be negligible. The
estimation of the cross section is not affected by any of these considerations, since the
maximum weight does not enter into eq. (85).

For 2 → 2 processes with identical final-state particles, the symmetrization factor of
1/2 is explicitly included at the end of the dσ̂/dt̂ calculation. In the final cross section,
a factor of 2 is retrieved because of integration over the full phase space (rather than
only half of it). That way, no special provisions are needed in the phase-space integration
machinery.

7.4.2 Resonance production

We have now covered the simple 2 → 2 case. In a 2 → 1 process, the t̂ integral is absent,
and the differential cross section dσ̂/dt̂ is replaced by σ̂(ŝ). The cross section may now
be written as

σ =
∫ ∫ dτ

τ
dy x1f1(x1, Q

2) x2f2(x2, Q
2) σ̂(ŝ)

=
π

s

∫

hτ (τ) dτ
∫

hy(y) dy
x1f1(x1, Q

2) x2f2(x2, Q
2)

τ 2hτ (τ)hy(y)

ŝ

π
σ̂(ŝ)

=

〈

π

s

1

τ 2hτ (τ)hy(y)
x1f1(x1, Q

2) x2f2(x2, Q
2)
ŝ

π
σ̂(ŝ)

〉

. (86)

The structure is thus exactly the same, but the z-related pieces are absent, and the rôle
of the dimensionless cross section is played by (ŝ/π)σ̂(ŝ).

If the range of allowed decay angles of the resonance is restricted, e.g. by requiring
the decay products to have a minimum transverse momentum, effectively this translates
into constraints on the z = cos θ̂ variable of the 2 → 2 process. The difference is that the
angular dependence of a resonance decay is trivial, and that therefore the z-dependent
factor can be easily evaluated. For a spin-0 resonance, which decays isotropically, the
relevant weight is simply (z−max−z−min)/2+(z+max−z+min)/2. For a transversely polarized

98



spin-1 resonance the expression is, instead,

3

8
(z−max − z−min) +

3

8
(z+max − z+min) +

1

8
(z−max − z−min)3 +

1

8
(z+max − z+min)3 . (87)

Since the allowed z range could depend on τ and/or y (it does for a p⊥ cut), the factor
has to be evaluated for each individual phase-space point and included in the expression
of eq. (86).

For 2 → 2 processes where either of the final-state particles is a resonance, or both,
an additional choice has to be made for each resonance mass, eq. (80). Since the allowed
τ , y and z ranges depend on m2

3 and m2
4, the selection of masses have to precede the

choice of the other phase-space variables. Just as for the other variables, masses are
not selected uniformly over the allowed range, but are rather distributed according to
a function hm(m2) dm2, with a compensating factor 1/hm(m2) in the ‘Jacobian’. The
functional form picked is normally

hm(m2) =
c1
I1

1

π

mRΓR
(m2 −m2

R)2 +m2
RΓ2

R

+
c2
I2

+
c3
I3

1

m2
+
c4
I4

1

m4
. (88)

The definition of the Ii integrals is analogous to the one before. The ci coefficients are not
found by optimization, but predetermined, normally to c1 = 0.8, c2 = c3 = 0.1, c4 = 0.
Clearly, had the phase space and the cross section been independent of m2

3 and m2
4, the

optimal choice would have been to put c1 = 1 and have all other ci vanishing — then the
1/hm factor of the ‘Jacobian’ would exactly have cancelled the Breit–Wigner of eq. (80)
in the cross section. The second and the third terms are there to cover the possibility
that the cross section does not die away quite as fast as given by the näıve Breit–Wigner
shape. In particular, the third term covers the possibility of a secondary peak at small
m2, in a spirit slightly similar to the one discussed for resonance production in 2 → 1
processes.

The fourth term is only used for the process ff → (γ∗/Z0)(γ∗/Z0), where the γ propa-
gator guarantees that the cross section does have a significant secondary peak for m2 → 0.
Therefore here the choice is c1 = 0.4, c2 = 0.05, c3 = 0.3 and c4 = 0.25.

A few special tricks have been included to improve efficiency when the allowed mass
range of resonances is constrained by kinematics or by user cuts. For instance, if a pair
of equal or charge-conjugate resonances are produced, such as in e+e− → W+W−, use is
made of the constraint that the lighter of the two has to have a mass smaller than half
the c.m. energy.

7.4.3 Lepton beams

Lepton beams have to be handled slightly differently from what has been described so far.
One also has to distinguish between a lepton for which parton distributions are included
and one which is treated as an unresolved point-like particle. The necessary modifications
are the same for 2 → 2 and 2 → 1 processes, however, since the t̂ degree of freedom is
unaffected.

If one incoming beam is an unresolved lepton, the corresponding parton-distribution
piece collapses to a δ function. This function can be used to integrate out the y variable:
δ(x1,2 − 1) = δ(y ± (1/2) ln τ). It is therefore only necessary to select the τ and the z
variables according to the proper distributions, with compensating weight factors, and
only one set of parton distributions has to be evaluated explicitly.

If both incoming beams are unresolved leptons, both the τ and the y variables are
trivially given: τ = 1 and y = 0. Parton-distribution weights disappear completely. For
a 2 → 2 process, only the z selection remains to be performed, while a 2 → 1 process is
completely specified, i.e. the cross section is a simple number that only depends on the
c.m. energy.

99



For a resolved electron, the f e
e parton distribution is strongly peaked towards x = 1.

This affects both the τ and the y distributions, which are not well described by either
of the pieces in hτ (τ) or hy(y) in processes with interacting e±. (Processes which involve
e.g. the γ content of the e are still well simulated, since f e

γ is peaked at small x.)
If both parton distributions are peaked close to 1, the hτ (τ) expression in eq. (83)

is therefore increased with one additional term of the form hτ (τ) ∝ 1/(1 − τ), with
coefficients c7 and I7 determined as before. The divergence when τ → 1 is cut off by our
regularization procedure for the f e

e parton distribution; therefore we only need consider
τ < 1 − 2 × 10−6.

Correspondingly, the hy(y) expression is expanded with a term 1/(1−exp(y−y0)) when
incoming beam number 1 consists of a resolved e±, and with a term 1/(1− exp(−y− y0))
when incoming beam number 2 consists of a resolved e±. Both terms are present for
an e+e− collider, only one for an ep one. The coefficient y0 = −(1/2) ln τ is the näıve
kinematical limit of the y range, |y| < y0. From the definitions of y and y0 it is easy
to see that the two terms above correspond to 1/(1 − x1) and 1/(1 − x2), respectively,
and thus are again regularized by our parton-distribution function cut-off. Therefore the
integration ranges are y < y0 − 10−6 for the first term and y > −y0 + 10−6 for the second
one.

7.4.4 Mixing processes

In the cross-section formulae given so far, we have deliberately suppressed a summation
over the allowed incoming flavours. For instance, the process ff → Z0 in a hadron collider
receives contributions from uu → Z0, dd → Z0, ss → Z0, and so on. These contributions
share the same basic form, but differ in the parton-distribution weights and (usually) in a
few coupling constants in the hard matrix elements. It it therefore convenient to generate
the terms together, as follows:

1. A phase-space point is picked, and all common factors related to this choice are
evaluated, i.e. the ‘Jacobian’ and the common pieces of the matrix elements (e.g.
for a Z0 the basic Breit–Wigner shape, excluding couplings to the initial flavour).

2. The parton-distribution-function library is called to produce all the parton distri-
butions, at the relevant x and Q2 values, for the two incoming beams.

3. A loop is made over the two incoming flavours, one from each beam particle. For
each allowed set of incoming flavours, the full matrix-element expression is put
together, using the common pieces and the flavour-dependent couplings. This is
multiplied by the common factors and the parton-distribution weights to obtain a
cross-section weight.

4. Each allowed flavour combination is stored as a separate entry in a table, together
with its weight. In addition, a summed weight is calculated.

5. The phase-space point is kept or rejected, according to a comparison of the summed
weight with the maximum weight obtained at initialization. Also the cross-section
Monte Carlo integration is based on the summed weight.

6. If the point is retained, one of the allowed flavour combinations is picked according
to the relative weights stored in the full table.

Generally, the flavours of the final state are either completely specified by those of
the initial state, e.g. as in qg → qg, or completely decoupled from them, e.g. as in
ff → Z0 → f ′f

′
. In neither case need therefore the final-state flavours be specified in the

cross-section calculation. It is only necessary, in the latter case, to include an overall
weight factor, which takes into account the summed contribution of all final states that
are to be simulated. For instance, if only the process Z0 → e+e− is studied, the relevant
weight factor is simply Γee/Γtot. Once the kinematics and the incoming flavours have
been selected, the outgoing flavours can be picked according to the appropriate relative

100



probabilities.
In some processes, such as gg → gg, several different colour flows are allowed, each

with its own kinematical dependence of the matrix-element weight, see section 8.2.1. Each
colour flow is then given as a separate entry in the table mentioned above, i.e. in total an
entry is characterized by the two incoming flavours, a colour-flow index, and the weight.
For an accepted phase-space point, the colour flow is selected in the same way as the
incoming flavours.

The program can also allow the mixed generation of two or more completely different
processes, such as ff → Z0 and qq → gg. In that case, each process is initialized separately,
with its own set of coefficients ci and so on. The maxima obtained for the individual cross
sections are all expressed in the same units, even when the dimensionality of the phase
space is different. (This is because we always transform to a phase space of unit volume,
∫

hτ (τ) dτ ≡ 1, etc.) The above generation scheme need therefore only be generalized as
follows:

1. One process is selected among the allowed ones, with a relative probability given by
the maximum weight for this process.

2. A phase-space point is found, using the distributions hτ (τ) and so on, optimized for
this particular process.

3. The total weight for the phase-space point is evaluated, again with ‘Jacobians’,
matrix elements and allowed incoming flavour combinations that are specific to the
process.

4. The point is retained with a probability given by the ratio of the actual to the
maximum weight of the process. If the point is rejected, one has to go back to step
1 and pick a new process.

5. Once a phase-space point has been accepted, flavours may be selected, and the event
generated in full.

It is clear why this works: although phase-space points are selected among the allowed
processes according to relative probabilities given by the maximum weights, the probabil-
ity that a point is accepted is proportional to the ratio of actual to maximum weight. In
total, the probability for a given process to be retained is therefore only proportional to
the average of the actual weights, and any dependence on the maximum weight is gone.

In γp and γγ physics, the different components of the photon give different final states,
see section 7.7.2. Technically, this introduces a further level of administration, since each
event class contains a set of (partly overlapping) processes. From an ideological point of
view, however, it just represents one more choice to be made, that of event class, before
the selection of process in step 1 above. When a weighting fails, both class and process
have to be picked anew.

7.5 2 → 3 and 2 → 4 Processes

The Pythia machinery to handle 2 → 1 and 2 → 2 processes is fairly sophisticated and
generic. The same cannot be said about the generation of hard scattering processes with
more than two final-state particles. The number of phase-space variables is larger, and it
is therefore more difficult to find and transform away all possible peaks in the cross section
by a suitably biased choice of phase-space points. In addition, matrix-element expressions
for 2 → 3 processes are typically fairly lengthy. Therefore Pythia only contains a very
limited number of 2 → 3 and 2 → 4 processes, and almost each process is a special case of
its own. It is therefore less interesting to discuss details, and we only give a very generic
overview.

If the Higgs mass is not light, interactions among longitudinal W and Z gauge bosons
are of interest. In the program, 2 → 1 processes such as W+

L W−
L → H0 and 2 → 2

ones such as W+
L W−

L → Z0
LZ0

L are included. The former are for use when the H0 still is
reasonably narrow, such that a resonance description is applicable, while the latter are

101



intended for high energies, where different contributions have to be added up. Since the
program does not contain WL or ZL distributions inside hadrons, the basic hard scattering
has to be convoluted with the q → q′WL and q → qZL branchings, to yield effective 2 → 3
and 2 → 4 processes. However, it is possible to integrate out the scattering angles of the
quarks analytically, as well as one energy-sharing variable [Cha85]. Only after an event
has been accepted are these other kinematical variables selected. This involves further
choices of random variables, according to a separate selection loop.

In total, it is therefore only necessary to introduce one additional variable in the basic
phase-space selection, which is chosen to be ŝ′, the squared invariant mass of the full
2 → 3 or 2 → 4 process, while ŝ is used for the squared invariant mass of the inner
2 → 1 or 2 → 2 process. The y variable is coupled to the full process, since parton-
distribution weights have to be given for the original quarks at x1,2 =

√
τ ′ exp (±y). The

t̂ variable is related to the inner process, and thus not needed for the 2 → 3 processes.
The selection of the τ ′ = ŝ′/s variable is done after τ , but before y has been chosen. To
improve the efficiency, the selection is made according to a weighted phase space of the
form

∫

hτ ′(τ
′) dτ ′, where

hτ ′(τ
′) =

c1
I1

1

τ ′
+
c2
I2

(1 − τ/τ ′)3

τ ′2
+
c3
I3

1

τ ′(1 − τ ′)
, (89)

in conventional notation. The ci coefficients are optimized at initialization. The c3 term,
peaked at τ ′ ≈ 1, is only used for e+e− collisions. The choice of hτ ′ is roughly matched
to the longitudinal gauge-boson flux factor, which is of the form

(

1 +
τ

τ ′

)

ln
(

τ

τ ′

)

− 2
(

1 − τ

τ ′

)

. (90)

For a light H the effective W approximation above breaks down, and it is necessary to
include the full structure of the qq′ → qq′H0 (i.e. ZZ fusion) and qq′ → q′′q′′′H0 (i.e. WW
fusion) matrix elements. The τ ′, τ and y variables are here retained, and selected according
to standard procedures. The Higgs mass is represented by the τ choice; normally the H0

is so narrow that the τ distribution effectively collapses to a δ function. In addition, the
three-body final-state phase space is rewritten as

(

5
∏

i=3

1

(2π)3
d3pi
2Ei

)

(2π)4δ(4)(p3 +p4 +p5−p1−p2) =
1

(2π)5
π2

4
√
λ⊥34

dp2⊥3

dϕ3

2π
dp2⊥4

dϕ4

2π
dy5 ,

(91)
where λ⊥34 = (m2

⊥34−m2
⊥3−m2

⊥4)
2−4m2

⊥3m
2
⊥4. The outgoing quarks are labelled 3 and 4,

and the outgoing Higgs 5. The ϕ angles are selected isotropically, while the two transverse
momenta are picked, with some foreknowledge of the shape of the W/Z propagators in
the cross sections, according to h⊥(p2⊥) dp2⊥, where

h⊥(p2⊥) =
c1
I1

+
c2
I2

1

m2
R + p2⊥

+
c3
I3

1

(m2
R + p2⊥)2

, (92)

with mR the W or Z mass, depending on process, and c1 = c2 = 0.05, c3 = 0.9. Within
the limits given by the other variable choices, the rapidity y5 is chosen uniformly. A final
choice remains to be made, which comes from a twofold ambiguity of exchanging the
longitudinal momenta of partons 3 and 4 (with minor modifications if they are massive).
Here the relative weight can be obtained exactly from the form of the matrix element
itself.

No good phase-space choice was found for the process gg → Z0bb. This process is
therefore not so easy to generate with Pythia. What is currently done is to use the

102



basic formalism of 2 → 2 processes, where the b + b system is considered as an effective
‘resonance’. Two masses are then selected, the Z0 one according to eq. (88) and the b + b
one according to dm2/m2. Both ‘decays’ are selected isotropically in the respective rest
frame, to give the final four fermions in terms of which the matrix element is given. In
addition, τ , y and z are selected according to the standard rules for 2 → 2 processes.

7.6 Resonance Decays

Resonances can be made to decay in two different routines. One is the standard decay
treatment (in LUDECY) that can be used for any unstable particle, where decay channels are
chosen according to fixed probabilities, and decay angles usually are picked isotropically
in the rest frame of the resonance, see section 13.3. The more sophisticated treatment
(in PYRESD) is the default one for resonances produced in Pythia, and is described here.
The following are included in the list of resonances: Z0, W±, H0, Z′0, W′±, H′0, A0, H±,
η0tech, LQ, and R0. The top is also considered as a resonance if it is assumed to decay
before it has time to fragment. Likewise for the fourth generation fermions. If the fourth
generation is used to represent excited quarks and leptons, these are also considered to
be resonances.

7.6.1 The decay scheme

In the beginning of the decay treatment, either one or two resonances may be present,
the former represented by processes such as qq′ → W+ and qg → W+q′, the latter by
qq → W+W−. If the latter is the case, the decay of the two resonances is considered in
parallel (unlike LUDECY, where one particle at a time is made to decay).

First the decay channel of each resonance is selected according to the relative weights

H
(f)
R , as described above, evaluated at the actual mass of the resonance, rather than at

the nominal one. Threshold factors are therefore fully taken into account, with channels
automatically switched off below the threshold. Normally the masses of the decay prod-
ucts are well-defined, but e.g. in decays like H0 → W+W− it is also necessary to select
the decay product masses. This is done according to two Breit–Wigners of the type in
eq. (80), multiplied by the threshold factor, which depends on both masses.

Next the decay angles of the resonance are selected isotropically in its rest frame.
Normally the full range of decay angles is available, but in 2 → 1 processes the decay
angles of the original resonance may be restrained by user cuts, e.g. on the p⊥ of the decay
products. Based on the angles, the four-momenta of the decay products are constructed
and boosted to the correct frame. As a rule, matrix elements are given with quark and
lepton masses assumed vanishing. Therefore the four-momentum vectors constructed at
this stage are actually massless for all quarks and leptons.

The matrix elements may now be evaluated. For a process such as qq → W+W− →
e+νeµ

−νµ, the matrix element is a function of the four-momenta of the two incoming
fermions and of the four outgoing ones. An upper limit for the event weight can be
constructed from the cross section for the basic process qq → W+W−, as already used to
select the two W momenta. If the weighting fails, new resonance decay angles are picked
and the procedure is iterated until acceptance.

Based on the accepted set of angles, the correct decay product four-momenta are con-
structed, including previously neglected fermion masses. Quarks and, optionally, leptons
are allowed to radiate, using the standard final-state showering machinery, with maximum
virtuality given by the resonance mass.

In some decays new resonances are produced, and these are then subsequently allowed
to decay. Only one resonance pair is considered at a time, i.e. it is not possible to include
correlations which involve the simultaneous decay of three or more resonances. This is in
fact all that is currently needed: in a process like qq → Z0H0 → Z0W+W− → 6 fermions,

103



the spinless nature of the H0 ensures that the W± decays are decoupled from that of the
Z0 (but not from each other).

7.6.2 Cross-section considerations

The cross section for a process which involves the production of one or several resonances
is always reduced to take into account channels not allowed by user flags. This is trivial
for a single s-channel resonance, cf. eq. (77), but can also be included approximately if
several layers of resonance decays are involved. At initialization, the ratio between the
user-allowed width and the nominally possible one is evaluated and stored, starting from
the lightest resonances and moving upwards. As an example, one first finds the reduction
factors for W+ and for W− decays, which need not be the same if e.g. W+ is allowed to
decay only to quarks and W− only to leptons. These factors enter together as a weight
for the H0 → W+W− channel, which is thus reduced in importance compared with other
possible Higgs decay channels. This is also reflected in the weight factor of the H0 itself,
where some channels are open in full, others completely closed, and finally some (like the
one above) open but with reduced weight. Finally, the weight for the process qq → Z0H0

is evaluated as the product of the Z0 weight factor and the H0 one. The standard cross
section of the process is multiplied with this weight.

Since the restriction on allowed decay modes is already included in the hard process
cross section, mixing of different event types is greatly simplified, and the selection of decay
channel chains is straightforward. There is a price to be paid, however. The reduction
factors evaluated at initialization all refer to resonances at their nominal masses. For
instance, the W reduction factor is evaluated at the nominal W mass, even when that
factor is used, later on, in the description of the decay of a 120 GeV Higgs, where at least
one W would be produced below this mass. We know of no case where this approximation
has any serious consequences, however.

The weighting procedure works because the number of resonances to be produced,
directly or in subsequent decays, can be derived recursively already from the start. It
does not work for particles which could also be produced at later stages, such as the
parton-shower evolution and the fragmentation. For instance, D0 mesons can be produced
fairly late in the event generation chain, in unknown numbers, and so weights could not
be introduced to compensate, e.g. for the forcing of decays only into π+K−. For similar
reasons the top is only considered as a resonance if it is not allowed to hadronize; see
discussion in section 8.2.2.

One should note that this reduction factor is separate from the description of the
resonance shape itself, where the full width of the resonance has to be used. This width
is based on the sum of all possible decay modes, not just the simulated ones. Pythia
does allow the possibility to change also the underlying physics scenario, e.g. to include
the decay of a Z0 into a fourth-generation neutrino.

Normally the evaluation of the reduction factors is straightforward. However, for
decays into a pair of equal or charge-conjugate resonances, such as Z0Z0 or W+W−, it is
possible to pick combinations in such a way that the weight of the pair does not factorize
into a product of the weight of each resonance itself. To be precise, any decay channel
can be given seven different status codes:

• −1: a non-existent decay mode, completely switched off and of no concern to us;
• 0: an existing decay channel, which is switched off;
• 1: a channel which is switched on;
• 2: a channel switched on for particles, but off for antiparticles;
• 3: a channel switched on for antiparticles, but off for particles;
• 4: a channel switched on for one of the resonances, but not for both;
• 5: a channel switched on for the other of the resonances, but not for both.

104



The meaning of possibilities 4 and 5 is exemplified by the statement ‘in a W+W− pair,
one W decays hadronically and the other leptonically’, which thus covers the cases where
either W+ or W− decays hadronically.

Neglecting non-existing channels, each channel belongs to either of the classes above.
If we denote the total branching ratio into channels of type i by ri, this then translates
into the requirement r0 + r1 + r2 + r3 + r4 + r5 = 1. For a single particle the weight factor
is r1 + r2 + r4, and for a single antiparticle r1 + r3 + r4. For a pair of identical resonances,
the joint weight is instead

(r1 + r2)
2 + 2(r1 + r2)(r4 + r5) + 2r4r5 , (93)

and for a resonance–antiresonance pair

(r1 + r2)(r1 + r3) + (2r1 + r2 + r3)(r4 + r5) + 2r4r5 . (94)

If some channels come with a reduced weight because of restrictions on subsequent decay
chains, this may be described in terms of properly reduced ri, so that the sum is less than
unity. For instance, in a tt → bW+ bW− process, the W decay modes may be restricted
to W+ → qq and W− → e−ν̄e, in which case (

∑

ri)t ≈ 2/3 and (
∑

ri)t ≈ 1/9. With index
± denoting resonance/antiresonance, eq. (94) then generalizes to

(r1 + r2)
+(r1 + r3)

− + (r1 + r2)
+(r4 + r5)

− + (r4 + r5)
+(r1 + r3)

− + r+4 r
−
5 + r+5 r

−
4 . (95)

7.7 Nonperturbative Processes

A few processes are not covered by the discussion so far. These are the ones that depend
on the details of hadronic wave functions, and therefore are not strictly calculable pertur-
batively (although perturbation theory may often provide some guidance). What we have
primarily in mind is elastic scattering, diffractive scattering and low-p⊥ ‘minimum-bias’
events in hadron–hadron collisions, but one can also find corresponding processes in γp
and γγ interactions. The description of these processes is rather differently structured
from that of the other ones, as is explained below. Models for ‘minimum-bias’ events
are discussed in detail in section 11.2, to which we refer for details on this part of the
program.

7.7.1 Hadron–hadron interactions

In hadron–hadron interactions, the total hadronic cross section for AB → anything, σABtot ,
is calculated using the parametrization of Donnachie and Landshoff [Don92]. In this
approach, each cross section appears as the sum of one pomeron term and one reggeon
one

σABtot (s) = XAB sǫ + Y AB s−η , (96)

where s = E2
cm. The powers ǫ = 0.0808 and η = 0.4525 are expected to be universal,

whereas the coefficients XAB and Y AB are specific to each initial state. (In fact, the high-
energy behaviour given by the pomeron term is expected to be the same for particle and

antiparticle interactions, i.e. XAB = XAB.) Parametrizations not provided in [Don92]
have been calculated in the same spirit, making use of quark counting rules [Sch93a].

The total cross section is subdivided according to

σABtot (s) = σABel (s) + σABsd(XB)(s) + σABsd(AX)(s) + σABdd (s) + σABnd (s) . (97)

Here ‘el’ is the elastic process AB → AB, ‘sd(XB)’ the single diffractive AB → XB,
‘sd(AX)’ the single diffractive AB → AX, ‘dd’ the double diffractive AB → X1X2, and

105



‘nd’ the non-diffractive ones. Higher diffractive topologies, such as central diffraction, are
currently neglected. In the following, the elastic and diffractive cross sections and event
characteristics are described, as given in the model by Schuler and Sjöstrand [Sch94,
Sch93a]. The non-diffractive component is identified with the ‘minimum bias’ physics
already mentioned, a practical but not unambiguous choice. Its cross section is given by
‘whatever is left’ according to eq. (97), and its properties are discussed in section 11.2.

At not too large squared momentum transfers t, the elastic cross section can be ap-
proximated by a simple exponential fall-off. If one neglects the small real part of the cross
section, the optical theorem then gives

dσel
dt

=
σ2
tot

16π
exp(Belt) , (98)

and σel = σ2
tot/16πBel. The elastic slope parameter is parametrized by

Bel = BAB
el (s) = 2bA + 2bB + 4sǫ − 4.2 , (99)

with s given in units of GeV and Bel in GeV−2. The constants bA,B are bp = 2.3, bπ,ρ,ω,φ =
1.4, bJ/ψ = 0.23. The increase of the slope parameter with c.m. energy is faster than
the logarithmically one conventionally assumed; that way the ratio σel/σtot remains well-
behaved at large energies.

The diffractive cross sections are given by

dσsd(XB)(s)

dt dM2
=

g3IP
16π

βAIP β
2
BIP

1

M2
exp(Bsd(XB)t)Fsd ,

dσsd(AX)(s)

dt dM2
=

g3IP
16π

β2
AIP βBIP

1

M2
exp(Bsd(AX)t)Fsd ,

dσdd(s)

dt dM2
1 dM2

2

=
g23IP
16π

βAIP βBIP
1

M2
1

1

M2
2

exp(Bddt)Fdd . (100)

The couplings βAIP are related to the pomeron term XABsǫ of the total cross section
parametrization, eq. (96). Picking a reference scale

√
sref = 20 GeV, the couplings are

given by βAIPβBIP = XAB sǫref . The triple-pomeron coupling is determined from single-
diffractive data to be g3IP ≈ 0.318 mb1/2; within the context of the formulae in this
section.

The spectrum of diffractive masses M is taken to begin 0.28 GeV ≈ 2mπ above the
mass of the respective incoming particle and extend to the kinematical limit. The simple
dM2/M2 form is modified by the mass-dependence in the diffractive slopes and in the Fsd

and Fdd factors.
The slope parameters are assumed to be

Bsd(XB)(s) = 2bB + 2α′ ln
(

s

M2

)

,

Bsd(AX)(s) = 2bA + 2α′ ln
(

s

M2

)

,

Bdd(s) = 2α′ ln

(

e4 +
ss0

M2
1M

2
2

)

. (101)

Here α′ = 0.25 GeV−2 and conventionally s0 is picked as s0 = 1/α′. The term e4 in Bdd

is added by hand to avoid a breakdown of the standard expression for large values of
M2

1M
2
2 . The bA,B terms protect Bsd from breaking down; however a minimum value of 2

is still explicitly required for Bsd, which comes into play e.g. for a J/ψ state (as part of a
VMD photon beam).

106



The kinematical range in t depends on all the masses of the problem. In terms of
the scaled variables µ1 = m2

A/s, µ2 = m2
B/s, µ3 = M2

(1)/s (= m2
A/s when A scatters

elastically), µ4 = M2
(2)/s (= m2

B/s when B scatters elastically), and the combinations

C1 = 1 − (µ1 + µ2 + µ3 + µ4) + (µ1 − µ2)(µ3 − µ4) ,

C2 =
√

(1 − µ1 − µ2)2 − 4µ1µ2

√

(1 − µ3 − µ4)2 − 4µ3µ4 ,

C3 = (µ3 − µ1)(µ4 − µ2) + (µ1 + µ4 − µ2 − µ3)(µ1µ4 − µ2µ3) , (102)

one has tmin < t < tmax with

tmin = −s
2

(C1 + C2) ,

tmax = −s
2

(C1 − C2) = −s
2

4C3

C1 + C2

=
s2C3

tmin

. (103)

The Regge formulae above for single- and double-diffractive events are supposed to
hold in certain asymptotic regions of the total phase space. Of course, there will be
diffraction also outside these restrictive regions. Lacking a theory which predicts differen-
tial cross sections at arbitrary t and M2 values, the Regge formulae are used everywhere,
but fudge factors are introduced in order to obtain ‘sensible’ behaviour in the full phase
space. These factors are:

Fsd =

(

1 − M2

s

)(

1 +
cresM

2
res

M2
res +M2

)

,

Fdd =

(

1 − (M1 +M2)
2

s

)(

sm2
p

sm2
p +M2

1 M
2
2

)

×
(

1 +
cresM

2
res

M2
res +M2

1

)(

1 +
cresM

2
res

M2
res +M2

2

)

. (104)

The first factor in either expression suppresses production close to the kinematical limit.
The second factor in Fdd suppresses configurations where the two diffractive systems
overlap in rapidity space. The final factors give an enhancement of the low-mass region,
where a resonance structure is observed in the data. Clearly a more detailed modelling
would have to be based on a set of exclusive states rather than on this smeared-out
averaging procedure. A reasonable fit to pp/pp data is obtained for cres = 2 and Mres =
2 GeV, for an arbitary particle A which is diffractively excited we use MA

res = mA−mp +
2 GeV.

The diffractive cross-section formulae above have been integrated for a set of c.m.
energies, starting at 10 GeV, and the results have been parametrized. The form of
these parametrizations is given in ref. [Sch94], with explicit numbers for the pp/pp case.
Pythia also contains similar parametrizations for πp (assumed to be same as ρp and
ωp), φp, J/ψp, ρρ (ππ etc.), ρφ, ρJ/ψ, φφ, φJ/ψ and J/ψJ/ψ.

The processes above do not obey the ordinary event mixing strategy. First of all, since
their total cross sections are known, it is possible to pick the appropriate process from the
start, and then remain with that choice. In other words, if the selection of kinematical
variables fails, one would not go back and pick a new process, the way it was done in
section 7.4.4. Second, it is not possible to impose any cuts or restrain allowed incoming
or outgoing flavours: if not additional information were to be provided, it would make
the whole scenario ill-defined. Third, it is not recommended to mix generation of these
processes with that of any of the other ones: normally the other processes have so small
cross sections that they would almost never be generated anyway. (We here exclude the

107



cases of ‘underlying events’ and ‘pile-up events’, where mixing is provided for, and even
is a central part of the formalism, see sections 11.2 and 11.3.)

Once the cross-section parametrizations has been used to pick one of the processes,
the variables t and M are selected according to the formulae given above.

A ρ0 formed by γ → ρ0 in elastic or diffractive scattering is polarized, and therefore
its decay angular distribution in ρ0 → π+π− is taken to be proportional to sin2 θ, where
the reference axis is given by the ρ0 direction of motion.

A light diffractive system, with a mass less than 1 GeV above the mass of the in-
coming particle, is allowed to decay isotropically into a two-body state. Single-resonance
diffractive states, such as a ∆+, are therefore not explicily generated, but are assumed
described in an average, smeared-out sense.

A more massive diffractive system is subsequently treated as a string with the quantum
numbers of the original hadron. Since the exact nature of the pomeron exchanged between
the hadrons is unknown, two alternatives are included. In the first, the pomeron is
assumed to couple to (valence) quarks, so that the string is stretched directly between the
struck quark and the remnant diquark (antiquark) of the diffractive state. In the second,
the interaction is rather with a gluon, giving rise to a ‘hairpin’ configuration in which the
string is stretched from a quark to a gluon and then back to a diquark (antiquark). Both
of these scenarios could be present in the data; the default choice is to mix them in equal
proportions.

There is experimental support for more complicated scenarios [Ing85], wherein the
pomeron has a partonic substructure, which e.g. can lead to high-p⊥ jet production in
the diffractive system. The full machinery, wherein a pomeron spectrum is folded with a
pomeron-proton hard interaction, is not available in Pythia.

7.7.2 Photoproduction and γγ physics

The photoproduction part is still under active development. Currently only interactions
between a hadron and a real photon have been studied in detail. γγ physics is under study
[Sch94a], and is now preliminarily included for real photons. Deep inelastic scattering on
a real photon is also preliminarily included. In the future it is hoped to add interactions
of mildly virtual photons (the transition region between real photons and deep inelastic
scattering).

The total γp and γγ cross sections can again be parametrized in a form like eq. (96),
which is not so obvious since the photon has more complicated structure than an ordinary
hadron. In fact, the structure is still not so well understood. The model we outline is the
one studied by Schuler and Sjöstrand [Sch93, Sch93a]. In this model the physical photon
is represented by

|γ〉 =
√

Z3 |γB〉 +
∑

V=ρ0,ω,φ,J/ψ

e

fV
|V 〉 +

e

fqq
|qq〉 +

∑

ℓ=e,µ,τ

e

fℓℓ
|ℓ+ℓ−〉 . (105)

By virtue of this superposition, one is led to a model of γp interactions, where three
different kinds of events may be distinguished:

• Direct events, wherein the bare photon |γB〉 interacts directly with a parton from
the proton. The process is perturbatively calculable, and no parton distributions
of the photon are involved. The typical event structure is two high-p⊥ jets and a
proton remnant, while the photon does not leave behind any remnant.

• VMD events, in which the photon fluctuates into a vector meson, predominantly a
ρ0. All the event classes known from ordinary hadron–hadron interactions may thus
occur here, such as elastic, diffractive, low-p⊥ and high-p⊥ events. For the latter,
one may define (VMD) parton distributions of the photon, and the photon also
leaves behind a beam remnant. This remnant is smeared in transverse momentum
by a typical ‘primordial k⊥’ of a few hundred MeV.

108



• Anomalous events, in which the photon fluctuates into a qq pair of larger virtuality
than in the VMD class. This process is perturbatively calculable, as is the subse-
quent QCD evolution. It gives rise to the so-called anomalous part of the parton
distributions ofthe photon, whence the name for the class. It is assumed that only
high-p⊥ events may occur. Either the q or the q plays the rôle of a beam remnant,
but this remnant has a larger p⊥ than in the VMD case, related to the virtuality of
the γ ↔ qq fluctuation.

The |ℓ+ℓ−〉 states can only interact strongly with partons inside the hadron at higher
orders, and can therefore be neglected.

In order that the above classification is smooth and free of double counting, one has to
introduce scales that separate the three components. The main one is p0, which separates
the low-mass vector meson region from the high-mass |qq〉 one, p0 ≈ mφ/2 ≈ 0.5 GeV.
Since it is the same γqq vertex that is responsible for the bare γp interactions, p0 is also the
lower cut-off of the photon–parton cross sections. In addition, a p⊥min cut-off is needed to
separate low-p⊥ and high-p⊥ physics; see section 11.2. As it turns out, somewhat different
p⊥min values are needed for the VMD and anomalous parts; at least qualitatively this can
be understood in terms of different sizes of the wave functions.

The VMD and anomalous events are together called resolved ones. In terms of high-
p⊥ jet production, the VMD and anomalous contributions can be combined into a total
resolved one, and the same for parton-distribution functions. However, the two classes
differ in the structure of the underlying event and in the appearance of soft processes.

In terms of cross sections, eq. (105) corresponds to

σγptot(s) = σγpdir(s) + σγpVMD(s) + σγpanom(s) . (106)

The direct cross section is, to lowest order, the perturbative cross section for the two
processes γq → qg and γg → qq, with a lower cut-off p⊥ > p0. Properly speaking, this
should be multiplied by the Z3 coefficient,

Z3 = 1 −
∑

V=ρ0,ω,φ,J/ψ

(

e

fV

)2

−
(

e

fqq

)2

−
∑

ℓ=e,µ,τ

(

e

fℓℓ

)2

, (107)

but normally Z3 is so close to unity as to make no difference.
The VMD factor (e/fV )2 = 4παem/f

2
V gives the probability for the transition γ → V .

The coefficients f 2
V /4π are determined from data to be (with a non-negligible amount of

uncertainty) 2.20 for ρ0, 23.6 for ω, 18.4 for φ and 11.5 for J/ψ. Together these numbers
imply that the photon can be found in a VMD state about 0.4% of the time, dominated
by the ρ0 contribution. All the properties of the VMD interactions can be obtained by
appropriately scaling down V p physics predictions. Thus the whole machinery developed
in the previous subsection for hadron–hadron interactions is directly applicable. Also
parton distributions of the VMD component inside the photon are obtained by suitable
rescaling.

The contribution from the ‘anomalous’ high-mass fluctuations depends on the typical
scale µ of the interaction

(

e

fqq

)2

≈ αem

2π

NC

3

(

2
∑

q

e2q

)

ln

(

µ2

p20

)

, (108)

where NC = 3 and q runs over the quarks that can be taken massless compared with
µ. The logarithmic increase with µ implies that the anomalous contribution to the to-
tal photoproduction cross section (µ ∼ mV ) is less important than that to high-p⊥ jet
production (µ ∼ p⊥). To first approximation, therefore only perturbative jet production
above some p⊥min scale is considered. This includes the standard QCD parton–parton

109



scattering processes, with anomalous-photon parton distributions that are fully perturba-
tively calculable [Sch95]. In order to satisfy the equality in eq. (106), with the total cross
section known and the direct and VDM contributions already fixed, a behaviour roughly
like

panom⊥min(s) = 0.70 + 0.17 log2(1.+ 0.05
√
s) (109)

is needed over the HERA energy range. This is to be seen entirely as a pragmatic
parametrization, not be given any fundamental interpretation. It is based on SaS set 1D,
another set might well require a somewhat different form.

In γγ physics [Sch94a], the superposition in eq. (105) applies separately for each of
the two incoming photons. In total there are therefore 3× 3 = 9 combinations. However,
trivial symmetry reduces this to six distinct classes, written in terms of the total cross
section (cf. eq. (106)) as

σγγtot(s) = σγγdir×dir(s) + σγγVMD×VMD(s) + σγγanom×anom(s)

+ 2σγγdir×VMD(s) + 2σγγdir×anom(s) + 2σγγVMD×anom(s) . (110)

A parametrization of the total γγ cross section and comments on its subdivision into the
six classes is found in [Sch94a].

The six different kinds of γγ events are thus:
• The direct×direct events, which correspond to the subprocess γγ → qq (or ℓ+ℓ−).

The typical event structure is two high-p⊥ jets and no beam remnants. The lower
cut-off is p⊥ > p0.

• The VMD×VMD events, which have the same properties as the VMD γp events.
There are four by four combinations of the two incoming vector mesons, with one
VMD factor for each meson.

• The anomalous×anomalous events, wherein each photon fluctuates into a qq pair
of larger virtuality than in the VMD class. One parton of each pair gives a beam
remnant, whereas the other (or a daughter parton thereof) participates in a high-p⊥
scattering, with p⊥ > panom⊥min.

• The direct×VMD events, which have the same properties as the direct γp events.
• The direct×anomalous events, in which a bare photon interacts with a parton from

the anomalous photon. The lower cut-off for the hard scattering is given by panom⊥min.
The typical structure is then two high-p⊥ jets and a beam remnant.

• The VMD×anomalous events, which have the same properties as the anomalous γp
events.

In much of the literature, where a coarser classification us used, our direct×direct is called
direct, our direct×VMD and direct×anomalous is called 1-resolved since they both involve
one resolved photon which gives a beam remnant, and the rest are called 2-resolves since
both photons are resolved and give beam remnants.

110



8 Physics Processes in PYTHIA

In this section we enumerate the physics processes that are available in Pythia, introduc-
ing the ISUB code that can be used to select desired processes. A number of comments
are made about the physics scenarios involved, in particular with respect to underly-
ing assumptions and domain of validity. The section closes with a survey of interesting
processes by machine.

8.1 The Process Classification Scheme

A wide selection of fundamental 2 → 1 and 2 → 2 tree processes of the Standard Model
(electroweak and strong) has been included in Pythia, and slots are provided for many
more, not yet implemented. In addition, a few ‘minimum-bias’-type processes (like elastic
scattering), loop graphs, box graphs, 2 → 3 tree graphs and some non-Standard Model
processes are included. The classification is not always unique. A process that proceeds
only via an s-channel state is classified as a 2 → 1 process (e.g. qq → γ∗/Z0 → e+e−),
but a 2 → 2 cross section may well have contributions from s-channel diagrams (gg → gg
obtains contributions from gg → g∗ → gg). Also, in the program, 2 → 1 and 2 → 2
graphs may sometimes be folded with two 1 → 2 splittings to form effective 2 → 3 or
2 → 4 processes (W+W− → H0 is folded with q → q′′W+ and q′ → q′′′W− to give
qq′ → q′′q′′′H0).

It is possible to select a combination of subprocesses to simulate, and also afterwards
to know which subprocess was actually selected in each event. For this purpose, all
subprocesses are numbered according to an ISUB code. The list of possible codes is given
in Tables 11, 12, 13 and 14. Only processes marked with a ‘+’ sign in the first column have
been implemented in the program to date. Although ISUB codes were originally designed
in a logical fashion, we must admit that subsequent developments of the program have
tended to obscure the structure. For instance, the process numbers for Higgs production
are spread out, in part as a consequence of the original classification, in part because
further production mechanisms have been added one at a time, in whatever free slots
could be found. At some future date the subprocess list will therefore be reorganized.
In the thematic descriptions that follow the main tables, the processes of interest are
repeated in a more logical order. If you want to look for a specific process, it will be
easier to find it there.

In the following, fi represents a fundamental fermion of flavour i, i.e. d, u, s, c, b, t,
l, h, e−, νe, µ

−, νµ, τ−, ντ , χ
− or νχ. A corresponding antifermion is denoted by fi. In

several cases, some classes of fermions are explicitly excluded, since they do not couple
to the g or γ (no e+e− → gg, e.g.). When processes have only been included for quarks,
while leptons might also have been possible, the notation qi is used. A lepton is denoted
by ℓ; in a few cases neutrinos are also lumped under this heading. In processes where
fermion masses are explicitly included in the matrix elements, an F is used to denote an
arbitrary fermion and a Q a quark. Flavours appearing already in the initial state are
denoted by indices i and j, whereas new flavours in the final state are denoted by k and
l.

Charge-conjugate channels are always assumed included as well (where separate), and
processes involving a W+ also imply those involving a W−. Wherever Z0 is written, it is
understood that γ∗ and γ∗/Z0 interference should be included as well (with possibilities
to switch off either, if so desired). In some cases this is not fully implemented, see further
below. Correspondingly, Z′0 denotes the complete set γ∗/Z0/Z′0 (or some subset of it).
Thus the notation γ is only used for a photon on the mass shell.

In the last column of the tables below, references are given to works from which
formulae have been taken. Sometimes these references are to the original works on the
subject, sometimes only to the place where the formulae are given in the most convenient

111



Table 11: Subprocess codes, part 1. First column is ‘+’ for processes implemented and
blank for those that are only foreseen. Second is the subprocess number ISUB, and third
the description of the process. The final column gives references from which the cross
sections have been obtained. See text for further information.

In No. Subprocess Reference
a) 2 → 1, tree

+ 1 fifi → γ∗/Z0 [Eic84]
+ 2 fifj → W+ [Eic84]
+ 3 fifi → H0 [Eic84]

4 γW+ → W+

+ 5 Z0Z0 → H0 [Eic84, Cha85]
6 Z0W+ → W+

7 W+W− → Z0

+ 8 W+W− → H0 [Eic84, Cha85]
b) 2 → 2, tree

+ 10 fifj → fifj (QFD) [Ing87b]
+ 11 fifj → fifj (QCD) [Com77, Ben84, Eic84, Chi90]
+ 12 fifi → fkfk [Com77, Ben84, Eic84, Chi90]
+ 13 fifi → gg [Com77, Ben84]
+ 14 fifi → gγ [Hal78, Ben84]
+ 15 fifi → gZ0 [Eic84]
+ 16 fifj → gW+ [Eic84]

17 fifi → gH0

+ 18 fifi → γγ [Ber84]
+ 19 fifi → γZ0 [Eic84]
+ 20 fifj → γW+ [Eic84, Sam91]

21 fifi → γH0

+ 22 fifi → Z0Z0 [Eic84, Gun86]
+ 23 fifj → Z0W+ [Eic84, Gun86]
+ 24 fifi → Z0H0 [Ber85]
+ 25 fifi → W+W− [Bar94, Gun86]
+ 26 fifj → W+H0 [Eic84]

27 fifi → H0H0

+ 28 fig → fig [Com77, Ben84]
+ 29 fig → fiγ [Hal78, Ben84]
+ 30 fig → fiZ

0 [Eic84]
+ 31 fig → fkW

+ [Eic84]
32 fig → fiH

0

+ 33 fiγ → fig [Duk82]
+ 34 fiγ → fiγ [Duk82]
+ 35 fiγ → fiZ

0 [Gab86]
+ 36 fiγ → fkW

+ [Gab86]
37 fiγ → fiH

0

38 fiZ
0 → fig

39 fiZ
0 → fiγ

40 fiZ
0 → fiZ

0

112



Table 12: Subprocess codes, part 2. First column is ‘+’ for processes implemented and
blank for those that are only foreseen. Second is the subprocess number ISUB, and third
the description of the process. The final column gives references from which the cross
sections have been obtained. See text for further information.

In No. Subprocess Reference
b) 2 → 2, tree (cont’d)

41 fiZ
0 → fkW

+

42 fiZ
0 → fiH

0

43 fiW
+ → fkg

44 fiW
+ → fkγ

45 fiW
+ → fkZ

0

46 fiW
+ → fkW

+

47 fiW
+ → fkH

0

48 fiH
0 → fig

49 fiH
0 → fiγ

50 fiH
0 → fiZ

0

51 fiH
0 → fkW

+

52 fiH
0 → fiH

0

+ 53 gg → fkfk [Com77, Ben84]
+ 54 gγ → fkfk [Duk82]

55 gZ0 → fkfk
56 gW+ → fkf l
57 gH0 → fkf l

+ 58 γγ → fkfk [Bar90]
59 γZ0 → fkfk
60 γW+ → fkf l
61 γH0 → fkfk
62 Z0Z0 → fkfk
63 Z0W+ → fkf l
64 Z0H0 → fkfk
65 W+W− → fkfk
66 W+H0 → fkf l
67 H0H0 → fkfk

+ 68 gg → gg [Com77, Ben84]
+ 69 γγ → W+W− [Kat83]
+ 70 γW+ → Z0W+ [Kun87]
+ 71 Z0Z0 → Z0Z0 (longitudinal) [Abb87]
+ 72 Z0Z0 → W+W− (longitudinal) [Abb87]
+ 73 Z0W+ → Z0W+ (longitudinal) [Dob91]

74 Z0H0 → Z0H0

75 W+W− → γγ
+ 76 W+W− → Z0Z0 (longitudinal) [Ben87b]
+ 77 W+W± → W+W± (longitudinal) [Dun86, Bar90a]

78 W+H0 → W+H0

79 H0H0 → H0H0

+ 80 qiγ → qkπ
± [Bag82]

113



Table 13: Subprocess codes, part 3. First column is ‘+’ for processes implemented and
blank for those that are only foreseen. Second is the subprocess number ISUB, and third
the description of the process. The final column gives references from which the cross
sections have been obtained. See text for further information.

In No. Subprocess Reference
c) 2 → 2, tree, massive final quarks

+ 81 fifi → QkQk [Com79]
+ 82 gg → QkQk [Com79]
+ 83 qifj → Qkfl [Dic86]
+ 84 gγ → QkQk [Fon81]
+ 85 γγ → FkFk [Bar90]
+ 86 gg → J/ψg [Bai83]
+ 87 gg → χ0cg [Gas87]
+ 88 gg → χ1cg [Gas87]
+ 89 gg → χ2cg [Gas87]

d) ‘minimum bias’
+ 91 elastic scattering [Sch94]
+ 92 single diffraction (AB → XB) [Sch94]
+ 93 single diffraction (AB → AX) [Sch94]
+ 94 double diffraction [Sch94]
+ 95 low-p⊥ production [Sjö87]

e) 2 → 1, loop
101 gg → Z0

+ 102 gg → H0 [Eic84]
+ 103 γγ → H0 [Dre89]

f) 2 → 2, box
+ 110 fifi → γH0 [Ber85a]
+ 111 fifi → gH0 [Ell88]
+ 112 fig → fiH

0 [Ell88]
+ 113 gg → gH0 [Ell88]
+ 114 gg → γγ [Con71, Ber84, Dic88]
+ 115 gg → gγ [Con71, Ber84, Dic88]

116 gg → γZ0

117 gg → Z0Z0

118 gg → W+W−

119 γγ → gg
g) 2 → 3, tree

+ 121 gg → QkQkH
0 [Kun84]

+ 122 qiqi → QkQkH
0 [Kun84]

+ 123 fifj → fifjH
0 (ZZ fusion) [Cah84]

+ 124 fifj → fkflH
0 (W+W− fusion) [Cah84]

+ 131 gg → Z0QkQk [Eij90]

114



Table 14: Subprocess codes, part 4. First column is ‘+’ for processes implemented and
blank for those that are only foreseen. Second is the subprocess number ISUB, and third
the description of the process. The final column gives references from which the cross
sections have been obtained. See text for further information.

In No. Subprocess Reference
h) non-Standard Model, 2 → 1

+ 141 fifi → γ/Z0/Z′0 [Alt89]
+ 142 fifj → W′+ [Alt89]
+ 143 fifj → H+ [Gun87]
+ 144 fifj → R [Ben85a]
+ 145 qiℓj → LQ [Wud86]
+ 147 dg → d∗ [Bau90]
+ 148 ug → u∗ [Bau90]
+ 149 gg → ηtechni [Eic84, App92]
+ 151 fifi → H′0 [Eic84]
+ 152 gg → H′0 [Eic84]
+ 153 γγ → H′0 [Dre89]
+ 156 fifi → A0 [Eic84]
+ 157 gg → A0 [Eic84]
+ 158 γγ → A0 [Dre89]

i) non-Standard Model, 2 → 2 and 2 → 3
+ 161 fig → fkH

+ [Bar88]
+ 162 qg → ℓLQ [Hew88]
+ 163 gg → LQLQ [Hew88, Eic84]
+ 164 qiqi → LQLQ [Hew88]
+ 165 fifi → fkfk (via γ∗/Z0) [Eic84, Lan91]
+ 166 fifj → fkf l (via W±) [Eic84, Lan91]
+ 167 qq′ → q′′d∗ [Bau90]
+ 168 qq′ → q′′u∗ [Bau90]
+ 171 fifi → Z0H′0 [Eic84]
+ 172 fifj → W+H′0 [Eic84]
+ 173 fifj → fifjH

′0 (ZZ fusion) [Cah84]
+ 174 fifj → fkflH

′0 (W+W− fusion) [Cah84]
+ 176 fifi → Z0A0 [Eic84]
+ 177 fifj → W+A0 [Eic84]
+ 178 fifj → fifjA

0 (ZZ fusion) [Cah84]
+ 179 fifj → fkflA

0 (W+W− fusion) [Cah84]
+ 181 gg → QkQkH

′0 [Kun84]
+ 182 qiqi → QkQkH

′0 [Kun84]
+ 186 gg → QkQkA

0 [Kun84]
+ 187 qiqi → QkQkA

0 [Kun84]

115



or accessible form, or where chance lead us. Apologies to all matrix-element calculators
who are not mentioned. However, remember that this is not a review article on physics
processes, but only a way for readers to know what is actually found in the program, for
better or worse. In several instances, errata have been obtained from the authors. Often
the formulae given in the literature have been generalized to include trivial radiative
corrections, Breit–Wigner line shapes with ŝ-dependent widths (see section 7.3), etc.

The following sections contain some useful comments on the processes included in
the program, grouped by physics interest rather than sequentially by ISUB or MSEL code
(see 9.2 for further information on the MSEL code). The different ISUB and MSEL codes
that can be used to simulate the different groups are given. ISUB codes within brackets
indicate the kind of processes that indirectly involve the given physics topic, although
only as part of a larger whole. Some obvious examples, such as the possibility to produce
jets in just about any process, are not spelled out in detail.

The text at times contains information on which special switches or parameters are of
particular interest to a given process. All these switches are described in detail in section
9.3, but are alluded to here so as to provide a more complete picture of the possibilities
available for the different subprocesses. However, the list of possibilities is certainly not
exhausted by the text below.

8.2 QCD Processes

In this section we discuss scatterings exclusively between coloured partons — a process
like e+e− → γ∗/Z0 → qq is also traditionally called a QCD event, but is here book-kept
as γ∗/Z0 production.

8.2.1 QCD jets

MSEL = 1, 2
ISUB =
11 qiqj → qiqj
12 qiqi → qkqk
13 qiqi → gg
28 qig → qig
53 gg → qkqk
68 gg → gg

No higher-order processes are explicitly included, nor any higher-order loop corrections
to the 2 → 2 processes. However, by initial- and final-state QCD radiation, multijet events
are being generated, starting from the above processes. The shower rate of multijet
production is clearly uncertain by some amount, especially for well-separated jets.

A string-based fragmentation scheme such as the Lund model needs cross sections
for the different colour flows; these have been calculated in [Ben84] and differ from the
usual calculations by interference terms of the order 1/N2

C . By default, the standard QCD
expressions for the differential cross sections are used. In this case, the interference terms
are distributed on the various colour flows according to the pole structure of the terms.
However, the interference terms can be excluded, by changing MSTP(34)

As an example, consider subprocess 28, qg → qg. The total cross section for this
process, obtained by summing and squaring the Feynman ŝ-, t̂-, and û-channel graphs, is
[Com77]

2

(

1 − ûŝ

t̂2

)

− 4

9

(

ŝ

û
+
û

ŝ

)

− 1 . (111)

(An overall factor πα2
s/ŝ

2 is ignored.) Using the identity of the Mandelstam variables for

116



the massless case, ŝ+ t̂+ û = 0, this can be rewritten as

ŝ2 + û2

t̂2
− 4

9

(

ŝ

û
+
û

ŝ

)

. (112)

On the other hand, the cross sections for the two possible colour flows of this subprocess
are [Ben84]

A :
4

9

(

2
û2

t̂2
− û

ŝ

)

;

B :
4

9

(

2
ŝ2

t̂2
− ŝ

û

)

. (113)

Colour configuration A is one in which the original colour of the q annihilates with the
anticolour of the g, the g colour flows through, and a new colour–anticolour is created
between the final q and g. In colour configuration B, the gluon anticolour flows through,
but the q and g colours are interchanged. Note that these two colour configurations have
different kinematics dependence. For MSTP(34)=0, these are the cross sections actually
used.

The sum of the A and B contributions is

8

9

ŝ2 + û2

t̂2
− 4

9

(

ŝ

û
+
û

ŝ

)

. (114)

The difference between this expression and that of [Com77], corresponding to the inter-
ference between the two colour-flow configurations, is then

1

9

ŝ2 + û2

t̂2
, (115)

which can be naturally divided between colour flows A and B:

A :
1

9

û2

t̂2
;

B :
1

9

ŝ2

t̂2
. (116)

For MSTP(34)=1, the standard QCD matrix element is therefore used, with the same
relative importance of the two colour configurations as above. Similar procedures are
followed also for the other QCD subprocesses.

All the matrix elements in this group are for massless quarks (although final-state
quarks are of course put on the mass shell). As a consequence, cross sections are divergent
for p⊥ → 0, and some kind of regularization is required. Normally you are expected to
set the desired p⊥min value in CKIN(3).

The new flavour produced in the annihilation processes (ISUB = 12 and 53) is deter-
mined by the flavours allowed for gluon splitting into quark–antiquark; see switch MDME.

8.2.2 Heavy flavours

MSEL = 4, 5, 6, 7, 8
ISUB =

81 qiqi → QkQk

82 gg → QkQk

(83) qifj → Qkfl

117



The matrix elements in this group differ from the corresponding ones in the group
above in that they correctly take into account the quark masses. As a consequence, the
cross sections are finite for p⊥ → 0. It is therefore not necessary to introduce any special
cuts.

The two first processes that appear here are the dominant lowest-order graphs in
hadron colliders — a few other graphs will be mentioned later, such as process 83, which
is important for a heavy top.

The choice of flavour to produce is according to a hierarchy of options:
1. if MSEL=4-8 then the flavour is set by the MSEL value;
2. else if MSTP(7)=1-8 then the flavour is set by the MSTP(7) value;
3. else the flavour is determined by the heaviest flavour allowed for gluon splitting into

quark–antiquark; see switch MDME.
Note that only one heavy flavour is allowed at a time; if more than one is turned on in
MDME, only the heaviest will be produced (as opposed to the case for ISUB = 12 and 53
above, where more than one flavour is allowed simultaneously).

The lowest-order processes listed above just represent one source of heavy-flavour
production. Heavy quarks can also be present in the parton distributions at the Q2 scale
of the hard interaction, leading to processes like Qg → Qg, so-called flavour excitation, or
they can be created by gluon splittings g → QQ in initial- or final-state shower evolution.
In fact, as the c.m. energy is increased, these other processes gain in importance relative
to the lowest-order production graphs above. As as example, only 10% of the b production
at LHC energies come from the lowest-order graphs. The figure is even smaller for charm,
while it is at or above 50% for top. At LHC energies, the specialized treatment described
in this subsection is therefore only of interest for top (and potential fourth-generation
quarks) — the higher-order corrections can here be approximated by an effective K factor,
except possibly in some rare corners of phase space. For charm and bottom, on the other
hand, it is necessary to simulate the full event sample (within the desired kinematics
cuts), and then only keep those events with b/c either from lowest-order production, or
flavour excitation, or gluon splitting. Obviously this may be a time-consuming enterprise
— although the probability for a high-p⊥ event to contain (at least) one charm or bottom
pair is fairly large, most of these heavy flavours are carrying a small fraction of the total
p⊥ flow of the jets, and therefore do not survive normal experimental cuts.

As an aside, it is not only for the lowest-order graphs that events may be generated
with a guaranteed heavy-flavour content. One may also generate the flavour excitation
process by itself, in the massless approximation, using ISUB = 28 and setting the KFIN
array appropriately. No trick exists to force the gluon splittings without introducing
undesirable biases, however.

The cross section for a heavy quark pair close to threshold can be modified according
to the formulae of [Fad90], see MSTP(35). Here threshold effects due to QQ bound-state
formation are taken into account in a smeared-out, average sense. Then the näıve cross
section is multiplied by the squared wave function at the origin. In a colour-singlet channel
this gives a net enhancement of the form

|Ψ(s)(0)|2 =
X(s)

1 − exp(−X(s))
, where X(s) =

4

3

παs

β
, (117)

while in a colour octet channel there is a net suppression given by

|Ψ(8)(0)|2 =
X(8)

exp(−X(8)) − 1
, where X(8) =

1

6

παs

β
. (118)

The αs factor in this expression is related to the energy scale of bound-state formation;
it is selected independently from the one of the standard production cross section. The
presence of a threshold factor affects the total rate and also kinematical distributions.

118



Heavy flavours, i.e. top and fourth generation, are assumed to be so short-lived that
they decay before they have time to hadronize. This means that the light quark in the
decay Q → W±q inherits the colour of the heavy one. The new Pythia description rep-
resents a change of philosophy compared to previous versions, formulated at a time when
the top was thought to be much lighter than is believed currently. However, optionally the
old description may still be used, where top hadrons are formed and these subsequently
allowed to decay; see MSTP(48) and MSTP(49). For event shapes the difference between
the two time orderings normally has only marginal effects [Sjö92a].

It should be noted that cross section calculations are different in the two cases. If
the top (or the fourth generation fermion) is assumed short-lived, then it is treated like
a resonance in the sense of section 7.6.2, i.e. the cross-section is reduced so as only to
correspond to the channels left open by the user. This also includes the restrictions on
secondary decays, i.e. on the decays of a W+ or a H+ produced in the top decay. If the
top is allowed to form hadrons, no such reduction takes place. Branching ratios then have
to be folded in by hand to get the correct cross sections. The logic behind this difference
is that if hadronization takes place, one would be allowed e.g. to decay the T0 and T+

meson according to different branching ratios. But which T mesons are to be formed is
not known at the top quark creation, so one could not weight for that. For a t quark which
decays rapidly this ambiguity does not exist, and so a reduction factor can be introduced
directly coupled to the t quark production process.

This rule about cross-section calculations applies to all the processes explicitly set up
to handle heavy flavour creation. In addition to the ones above, this means all the ones
in Tables 11–14 where the fermion final state is given as capital letters (‘Q’ and ‘F’) and
also flavours produced in resonance decays (Z0, W±, H0, etc., including processes 165 and
166). However, heavy flavours can also be produced in a process such as 31, qig → qkW

±,
where qk could be a top quark. In this case, the thrust of the description is clearly on
light flavours — the kinematics of the process is formulated in the massless fermion limit
— so any top production is purely incidental. Since here the choice of scattered flavour
is only done at a later stage, the top branching ratios are not correctly folded in to the
hard scattering cross section. So, for applications like these, it is not recommended to
restrict the allowed top decay modes. Often one might like to get rid of the possibility of
producing top together with light flavours. This can be done by switching off (i.e. setting
MDME(I,1)=0) the ‘channels’ d → W−t, s → W−t, b → W−t, g → tt and γ → tt. Also
any heavy flavours produced by parton shower evolution would not be correctly weighted
into the cross section. However, currently top production is switched off in both initial
(see KFIN array) and final (see MSTJ(45)) state radiation.

8.2.3 J/ψ

ISUB =
86 gg → J/ψg
87 gg → χ0cg
88 gg → χ1cg
89 gg → χ2cg

One may distinguish three main sources of J/ψ production.
1. Decays of B mesons and baryons.
2. Parton-shower evolution, wherein a c and a c quark produced in adjacent branchings

(e.g. g → gg → cccc) turn out to have so small an invariant mass that the pair
collapses to a single particle.

3. Direct production, where a c quark loop gives a coupling between a set of gluons
and a cc bound state. Higher-lying states, like the χc ones, may subsequently decay
to J/ψ.

119



In this section are given the main processes for the third source, intended for applica-
tions at hadron colliders at non-vanishing transverse momenta — in the limit of p⊥ → 0
it is necessary to include a number of 2 → 1 processes and to regularize divergences in the
2 → 2 graphs above. The cross sections depend on wave function values at the origin, see
PARP(38) and PARP(39). A review of the physics issues involved may be found in [Glo88]
(note, however, that the choice of Q2 scale is different in Pythia).

8.2.4 Minimum bias

MSEL = 1, 2
ISUB =
91 elastic scattering
92 single diffraction (AB → XB)
93 single diffraction (AB → AX)
94 double diffraction
95 low-p⊥ production

These processes are briefly discussed in section 7.7. Currently they are mainly intended
for interactions between hadrons, although one may also consider γp interactions in the
option where the incoming photon is assumed resolved, MSTP(14)=1 or =2. A possible
extension to γγ interactions is not yet available.

Uncertainties come from a number of sources, e.g. from the parametrizations of the
various cross sections and slope parameters.

In diffractive scattering, the structure of the selected hadronic system may be regulated
with MSTP(101). No high-p⊥ jet production in diffractive events is included so far.

The subprocess 95, low-p⊥ events, is somewhat unique in that no meaningful physical
border-line to high-p⊥ events can be defined. Even if the QCD 2 → 2 high-p⊥ processes
are formally switched off, some of the generated events will be classified as belonging to
this group, with a p⊥ spectrum of interactions to match the ‘minimum-bias’ event sample.
Only with the option MSTP(82)=0 will subprocess 95 yield strictly low-p⊥ events, events
which will then probably not be compatible with any experimental data. A number of
options exist for the detailed structure of low-p⊥ events, see in particular MSTP(81) and
MSTP(82). Further details on the model(s) for minimum-bias events are found in section
11.2.

8.3 Electroweak Gauge Bosons

This section covers the production and/or exchange of γ, Z0 and W± gauge bosons, singly
and in pairs. The topic of longitudinal gauge-boson scattering at high energies is deferred
to the Higgs section, since the presence or absence of a Higgs here makes a big difference.

8.3.1 Prompt photon production

MSEL = 10
ISUB =

14 qiqi → gγ
18 fifi → γγ
29 qig → qiγ

114 gg → γγ
115 gg → gγ

In hadron colliders, processes ISUB = 14 and 29 give the main source of single-γ
production, with ISUB = 115 giving an additional contribution which, in some kinematics
regions, may become important. For γ-pair production, the process ISUB = 18 is often
overshadowed in importance by ISUB = 114.

120



Another source of photons is bremsstrahlung off incoming or outgoing quarks. This
has to be treated on an equal footing with QCD parton showering. For time-like parton-
shower evolution, i.e. in the final-state showering and in the side branches of the initial-
state showering, photon emission may be switched on or off with MSTJ(41). Photon
radiation off the space-like incoming quark legs is not yet included, but should be of
lesser importance for production at reasonably large p⊥ values. Radiation off an incoming
electron is included in a leading-log approximation.

Warning: the cross sections for the box graphs 114 and 115 become very complicated,
numerically unstable and slow when the full quark mass dependence is included. For quark
masses much below the ŝ scale, the simplified massless expressions are therefore used
— a fairly accurate approximation. However, there is another set of subtle numerical
cancellations between different terms in the massive matrix elements in the region of
small-angle scattering. The associated problems have not been sorted out yet. There
are therefore two possible solutions. One is to use the massless formulae throughout.
The program then becomes faster and numerically stable, but does not give, for example,
the characteristic dip (due to destructive interference) at top threshold. This is the
current default procedure, with five flavours assumed, but this number can be changed
in MSTP(38). The other possibility is to impose cuts on the scattering angle of the hard
process, see CKIN(27) and CKIN(28), since the numerically unstable regions are when
| cos θ̂| is close to unity. It is then also necessary to change MSTP(38) to 0.

8.3.2 Photoproduction and γγ physics

MSEL = 1, 2, 4, 5, 6, 7, 8
ISUB =
33 qiγ → qig
34 fiγ → fiγ
54 gγ → qkqk
58 γγ → fkfk
80 qiγ → qkπ

±

84 gγ → QkQk

85 γγ → FkFk
An (almost) real photon has both a point-like component and a hadron-like one. This

means that several classes of processes may be distinguished, see section 7.7.2.
1. The processes listed above are possible when the photon interacts as a point-like

particle, i.e. couples directly to quarks and leptons.
2. When the photon acts like a hadron, i.e. is resolved in a partonic substructure,

then high-p⊥ parton–parton interactions are possible, as already described in sec-
tions 8.2.1 and 8.3.1. These interactions may be further subdivided into VMD and
anomalous ones [Sch93, Sch93a].

3. A hadron-like photon can also produce the equivalent of the minimum bias processes
of section 8.2.4.

For γp events, we believe that the best description can be obtained when three separate
event classes are combined, one for direct, one for VMD and one for anomalous events,
see the detailed description in [Sch93, Sch93a]. These correspond to MSTP(14) being 0,
2 and 3, respectively. The direct and anomalous components are high-p⊥ only, while
VMD contains both high-p⊥ and low-p⊥ events. The option MSTP(14)=1 combines the
VMD and anomalous parts of the photon into one single resolved photon concept, which
therefore is less precise than the full subdivision.

When combining three runs to obtain the totality of γp interactions, to the best of
our knowledge, it is necessary to choose the p⊥ cut-offs with some care, so as to represent
the expected total cross section.

121



• The direct processes only depend on the CKIN(3) cut-off of the generation,
with preferred value 0.5 GeV [Sch93, Sch93a]. Since this value is so low, one
must remember to reduce a few other defaults values: CKIN(1)=2.*CKIN(3),
CKIN(5)=CKIN(6)=0.5*CKIN(3). For the same reason it is recommended to include
a dampening of proton parton distributions, MSTP(57)=2.

• The VMD processes work as ordinary hadron–hadron ones, i.e. one obtains both
low- and high-p⊥ events by default, with dividing line set by PARP(81) (or PARP(82),
depending on minijet unitarization scheme).

• For the anomalous, finally, the minimal p⊥ of the γ → qq branching is set in
PARP(15). The default is 0.5 GeV, in agreement with the recommended cutoff for
the same vertex in direct proccesses. In addition, a lower CKIN(3) cut-off should be
selected for the hard interactions. This needs some fine-tuning, which in principle
should be done separately for each c.m. energy. A good first approximation in the
HERA energy range (but not beyond 300 GeV) is CKIN(3)= 1.50 + 0.0035Ecm.

The processes in points 1 and 2 can be simulated either with a photon beam or with
an electron beam. For a photon beam it is necessary to use option MSTP(14) to switch
between a point-like and a resolved photon — it is not possible to simulate the two sets
of processes in a single run. An electron by default is assumed to contain photons, but
this can be switched off by MSTP(11)=0. To have quark and gluon distributions inside the
photon (itself inside the electron), MSTP(12)=1 must be used. For the electron, the two
kinds of processes may be generated together, unlike for the photon. It is not possible
to have also the low-p⊥ physics (including multiple interactions in high-p⊥ events) for
an electron beam. Kindly note that subprocess 34 contains both the scattering of an
electron off a photon and the scattering of a quark (inside a photon inside an electron)
off a photon; the former can be switched off with the help of the KFIN array.

If you are only concerned with standard QCD physics, the option MSTP(14)=10 gives
an automatic mixture of the VMD, direct and anomalous event classes. The mixture is
properly given according to the relative cross sections. Whenever possible, this option
is therefore preferrable in terms of user-friendliness. However, it can only work because
of a completely new layer of administration, not found anywhere else in Pythia. For
instance, a subprocess like qg → qg is allowed in several of the classes, but appears with
different sets of parton distributions and different p⊥ cut-offs in each of these, so that
it is necessary to switch gears between each event in the generation. It is therefore not
possible to avoid a number of restrictions on what you can do in this case:

• The MSTP(14)=10 option can only be used for incoming photon beams, i.e. when
’gamma’ is the argument in the PYINIT call. A convolution with the bremsstrahlung
photon spectrum in an electron beam may come one day, but not in the immediate
future.

• The machinery has only been set up to generate standard QCD physics, specifically
either ‘minimum-bias’ one or high-p⊥ jets. For minimum bias, you are not allowed
to use the CKIN variables at all. This is not a major limitation, since it is in
the spirit of minimum-bias physics not to impose any contraints on allowed jet
production. (If you still do, these cuts will be ineffective for the VMD processes but
take effect for the other ones, giving inconsistencies.) The minimum-bias physics
option is obtained by default; by switching from MSEL=1 to MSEL=2 also the elastic
and diffractive components of the VMD part are included. High-p⊥ jet production is
obtained by setting the CKIN(3) cut-off larger than each of the (energy-dependent)
cut-off scales for the VMD, direct and anomalous components; typically this means
at least 3 GeV. For lower input CKIN(3) values the program will automatically
switch back to minimum-bias physics.

• Some variables are internally recalculated and reset: CKIN(1), CKIN(3), CKIN(5),
CKIN(6), MSTP(57), MSTP(85), PARP(2), PARP(81), PARP(82), PARU(115) and
MDME(22,J). This is because they must have values that depend on the component

122



studied. These variables can therefore not be modified without changing PYINPR
and recompiling the program, which obviously is a major exercise.

• Pileup events are not at all allowed.
Also, a warning about the usage of Pdflib for photons. So long as MSTP(14)=1, i.e.

the photon is not split up, Pdflib is accessed by MSTP(56)=2 and MSTP(55) as the parton
distribution set. However, when the VMD and anomalous pieces are split, the VMD part
is based on a rescaling of pion distributions by VMD factors (except for the SaS sets, that
already come with a separate VMD piece). Therefore, to access Pdflib for MSTP(14)=10,
it is not correct to set MSTP(56)=2 and a photon distribution in MSTP(55). Instead, one
should put MSTP(56)=2, MSTP(54)=2 and a pion distribution code in MSTP(53), while
MSTP(55) has no function. The anomalous part is still based on the SaS parametrization,
with PARP(15) as main free parameter.

Currently, hadrons are not defined with any photonic content. None of the processes
are therefore relevant in hadron–hadron collisions. In ep collisions, the electron can emit
an almost real photon, which may interact directly or be resolved. In e+e− collisions, one
may have direct, singly-resolved or doubly-resolved processes.

The γγ equivalent to the γp description involves six different event classes, see sec-
tion 7.7.2. These classes can be obtained by setting MSTP(14) to 0, 2, 3, 5, 6 and 7,
respectively. If one combines the VMD and anomalous parts of the parton distributions
of the photon, in a more coarse description, it is enough to use the MSTP(14) options
0, 1 and 4. The cut-off procedures follows from the ones used for the γp ones above.
Thus the direct×direct and direct×VMD processes require the same cut-offs as used for
direct γp events, the VMD×VMD ones the same as used for VMD γp events, and the rest
(anomalous×anomalous, direct×anomalous and VMD×anomalous) the same as used for
anomalous γp events.

As with γp events, the option MSTP(14)=10 gives a mixture of the six possible γγ
event classes. The same complications and restrictions exist here as already listed above.
For normal use the advantages should outweight the disadvantages.

It is hoped to extend the formalism also to mildly virtual photons. Currently this is
not done. The interaction of a highly virtual photon with a real photon is included in the
deep inelastic scattering formalism below, however.

Process 54 generates a mixture of quark flavours; allowed flavours are set by the gluon
MDME values. Process 58 can generate both quark and lepton pairs, according to the
MDME values of the photon. Processes 84 and 85 are variants of these matrix elements,
with fermion masses included in the matrix elements, but where only one flavour can
be generated at a time. This flavour is selected as described for processes 81 and 82
in section 8.2.2, with the exception that for process 85 the ‘heaviest’ flavour allowed for
photon splitting takes to place of the heaviest flavour allowed for gluon splitting. Since
lepton KF codes come after quark ones, they are counted as being ‘heavier’, and thus
take precedence if they have been allowed.

Process 80 is a higher twist one. The theory for such processes is rather shaky, so
results should not be taken too literally. The messy formulae given in [Bag82] have
not been programmed in full, instead the pion form factor has been parametrized as
Q2Fπ(QQ) ≈ 0.55/ lnQ2, with Q in GeV.

8.3.3 Deep inelastic scattering

MSEL = 1, 2, 35, 36, 37, 38
ISUB =
10 fifj → fkfl
83 qifj → Qkfl

The ‘deep inelastic scattering’ (DIS) processes, i.e. t-channel electroweak gauge boson
exchange, are traditionally associated with interactions between a lepton or neutrino and

123



a hadron, but processes 10 and 83 can equally well be applied for qq scattering in hadron
colliders (with a cross section much smaller than corresponding QCD processes, however).
If applied to incoming e+e− beams, process 10 corresponds to Bhabha scattering.

For process 10 both γ, Z0 and W± exchange contribute, including interference between
γ and Z0. The switch MSTP(21) may be used to restrict to only some of these, e.g. neutral
or charged current only.

The option MSTP(14)=10 (see previous section) has now been extended so that it also
works for deep inelastic sacattering of an electron off a (real) photon, i.e. process 10.
What is obtained is a mixture of the photon acting as a vector meson and it acting as
an anomalous state. This should therefore be the sum of what can be obtained with
MSTP(14)=2 and =3. It is distinct from MSTP(14)=1 in that different sets are used for the
parton distributions — in MSTP(14)=1 all the contributions to the photon distributions
are lumped together, while they are split in VMD and anomalous parts for MSTP(14)=10.
Also the beam remnant treatment is different, with a simple Gaussian distribution (at
least by default) for MSTP(14)=1 and the VMD part of MSTP(14)=10, but a powerlike
distribution dk2⊥/k

2
⊥ between PARP(15) and Q for the anomalous part of MSTP(14)=10.

To access this option for e and γ as incoming beams, it is only necessary to set
MSTP(14)=10 and keep MSEL at its default value. Unlike the corresponding option for γp
and γγ, no cuts are overwritten, i.e. it is still the responsability of the user to set these
appropriately.

Cuts especially appropriate for DIS usage include either CKIN(21)-CKIN(22) or
CKIN(23)-CKIN(24) for the x range (former or latter depending on which side is the
incoming real photon), CKIN(35)-CKIN(36) for the Q2 range, and CKIN(39)-CKIN(40)
for the W 2 range.

In principle, the DIS x variable of an event corresponds to the x value stored in
PARI(33) or PARI(34), depending on which side the incoming hadron is on, while the
DIS Q2 = −t̂ =-PARI(15). However, just like initial- and final-state radiation can shift
jet momenta, they can modify the momentum of the scattered lepton. Therefore the DIS
x and Q2 variables are not automatically conserved. An option, on by default, exists in
MSTP(23), where the event can be ‘modified back’ so as to conserve x and Q2, but this
option is still rather primitive and should not be taken too literally.

Process 83 is the equivalent of process 10 for W± exchange only, but with the heavy-
quark mass included in the matrix element. In hadron colliders it is mainly of interest for
the production of very heavy flavours, where the possibility of producing just one heavy
quark is kinematically favoured over pair production. The selection of the heavy flavour
is already discussed in section 8.2.2.

8.3.4 Single W/Z production

MSEL = 11, 12, 13, 14, 15, (21)
ISUB =

124



1 fifi → γ∗/Z0

2 fifj → W+

15 fifi → g(γ∗/Z0)
16 fifj → gW+

19 fifi → γ(γ∗/Z0)
20 fifj → γW+

30 fig → fi(γ
∗/Z0)

31 fig → fkW
+

35 fiγ → fi(γ
∗/Z0)

36 fiγ → fkW
+

131 gg → Z0QkQk

(141) fifi → γ/Z0/Z′0

This group consists of 2 → 1 processes, i.e. production of a single resonance, and
2 → 2 processes, where the resonance is recoiling against a jet or a photon. The process
141, which also is listed here, is described further elsewhere.

With initial-state showers turned on, the 2 → 1 processes also generate additional jets;
in order to avoid double-counting, the corresponding 2 → 2 processes should therefore not
be turned on simultaneously. The basic rule is to use the 2 → 1 processes for inclusive
generation of W/Z, i.e. where the bulk of the events studied have p⊥ ≪ mW/Z, which is
where parton showers may be expected to do a good job. For dedicated studies of W/Z
production at larger transverse momenta, the parton showers tend to underestimate the
event rates. It is here better to start from the 2 → 2 matrix elements and add showers to
these. However, the 2 → 2 matrix elements are divergent for p⊥ → 0, and should not be
used down to the low-p⊥ region, or one may get unphysical cross sections. The problem
of double-counting applies not only to W/Z production in hadron colliders, but also to a
process like e+e− → Z0γ, which clearly is part of the initial-state radiation corrections to
e+e− → Z0 obtained for MSTP(11)=1. As is the case for Z production in association with
jets, the 2 → 2 process should therefore only be used for the high-p⊥ region.

The Z0 of subprocess 1 includes the full interference structure γ∗/Z0; via MSTP(43)
you can select to produce only γ∗, only Z0, or the full γ∗/Z0. The same holds true
for the Z′0 of subprocess 141; via MSTP(44) any combination of γ∗, Z0 and Z′0 can be
selected. Thus, subprocess 141 with MSTP(44)=4 is essentially equivalent to subprocess
1 with MSTP(43)=3; however, process 141 also includes the possibility of a decay into
Higgses. Also processes 15, 19, 30 and 35 contain the full mixture of γ∗/Z0, with MSTP(43)
available to change this. Only the Z0 that appears in process 131 does not contain the γ∗

contribution.
Note that process 1, with only qq → γ∗ → ℓ+ℓ− allowed, and studied in the region

well below the Z0 mass, is what is conventionally called Drell–Yan. This latter process
therefore does not appear under a separate heading, but can be obtained by a suitable
setting of switches and parameters.

A process like fifj → γW+ is only included in the limit that the γ is emitted in the
‘initial state’, while the possibility of a final-state radiation off the W+ decay products is
not explicitly included (but can be obtained implicitly by the parton-shower machinery)
and various interference terms are not at all present. Some caution must therefore be
exercised; see also section 8.3.5 for related comments.

For the 2 → 1 processes, the Breit–Wigner includes an ŝ-dependent width, which
should provide an improved description of line shapes. In fact, from a line-shape point
of view, process 1 should provide a more accurate simulation of e+e− annihilation events
than the dedicated e+e− generation scheme of Jetset (see section 6.1). However, the
p⊥ distribution of radiated initial-state photons is probably still better modelled in the
Jetset routines. Another difference is that Jetset only allows the generation of γ∗/Z0 →
qq, while process 1 additionally contains γ∗/Z0 → ℓ+ℓ− and γ∗/Z0 → νν. The parton-

125



shower and fragmentation descriptions are the same, but the Pythia implementation has
not been interfaced with the first- and second-order matrix-element options available in
Jetset.

Almost all processes in this group have been included with the correct angular distri-
bution in the subsequent W/Z → ff decays. The exception is process 36, where currently
the W decays isotropically.

The process e+e− → e+e−Z0 can be simulated in two different ways. One is to make
use of the e ‘sea’ distribution inside e, i.e. have splittings e → γ → e. This can be
obtained, together with ordinary Z0 production, by using subprocess 1, with MSTP(11)=1
and MSTP(12)=1. Then the contribution of the type above is 5.0 pb for a 500 GeV e+e−

collider, compared with the correct 6.2 pb [Hag91]. Alternatively one may use process
35, with MSTP(11)=1 and MSTP(12)=0. To catch the singularity in the forward direction,
regularized by the electron mass, it is necessary to set CKIN(3)=CKIN(5)=0.01 — using
lower values will only slow down execution, not significantly increasing the cross section.
One then obtains 5.1 pb, i.e. again 20% below the correct value, but now also generates
a p⊥ distribution for the Z0; this is therefore to be preferred.

Process 36, fγ → f ′W± may have corresponding problems; except that in e+e− the
forward scattering amplitude for eγ → νW is killed (radiation zero), which means that
the differential cross section is vanishing for p⊥ → 0. It is therefore feasible to use the
default CKIN(3) and CKIN(5) values in e+e−, and one also comes closer to the correct
cross section.

One single true 2 → 3 process is included in this class as well; namely gg → Z0QQ, with
full massive matrix elements. The more complicated phase space and the lengthy matrix-
element evaluations make this process extremely slow. With the quark flavour picked to
be b, it may form an important background to intermediate mass Higgs searches in the
multilepton channel. The quark flavour is stored in KFPR(131,2); the default is 5 = b.
The kinematics is set up in terms of a Z0 recoiling against the QQ system, and all ordinary
kinematics cut for a 2 → 2 process can be used on this level, including CKIN(43) and
CKIN(44) to restrict the range of the QQ invariant mass. In addition, for this process
alone, CKIN(51) - CKIN(54) can be used to set the p⊥ range of the two quarks; as is to be
expected, that of the Z0 is set by CKIN(3) - CKIN(4). Since the optimization procedure
is not set up to probe the full multidimensional phase space allowed in this process,
maximum violations may be quite large. It may then be useful to make a preliminary run
to find how big the violations are in total, and then use the MSTP(121)=1 option in the
full run.

8.3.5 W/Z pair production

MSEL = 15
ISUB =
22 fifi → (γ∗/Z0)(γ∗/Z0)
23 fifj → Z0W+

25 fifi → W+W−

69 γγ → W+W−

70 γW+ → Z0W+

In this section we mainly consider the production of W/Z pairs by fermion–antifermion
annihilation, but also include two processes which involve γ/W beams. Scatterings be-
tween gauge-boson pairs, i.e. processes like W+W− → Z0Z0, depend so crucially on the
assumed Higgs scenario that they are considered separately in section 8.4.2.

The cross sections used for the above processes are those derived in the narrow-width
limit, but have been extended to include Breit–Wigner shapes with mass-dependent
widths. However, one should realize that other graphs, not included here, can con-
tribute in regions away from the W/Z mass. This problem is especially important

126



if several flavours coincide in the four-fermion final state. Consider, as an example,
e+e− → µ+µ−νµνµ. Not only would such a final state receive contributions from inter-
mediate Z0Z0 and W+W− states, but also from processes e+e− → Z0 → µ+µ−, followed
either by µ+ → µ+Z0 → µ+νµνµ, or by µ+ → νµW+ → νµµ

+νµ. In addition, all possible
interferences should be considered. Since this is not done, the processes have to be used
with some sound judgement. Very often, one may wish to constrain a lepton pair mass
to be close to mZ, in which case a number of the possible ‘other’ processes are negligible.

Of the above processes, the first contains the full fifi → (γ∗/Z0)(γ∗/Z0) structure,
obtained by a straightforward generalization of the formulae in ref. [Gun86] (done by the
present author). Of course, the possibility of there being significant contributions from
graphs that are not included is increased, in particular if one γ∗ is very light and therefore
could be a bremsstrahlung-type photon. It is possible to use MSTP(43) to recover the pure
Z0 case, i.e. fifi → Z0Z0 exclusively. In processes 23 and 70, only the pure Z0 contribution
is included.

Full angular correlations are included for the first three processes, i.e. the full 2 → 2 →
4 matrix elements are included in the resonance decays, including the appropriate γ∗/Z0

interference in process 22. In the latter two processes no spin information is currently
preserved, i.e. the W/Z bosons are allowed to decay isotropically.

We remind you that the mass ranges of the two resonances may be set with the
CKIN(41) - CKIN(44) parameters; this is particularly convenient, for instance, to pick
one resonance almost on the mass shell and the other not.

8.4 Higgs Production

A fair fraction of all the processes in Pythia deal with Higgs production in one form or
another. This multiplication is caused by the need to consider production by several differ-
ent processes, depending on Higgs mass and machine type. Further, the program contains
a full two-Higgs-multiplet scenario, as predicted for example in the Minimal Supersym-
metric extension of the Standard Model (MSSM). Therefore the continued discussion is,
somewhat arbitrarily, subdivided into a few different scenarios.

8.4.1 Light Standard Model Higgs

MSEL = 16, 17, 18
ISUB =

3 fifi → H0

24 fifi → Z0H0

26 fifj → W+H0

102 gg → H0

103 γγ → H0

110 fifi → γH0

111 fifi → gH0

112 fig → fiH
0

113 gg → gH0

121 gg → QkQkH
0

122 qiqi → QkQkH
0

123 fifj → fifjH
0 (Z0Z0 fusion)

124 fifj → fkflH
0 (W+W− fusion)

In this section we discuss the production of a reasonably light Standard Model Higgs,
below 700 GeV, say, so that the narrow width approximation can be used with some
confidence. Below 400 GeV there would certainly be no trouble, while above that the
narrow width approximation is gradually starting to break down.

127



In a hadron collider, the main production processes are 102, 123 and 124, i.e. gg, Z0Z0

and W+W− fusion. In the latter two processes, it is also necessary to take into account
the emission of the space-like W/Z bosons off quarks, which in total gives the 2 → 3
processes above.

Further processes of lower cross sections may be of interest because of easier signals.
For instance, processes 24 and 26 give associated production of a Z or a W together with
the H0. There is also the processes 3, 121 and 122, which involve production of heavy
flavours.

Process 3 contains contributions from all flavours, but is completely dominated by the
subprocess tt → H0, i.e. by the contribution from the top sea distributions. This process
is by now known to overestimate the cross section for Higgs production as compared with
a more careful calculation based on the subprocess gg → ttH0 (121). The difference
between the two is that in process 3 the t and t are added by the initial-state shower,
while in 121 the full matrix element is used. The price to be paid is that the complicated
multibody phase space in process 121 makes the program run slower than with most
other processes. One should therefore think twice before using it. As usual, it would be
double-counting to include both 3 and 121. Process 122 is similar in structure to 121, but
is less important. In both process 121 and 122 the produced quark is assumed to be a t;
this can be changed in KFPR(121,2) and KFPR(122,2) before initialization, however.

A subprocess like 113, with a Higgs recoiling against a gluon jet, is also effectively
generated by initial-state corrections to subprocess 102; thus, in order to avoid double-
counting, just as for the case of Z0/W+ production, section 8.3.4, these subprocesses
should not be switched on simultaneously. Process 102 should be used for inclusive pro-
duction of Higgs, and 111–113 for the study of the Higgs subsample with high transverse
momentum.

In e+e− annihilation, associated production of an H0 with a Z0, process 24, is usually
the dominant one close to threshold, while the Z0Z0 and W+W− fusion processes 123 and
124 win out at high energies. Process 103, γγ fusion, may also be of interest, in particular
when the possibilities of beamstrahlung photons and backscattered photons are included.
Process 110, which gives an H0 in association with a γ, is a loop process and is therefore
suppressed in rate. Only for a rather massive H0 (mass above 60 GeV at LEP 1) can it
start to compete with the associated production of a Z0, since phase space suppression is
less severe for the former than for the latter.

The branching ratios of the Higgs are very strongly dependent on the mass. In prin-
ciple, the program is set up to calculate these correctly, as a function of the actual Higgs
mass, i.e. not just at the nominal mass. However, higher-order corrections may at times
be important and not fully unambiguous; see for instance MSTP(37).

Since the Higgs is a spin-0 particle it decays isotropically. In decay processes such as
H0 → W+W− → 4 fermions angular correlations are included. Also in processes 24 and
26, Z0 and W± decay angular distributions are correctly taken into account.

8.4.2 Heavy Standard Model Higgs

ISUB =
5 Z0Z0 → H0

8 W+W− → H0

71 Z0Z0 → Z0Z0 (longitudinal)
72 Z0Z0 → W+W− (longitudinal)
73 Z0W+ → Z0W+ (longitudinal)
76 W+W− → Z0Z0 (longitudinal)
77 W+W± → W+W± (longitudinal)

Processes 5 and 8 are the simple 2 → 1 versions of what is now available in 123 and
124 with the full 2 → 3 kinematics. For low Higgs masses processes 5 and 8 overestimate

128



the correct cross sections and should not be used, whereas good agreement between the
2 → 1 and 2 → 3 descriptions is observed when heavy Higgs production is studied.

The subprocesses 5 and 8, V V → H0, which contribute to the processes V V → V ′V ′,
show a bad high-energy behaviour. Here V denotes a longitudinal intermediate gauge
boson, Z0 or W±. This can be cured only by the inclusion of all V V → V ′V ′ graphs, as
is done in subprocesses 71, 72, 73, 76 and 77. In particular, subprocesses 5 and 8 give
rise to a fictitious high-mass tail of the Higgs. If this tail is thrown away, however, the
agreement between the s-channel graphs only (subprocesses 5 and 8) and the full set of
graphs (subprocesses 71 etc.) is very good: for a Higgs of nominal mass 300 (800) GeV, a
cut at 600 (1200) GeV retains 95% (84%) of the total cross section, and differs from the
exact calculation, cut at the same values, by only 2% (11%) (numbers for SSC energies).
With this prescription there is therefore no need to use subprocesses 71 etc. rather than
subprocesses 5 and 8.

For subprocess 77, there is an option, see MSTP(45), to select the charge combination
of the scattering W’s: like-sign, opposite-sign (relevant for Higgs), or both.

Process 77 contains a divergence for p⊥ → 0 due to γ-exchange contributions. This
leads to an infinite total cross section, which is entirely fictitious, since the simple parton-
distribution function approach to the longitudinal W flux is not appropriate in this limit.
For this process, it is therefore necessary to make use of a cut, e.g. p⊥ > mW.

For subprocesses 71, 72, 76 and 77, an option is included (see MSTP(46)) whereby the
user can select only the s-channel Higgs graph; this will then be essentially equivalent to
running subprocess 5 or 8 with the proper decay channels (i.e. Z0Z0 or W+W−) set via
MDME. The difference is that the Breit–Wigners in subprocesses 5 and 8 contain a mass-
dependent width, whereas the width in subprocesses 71–77 is calculated at the nominal
Higgs mass; also, higher-order corrections to the widths are treated more accurately in
subprocesses 5 and 8. Further, processes 71–77 assume the incoming W/Z to be on the
mass shell, with associated kinematics factors, while processes 5 and 8 have W/Z correctly
space-like. All this leads to differences in the cross sections by up to a factor of 1.5.

In the absence of a Higgs, the sector of longitudinal Z and W scattering will become
strongly interacting at energies above 1 TeV. The models proposed by Dobado, Herrero
and Terron [Dob91] to describe this kind of physics have been included as alternative
matrix elements for subprocesses 71, 72, 73, 76 and 77, selectable by MSTP(46). From
the point of view of the general classification scheme for subprocesses, this kind of models
should appropriately be included as separate subprocesses with numbers above 100, but
the current solution allows a more efficient reuse of existing code. By a proper choice of
parameters, it is also here possible to simulate the production of a techni-ρ.

Currently, the scattering of transverse gauge bosons has not been included, neither that
of mixed transverse–longitudinal scatterings. These are expected to be less important at
high energies, and do not contain an H0 resonance peak, but need not be entirely negligible
in magnitude. As a rule of thumb, processes 71–77 should not be used for V V invariant
masses below 500 GeV.

The decay products of the longitudinal gauge bosons are correctly distributed in angle.

8.4.3 Extended neutral Higgs sector

MSEL = 19
ISUB =

129



H0 H′0 A0

3 151 156 fifi → X
102 152 157 gg → X
103 153 158 γγ → X
24 171 176 fifi → Z0X
26 172 177 fifj → W+X

123 173 178 fifj → fifjX (ZZ fusion)
124 174 179 fifj → fkflX (W+W− fusion)
121 181 186 gg → QkQkX
122 182 187 qiqi → QkQkX

ISUB =
(141) fifi → γ/Z0/Z′0

In Pythia, the particle content of a two-Higgs-doublet scenario is included: two
neutral scalar particles, 25 and 35, one pseudoscalar one, 36, and a charged doublet, ±37.
(Of course, these particles may also be associated with corresponding Higgs states in
larger multiplets.) By convention, we choose to call the lighter scalar Higgs H0 and the
heavier H′0 — this differs from the convention in the MSSM, where the lighter is called
h0 and the heavier H0, but allows us to call the Higgs of the one-Higgs scenario H0. The
pseudoscalar is called A0 and the charged H±. Charged-Higgs production is covered in
section 8.4.4.

A number of H0 processes have been duplicated for H′0 and A0. The correspondence
between ISUB numbers is shown in the table above: the first column of ISUB numbers
corresponds to X = H0, the second to X = H′0, and the third to X = A0. Note
that several of these processes are not expected to take place at all, owing to vanishing
Born term couplings. We have still included them for flexibility in simulating arbitrary
couplings at the Born or loop level.

A few Standard Model Higgs processes have no correspondence in the scheme above.
These include

• 5 and 8, which anyway have been superseded by 123 and 124;
• 71, 72, 73, 76 and 77, which deal with what happens if there is no light Higgs, and

so is a scenario complementary to the one above, where several light Higgses are
assumed;

• 110, which is mainly of interest in Standard Model Higgs searches; and
• 111, 112 and 113, which describe the high-p⊥ tail of the Higgs production, and are

less interesting for most Higgs studies.
In processes 121, 122, 181, 182, 186 and 187 the recoiling heavy flavour is assumed to

be top, which is the only one of interest in the Standard Model, and the one where the
parton-distribution-function approach invoked in processes 3, 151 and 156 is least reliable.
However, it is possible to change the quark flavour in 121 etc.; for each process ISUB this
flavour is given by KFPR(ISUB,2). This may become relevant if couplings to bb states are
enhanced, e.g. if tan β ≫ 1 in the MSSM.

By default, the H0 has the couplings of the Standard Model Higgs, while the H′0

and A0 have couplings set in PARU(171) - PARU(178) and PARU(181) - PARU(190),
respectively. The default values for the H′0 and A0 have no deep physics motivation,
but are set just so that the program will not crash due to the absence of any couplings
whatsoever. You should therefore set the above couplings to your desired values if you
want to simulate either H′0 or A0. Also the couplings of the H0 particle can be modified,
in PARU(161) - PARU(165), provided that MSTP(4) is set to 1.

For MSTP(4)=2, the mass of the H0 (in PMAS(25,1)) and the tan β value (in PARU(141))
are used to derive the masses of the other Higgses, as well as all Higgs couplings.
PMAS(35,1) - PMAS(37,1) and PARU(161) - PARU(195) are overwritten accordingly.
The relations used are the ones of the Born-level MSSM [Gun90]. Today, loop corrections

130



to those expressions have been calculated, and are known to have non-negligible effects
on the resulting phenomenology. Eventually the modified relations will be included as an
additional option, but this has not yet been done.

Note that not all combinations of mH and tan β are allowed; the requirement of a finite
A0 mass imposes the constraint

mH < mZ
tan2 β − 1

tan2 β + 1
, (119)

or, equivalently,

tan2 β >
mZ +mH

mZ −mH

. (120)

If this condition is not fulfilled, the program will crash.
Process 141 can also be used to simulate Z0 → H0A0 and Z0 → H′0A0 for associ-

ated neutral Higgs production. The fact that we here make use of the Z′0 can easily be
discounted, either by letting the relevant couplings vanish, or by the option MSTP(44)=4.

Finally, heavier Higgses may decay into lighter ones, if kinematically allowed, in pro-
cesses like A0 → Z0H0 or H+ → W+H0. Such modes are included as part of the general
mixture of decay channels, but they can be enhanced if the uninteresting channels are
switched off.

8.4.4 Charged Higgs sector

MSEL = 23
ISUB =

143 fifj → H+

161 fig → fkH
+

(141) fifi → γ/Z0/Z′0

A charged Higgs doublet, H±, is included in the program. This doublet may be the
one predicted in the MSSM scenario, see section 8.4.3, or in any other scenario. The tan β
parameter, which is relevant also for charged Higgs couplings, is set via PARU(141).

The basic subprocess for charged Higgs production in hadron colliders is ISUB =
143. However, this process is dominated by tb → H+, and so depends on the choice of t
parton distribution. A better representation is provided by subprocess 161, fg → f ′H+;
i.e. actually bg → tH+. It is therefore recommended to use 161 and not 143; to use both
would be double-counting.

In subprocess 141, the decay γ∗/Z0/Z′0 → H+H− allows the production of a pair
of charged Higgs particles. This process is especially important in e+e− colliders. The
coupling of the γ∗ to H+H− is determined by the charge alone, while the Z0 coupling is
regulated by PARU(142), and that of the Z′0 by PARU(143). The Z′0 piece can be switched
off, e.g. by MSTP(44)=4. An ordinary Z0, i.e. particle code 23, cannot be made to decay
into H+H−, however.

A major potential source of charged Higgs production is top decay. When the top is
treated as a resonance (the default option), it is possible to switch on the decay channel
t → bH+. Top will then decay to H+ a fraction of the time, whichever way it is produced.
The branching ratio is automatically calculated, based on the tan β value and masses. It
is possible to only have the H+ decay mode switched on, in which case the cross section
is reduced accordingly. If one instead assumes that top hadrons are formed, branching
ratios are not automatically calculated. However, you can set, for the generic top hadron
86, the branching ratios for the two main channels t → bH+ and t → bW+. In this option
the cross section for top production will not be reduced if only the t → bH+ decay is
switched on, cf. section 7.6.2.

131



8.5 Non-Standard Physics

The number of possible non-Standard Model scenarios is essentially infinite, but many
of the studied scenarios still share a lot of aspects. For instance, new W′ and Z′ gauge
bosons can arise in a number of different ways. Therefore it still makes sense to try to
cover a few basic classes of particles, with enough freedom in couplings that many kinds of
detailed scenarios can be accommodated by suitable parameter choices. We have already
seen one example of this, in the extended Higgs sector above. In this section a few other
kinds of non-standard generic physics is discussed. Clearly many others could have been
included, but there is probably only one glaring omission: currently no supersymmetric
particle production has been included. One main reason for this is the large number of
particles, processes, possible mass hierarchies and decay chains.

8.5.1 Fourth-generation fermions

MSEL = 7, 8, 37, 38
ISUB =

1 fifi → γ∗/Z0

2 fifj → W+

81 qiqi → QkQk

82 gg → QkQk

83 qifj → Qkfl
84 gγ → QkQk

85 γγ → FkFk
141 fifi → γ/Z0/Z′0

142 fifj → W′+

The prospects of a fourth generation currently seem rather dim, but the appropriate
flavour content is still found in the program. In fact, the fourth generation is included on
an equal basis with the first three, provided MSTP(1)=4. Also processes other than the
ones above can therefore be used, e.g. all other processes with gauge bosons, including
non-standard ones such as the Z′0. We therefore do not repeat the descriptions found
elsewhere, e.g. how to set only the desired flavour in processes 81–85. Note that it may
be convenient to set CKIN(1) and other cuts such that the mass of produced gauge bosons
is enough for the wanted particle production — in principle the program will cope even
without that, but possibly at the expense of very slow execution.

8.5.2 New gauge bosons

MSEL = 21, 22, 24
ISUB =
141 fifi → γ/Z0/Z′0

142 fifj → W′+

144 fifj → R
The Z′0 of subprocess 141 contains the full γ∗/Z0/Z′0 interference structure for cou-

plings to fermion pairs. With MSTP(44) it is possible to pick only a subset, e.g. only the
pure Z′0 piece. The couplings of the Z′0 to quarks and leptons can be set via PARU(121)
- PARU(128). The eight numbers correspond to the vector and axial couplings of down-
type quarks, up-type quarks, leptons and neutrinos, respectively. The default corresponds
to the same couplings as that of the Standard Model Z0, with axial couplings af = ±1
and vector couplings vf = af − 4ef sin2θW . This implies a resonance width that increases
linearly with the mass. By a suitable choice of the parameters, it is possible to simulate
just about any imaginable Z′0 scenario, with full interference effects in cross sections and
decay angular distributions.

132



The coupling to the decay channel Z′0 → W+W− is regulated by PARU(129) -
PARU(130). The former gives the strength of the coupling, which determines the rate. The
default, PARU(129)=1., corresponds to the ‘extended gauge model’ of [Alt89], wherein the
Z0 → W+W− coupling is used, scaled down by a factor m2

W/m
2
Z′ , to give a Z′0 partial

width into this channel that again increases linearly. If this factor is cancelled, by having
PARU(129) proportional to m2

Z′/m2
W, one obtains a partial width that goes like the fifth

power of the Z′0 mass, the ‘reference model’ of [Alt89]. In the decay angular distribution
one could imagine a much richer structure than is given by the one parameter PARU(130).

Other decay modes include Z′0 → Z0H0, predicted in left–right symmetric models (see
PARU(145) and ref. [Coc91]), and a number of other Higgs decay channels, see sections
8.4.3 and 8.4.4.

The W′± of subprocess 142 so far does not contain interference with the Standard
Model W± — in practice this should not be a major limitation. The couplings of the W′

to quarks and leptons are set via PARU(131) - PARU(134). Again one may set vector
and axial couplings freely, separately for the qq′ and the ℓνℓ decay channels. The defaults
correspond to the V − A structure of the Standard Model W, but can be changed to
simulate a wide selection of models. One possible limitation is that the same Cabibbo–
Kobayashi–Maskawa quark mixing matrix is assumed as for the standard W.

The coupling W′ → Z0W can be set via PARU(135) - PARU(136). Further comments
on this channel as for Z′; in particular, default couplings again agree with the ‘extended
gauge model’ of [Alt89]. A W′ → WH0 channel is also included, in analogy with the
Z′0 → Z0H0 one, see PARU(146).

The R boson (particle code 40) of subprocess 144 represents one possible scenario for a
horizontal gauge boson, i.e. a gauge boson that couples between the generations, inducing
processes like sd → R0 → µ−e+. Experimental limits on flavour-changing neutral currents
forces such a boson to be fairly heavy. The model implemented is the one described in
[Ben85a].

8.5.3 Leptoquarks

MSEL = 25
ISUB =
145 qiℓj → LQ

162 qg → ℓLQ

163 gg → LQLQ

164 qiqi → LQLQ

Several processes that can generate a leptoquark have been included. Currently only
one leptoquark has been implemented, as particle 39, denoted LQ. The leptoquark is
assumed to carry specific quark and lepton quantum numbers, by default u quark plus
electron. These flavour numbers are conserved, i.e. a process such as ue− → LQ → dνe
is not allowed. This may be a bit restrictive, but it represents one of many leptoquark
possibilities. The spin of the leptoquark is assumed to be zero, i.e. its decay is isotropical.

Although only one leptoquark is implemented, its flavours may be changed arbitrarily
to study the different possibilities. The flavours of the leptoquark are defined by the
quark and lepton flavours in the decay mode list. Since only one decay channel is allowed,
this means that the quark flavour is stored in KFDP(MDCY(39,2),1) and the lepton one
in KFDP(MDCY(39,2),2). The former must always be a quark, while the latter could
be a lepton or an antilepton; a charge-conjugate partner is automatically defined by the
program. At initialization, the charge is recalculated as a function of the flavours defined;
also the leptoquark name is redefined to be of the type ’LQ (q)(l)’, where actual quark
(q) and lepton (l) flavours are displayed.

The LQ → qℓ vertex contains an undetermined Yukawa coupling strength, which
affects both the width of the leptoquark and the cross section for many of the production

133



graphs. This strength may be changed in PARU(151). The definition of PARU(151)
corresponds to the k factor of [Hew88], i.e. to λ2/(4παem), where λ is the Yukawa coupling
strength of [Wud86]. Note that PARU(151) is thus quadratic in the coupling.

The leptoquark is likely to be fairly long-lived, in which case it has time to fragment
into a mesonic- or baryonic-type state, which would decay later on. This is a bit tedious
to handle; therefore the leptoquark is always assumed to decay before fragmentation has
to be considered. This may give some imperfections in the event generation, but should
not be off by much in the final analysis.

Inside the program, the leptoquark is treated as a resonance. Since it carries colour,
some extra care is required. In particular, it is not allowed to put the leptoquark stable,
by modifying either MDCY(39,1) or MSTP(41): then the leptoquark would be handed
undecayed to Jetset, which would try to fragment it (as it does with any other coloured
object), and most likely crash.

8.5.4 Compositeness and anomalous couplings

ISUB =
11 fifj → fifj (QCD)
12 fifi → fkfk
20 fifj → γW+

165 fifi → fkfk (via γ∗/Z0)
166 fifj → fkf l (via W±)

Some processes have been set up to allow anomalous coupling to be introduced, in
addition to the Standard Model ones. These can be switched on by MSTP(5)≥ 1; the
default MSTP(5)=0 corresponds to the Standard Model behaviour.

In processes 11 and 12, the quark substructure is included in the left–left isoscalar
model [Eic84, Chi90] for MSTP(5)=1, with compositeness scale Λ given in PARU(155)
(default 1000 GeV) and sign η of interference term in PARU(156) (default +1; only other
alternative −1). The above model assumes that only u and d quarks are composite
(at least at the scale studied); with MSTP(5)=2 compositeness terms are included in the
interactions between all quarks.

The processes 165 and 166 are basically equivalent to 1 and 2, i.e. γ∗/Z0 and W±

exchange, respectively, but a bit less fancy (no mass-dependent width etc.). The reason for
this duplication is that the resonance treatment formalism of processes 1 and 2 could not
easily be extended to include other than s-channel graphs. In processes 165 and 166, only
one final-state flavour is generated at the time; this flavour should be set in KFPR(165,1)
and KFPR(166,1), respectively. For process 166 one gives the down-type flavour, and
the program will associate the up-type flavour of the same generation. Defaults are
11 in both cases, i.e. e+e− and e+νe (e−νe) final states. While MSTP(5)=0 gives the
Standard Model results, MSTP(5)=1 contains the left–left isoscalar model (which does not
affect process 166), and MSTP(5)=3 the helicity-non-conserving model (which affects both)
[Eic84, Lan91]. Both models above assume that only u and d quarks are composite; with
MSTP(5)= 2 or 4, respectively, contact terms are included for all quarks in the initial state.
Parameters are PARU(155) and PARU(156), as above.

Note that processes 165 and 166 are bookkept as 2 → 2 processes, while 1 and 2 are
2 → 1 ones. This means that the default Q2 scale in parton distributions is p2⊥ for the
former and ŝ for the latter. To make contact between the two, it is recommended to set
MSTP(32)=4, so as to use ŝ as scale also for processes 165 and 166.

In process 20, for Wγ pair production, it is possible to set an anomalous magnetic
moment for the W in PARU(153) (= η = κ−1; where κ = 1 is the Standard Model value).
The production process is affected according to the formulae of [Sam91], while W decay
currently remains unaffected. It is necessary to set MSTP(5)=1 to enable this extension.

134



8.5.5 Excited fermions

ISUB =
147 dg → d∗

148 ug → u∗

167 qq′ → q′′d∗

168 qq′ → q′′u∗

Compositeness scenarios may also give rise to sharp resonances of excited quarks and
leptons. If MSTP(6)=1, then at initialization the standard fourth generation of fermions
will be overwritten, and made to correspond to an excited copy of the first generation,
consisting of spin 1/2 particles d∗ (code 7), u∗ (8), e∗ (17) and ν∗e (18). Since the original
fourth-generation information is lost, it is then not possible to generate fourth-generation
particles in the same run.

The current implementation contains gauge interaction production by quark–gluon
fusion (processes 147 and 148) and contact interaction production by quark–quark or
quark–antiquark scattering (processes 167 and 168) . The couplings f , f ′ and fs to
the SU(2), U(1) and SU(3) groups are stored in PARU(157) - PARU(159), the scale
parameter Λ in PARU(155); you are also expected to change the f∗ masses in accordance
with what is desired — see [Bau90] for details on conventions. Decay processes are of the
types q∗ → qg, q∗ → qγ, q∗ → qZ0 or q∗ → q′W±. A non-trivial angular dependence is
included in the q∗ decay for processes 147 and 148, but has not been included for processes
167 and 168.

8.5.6 Technicolor

ISUB =
149 gg → ηtechni

The technicolor scenario offers an alternative to the ordinary Higgs mechanism for
giving masses to the W and Z. The technicolor gauge group is an analogue of QCD,
with a rich spectrum of technimesons made out of techniquarks. Three of the technipions
assume the role of the longitudinal components of the W and Z bosons, but many other
states remain as separate particles. No fully realistic model has been found so far, however,
so any phenomenology has to be taken as indicative only.

In section 8.4.2 it is discussed how processes 71–77, in some of its options, can be used
to simulate a scenario with techni-ρ resonances in longitudinal gauge boson scattering.

Here we present another process, that of the production of a techni-η. This particle has
zero spin, is a singlet under electroweak SU(2)×U(1), but carries octet colour charge.
It is one of the possible techni-π particles; the name techni-η is part of a subclassification
not used by all authors.

The techni-η couples to ordinary fermions according to the fermion squared mass. The
dominant decay mode is therefore tt, if allowed. The coupling to a gg state is roughly
comparable with that to bb. Production at hadron colliders is therefore predominantly
through gg fusion, as implemented in process 149.

The two main free parameters are the techni-η mass and the decay constant Fπ. The
latter appears inversely quadratically in all the partial widths. Also the total cross section
is affected, since the cross section is proportional to the gg partial width. Fπ is stored
in PARP(46) and has the default value 123 GeV, which is the number predicted in some
models.

8.6 Main Processes by Machine

In the previous section we have already commented on which processes have limited
validity, or have different meanings (according to conventional terminology) in different

135



contexts. Let us just repeat a few of the main points to be remembered for different
machines.

8.6.1 e+e− collisions

The main annihilation process is number 1, e+e− → Z0, where in fact the full γ∗/Z0

interference structure is included. This process can be used, with some confidence, for c.m.
energies from about 4 GeV upwards, i.e. at DORIS/CESR, PETRA/PEP, TRISTAN,
LEP, and any future linear colliders. (To get below 10 GeV, you have to change PARP(2),
however.) This is the default process obtained when MSEL=1, i.e. when you do not change
anything yourself.

Process 141 contains a Z′0, including full interference with the standard γ∗/Z0. With
the value MSTP(44)=4 in fact one is back at the standard γ∗/Z0 structure, i.e. the Z′0

piece has been switched off. Even so, this process may be useful, since it can simulate
e.g. e+e− → H0A0. Since the H0 may in its turn decay to Z0Z0, a decay channel of
the ordinary Z0 to H0A0, although physically correct, would be technically confusing. In
particular, it would be messy to set the original Z0 to decay one way and the subsequent
ones another. So, in this sense, the Z′0 could be used as a copy of the ordinary Z0, but
with a distinguishable label.

The process e+e− → Υ does not exist as a separate process in Pythia, but can be
simulated by using LUONIA, see section 6.2.

At LEP 2 and even higher energy machines, the simple s-channel process 1 will lose
out to other processes, such as e+e− → Z0Z0 and e+e− → W+W−, i.e. processes 22
and 25. The former process in fact includes the structure e+e− → (γ∗/Z0)(γ∗/Z0), which
means that the cross section is singular if either of the two γ∗/Z0 masses is allowed to
vanish. A mass cut therefore needs to be introduced, and is actually also used in other
processes, such as e+e− → W+W−.

For practical applications, both with respect to cross sections and to event shapes,
it is imperative to include initial-state radiation effects. Therefore MSTP(11)=1 is the
default, wherein exponentiated electron-inside-electron distributions are used to give the
momentum of the actually interacting electron. By radiative corrections to process 1,
such processes as e+e− → γZ0 are therefore automatically generated. If process 19 were
to be used at the same time, this would mean that radiation were to be double-counted.
In the alternative MSTP(11)=0, electrons are assumed to deposit their full energy in the
hard process, i.e. initial-state QED radiation is not included. This option is very useful,
since it often corresponds to the ‘ideal’ events that one wants to correct back to.

Resolved electrons also means that one may have interactions between photons. This
opens up the whole field of γγ processes, which is described in section 8.3.2. In particular,
with MSTP(12)=1 photons may be resolved, i.e. photons need not only interact point-like,
but can also interact like a hadron with a partonic substructure. The whole menagerie of
hadron–hadron collider processes can then be accessed. However, it is not yet possible to
include the low-p⊥ processes with a variable photon energy spectrum. That is, to generate
the ‘total’ γγ spectrum, the program also has to be initialized for a γγ collider.

The thrust of the Pythia/Jetset programs is towards processes that involve hadron
production, one way or another. Because of generalizations from other areas, also a
few completely non-hadronic processes are available. These include Bhabha scattering,
e+e− → e+e− in process 10, and photon pair production, e+e− → γγ in process 18.
However, note that the precision that could be expected in a Pythia simulation of those
processes is certainly far less than that of dedicated programs. For one thing, electroweak
loop effects are not included. For another, nowhere is the electron mass taken into account,
which means that explicit cut-offs at some minimum p⊥ are always necessary.

136



8.6.2 Lepton–hadron collisions

The issue of applications to ep colliders has been covered in a recent report [Sjö92b].
The default process for a lepton–hadron collider is deep inelastic scattering, ℓq → ℓ′q′,

of process 10. This includes γ0/Z0/W± exchange, with full interference, as described in
section 8.3.3. Radiation off the incoming lepton leg is included by MSTP(11)=1 and off
the outgoing one by MSTJ(41)=2 (both are default). Note that both QED and QCD
radiation (off the e and the q legs, respectively) are allowed to modify the x and Q2

values of the process, while the conventional approach in the literature is to allow only
the former. Therefore an option (on by default) has been added to preserve these values
by a post-facto rescaling, MSTP(23)=1.

In terms of cross sections, a more important set of processes are related to photopro-
duction, either with a point-like or with a resolved photon, see section 8.3.2. A complete
description of photoproduction is available [Sch93, Sch93a], but needs three separate runs
for the three distinct behaviours of a photon: point-like, VMD resolved and anomalous
resolved.

8.6.3 Hadron–hadron collisions

The default is to include QCD jet production by 2 → 2 processes, see section 8.2.1. Since
the differential cross section is divergent for p⊥ → 0, a lower cut-off has to be introduced.
Normally that cut-off is given by the user-set p⊥min value in CKIN(3). If CKIN(3) is
chosen smaller than a given value of the order of 2 GeV (see PARP(81) and PARP(82)),
then low-p⊥ events are also switched on. The jet cross section is regularized at low p⊥, so
as to obtain a smooth joining between the high-p⊥ and the low-p⊥ descriptions, see further
section 11.2. As CKIN(3) is varied, the jump from one scenario to another is abrupt, in
terms of cross section: in a high-energy hadron collider, the cross section for jets down
to a p⊥min scale of a few GeV can well reach values much larger than the total inelastic,
non-diffractive cross section. Clearly this is nonsense; therefore either p⊥min should be
picked so large that the jet cross section be only a fraction of the total one, or else one
should select p⊥min = 0 and make use of the full description.

If one switches to MSEL=2, also elastic and diffractive processes are switched on, see
section 8.2.4. However, the simulation of these processes is fairly primitive, and should
not be used for dedicated studies, but only to estimate how much they may contaminate
the class of non-diffractive minimum bias events.

Most processes can be simulated in hadron colliders, since the bulk of Pythia pro-
cesses can be initiated by quarks or gluons. However, there are limits. Currently we in-
clude no photon or lepton parton distributions, which means that a process like γq → γq
is not accessible. Further, the possibility of having Z0 and W± interacting in processes
such as 71–77 has been hardwired process by process, and does not mean that there is a
generic treatment of Z0 and W± distributions.

The emphasis in the hadron–hadron process description is on high energy hadron col-
liders. The program can be used also at fixed-target energies, but the multiple interaction
model for underlying events then breaks down and should not be used. The limit of appli-
cability is somewhere at around 100 GeV. Below that, one is also recommended to change
to MSTP(92)=3, to obtain a reasonable amount of beam remnant particle production in
the absence of multiple interactions.

137



9 The PYTHIA Program Elements

In the previous two sections, the physics processes and the event-generation schemes of
Pythia have been presented. Here, finally, the event-generation routines and the common
block variables are described. However, routines and variables related to initial- and final-
state showers, beam remnants and underlying events, and fragmentation and decay are
relegated to subsequent sections on these topics. Further, for historical reasons, many
adjustable coupling constants are found in the LUDAT1 common block in Jetset, rather
than somewhere in the Pythia common blocks; these parameters are described in section
14.5.

In the presentation in this section, information less important for an efficient use of
Pythia has been put closer to the end. We therefore begin with the main event generation
routines, and follow this by the main common block variables.

It is useful to distinguish three phases in a normal run with Pythia. In the first
phase, the initialization, the general character of the run is determined. At a minimum,
this requires the specification of the incoming hadrons and the energies involved. At
the discretion of the user, it is also possible to select specific final states, and to make
a number of decisions about details in the subsequent generation. This step is finished
by a PYINIT call, at which time several variables are initialized in accordance with the
values set. The second phase consists of the main loop over the number of events, with
each new event being generated by a PYEVNT call. This event may then be analysed,
using information stored in some common blocks, and the statistics accumulated. In the
final phase, results are presented. This may often be done without the invocation of any
Pythia routines. From PYSTAT, however, it is possible to obtain a useful list of cross
sections for the different subprocesses.

9.1 The Main Subroutines

There are two routines that you must know: PYINIT for initialization and PYEVNT for the
subsequent generation of each new event. In addition, the cross section and other kinds
of information available with PYSTAT are frequently useful. The other three routines
described here, PYFRAM, PYKCUT, and PYEVWT, are of more specialized interest.

CALL PYINIT(FRAME,BEAM,TARGET,WIN)

Purpose: to initialize the generation procedure.
FRAME : a character variable used to specify the frame of the experiment. Upper-case

and lower-case letters may be freely mixed.
= ’CMS’ : colliding beam experiment in c.m. frame, with beam momentum in +z

direction and target momentum in −z direction.
= ’FIXT’ : fixed-target experiment, with beam particle momentum pointing in +z

direction.
= ’USER’ : full freedom to specify frame by giving beam momentum in P(1,1),

P(1,2) and P(1,3) and target momentum in P(2,1), P(2,2) and
P(2,3) in common block LUJETS. Particles are assumed on the mass
shell, and energies are calculated accordingly.

= ’FOUR’ : as ’USER’, except also energies should be specified, in P(1,4) and
P(2,4), respectively. The particles need not be on the mass shell; effec-
tive masses are calculated from energy and momentum. (But note that
numerical precision may suffer; if you know the masses the option ’FIVE’
below is preferrable.)

= ’FIVE’ : as ’USER’, except also energies and masses should be specified, i.e the

138



full momentum information in P(1,1) - P(1,5) and P(2,1) - P(2,5)
should be given for beam and target, respectively. Particles need not be
on the mass shell. Space-like virtualities should be stored as −

√
−m2.

Four-momentum and mass information must match.
= ’NONE’ : there will be no initialization of any processes, but only of resonance

widths and a few other process-independent variables. Subsequent to
such a call, PYEVNT cannot be used to generate events, so this option is
mainly intended for those who will want to construct their own events
afterwards, but still want to have access to some of the Pythia facilities.
In this option, the BEAM, TARGET and WIN arguments are dummy.

BEAM, TARGET : character variables to specify beam and target particles. Upper-case
and lower-case letters may be freely mixed. An antiparticle may be denoted
either by ‘∼’ or ‘bar’ at the end of the name. It is also possible to leave out
the underscore (‘ ’) directly after ‘nu’ in neutrino names, and the charge for
proton and neutron.

= ’e-’ : electron.
= ’e+’ : positron.
= ’nu e’ : νe.
= ’nu e∼’ : νe.
= ’mu-’ : µ−.
= ’mu+’ : µ+.
= ’nu mu’ : νµ.
= ’nu mu∼’ : νµ.
= ’tau-’ : τ−.
= ’tau+’ : τ+.
= ’nu tau’ : ντ .
= ’nu tau∼’ : ντ .
= ’gamma’ : photon (real, i.e. on the mass shell).
= ’pi0’ : π0.
= ’pi+’ : π+.
= ’pi-’ : π−.
= ’n0’ : neutron.
= ’n∼0’ : antineutron.
= ’p+’ : proton.
= ’p∼-’ : antiproton.
= ’Lambda0’ : Λ baryon.
= ’Sigma-’ : Σ− baryon.
= ’Sigma0’ : Σ0 baryon.
= ’Sigma+’ : Σ+ baryon.
= ’Xi-’ : Ξ− baryon.
= ’Xi0’ : Ξ0 baryon.
= ’Omega-’ : Ω− baryon.
= ’pomeron’ : the pomeron IP; since pomeron parton distribution functions have

not been defined this option can not be used currently.
= ’reggeon’ : the reggeon IR, with comments as for the pomeron above.

WIN : related to energy of system, exact meaning depends on FRAME.
FRAME=’CMS’ : total energy of system (in GeV).
FRAME=’FIXT’ : momentum of beam particle (in GeV/c).
FRAME=’USER’ : dummy (information is taken from the P vectors, see above).

CALL PYEVNT

139



Purpose: to generate one event of the type specified by the PYINIT call. (This is the
main routine, which calls a number of other routines for specific tasks.)

CALL PYSTAT(MSTAT)

Purpose: to print out cross-sections statistics, decay widths, branching ratios, status
codes and parameter values. PYSTAT may be called at any time, after the
PYINIT call, e.g. at the end of the run, or not at all.

MSTAT : specification of desired information.
= 1 : prints a table of how many events of the different kinds that have been

generated and the corresponding cross sections. All numbers already
include the effects of cuts required by the user in PYKCUT.

= 2 : prints a table of the resonances defined in the program, with their particle
codes (KF), and all allowed decay channels. (If the number of generations
in MSTP(1) is 3, however, channels involving fourth-generation particles
are not displayed.) For each decay channel is shown the sequential chan-
nel number (IDC) of the Jetset decay tables, the partial decay width,
branching ratio and effective branching ratio (in the event some channels
have been excluded by the user).

= 3 : prints a table with the allowed hard interaction flavours KFIN(I,J) for
beam and target particles.

= 4 : prints a table of the kinematical cuts CKIN(I) set by the user in the
current run.

= 5 : prints a table with all the values of the status codes MSTP(I) and the
parameters PARP(I) used in the current run.

CALL PYFRAM(IFRAME)

Purpose: to transform an event listing between different reference frames, if so desired.
IFRAME : specification of frame the event is to be boosted to.

= 1 : frame specified by user in the PYINIT call.
= 2 : c.m. frame of incoming particles.
= 3 : hadronic c.m. frame of lepton–hadron interaction events. Mainly in-

tended for deep inelastic scattering, but can also be used in photopro-
duction. Note that both the lepton and any photons radiated off the
lepton remain in the event listing, and have to be removed separately if
you only want to study the hadronic subsystem.

CALL PYKCUT(MCUT)

Purpose: to enable you to reject a given set of kinematic variables at an early stage of the
generation procedure (before evaluation of cross sections), so as not to spend
unnecessary time on the generation of events that are not wanted. The routine
will not be called unless you require is by setting MSTP(141)=1, and never if
‘minimum-bias’-type events (including elastic and diffractive scattering) are to
be generated as well. A dummy routine PYKCUT is included in the program
file, so as to avoid unresolved external references when the routine is not used.

MCUT : flag to signal effect of user-defined cuts.
= 0 : event is to be retained and generated in full.
= 1 : event is to be rejected and a new one generated.

Remark : at the time of selection, several variables in the MINT and VINT arrays in

140



the PYINT1 common block contain information that can be used to make the
decision. The routine provided in the program file explicitly reads the variables
that have been defined at the time PYKCUT is called, and also calculates some
derived quantities. The information available includes subprocess type ISUB,
Ecm, ŝ, t̂, û, p̂⊥, x1, x2, xF, τ , y, τ ′, cos θ̂, and a few more. Some of these may
not be relevant for the process under study, and are then set to zero.

CALL PYEVWT(WTXS)

Purpose: to allow you to reweight event cross sections, by process type and kinematics
of the hard scattering. There exists two separate modes of usage, described in
the following.
For MSTP(142)=1, it is assumed that the cross section of the process is correctly
given by default in Pythia, but that one wishes to generate events biased to
a specific region of phase space. While the WTXS factor therefore multiplies
the näıve cross section in the choice of subprocess type and kinematics, the
produced event comes with a compensating weight PARI(10)=1./WTXS, which
should be used when filling histograms etc. In the PYSTAT(1) table, the cross
sections are unchanged (up to statistical errors) compared with the standard
cross sections, but the relative composition of events may be changed and need
no longer be in proportion to relative cross sections. A typical example of this
usage is if one wishes to enhance the production of high-p⊥ events; then a
weight like WTXS= (p⊥/p⊥0)

2 (with p⊥0 some fixed number) might be appro-
priate.
For MSTP(142)=2, on the other hand, it is assumed that the true cross section
is really to be modifed by the multiplicative factor WTXS. The generated events
therefore come with unit weight, just as usual. This option is really equivalent
to replacing the basic cross sections coded in Pythia, but allows more flexi-
bility: no need to recompile the whole of Pythia.
The routine will not be called unless MSTP(142)≥ 1, and never if ‘minimum-
bias’-type events (including elastic and diffractive scattering) are to be gen-
erated as well. Further, cross sections for additional multiple interactions or
pile-up events are never affected. A dummy routine PYEVWT is included in the
program file, so as to avoid unresolved external references when the routine is
not used.

WTXS: multiplication factor to ordinary event cross section; to be set (by you) in
PYEVWT call.

Remark : at the time of selection, several variables in the MINT and VINT arrays in
the PYINT1 common block contain information that can be used to make the
decision. The routine provided in the program file explicitly reads the variables
that have been defined at the time PYEVWT is called, and also calculates some
derived quantities. The given list of information includes subprocess type
ISUB, Ecm, ŝ, t̂, û, p̂⊥, x1, x2, xF, τ , y, τ ′, cos θ̂, and a few more. Some of
these may not be relevant for the process under study, and are then set to
zero.

Warning: the weights only apply to the hard scattering subprocesses. There is no way to
reweight the shape of initial- and final-state showers, fragmentation, or other
aspects of the event.

141



9.2 Switches for Event Type and Kinematics Selection

By default, if Pythia is run for a hadron collider, only QCD 2 → 2 processes are gener-
ated, composed of hard interactions above p⊥min =PARP(81), with low-p⊥ processes added
on so as to give the full (parametrized) inelastic, non-diffractive cross section. In an e+e−

collider, γ∗/Z0 production is the default, and in an ep one it is deep inelastic scattering.
With the help of the common block PYSUBS, it is possible to select the generation of an-
other process, or combination of processes. It is also allowed to restrict the generation to
specific incoming partons/particles at the hard interaction. This often automatically also
restricts final-state flavours but, in processes such as resonance production or QCD/QED
production of new flavours, switches in the Jetset program may be used to this end; see
section 14.6.

The CKIN array may be used to impose specific kinematics cuts. You should here be
warned that, if kinematical variables are too strongly restricted, the generation time per
event may become very long. In extreme cases, where the cuts effectively close the full
phase space, the event generation may run into an infinite loop. The generation of 2 → 1
resonance production is performed in terms of the ŝ and y variables, and so the ranges
CKIN(1) - CKIN(2) and CKIN(7) - CKIN(8) may be arbitrarily restricted without a
significant loss of speed. For 2 → 2 processes, cos θ̂ is added as a third generation
variable, and so additionally the range CKIN(27) - CKIN(28) may be restricted without
any danger.

Effects from initial- and final-state radiation are not included, since they are not known
at the time the kinematics at the hard interaction is selected. The sharp kinematical cut-
offs that can be imposed on the generation process are therefore smeared, both by QCD
radiation and by fragmentation. A few examples of such effects follow.

• Initial-state radiation implies that each of the two incoming partons has a non-
vanishing p⊥ when they interact. The hard scattering subsystem thus receives a net
transverse boost, and is rotated with respect to the beam directions. In a 2 → 2
process, what typically happens is that one of the scattered partons receives an
increased p⊥, while the p⊥ of the other parton is reduced.

• Since the initial-state radiation machinery assigns space-like virtualities to the in-
coming partons, the definitions of x in terms of energy fractions and in terms of
momentum fractions no longer coincide, and so the interacting subsystem may re-
ceive a net longitudinal boost compared with näıve expectations, as part of the
parton-shower machinery.

• Initial-state radiation gives rise to additional jets, which in extreme cases may be
mistaken for either of the jets of the hard interaction.

• Final-state radiation gives rise to additional jets, which smears the meaning of the
basic 2 → 2 scattering. The assignment of soft jets is not unique. The energy of a
jet becomes dependent on the way it is identified, e.g. what jet cone size is used.

• The beam remnant description assigns primordial k⊥ values, which also gives a
net p⊥ shift of the hard-interaction subsystem; except at low energies this effect
is overshadowed by initial-state radiation, however. Beam remnants may also add
further activity under the ‘perturbative’ event.

• Fragmentation will further broaden jet profiles, and make jet assignments and energy
determinations even more uncertain.

In a study of events within a given window of experimentally defined variables, it is up
to you to leave such liberal margins that no events are missed. In other words, cuts have
to be chosen such that a negligible fraction of events migrate from outside the simulated
region to inside the interesting region. Often this may lead to low efficiency in terms of
what fraction of the generated events are actually of interest to you. See also section 3.6.

In addition to the variables found in PYSUBS, also those in the PYPARS common block
may be used to select exactly what one wants to have simulated. These possibilities will

142



be described in the following subsection.
The notation used above and in the following is that ‘̂ ’ denotes internal variables in

the hard scattering subsystem, while ‘∗’ is for variables in the c.m. frame of the event as
a whole.

COMMON/PYSUBS/MSEL,MSUB(200),KFIN(2,-40:40),CKIN(200)

Purpose: to allow the user to run the program with any desired subset of processes,
or restrict flavours or kinematics. If the default values, denoted below by
(D=. . . ), are not satisfactory, they must be changed before the PYINIT call.

MSEL : (D=1) a switch to select between full user control and some preprogrammed
alternatives.

= 0 : desired subprocesses have to be switched on in MSUB, i.e. full user control.
= 1 : depending on incoming particles, different alternatives are used.

Lepton–lepton: Z or W production (ISUB = 1 or 2).
Lepton–hadron: deep inelastic scattering (ISUB = 10).
Hadron–hadron: QCD high-p⊥ processes (ISUB = 11, 12, 13, 28, 53,
68); additionally low-p⊥ production if CKIN(3)<PARP(81) or PARP(82),
depending on MSTP(82) (ISUB = 95). If low-p⊥ is switched on, the other
CKIN cuts are not used.
A resolved photon counts as hadron, except that an anomalous photon
cannot have low-p⊥ interactions. When the photon is not resolved, the
following cases are possible.
Photon–lepton: Compton scattering (ISUB = 34).
Photon–hadron: photon-parton scattering (ISUB = 33, 34, 54).
Photon–photon: fermion pair production (ISUB = 58).

= 2 : as MSEL = 1 for lepton–lepton, lepton–hadron and unresolved photons.
For hadron–hadron (including resolved photons) all QCD processes, in-
cluding low-p⊥, single and double diffractive and elastic scattering, are
included (ISUB = 11, 12, 13, 28, 53, 68, 91, 92, 93, 94, 95). The CKIN
cuts are here not used.

= 4 : charm (cc) production with massive matrix elements (ISUB = 81, 82, 84,
85).

= 5 : bottom (bb) production with massive matrix elements (ISUB = 81, 82,
84, 85).

= 6 : top (tt) production with massive matrix elements (ISUB = 81, 82, 84,
85).

= 7 : low (ll) production with massive matrix elements (ISUB = 81, 82, 84,
85).

= 8 : high (hh) production with massive matrix elements (ISUB = 81, 82, 84,
85).

= 10 : prompt photons (ISUB = 14, 18, 29).
= 11 : Z0 production (ISUB = 1).
= 12 : W± production (ISUB = 2).
= 13 : Z0 + jet production (ISUB = 15, 30).
= 14 : W± + jet production (ISUB = 16, 31).
= 15 : pair production of different combinations of γ, Z0 and W± (except γγ;

see MSEL = 10) (ISUB = 19, 20, 22, 23, 25).
= 16 : H0 production (ISUB = 3, 102, 103, 123, 124).
= 17 : H0Z0 or H0W± (ISUB = 24, 26).
= 18 : H0 production, combination relevant for e+e− annihilation (ISUB = 24,

103, 123, 124).

143



= 19 : H0, H′0 and A0 production, excepting pair production (ISUB = 24, 103,
123, 124, 153, 158, 171, 173, 174, 176, 178, 179).

= 21 : Z′0 production (ISUB = 141).
= 22 : W′± production (ISUB = 142).
= 23 : H± production (ISUB = 143).
= 24 : R0 production (ISUB = 144).
= 25 : LQ (leptoquark) production (ISUB = 145, 162, 163, 164).
= 35: single bottom production by W exchange (ISUB = 83).
= 36: single top production by W exchange (ISUB = 83).
= 37: single low production by W exchange (ISUB = 83).
= 38: single high production by W exchange (ISUB = 83).

MSUB : (D=200*0) array to be set when MSEL=0 (for MSEL≥ 1 relevant entries are set
in PYINIT) to choose which subset of subprocesses to include in the generation.
The ordering follows the ISUB code given in section 8.1 (with comments as
given there).

MSUB(ISUB) = 0 : the subprocess is excluded.
MSUB(ISUB) = 1 : the subprocess is included.
Note: when MSEL=0, the MSUB values set by the user are never changed by

Pythia. If you want to combine several different ‘subruns’, each with
its own PYINIT call, into one single run, it is up to you to remember not
only to switch on the new processes before each new PYINIT call, but
also to switch off the old ones that are no longer desired.

KFIN(I,J) : provides an option to selectively switch on and off contributions to the cross
sections from the different incoming partons/particles at the hard interaction.
In combination with the Jetset resonance decay switches, this also allows
you to set restrictions on flavours appearing in the final state.

I : is 1 for beam side of event and 2 for target side.
J : enumerates flavours according to the KF code; see section 5.1.
KFIN(I,J) = 0 : the parton/particle is forbidden.
KFIN(I,J) = 1 : the parton/particle is allowed.
Note: By default, the following are switched on: d, u, s, c, b, e−, νe, µ

−, νµ,
τ−, ντ , g, γ, Z0, W+ and their antiparticles. In particular, top is off, and
has to be switched on explicitly if needed.

CKIN : kinematics cuts that can be set by you before the PYINIT call, and that affect
the region of phase space within which events are generated. Some cuts are
‘hardwired’ while most are ‘softwired’. The hardwired ones are directly related
to the kinematical variables used in the event selection procedure, and there-
fore have negligible effects on program efficiency. The most important of these
are CKIN(1) - CKIN(8), CKIN(27) - CKIN(28), and CKIN(31) - CKIN(32).
The softwired ones are most of the remaining ones, that cannot be fully taken
into account in the kinematical variable selection, so that generation in con-
strained regions of phase space may be slow. In extreme cases the phase space
may be so small that the maximization procedure fails to find any allowed
points at all (although some small region might still exist somewhere), and
therefore switches off some subprocesses, or aborts altogether.

CKIN(1), CKIN(2) : (D=2.,-1. GeV) range of allowed m̂ =
√
ŝ values. If CKIN(2)< 0.,

the upper limit is inactive.
CKIN(3), CKIN(4) : (D=0.,-1. GeV) range of allowed p̂⊥ values for hard 2 → 2 pro-

cesses, with transverse momentum p̂⊥ defined in the rest frame of the hard
interaction. If CKIN(4)< 0., the upper limit is inactive. For processes that are
singular in the limit p̂⊥ → 0 (see CKIN(6)), CKIN(5) provides an additional

144



constraint. The CKIN(3) and CKIN(4) limits can also be used in 2 → 1 → 2
processes. Here, however, the product masses are not known and hence are as-
sumed to be vanishing in the event selection. The actual p⊥ range for massive
products is thus shifted downwards with respect to the nominal one.

CKIN(5) : (D=1. GeV) lower cut-off on p̂⊥ values, in addition to the CKIN(3) cut above,
for processes that are singular in the limit p̂⊥ → 0 (see CKIN(6)).

CKIN(6) : (D=1. GeV) hard 2 → 2 processes, which do not proceed only via an inter-
mediate resonance (i.e. are 2 → 1 → 2 processes), are classified as singular in
the limit p̂⊥ → 0 if either or both of the two final-state products has a mass
m <CKIN(6).

CKIN(7), CKIN(8) : (D=-10.,10.) range of allowed scattering subsystem rapidities y =
y∗ in the c.m. frame of the event, where y = (1/2) ln(x1/x2). (Following the
notation of this section, the variable should be given as y∗, but because of its
frequent use, it was called y in section 7.2.)

CKIN(9), CKIN(10) : (D=-10.,10.) range of allowed (true) rapidities for the product
with largest rapidity in a 2 → 2 or a 2 → 1 → 2 process, defined in the c.m.
frame of the event, i.e. max(y∗3, y

∗
4). Note that rapidities are counted with

sign, i.e. if y∗3 = 1 and y∗4 = −2 then max(y∗3, y
∗
4) = 1.

CKIN(11), CKIN(12) : (D=-10.,10.) range of allowed (true) rapidities for the prod-
uct with smallest rapidity in a 2 → 2 or a 2 → 1 → 2 process, defined
in the c.m. frame of the event, i.e. min(y∗3, y

∗
4). Consistency thus requires

CKIN(11)≤CKIN(9) and CKIN(12)≤CKIN(10).
CKIN(13), CKIN(14) : (D=-10.,10.) range of allowed pseudorapidities for the product

with largest pseudorapidity in a 2 → 2 or a 2 → 1 → 2 process, defined in
the c.m. frame of the event, i.e. max(η∗3, η

∗
4). Note that pseudorapidities are

counted with sign, i.e. if η∗3 = 1 and η∗4 = −2 then max(η∗3, η
∗
4) = 1.

CKIN(15), CKIN(16) : (D=-10.,10.) range of allowed pseudorapidities for the product
with smallest pseudorapidity in a 2 → 2 or a 2 → 1 → 2 process, defined
in the c.m. frame of the event, i.e. min(η∗3, η

∗
4). Consistency thus requires

CKIN(15)≤CKIN(13) and CKIN(16)≤CKIN(14).
CKIN(17), CKIN(18) : (D=-1.,1.) range of allowed cos θ∗ values for the product with

largest cos θ∗ value in a 2 → 2 or a 2 → 1 → 2 process, defined in the c.m.
frame of the event, i.e. max(cos θ∗3, cos θ∗4).

CKIN(19), CKIN(20) : (D=-1.,1.) range of allowed cos θ∗ values for the product with
smallest cos θ∗ value in a 2 → 2 or a 2 → 1 → 2 process, defined in the
c.m. frame of the event, i.e. min(cos θ∗3, cos θ∗4). Consistency thus requires
CKIN(19)≤CKIN(17) and CKIN(20)≤CKIN(18).

CKIN(21), CKIN(22) : (D=0.,1.) range of allowed x1 values for the parton on side 1
that enters the hard interaction.

CKIN(23), CKIN(24) : (D=0.,1.) range of allowed x2 values for the parton on side 2
that enters the hard interaction.

CKIN(25), CKIN(26) : (D=-1.,1.) range of allowed Feynman-x values, where xF = x1−
x2.

CKIN(27), CKIN(28) : (D=-1.,1.) range of allowed cos θ̂ values in a hard 2 → 2 scatter-

ing, where θ̂ is the scattering angle in the rest frame of the hard interaction.
CKIN(31), CKIN(32) : (D=2.,-1. GeV) range of allowed m̂′ =

√
ŝ′ values, where m̂′ is

the mass of the complete three- or four-body final state in 2 → 3 or 2 → 4
processes (while m̂, constrained in CKIN(1) and CKIN(2), here corresponds
to the one- or two-body central system). If CKIN(32)< 0., the upper limit is
inactive.

CKIN(35), CKIN(36) : (D=0.,-1. GeV2) range of allowed |t̂| = −t̂ values in 2 → 2 pro-
cesses. Note that for deep inelastic scattering this is nothing but the Q2 scale,
in the limit that initial- and final-state radiation is neglected. If CKIN(36)< 0.,

145



the upper limit is inactive.
CKIN(37), CKIN(38) : (D=0.,-1. GeV2) range of allowed |û| = −û values in 2 → 2

processes. If CKIN(38)< 0., the upper limit is inactive.
CKIN(39), CKIN(40) : (D=4., -1. GeV2) the W 2 range allowed in DIS processes, i.e.

subprocess number 10. If CKIN(40)< 0., the upper limit is inactive. Here W 2

is defined in terms of W 2 = Q2(1− x)/x. This formula is not quite correct, in
that (i) it neglects the target mass (for a proton), and (ii) it neglects initial-
state photon radiation off the incoming electron. It should be good enough for
loose cuts, however.

CKIN(41) - CKIN(44) : (D=12.,-1.,12.,-1. GeV) range of allowed mass values of the
two (or one) resonances produced in a ‘true’ 2 → 2 process, i.e. one not (only)
proceeding through a single s-channel resonance (2 → 1 → 2). (These are the
ones listed as 2 → 2 in the tables in section 8.1.) Only particles with a width
above PARP(41) are considered as bona fide resonances and tested against the
CKIN limits; particles with a smaller width are put on the mass shell without
applying any cuts. The exact interpretation of the CKIN variables depends on
the flavours of the two produced resonances.
For two resonances like Z0W+ (produced from ff ′ → Z0W+), which are not
identical and which are not each other’s antiparticles, one has
CKIN(41)< m1 <CKIN(42), and
CKIN(43)< m2 <CKIN(44),
where m1 and m2 are the actually generated masses of the two resonances,
and 1 and 2 are defined by the order in which they are given in the production
process specification.
For two resonances like Z0Z0, which are identical, or W+W−, which are each
other’s antiparticles, one instead has
CKIN(41)< min(m1,m2) <CKIN(42), and
CKIN(43)< max(m1,m2) <CKIN(44).
In addition, whatever limits are set on CKIN(1) and, in particular, on CKIN(2)
obviously affect the masses actually selected.

Note 1: If MSTP(42)=0, so that no mass smearing is allowed, the CKIN values have
no effect (the same as for particles with too narrow a width).

Note 2: If CKIN(42)<CKIN(41) it means that the CKIN(42) limit is inactive;
correspondingly, if CKIN(44)<CKIN(43) then CKIN(44) is inactive.

Note 3: If limits are active and the resonances are identical, it is up to you to
ensure that CKIN(41)≤CKIN(43) and CKIN(42)≤CKIN(44).

Note 4: For identical resonances, it is not possible to preselect which of the res-
onances is the lighter one; if, for instance, one Z0 is to decay to leptons
and the other to quarks, there is no mechanism to guarantee that the
lepton pair has a mass smaller than the quark one.

Note 5: The CKIN values are applied to all relevant 2 → 2 processes equally, which
may not be what one desires if several processes are generated simulta-
neously. Some caution is therefore urged in the use of the CKIN(41) -
CKIN(44) values. Also in other respects, users are recommended to take
proper care: if a Z0 is only allowed to decay into bb, for example, setting
its mass range to be 2–8 GeV is obviously not a good idea.

Note 6: In principle, the machinery should work for any 2 → 2 process with
resonances in the final state, but so far it has only been checked for
processes 22–26, so also from this point some caution is urged.

CKIN(45) - CKIN(48) : (D=12.,-1.,12.,-1. GeV) range of allowed mass values of the two
(or one) secondary resonances produced in a 2 → 1 → 2 process (like gg →
H0 → Z0Z0) or even a 2 → 2 → 4 (or 3) process (like qq → Z0H0 → Z0W+W−).
Note that these CKIN values only affect the secondary resonances; the primary

146



ones are constrained by CKIN(1), CKIN(2) and CKIN(41) - CKIN(44) (indi-
rectly, of course, the choice of primary resonance masses affects the allowed
mass range for the secondary ones). What is considered to be a resonance is
defined by PARP(41); particles with a width smaller than this are automat-
ically put on the mass shell. The description closely parallels the one given
for CKIN(41) - CKIN(44). Thus, for two resonances that are not identical or
each other’s antiparticles, one has
CKIN(45)< m1 <CKIN(46), and
CKIN(47)< m2 <CKIN(48),
where m1 and m2 are the actually generated masses of the two resonances,
and 1 and 2 are defined by the order in which they given in the decay channel
specification in the program (see e.g. output from PYSTAT(2) or LULIST(12)).
For two resonances that are identical or each other’s antiparticles, one instead
has
CKIN(45)< min(m1,m2) <CKIN(46), and
CKIN(47)< max(m1,m2) <CKIN(48).

Notes 1 - 5: as for CKIN(41) - CKIN(44), with trivial modifications.
Note 6: Setting limits on secondary resonance masses is possible in any of

the channels of the allowed types (see above). However, so far only
H0 → Z0Z0 and H0 → W+W− have been fully implemented, such that
an arbitrary mass range below the näıve mass threshold may be picked.
For other possible resonances, any restrictions made on the allowed mass
range are not reflected in the cross section; and further it is not recom-
mendable to pick mass windows that make a decay on the mass shell
impossible. These limitations will be relaxed in future versions.

CKIN(51) - CKIN(56) : (D=0.,-1.,0.,-1.,0.,-1. GeV) range of allowed transverse mo-
menta in a true 2 → 3 process. Currently two different alternatives are around.
For subprocess 131, the p⊥ of the first product (the Z0) is set by CKIN(3) and
CKIN(4), while for the quark and antiquark p⊥’s one has
CKIN(51)< min(p⊥q, p⊥q) <CKIN(52), and
CKIN(53)< max(p⊥q, p⊥q) <CKIN(54).
Negative CKIN(52) and CKIN(54) values means that the corresponding limits
are inactive. For subprocesses 121–124, and their H′0 and A0 equivalents (173,
174, 178, 179, 181, 182, 186, 187), CKIN(51) - CKIN(54) again corresponds
to p⊥ ranges for scattered partons, but in order of appearance, i.e. CKIN(51)
- CKIN(52) for the parton scattered off the beam and CKIN(53) - CKIN(54)
for the one scattered off the target. CKIN(55) and CKIN(56) here sets p⊥ limits
for the third product, the H0, i.e. the CKIN(3) and CKIN(4) values have no
effect for this process. Since the p⊥ of the Higgs is not one of the primary vari-
ables selected, any constraints here may mean reduced Monte Carlo efficiency,
while for these processes CKIN(51) - CKIN(54) are ‘hardwired’ and therefore
do not cost anything.

9.3 The General Switches and Parameters

The PYPARS common block contains the status code and parameters that regulate the
performance of the program. All of them are provided with sensible default values, so that
a novice user can neglect them, and only gradually explore the full range of possibilities.
Some of the switches and parameters in PYPARS will be described later, in the shower and
beam remnants sections.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

147



Purpose: to give access to status code and parameters that regulate the performance of
the program. If the default values, denoted below by (D=. . . ), are not satis-
factory, they must in general be changed before the PYINIT call. Exceptions,
i.e. variables that can be changed for each new event, are denoted by (C).

MSTP(1) : (D=3) maximum number of generations. Automatically set ≤ 4.
MSTP(2) : (D=1) calculation of αs at hard interaction, in the routine ULALPS.

= 0 : αs is fixed at value PARU(111).
= 1 : first-order running αs.
= 2 : second-order running αs.

MSTP(3) : (D=2) selection of Λ value in αs for MSTP(2)≥ 1.
= 1 : Λ is given by PARP(1) for hard interactions, by PARP(61) for space-like

showers, by PARP(72) for time-like showers not from a resonance decay,
and by PARJ(81) for time-like ones from a resonance decay (including e.g.
γ/Z0 → qq decays, i.e. conventional e+e− physics). This Λ is assumed
to be valid for 5 flavours; for the hard interaction the number of flavours
assumed can be changed by MSTU(112).

= 2 : Λ value is chosen according to the parton-distribution-function para-
metrizations, i.e. Λ = 0.20 GeV for EHLQ1, = 0.29 GeV for EHLQ2, =
0.20 GeV for DO1, = 0.40 GeV for DO2, = 0.213 GeV for CTEQ2M, =
0.208 GeV for CTEQ2MS, = 0.208 GeV for CTEQ2MF, = 0.322 GeV
for CTEQ2ML, = 0.190 GeV for CTEQ2L, = 0.235 GeV for CTEQ2D,
= 0.25 GeV for GRV LO, and similarly for parton-distribution functions
in the Pdflib library (cf. (MSTP(51), MSTP(52)). The choice is always
based on the proton parton-distribution set selected, i.e. is unaffected by
pion and photon parton-distribution selection. All the Λ values above are
assumed to refer to 4 flavours, and MSTU(112) is set accordingly. This Λ
value is used both for the hard scattering and the initial- and final-state
radiation. The ambiguity in the choice of the Q2 argument still remains
(see MSTP(32), MSTP(64) and MSTJ(44)). This Λ value is used also for
MSTP(57)=0, but the sensible choice here would be to use MSTP(2)=0 and
have no initial- or final-state radiation. This option does not change the
PARJ(81) value of timelike parton showers in resonance decays, so that
LEP experience on this specific parameter is not overwritten unwittingly.
Therefore PARJ(81) can be updated completely independently.

= 3 : as =2, except that here also PARJ(81) is overwritten in accordance with
the Λ value of the proton parton-distribution-function set.

MSTP(4) : (D=0) treatment of the Higgs sector, predominantly the neutral one.
= 0 : the H0 is given the Standard Model Higgs couplings, while H′0 and A0

couplings should be set by the user in PARU(171) - PARU(175) and
PARU(181) - PARU(185), respectively.

= 1 : the user should set couplings for all three Higgses, for the H0 in
PARU(161) - PARU(165), and for the H′0 and A0 as above.

= 2 : the mass of H0 in PMAS(25,1) and the tan β value in PARU(141) are used
to derive H′0, A0 and H± masses, and H0, H′0, A0 and H± couplings, using
the relations of the Minimal Supersymmetric extension of the Standard
Model at Born level [Gun90]. Existing masses and couplings are overwrit-
ten by the derived values. See section 8.4.3 for discussion on parameter
constraints.

= 3: as =2, but using relations at the one-loop level. This option is not yet
implemented.

MSTP(5) : (D=0) presence of anomalous couplings in processes.
= 0 : absent.
≥1 : present, wherever implemented. See section 8.5.4 for further details.

148



MSTP(6) : (D=0) usage of the fourth-generation fermions to simulate other fermion
kinds.

= 0 : none, i.e. can be used as a standard fourth generation.
= 1 : excited fermions, as present in compositeness scenarios; see section 8.5.5.

MSTP(7) : (D=0) choice of heavy flavour in subprocesses 81–85. Does not apply for
MSEL=4-8, where the MSEL value always takes precedence.

= 0 : for processes 81–84 (85) the ‘heaviest’ flavour allowed for gluon (photon)
splitting into a quark–antiquark (fermion–antifermion) pair, as set in the
MDME array. Note that ‘heavy’ is defined as the one with largest KF code,
so that leptons take precedence if they are allowed.

= 1 - 8 : pick this particular quark flavour; e.g., MSTP(7)=6 means that top will
be produced.

= 11 - 18 : pick this particular lepton flavour. Note that neutrinos are not possi-
ble, i.e. only 11, 13, 15 and 17 are meaningful alternatives. Lepton pair
production can only occur in process 85, so if any of the other processes
have been switched on they are generated with the same flavour as would
be obtained in the option MSTP(7)=0.

MSTP(8) : (D=0) choice of electroweak parameters to use in the decay widths of res-
onances (W, Z, H, . . . ) and cross sections (production of W’s, Z’s, H’s,
. . . ).

= 0 : everything is expressed in terms of a running αem(Q2) and a fixed sin2θW ,
i.e. GF is nowhere used.

= 1 : a replacement is made according to αem(Q2) →
√

2GFm
2
W sin2θW/π in

all widths and cross sections. If GF and mZ are considered as given, this
means that sin2θW and mW are the only free electroweak parameter.

= 2 : a replacement is made as for =1, but additionally sin2θW is constrained
by the relation sin2θW = 1 −m2

W/m
2
Z. This means that mW remains as

a free parameter, but that the sin2θW value in PARU(102) is never used,
except in the vector couplings in the combination v = a−4 sin2θW e. This
latter degree of freedom enters e.g. for forward-backward asymmetries
in Z0 decays.

Note: This option does not affect the emission of real photons in the initial and
final state, where αem is always used. However, it does affect also purely
electromagnetic hard processes, such as qq → γγ.

MSTP(11) : (D=1) use of electron parton distribution in e+e− and ep interactions.
= 0 : no, i.e. electron carries the whole beam energy.
= 1 : yes, i.e. electron carries only a fraction of beam energy in agreement with

next-to-leading electron parton-distribution function, thereby including
the effects of initial-state bremsstrahlung.

MSTP(12) : (D=0) use of e− (‘sea’, i.e. from e → γ → e), e+, quark and gluon distribu-
tion functions inside an electron.

= 0 : off.
= 1 : on, provided that MSTP(11)≥ 1. Quark and gluons distributions are ob-

tained by numerical convolution of the photon content inside an electron
(as given by the bremsstrahlung spectrum of MSTP(11)=1) with the quark
and gluon content inside a photon. The required numerical precision is
set by PARP(14). Since the need for numerical integration makes this op-
tion somewhat more time-consuming than ordinary parton-distribution
evaluation, one should only use it when studying processes where it is
needed.

MSTP(13) : (D=1) choice of Q2 range over which electrons are assumed to radiate pho-
tons; affects normalization of e− (sea), e+, γ, quark and gluon distributions
inside an electron.

149



= 1 : range set by Q2 argument of parton-distribution-function call, i.e. by
Q2 scale of the hard interaction. Therefore parton distributions are pro-
portional to ln(Q2/m2

e). This is normally most appropriate for e+e−

annihilation.
= 2 : range set by the user-determined Q2

max, given in PARP(13). Parton distri-
butions are assumed to be proportional to ln((Q2

max/m
2
e)(1−x)/x2). This

is normally most appropriate for photoproduction, where the electron is
supposed to go undetected, i.e. scatter less than Q2

max.
Note: the choice of effective range is especially touchy for the quark and gluon

distributions. An (almost) on-the-mass-shell photon has a VMD piece
that dies away for a virtual photon. A simple folding of distribution
functions does not take this into account properly. Therefore the contri-
bution from Q values above the ρ mass should be suppressed. A choice
of Qmax ≈ 1 GeV is then appropriate for a photoproduction limit de-
scription of physics.

MSTP(14) : (D=0) structure of incoming photon beam or target (does not affect photon
inside electron, only photons appearing as argument in the PYINIT call).

= 0 : a photon is assumed to be point-like (a direct photon), i.e. can only
interact in processes which explicitly contain the incoming photon, such
as fiγ → fig for γp interactions. In γγ interactions both photons are
direct, i.e the main process is γγ → fifi.

= 1 : a photon is assumed to be resolved, i.e. can only interact through its
constituent quarks and gluons, giving either high-p⊥ parton–parton scat-
terings or low-p⊥ events. Hard processes are calculated with the use of
the full photon parton distributions. In γγ interactions both photons are
resolved.

= 2 : a photon is assumed resolved, but only the VMD piece is included in the
parton distributions, which therefore mainly are scaled-down versions
of the ρ0/π0 ones. Both high-p⊥ parton–parton scatterings and low-pT
events are allowed. In γγ interactions both photons are VMD-like.

= 3 : a photon is assumed resolved, but only the anomalous piece of the photon
parton distributions is included. Only high-p⊥ parton–parton scatterings
are allowed. In γγ interactions both photons are anomalous.

= 4 : in γγ interactions one photon is direct and the other resolved. A typical
process is thus fiγ → fig. Hard processes are calculated with the use
of the full photon parton distributions for the resolved photon. Both
possibilities of which photon is direct are included, in event topologies
and in cross sections. This option cannot be used in configurations with
only one incoming photon.

= 5 : in γγ interactions one photon is direct and the other VMD-like. Both
possibilities of which photon is direct are included, in event topologies
and in cross sections. This option cannot be used in configurations with
only one incoming photon.

= 6 : in γγ interactions one photon is direct and the other anomalous. Both
possibilities of which photon is direct are included, in event topologies
and in cross sections. This option cannot be used in configurations with
only one incoming photon.

= 7 : in γγ interactions one photon is VMD-like and the other anomalous.
Only high-p⊥ parton–parton scatterings are allowed. Both possibilities
of which photon is VMD-like are included, in event topologies and in
cross sections. This option cannot be used in configurations with only
one incoming photon.

= 10 : the VMD, direct and anomalous components of the photon are automat-

150



ically mixed. For γp interactions, this means an automatic mixture of
the three classes 0, 2 and 3 above [Sch93, Sch93a], for γγ ones a mixture
of the six classes 0, 2, 3, 5, 6 and 7 above [Sch94a]. Various restrictions
exist for this option, as discussed in section 8.3.2.

Note: our best understanding of how to mix event classes is provided by the
option 10 above, which also can be obtained by combining three (for
γp) or six (for γγ) separate runs. In a simpler alternative the VMD and
anomalous classes are joined into a single resolved class. Then γp physics
only requires two separate runs, with 0 and 1, and γγ physics requires
three, with 0, 1 and 4.

MSTP(15) : (D=5) possibility to modify the nature of the anomalous photon component
(as used with the appropriate MSTP(14) options), in particular with respect to
the scale choices and cut-offs of hard processes. This option is mainly intended
for comparative studies and should not normally be touched.

= 0 : none, i.e. the same treatment as for the VMD component.
= 1 : evaluate the anomalous parton distributions at a scale Q2/PARP(17)2.
= 2 : as =1, but instead of PARP(17) use either PARP(81)/PARP(15) or

PARP(82)/PARP(15), depending on MSTP(82) value.
= 3 : evaluate the anomalous parton distribution functions of the photon as

fγ,anom(x,Q2, p20) − fγ,anom(x,Q2, r2Q2) with r =PARP(17).
= 4 : as =3, but instead of PARP(17) use either PARP(81)/PARP(15) or

PARP(82)/PARP(15), depending on MSTP(82) value.
= 5 : use larger p⊥min for the anomalous component than for the VMD one,

but otherwise no difference.
MSTP(21) : (D=1) nature of fermion–fermion scatterings simulated in process 10 by t-

channel exchange.
= 0 : all off.
= 1 : full mixture of γ∗/Z0 neutral current and W± charged current.
= 2 : γ neutral current only.
= 3 : Z0 neutral current only.
= 4 : γ∗/Z0 neutral current only.
= 5 : W± charged current only.

MSTP(22) : (D=0) special override of normal Q2 definition used for maximum of parton-
shower evolution, intended for deep inelastic scattering) in lepton–hadron
events, see section 10.4.

MSTP(23) : (D=1) for deep inelastic scattering processes (10 and 83), this option al-
lows the x and Q2 of the original hard scattering to be retained by the final
electron.

= 0 : no correction procedure, i.e. x and Q2 of the scattered electron differ
from the originally generated x and Q2.

= 1 : post facto correction, i.e. the change of electron momentum, by initial
and final QCD radiation, primordial k⊥ and beam remnant treatment,
is corrected for by a shuffling of momentum between the electron and
hadron side in the final state. Only process 10 is corrected, while process
83 is not.

= 2 : as =1, except that both process 10 and 83 are treated. This option is
dangerous, especially for top, since it may well be impossible to ‘correct’
in process 83: the standard DIS kinematics definitions are based on the
assumption of massless quarks. Therefore infinite loops are not excluded.

Note: the correction procedure will fail for a fraction of the events, which are
thus rejected (and new ones generated in their place). The correction op-
tion is not unambiguous, and should not be taken too seriously. For very
small Q2 values, the x is not exactly preserved even after this procedure.

151



MSTP(31) : (D=1) parametrization of total, elastic and diffractive cross sections.
= 0 : everything is to be set by you yourself in the PYINT7 common block. For

photoproduction, additionally you need to set VINT(281). Normally you
would set these values once and for all before the PYINIT call, but if you
run with variable energies (see MSTP(171)) you can also set it before each
new PYEVNT call.

= 1 : Donnachie–Landshoff for total cross section [Don92], and Schuler–
Sjöstrand for elastic and diffractive cross sections [Sch94, Sch93a].

MSTP(32) : (D=2) Q2 definition in hard scattering for 2 → 2 processes. For resonance
production Q2 is always chosen to be ŝ = m2

R, where mR is the mass of the
resonance. For gauge boson scattering processes V V → V V the W or Z0

squared mass is used as scale in parton distributions. See PARP(34) for a
possibility to modify the choice below by a multiplicative factor.

= 1 : Q2 = 2ŝt̂û/(ŝ2 + t̂2 + û2).
= 2 : Q2 = (m2

⊥1 +m2
⊥2)/2.

= 3 : Q2 = min(−t̂,−û).
= 4 : Q2 = ŝ.
= 5 : Q2 = −t̂.

MSTP(33) : (D=0) inclusion of K factors in hard cross sections for parton–parton inter-
actions (i.e. for incoming quarks and gluons).

= 0 : none, i.e. K = 1.
= 1 : a common K factor is used, as stored in PARP(31).
= 2 : separate factors are used for ordinary (PARP(31)) and colour annihilation

graphs (PARP(32)).
= 3 : A K factor is introduced by a shift in the αs Q

2 argument, αs =
αs(PARP(33)Q

2).
MSTP(34) : (D=1) use of interference term in matrix elements for QCD processes, see

section 8.2.1.
= 0 : excluded (i.e. string-inspired matrix elements).
= 1 : included (i.e. conventional QCD matrix elements).
Note: for the option MSTP(34)=1, i.e. interference terms included, these terms

are divided between the different possible colour configurations according
to the pole structure of the (string-inspired) matrix elements for the
different colour configurations.

MSTP(35) : (D=0) threshold behaviour for heavy-flavour production, i.e. ISUB = 81,
82, 84, 85, and also for Z and Z′ decays. The non-standard options are mainly
intended for top, but can be used, with less theoretical reliability, also for
charm and bottom (for Z and Z′ only top and heavier flavours are affected).
The threshold factors are given in eqs. (117) and (118).

= 0 : näıve lowest-order matrix-element behaviour.
= 1 : enhancement or suppression close to threshold, according to the colour

structure of the process. The αs value appearing in the threshold factor
(which is not the same as the αs of the lowest-order 2 → 2 process) is
taken to be fixed at the value given in PARP(35). The threshold factor
used in an event is stored in PARI(81).

= 2 : as =1, but the αs value appearing in the threshold factor is taken to

be running, with argument Q2 = mQ

√

(m̂− 2mQ)2 + Γ2
Q. Here mQ is

the nominal heavy-quark mass, ΓQ is the width of the heavy-quark-mass
distribution, and m̂ is the invariant mass of the heavy-quark pair. The
ΓQ value has to be stored by the user in PARP(35). The regularization
of αs at low Q2 is given by MSTP(36).

MSTP(36) : (D=2) regularization of αs in the limit Q2 → 0 for the threshold factor ob-
tainable in the MSTP(35)=2 option; see MSTU(115) for a list of the possibilities.

152



MSTP(37) : (D=1) inclusion of running quark masses in Higgs production (qq → H0) and
decay (H0 → qq) couplings. Also included for charged Higgs production and
decay, but there only for the down-type quark, since the up-type one normally
is a top quark, with mt ≈ mH.

= 0 : not included, i.e. fixed quark masses are used according to the values in
the PMAS array.

= 1 : included, with running starting from the value given in the PMAS array, at
a Q0 scale of PARP(37) times the quark mass itself, up to a Q scale given
by the Higgs mass. This option only works when αs is allowed to run
(so one can define a Λ value). Therefore it is only applied if additionally
MSTP(2)≥ 1.

MSTP(38) : (D=5) handling of quark loop masses in the box graphs gg → γγ and gg →
gγ.

= 0 : the program will for each flavour automatically choose the massless ap-
proximation for light quarks and the full massive formulae for heavy
quarks, with a dividing line between light and heavy quarks that de-
pends on the actual ŝ scale.

≥1 : the program will use the massless approximation throughout, assuming
the presence of MSTP(38) effectively massless quark species (however, at
most 8). Normally one would use =5 for the inclusion of all quarks up to
bottom, and =6 to include top as well.

Warning: for =0, numerical instabilities may arise for scattering at small an-
gles. Users are therefore recommended in this case to set CKIN(27) and
CKIN(28) so as to exclude the range of scattering angles that are not of
interest anyway.

MSTP(39) : (D=2) choice of Q2 scale for parton distributions and initial state parton
showers in processes gg or qq → QQH.

= 1 : m2
Q.

= 2 : max(m2
⊥Q,m

2
⊥Q

) = m2
Q + max(p2⊥Q, p

2
⊥Q

).

= 3 : m2
H.

= 4 : ŝ = (pH + pQ + pQ)2.

MSTP(41) : (D=1) master switch for all resonance decays (Z0, W±, H0, Z′0, W′±, H′0,
A0, H±, LQ, R0, d∗, u∗, . . . ).

= 0 : off.
= 1 : on.
Note: also for MSTP(41)=1 it is possible to switch off the decays of specific

resonances by using the MDCY(KC,1) switches in Jetset. However, since
the MDCY values are overwritten in the PYINIT call, individual resonances
should be switched off after the PYINIT call.

Warning: leptoquark decays must not be switched off if one later on intends to let
leptoquarks decay (with LUEXEC); see section 8.5.3.

MSTP(42) : (D=1) mass treatment in 2 → 2 processes, where the final-state resonances
have finite width (see PARP(41)). (Does not apply for the production of a single
s-channel resonance, where the mass appears explicitly in the cross section of
the process, and thus is always selected with width.)

= 0 : particles are put on the mass shell.
= 1 : mass generated according to a Breit–Wigner.

MSTP(43) : (D=3) treatment of Z0/γ∗ interference in matrix elements. So far imple-
mented in subprocesses 1, 15, 19, 22, 30 and 35; in other processes what is
called a Z0 is really a Z0 only, without the γ∗ piece.

= 1 : only γ∗ included.
= 2 : only Z0 included.

153



= 3 : complete Z0/γ∗ structure (with interference) included.
MSTP(44) : (D=7) treatment of Z′0/Z0/γ∗ interference in matrix elements.

= 1 : only γ∗ included.
= 2 : only Z0 included.
= 3 : only Z′0 included.
= 4 : only Z0/γ∗ (with interference) included.
= 5 : only Z′0/γ∗ (with interference) included.
= 6 : only Z′0/Z0 (with interference) included.
= 7 : complete Z′0/Z0/γ∗ structure (with interference) included.

MSTP(45) : (D=3) treatment of WW → WW structure (ISUB = 77).
= 1 : only W+W+ → W+W+ and W−W− → W−W− included.
= 2 : only W+W− → W+W− included.
= 3 : all charge combinations WW → WW included.

MSTP(46) : (D=1) treatment of V V → V ′V ′ structures (ISUB = 71–77), where V rep-
resents a longitudinal gauge boson.

= 0 : only s-channel Higgs exchange included (where existing). With this op-
tion, subprocesses 71–72 and 76–77 will essentially be equivalent to sub-
processes 5 and 8, respectively, with the proper decay channels (i.e. only
Z0Z0 or W+W−) set via MDME. The description obtained for subprocesses
5 and 8 in this case is more sophisticated, however; see section 8.4.2.

= 1 : all graphs contributing to V V → V ′V ′ processes are included.
= 2 : only graphs not involving Higgs exchange (either in s, t or u channel) are

included; this option then gives the näıve behaviour one would expect if
no Higgs exists, including unphysical unitarity violations at high energies.

= 3 : the strongly interacting Higgs-like model of Dobado, Herrero and Ter-
ron [Dob91] with Padé unitarization. Note that to use this option it
is necessary to set the Higgs mass to a large number like 20 TeV (i.e.
PMAS(25,1)=20000). The parameter ν is stored in PARP(44), but should
not have to be changed.

= 4 : as =3, but with K-matrix unitarization.
= 5 : the strongly interacting QCD-like model of Dobado, Herrero and Terron

[Dob91] with Padé unitarization. The parameter ν is stored in PARP(44),
but should not have to be changed. The effective techni-ρ mass in this
model is stored in PARP(45); by default it is 2054 GeV, which is the
expected value for three technicolors, based on scaling up the ordinary ρ
mass appropriately.

= 6 : as =5, but with K-matrix unitarization. While PARP(45) still is a pa-
rameter of the model, this type of unitarization does not give rise to a
resonance at a mass of PARP(45).

MSTP(47) : (D=1) (C) angular orientation of decay products of resonances (Z0, W±,
H0, Z′0, W′±, etc.), either when produced singly or in pairs (also from an H0

decay), or in combination with a single quark, gluon or photon.
= 0 : independent decay of each resonance, isotropic in c.m. frame of the

resonance.
= 1 : correlated decay angular distributions according to proper matrix ele-

ments, to the extent these are known.
MSTP(48) : (D=2) (C) possibility to switch between top decay before or after fragmen-

tation. As a rule of thumb, option 0 is recommendable for top masses below
120 GeV and option 1 above that, but clearly there is a gradual transition
between the two.

= 0 : top quarks fragment to top hadrons, which subsequently decay. The b
quark may be allowed to shower, see MSTJ(27). The W produced in the
decay is code 89.

154



= 1 : top quarks decay, t → bW+, and thereafter the b quark fragments. Par-
ton showering of the b is automatically included, but can be switched
off with MSTP(71). The W has the ordinary code 24, and is allowed to
decay isotropically.

= 2 : as =1, except that the W decay is anisotropic, as expected from W po-
larization in the top decay.

Note: in options 1 and 2 the cross section is reduced to take into account re-
strictions on allowed decay modes, while no such reduction occurs for
option 0. See further section 8.2.2.

MSTP(49) : (D=2) (C) possibility to switch between fourth generation decay before or
after fragmentation. For the quarks h and l the meaning is exactly as MSTP(48)
is for the t quark. For the lepton χ the difference is whether decay is handled
as part of the Pythia resonance machinery or as part of the Jetset particle
decay one. The νχ is assumed stable, so the option above would currently
make no difference.

= 0 : hadrons are first produced, which subsequently decay (in LUDECY). The
new quark may be allowed to shower, see MSTJ(27). The W produced
in the decay is code ±89.

= 1 : the heavy quark first decays (in PYRESD) to a light one, and thereafter the
light quark fragments. Parton showering in the decay is automatically
included, but can be switched off with MSTP(71). The W has the ordinary
code ±24, and is allowed to decay isotropically.

= 2 : as =1, except that the W decay is anisotropic, as expected from W po-
larization in the heavy flavour decay.

Note: in options 1 and 2 the cross section is reduced to take into account re-
strictions on allowed decay modes, while no such reduction occurs for
option 0. See further section 8.2.2.

MSTP(51) : (D=9) choice of proton parton-distribution set; see also MSTP(52).
= 1 : EHLQ set 1 (1986 updated version).
= 2 : EHLQ set 2 (1986 updated version).
= 3 : Duke–Owens set 1.
= 4 : Duke–Owens set 2.
= 5 : CTEQ2M (best MS fit).
= 6 : CTEQ2MS (singular at small x).
= 7 : CTEQ2MF (flat at small x).
= 8 : CTEQ2ML (large Λ).
= 9 : CTEQ2L (best leading order fit).
= 10 : CTEQ2D (best DIS fit).
= 11 : GRV LO (1992 updated version).
Note: since all parametrizations have some region of applicability, the parton

distributions are assumed frozen below the lowest Q2 covered by the
parametrizations; the CTEQ2 ones have been allowed to extend down
to Qmin = 1 GeV. For the former four, evolution is also frozed above
the maximum Q2. The extrapolation of EHLQ to low x is covered by
PARP(51).

MSTP(52) : (D=1) choice of proton parton-distribution-function library.
= 1 : the internal Pythia one, with parton distributions according to the

MSTP(51) above.
= 2 : the Pdflib one [Plo93], with the Pdflib (version 4) NGROUP and NSET

numbers to be given as MSTP(51) = 1000×NGROUP + NSET.
Note: to make use of option 2, it is necessary to link Pdflib. Additionally, on

most computers, the two dummy routines PDFSET and STRUCTM at the
end of the Pythia file should be removed or commented out.

155



Warning: For external parton distribution libraries, Pythia does not check
whether MSTP(51) corresponds to a valid code, or if special x and Q2 re-
strictions exist for a given set, such that crazy values could be returned.
This puts an extra responsibility on you.

MSTP(53) : (D=1) choice of pion parton-distribution set; see also MSTP(54).
= 1 : Owens set 1.
= 2 : Owens set 2.
= 3 : GRV LO (updated version).

MSTP(54) : (D=1) choice of pion parton-distribution-function library.
= 1 : the internal Pythia one, with parton distributions according to the

MSTP(53) above.
= 2 : the Pdflib one [Plo93], with the Pdflib (version 4) NGROUP and NSET

numbers to be given as MSTP(53) = 1000×NGROUP + NSET.
Note: to make use of option 2, it is necessary to link Pdflib. Additionally, on

most computers, the two dummy routines PDFSET and STRUCTM at the
end of the Pythia file should be removed or commented out.

Warning: For external parton distribution libraries, Pythia does not check
whether MSTP(53) corresponds to a valid code, or if special x and Q2 re-
strictions exist for a given set, such that crazy values could be returned.
This puts an extra responsibility on you.

MSTP(55) : (D=5) choice of the parton-distribution set of the photon; see also
MSTP(56).

= 1 : Drees–Grassie.
= 5 : SaS 1D (in DIS scheme, with Q0 = 0.6 GeV).
= 6 : SaS 1M (in MS scheme, with Q0 = 0.6 GeV).
= 7 : SaS 2D (in DIS scheme, with Q0 = 2 GeV).
= 8 : SaS 2M (in MS scheme, with Q0 = 2 GeV).
= 9 : SaS 1D (in DIS scheme, with Q0 = 0.6 GeV).
= 10 : SaS 1M (in MS scheme, with Q0 = 0.6 GeV).
= 11 : SaS 2D (in DIS scheme, with Q0 = 2 GeV).
= 12 : SaS 2M (in MS scheme, with Q0 = 2 GeV).
Note 1: sets 5–8 use the parton distributions of the respective set, and nothing

else. These are appropriate for most applications, e.g. jet production in
γp and γγ collisions. Sets 9–12 instead are appropriate for γ∗γ processes,
i.e. DIS scattering on a photon, as measured in F γ

2 . Here the anoma-
lous contribution for c and b quarks are handled by the Bethe-Heitler
formulae, and the direct term is artificially lumped with the anomalous
one, so that the event simulation more closely agrees with what will be
experimentally observed in these processes. The agreement with the F γ

2

parametrization is still not perfect, e.g. in the treatment of heavy flavours
close to threshold.

Note 2: Sets 5–12 contain both VMD pieces and anomalous pieces, separately
parametrized. Therefore the respective piece is automatically called,
whatever MSTP(14) value is used to select only a part of the allowed
photon interactions. For other sets (set 1 above or Pdflib sets), usually
there is no corresponding subdivision. Then an option like MSTP(14)=2
(VMD part of photon only) is based on a rescaling of the pion distribu-
tions, while MSTP(14)=3 gives the SaS anomalous parametrization.

Note 3: Formally speaking, the k0 (or p0) cut-off in PARP(15) need not be set in
any relation to the Q0 cut-off scales used by the various parametrizations.
Indeed, due to the familiar scale choice ambiguity problem, there could
well be some offset between the two. However, unless you know what
you are doing, it is strongly recommended that you let the two agree, i.e.

156



set PARP(15)=0.6 for the SaS 1 sets and =2. for the SaS 2 sets.
MSTP(56) : (D=1) choice of photon parton-distribution-function library.

= 1 : the internal Pythia one, with parton distributions according to the
MSTP(55) above.

= 2 : the Pdflib one [Plo93], with the Pdflib (version 4) NGROUP and NSET
numbers to be given as MSTP(55) = 1000×NGROUP + NSET. When the
VMD and anomalous parts of the photon are split, like for MSTP(14)=10,
it is necessary to specify pion set to be used for the VMD component, in
MSTP(53) and MSTP(54), while MSTP(55) here is irrelevant.

= 3 : when the parton distributions of the anomalous photon are requested,
the homogeneous solution is provided, evolved from a starting value
PARP(15) to the requested Q scale. The homogeneous solution is nor-
malized so that the net momentum is unity, i.e. any factors of αem/2π
and charge have been left out. The flavour of the original q is given in
MSTP(55) (1, 2, 3, 4 or 5 for d, u, s, c or b); the value 0 gives a mixture
according to squared charge, with the exception that c and b are only
allowed above the respective mass threshold (Q > mq). The four-flavour
Λ value is assumed given in PARP(1); it is automatically recalculated for
3 or 5 flavours at thresholds. This option is not intended for standard
event generation, but is useful for some theoretical studies.

Note: to make use of option 2, it is necessary to link Pdflib. Additionally, on
most computers, the two dummy routines PDFSET and STRUCTM at the
end of the Pythia file should be removed or commented out.

Warning: For external parton-distribution libraries, Pythia does not check
whether MSTP(55) corresponds to a valid code, or if special x and Q2 re-
strictions exist for a given set, such that crazy values could be returned.
This puts an extra responsibility on you.

MSTP(57) : (D=1) choice of Q2 dependence in parton-distribution functions.
= 0 : parton distributions are evaluated at nominal lower cut-off value Q2

0, i.e.
are made Q2-independent.

= 1 : the parametrized Q2 dependence is used.
= 2 : the parametrized parton-distribution behaviour is kept at large Q2 and

x, but modified at small Q2 and/or x, so that parton distributions vanish
in the limit Q2 → 0 and have a theoretically motivated small-x shape
[Sch93a]. This option is only valid for the p and n.

= 3 : as =2, except that also the π± and the VMD component of a photon is
modified in a corresponding manner.

MSTP(58) : (D=min(6, 2×MSTP(1))) maximum number of quark flavours used in parton
distributions, and thus also for initial-state space-like showers. If some distri-
butions (notably t) are absent in the parametrization selected in MSTP(51),
these are obviously automatically excluded.

MSTP(61) : (D=1) (C) master switch for initial-state QCD and QED radiation.
= 0 : off.
= 1 : on.

MSTP(62) - MSTP(67) : (C) further switches for initial-state radiation, see section 10.4.
MSTP(71) : (D=1) (C) master switch for final-state QCD and QED radiation.

= 0 : off.
= 1 : on.
Note: additional switches (e.g. for conventional/coherent showers) are available

in MSTJ(40) - MSTJ(50) and PARJ(81) - PARJ(89), see section 10.4.
MSTP(81) : (D=1) master switch for multiple interactions.

= 0 : off.
= 1 : on.

157



MSTP(82) - MSTP(83) : further switches for multiple interactions, see section 11.4.
MSTP(85) : possibility to dampen hard scattering matrix elements in the limit p⊥ → 0.

It parellels some of the multiple interactions options for QCD processes, but
can be used for any 2 → 2 process.

= 0 : off, i.e. standard matrix elements are kept.
= 1 : on, i.e. matrix elements are multiplied by a factor p4⊥/(p

2
⊥ +p2⊥0)

2, where
p⊥0 is given by PARP(82). Additionally αs is evaluated at a scale p2⊥+p2⊥0

rather than just p2⊥.
MSTP(91) - MSTP(94) : switches for beam remnant treatment, see section 11.4.
MSTP(101) : (D=3) (C) structure of diffractive system.

= 1 : forward moving diquark + interacting quark.
= 2 : forward moving diquark + quark joined via interacting gluon (‘hairpin’

configuration).
= 3 : a mixture of the two options above, with a fraction PARP(101) of the

former type.
MSTP(102) : (D=1) (C) decay of a ρ0 meson produced by ‘elastic’ scattering of an incom-

ing γ, as in γp → ρ0p, or the same with the hadron diffractively excited.
= 0 : the ρ0 is allowed to decay isotropically, like any other ρ0.
= 1 : the decay ρ0 → π+π− is done with an angular distribution proportional

to sin2 θ in its rest frame, where the z axis is given by the direction of
motion of the ρ0. The ρ0 decay is then done as part of the hard process,
i.e. also when MSTP(111)=0.

MSTP(111) : (D=1) (C) master switch for fragmentation and decay, as obtained with a
LUEXEC call.

= 0 : off.
= 1 : on.
= -1 : only choose kinematical variables for hard scattering, i.e. no jets are de-

fined. This is useful, for instance, to calculate cross sections (by Monte
Carlo integration) without wanting to simulate events; information ob-
tained with PYSTAT(1) will be correct.

MSTP(112) : (D=1) (C) cuts on partonic events; only affects an exceedingly tiny fraction
of events.

= 0 : no cuts (can be used only with independent fragmentation, at least in
principle).

= 1 : string cuts (as normally required for fragmentation).
MSTP(113) : (D=1) (C) recalculation of energies of partons from their momenta and

masses, to be done immediately before and after fragmentation, to partly com-
pensate for some numerical problems appearing at high energies.

= 0 : not performed.
= 1 : performed.

MSTP(121) : (D=0) calculation of kinematics selection coefficients and differential cross
section maxima for included (by user or default) subprocesses.

= 0 : not known; to be calculated at initialization.
= 1 : not known; to be calculated at initialization; however, the maximum

value then obtained is to be multiplied by PARP(121) (this may be useful
if a violation factor has been observed in a previous run of the same kind).

= 2 : known; kinematics selection coefficients stored by user in COEF(ISUB,J)
(J = 1–20) in common block PYINT2 and maximum of the corresponding
differential cross section times Jacobians in XSEC(ISUB,1) in common
block PYINT5. This is to be done for each included subprocess ISUB
before initialization, with the sum of all XSEC(ISUB,1) values, except for
ISUB = 95, stored in XSEC(0,1).

MSTP(122) : (D=1) initialization and differential cross section maximization print-

158



out.
= 0 : none.
= 1 : short message.
= 2 : detailed message, including full maximization.

MSTP(123) : (D=2) reaction to violation of maximum differential cross section.
= 0 : stop generation, print message.
= 1 : continue generation, print message for each subsequently larger violation.
= 2 : as =1, but also increase value of maximum.

MSTP(124) : (D=1) (C) frame for presentation of event.
= 1 : as specified in PYINIT.
= 2 : c.m. frame of incoming particles.

MSTP(125) : (D=1) (C) documentation of partonic process, see section 5.3.2 for de-
tails.

= 0 : only list ultimate string/particle configuration.
= 1 : additionally list short summary of the hard process.
= 2 : list complete documentation of intermediate steps of parton-shower evo-

lution.
MSTP(126) : (D=20) number of lines at the beginning of event record that are reserved

for event-history information; see section 5.3.2. This value should never be
reduced, but may be increased at a later date if more complicated processes
are included.

MSTP(128) : (D=0) storing of copy of resonance decay products in the documentation
section of the event record, and mother pointer (K(I,3)) relation of the actual
resonance decay products (stored in the main section of the event record) to
the documentation copy.

= 0 : products are stored also in the documentation section, and each product
stored in the main section points back to the corresponding entry in the
documentation section.

= 1 : products are stored also in the documentation section, but the products
stored in the main section point back to the decaying resonance copy in
the main section.

= 2 : products are not stored in the documentation section; the products stored
in the main section point back to the decaying resonance copy in the main
section.

MSTP(129) : (D=10) for the maximization of 2 → 3 processes (ISET(ISUB)=5) each
phase-space point in τ , y and τ ′ is tested MSTP(129) times in the other dimen-
sions (at randomly selected points) to determine the effective maximum in the
(τ , y, τ ′) point.

MSTP(131) : (D=0) master switch for pile-up events, i.e. several independent hadron–
hadron interactions generated in the same bunch–bunch crossing, with the
events following one after the other in the event record.

= 0 : off, i.e. only one event is generated at a time.
= 1 : on, i.e. several events are allowed in the same event record. Information

on the processes generated may be found in MSTI(41) - MSTI(50).
MSTP(132) - MSTP(134) : further switches for pile-up events, see section 11.4.
MSTP(141) : (D=0) calling of PYKCUT in the event-generation chain, for inclusion of

user-specified cuts.
= 0 : not called.
= 1 : called.

MSTP(142) : (D=0) calling of PYEVWT in the event-generation chain, either to give
weighted events or to modify standard cross sections. See PYEVWT description
in section 9.1 for further details.

= 0 : not called.

159



= 1 : called; the distribution of events among subprocesses and in kinematics
variables is modified by the factor WTXS, set by the user in the PYEVWT
call, but events come with a compensating weight PARI(10)=1./WTXS,
such that total cross sections are unchanged.

= 2 : called; the cross section itself is modified by the factor WTXS, set by the
user in the PYEVWT call.

MSTP(151) : (D=0) introduce smeared position of primary vertex of events.
= 0 : no, i.e. the primary vertex of each event is at the origin.
= 1 : yes, with Gaussian distributions separately in x, y, z and t. The re-

spective widths of the Gaussians have to be given in PARP(151) -
PARP(154). Also pile-up events obtain separate primary vertices. No
provisions are made for more complicated beam-spot shapes, e.g. with a
spread in z that varies as a function of t. Note that a large beam spot
combined with some of the MSTJ(22) options may lead to many particles
not being allowed to decay at all.

MSTP(171) : (D=0) possibility of variable energies from one event to the next. For
further details see subsection 9.6.

= 0 : no; i.e. the energy is fixed at the initialization call.
= 1 : yes; i.e. a new energy has to be given for each new event.

MSTP(172) : (D=2) options for generation of events with variable energies, applicable
when MSTP(171)=1.

= 1 : an event is generated at the requested energy, i.e. internally a loop is
performed over possible event configurations until one is accepted. If the
requested c.m. energy of an event is below PARP(2) the run is aborted.
Cross-section information can not be trusted with this option, since it
depends on how you decided to pick the requested energies.

= 2 : only one event configuration is tried. If that is accepted, the event is
generated in full. If not, no event is generated, and the status code
MSTI(61)=1 is returned. You are then expected to give a new energy,
looping until an acceptable event is found. No event is generated if the
requested c.m. energy is below PARP(2), instead MSTI(61)=1 is set to
signal the failure. In principle, cross sections should come out correctly
with this option.

MSTP(173) : (D=0) possibility for user to give in an event weight to compensate for a
biased choice of beam spectrum.

= 0 : no, i.e. event weight is unity.
= 1 : yes; weight to be given for each event in PARP(173), with maximum

weight given at initialization in PARP(174).
MSTP(181) : (R) Pythia version number.
MSTP(182) : (R) Pythia subversion number.
MSTP(183) : (R) last year of change for Pythia.
MSTP(184) : (R) last month of change for Pythia.
MSTP(185) : (R) last day of change for Pythia.
MSTP(186) : (R) earliest subversion of Jetset version 7 with which this Pythia sub-

version can be run.

PARP(1) : (D=0.25 GeV) nominal ΛQCD used in running αs for hard scattering (see
MSTP(3)).

PARP(2) : (D=10. GeV) lowest c.m. energy for the event as a whole that the program
will accept to simulate.

PARP(13) : (D=1. GeV2) Q2
max scale, to be set by user for defining maximum scale

allowed for photoproduction when using the option MSTP(13)=2.
PARP(14) : (D=0.01) in the numerical integration of quark and gluon parton distribu-

160



tions inside an electron, the successive halvings of evaluation-point spacing is
interrupted when two values agree in relative size, |new−old|/(new+old), to
better than PARP(14). There are hardwired lower and upper limits of 2 and 8
halvings, respectively.

PARP(15) : (D=0.5 GeV) lower cut-off p0 used to define minimum transverse momentum
in branchings γ → qq in the anomalous event class of γp interactions.

PARP(16) : (D=1.) the anomalous parton-distribution functions of the photon are taken
to have the charm and bottom flavour thresholds at virtuality PARP(16)×m2

q.
PARP(17) : (D=1.) rescaling factor used for the Q argument of the anomalous parton

distributions of the photon, see MSTP(15).
PARP(31) : (D=1.5) common K factor multiplying the differential cross section for hard

parton–parton processes when MSTP(33)=1 or 2, with the exception of colour
annihilation graphs in the latter case.

PARP(32) : (D=2.0) special K factor multiplying the differential cross section in hard
colour annihilation graphs, including resonance production, when MSTP(33)=2.

PARP(33) : (D=0.075) this factor is used to multiply the ordinary Q2 scale in αs at the
hard interaction for MSTP(33)=3. The effective K factor thus obtained is in
accordance with the results in [Ell86].

PARP(34) : (D=1.) the Q2 scale defined by MSTP(32) is multiplied by PARP(34) when
it is used as argument for parton distributions and αs at the hard interaction.
It does not affect αs when MSTP(33)=3, nor does it change the Q2 argument
of parton showers.

PARP(35) : (D=0.20) fix αs value that is used in the heavy-flavour threshold factor when
MSTP(35)=1.

PARP(36) : (D=0. GeV) the width ΓQ for the heavy flavour studied in processes ISUB
= 81 or 82; to be used for the threshold factor when MSTP(35)=2.

PARP(37) : (D=2.) for MSTP(37)=1 this regulates the point at which the reference on-
shell quark mass in Higgs couplings is assumed defined; specifically the running
quark mass is assumed to coincide with the fix one at an energy scale PARP(37)
times the fix quark mass, i.e. mrunning(PARP(37)×mfix) = mfix.

PARP(38) : (D=0.70 GeV3) the squared wave function at the origin, |R(0)|2, of the J/ψ
wave function. Used for process 86. See ref. [Glo88].

PARP(39) : (D=0.006 GeV3) the squared derivative of the wave function at the origin,
|R′(0)|2/m2, of the χc wave functions. Used for the processes 87, 88 and 89.
See ref. [Glo88].

PARP(41) : (D=0.020 GeV) in the process of generating mass for resonances, and op-
tionally to force that mass to be in a given range, only resonances with a total
width in excess of PARP(41) are generated according to a Breit–Wigner shape
(if allowed by MSTP(42)), while narrower resonances are put on the mass shell.

PARP(42) : (D=2. GeV) minimum mass of resonances assumed to be allowed when
evaluating total width of H0 to Z0Z0 or W+W− for cases when the H0 is so
light that (at least) one Z/W is forced to be off the mass shell. Also generally
used as safety check on minimum mass of resonance. Note that some CKIN
values may provide additional constraints.

PARP(43) : (D=0.10) precision parameter used in numerical integration of width into
channel with at least one daughter off the mass shell.

PARP(44) : (D=1000.) the ν parameter of the strongly interacting Z/W model of
Dobado, Herrero and Terron [Dob91].

PARP(45) : (D=2054. GeV) the effective techni-ρ mass parameter of the strongly inter-
acting model of Dobado, Herrero and Terron [Dob91]; see MSTP(46)=5. On
physical grounds it should not be chosen smaller than about 1 TeV or larger
than about the default value.

PARP(46) : (D=123. GeV) the Fπ decay constant that appears inversely quadratically

161



in all techni-η partial decay widths [Eic84, App92].
PARP(47) : (D=246. GeV) vacuum expectation value v used in the DHT scenario

[Dob91] to define the width of the techni-ρ; this width is inversely propor-
tional v2.

PARP(51) : (D=1.) if parton distributions for light flavours have to be extrapolated to
x values lower than covered by the parametrizations, an x−b behaviour, with
b =PARP(51), is assumed in that region. This option only applies for the
EHLQ proton parton distributions that are internal to Pythia.

PARP(61) - PARP(65) : (C) parameters for initial-state radiation, see section 10.4.
PARP(71) - PARP(72) : (C) parameter for final-state radiation, see section 10.4.
PARP(81) - PARP(88) : parameters for multiple interactions, see section 11.4.
PARP(91) - PARP(100) : parameters for beam remnant treatment, see section 11.4.
PARP(101) : (D=0.50) fraction of diffractive systems in which a quark is assumed kicked

out by the pomeron rather than a gluon; applicable for option MSTP(101)=3.
PARP(102) : (D=0.28 GeV) the mass spectrum of diffractive states (in single and double

diffractive scattering) is assumed to start PARP(102) above the mass of the
particle that is diffractively excited. In this connection, an incoming γ is
taken to have the selected VMD meson mass, i.e. mρ, mω, mφ or mJ/ψ.

PARP(103) : (D=1.0 GeV) if the mass of a diffractive state is less than PARP(103) above
the mass of the particle that is diffractively excited, the state is forced to
decay isotropically into a two-body channel. In this connection, an incoming
γ is taken to have the selected VMD meson mass, i.e. mρ, mω, mφ or mJ/ψ.
If the mass is higher than this threshold, the standard string fragmentation
machinery is used. The forced two-body decay is always carried out, also when
MSTP(111)=0.

PARP(111) : (D=2. GeV) used to define the minimum invariant mass of the remnant
hadronic system (i.e. when interacting partons have been taken away), to-
gether with original hadron masses and extra parton masses.

PARP(121) : (D=1.) the maxima obtained at initial maximization are multiplied by this
factor if MSTP(121)=1; typically PARP(121) would be given as the product of
the violation factors observed (i.e. the ratio of final maximum value to initial
maximum value) for the given process(es).

PARP(122) : (D=0.4) fraction of total probability that is shared democratically between
the COEF coefficients open for the given variable, with the remaining fraction
distributed according to the optimization results of PYMAXI.

PARP(131) : parameter for pile-up events, see section 11.4.
PARP(151) - PARP(154) : (D=4*0.) (C) regulate the assumed beam-spot size. For

MSTP(151)=1 the x, y, z and t coordinates of the primary vertex of each event
are selected according to four independent Gaussians. The widths of these
Gaussians are given by the four parameters, where the first three are in units
of mm and the fourth in mm/c.

PARP(161) - PARP(164) : (D=2.20, 23.6, 18.4, 11.5) couplings f 2
V /4π of the photon to

the ρ0, ω, φ and J/ψ vector mesons.
PARP(171) : to be set, event-by-event, when variable energies are allowed, i.e. when

MSTP(171)=1. If PYINIT is called with FRAME=’CMS’ (=’FIXT’), PARP(171)
multiplies the c.m. energy (beam energy) used at initialization. For the options
’USER’, ’FOUR’ and ’FIVE’, PARP(171) is dummy, since there the momenta
are set in the P array.

PARP(173) : event weight to be given by user when MSTP(173)=1.
PARP(174) : (D=1.) maximum event weight that will be encountered in PARP(173)

during the course of a run with MSTP(173)=1; to be used to optimize the
efficiency of the event generation. It is always allowed to use a larger bound
than the true one, but with a corresponding loss in efficiency.

162



9.4 General Event Information

When an event is generated with PYEVNT, some information on it is stored in the MSTI
and PARI arrays of the PYPARS common block (often copied directly from the internal
MINT and VINT variables). Further information is stored in the complete event record; see
section 5.2.

Part of the information is only relevant for some subprocesses; by default everything
irrelevant is set to 0. Kindly note that, like the CKIN constraints described in section 9.2,
kinematical variables normally (i.e. where it is not explicitly stated otherwise) refer to the
näıve hard scattering, before initial- and final-state radiation effects have been included.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

Purpose: to provide information on latest event generated or, in a few cases, on statistics
accumulated during the run.

MSTI(1) : specifies the general type of subprocess that has occurred, according to the
ISUB code given in section 8.1.

MSTI(2) : whenever MSTI(1) (together with MSTI(15) and MSTI(16)) are not enough
to specify the type of process uniquely, MSTI(2) provides an ordering of the
different possibilities. This is particularly relevant for the different colour-flow
topologies possible in QCD 2 → 2 processes. With i =MSTI(15), j =MSTI(16)
and k =MSTI(2), the QCD possibilities are, in the classification scheme of
[Ben84] (cf. section 8.2.1):

ISUB = 11, i = j, qiqi → qiqi;
k = 1 : colour configuration A.
k = 2 : colour configuration B.

ISUB = 11, i 6= j, qiqj → qiqj;
k = 1 : only possibility.

ISUB = 12, qiqi → qlql;
k = 1 : only possibility.

ISUB = 13, qiqi → gg;
k = 1 : colour configuration A.
k = 2 : colour configuration B.

ISUB = 28, qig → qig;
k = 1 : colour configuration A.
k = 2 : colour configuration B.

ISUB = 53, gg → qlql;
k = 1 : colour configuration A.
k = 2 : colour configuration B.

ISUB = 68, gg → gg;
k = 1 : colour configuration A.
k = 2 : colour configuration B.
k = 3 : colour configuration C.

ISUB = 83, fq → f ′Q (by t-channel W exchange; does not distinguish colour flows
but result of user selection);
k = 1 : heavy flavour Q is produced on side 1.
k = 2 : heavy flavour Q is produced on side 2.

MSTI(3) : the number of partons produced in the hard interactions, i.e. the number
n of the 2 → n matrix elements used; it is sometimes 3 or 4 when a basic
2 → 1 or 2 → 2 process has been folded with two 1 → 2 initial branchings
(like qq′ → q′′q′′′H0).

MSTI(4) : number of documentation lines at the beginning of the common block LUJETS
that are given with K(I,1)=21; 0 for MSTP(125)=0.

163



MSTI(5) : number of events generated to date in current run. In runs with the variable-
energy option, MSTP(171)=1 and MSTP(172)=2, only those events that survive
(i.e. that do not have MSTI(61)=1) are counted in this number. That is,
MSTI(5) may be less than the total number of PYEVNT calls.

MSTI(6) : current frame of event, cf. MSTP(124).
MSTI(7), MSTI(8) : line number for documentation of outgoing partons/particles from

hard scattering for 2 → 2 or 2 → 1 → 2 processes (else = 0).
MSTI(9) : event class used in current event for γp or γγ events generated with the

MSTP(14)=10 option.
= 0 : for other processes than the ones listed above.
= 1 : VMD (for γp) or VMD*VMD (for γγ).
= 2 : direct (for γp) or VMD*direct (for γγ).
= 3 : anomalous (for γp) or VMD*anomalous (for γγ).
= 4 : direct*direct (for γγ).
= 5 : direct*anomalous (for γγ).
= 6 : anomalous*anomalous (for γγ).

MSTI(10) : is 1 if cross section maximum was violated in current event, and 0 if not.
MSTI(11) : KF flavour code for beam (side 1) particle.
MSTI(12) : KF flavour code for target (side 2) particle.
MSTI(13), MSTI(14) : KF flavour codes for side 1 and side 2 initial-state shower initia-

tors.
MSTI(15), MSTI(16) : KF flavour codes for side 1 and side 2 incoming partons to the

hard interaction.
MSTI(17), MSTI(18) : flag to signal if particle on side 1 or side 2 has been scattered

diffractively; 0 if no, 1 if yes.
MSTI(21) - MSTI(24) : KF flavour codes for outgoing partons from the hard interac-

tion. The number of positions actually used is process-dependent, see MSTI(3);
trailing positions not used are set = 0.

MSTI(25), MSTI(26) : KF flavour codes of the products in the decay of a single s-
channel resonance formed in the hard interaction. Are thus only used when
MSTI(3)=1 and the resonance is allowed to decay.

MSTI(31) : number of hard or semi-hard scatterings that occurred in the current event
in the multiple-interaction scenario; is = 0 for a low-p⊥ event.

MSTI(41) : the number of pile-up events generated in the latest PYEVNT call (including
the first, ‘hard’ event).

MSTI(42) - MSTI(50) : ISUB codes for the events 2–10 generated in the pile-up-events
scenario. The first event ISUB code is stored in MSTI(1). If MSTI(41) is
less than 10, only as many positions are filled as there are pile-up events. If
MSTI(41) is above 10, some ISUB codes will not appear anywhere.

MSTI(51) : normally 0 but set to 1 if a PYUPEV call did not return an event, such that
PYEVNT could not generate an event. For further details, see end of section 9.5.

MSTI(52) : counter for the number of times the current event configuration failed in the
generation machinery. For accepted events this is always 0, but the counter
can be used inside PYUPEV to check on anomalous occurrences. For further
details, see end of section 9.5.

MSTI(61) : status flag set when events are generated. It is only of interest for runs with
variable energies, MSTP(171)=1, with the option MSTP(172)=2.

= 0 : an event has been generated.
= 1 : no event was generated, either because the c.m. energy was too low or

because the Monte Carlo phase space point selection machinery rejected
the trial point. A new energy is to be picked by the user.

PARI(1) : total integrated cross section for the processes under study, in mb. This

164



number is obtained as a by-product of the selection of hard-process kinematics,
and is thus known with better accuracy when more events have been generated.
The value stored here is based on all events until the latest one generated.

PARI(2) : is the ratio PARI(1)/MSTI(5), i.e. the ratio of total integrated cross section
and number of events generated. Histograms filled with unit event weight
have to be multiplied by this factor, at the end of the run, to convert re-
sults to mb. For MSTP(142)=1, MSTI(5) is replaced by the sum of PARI(10)
values. Histograms are then filled with weight PARI(10) for each event and
multiplied by PARI(2) at the end. In runs with the variable-energy option,
MSTP(171)=1 and MSTP(172)=2, only those events that survive (i.e. that do
not have MSTI(61)=1) are counted. calls.

PARI(9) : is weight WTXS returned from PYEVWT call when MSTP(142)≥ 1, otherwise is
1.

PARI(10) : is compensating weight 1./WTXS that should be associated to events when
MSTP(142)=1, else is 1.

PARI(11) : Ecm, i.e. total c.m. energy.
PARI(12) : s, i.e. squared total c.m. energy.
PARI(13) : m̂ =

√
ŝ, i.e. mass of the hard-scattering subsystem.

PARI(14) : ŝ of the hard subprocess (2 → 2 or 2 → 1).
PARI(15) : t̂ of the hard subprocess (2 → 2 or 2 → 1 → 2).
PARI(16) : û of the hard subprocess (2 → 2 or 2 → 1 → 2).
PARI(17) : p̂⊥ of the hard subprocess (2 → 2 or 2 → 1 → 2), evaluated in the rest frame

of the hard interaction.
PARI(18) : p̂2⊥ of the hard subprocess; see PARI(17).
PARI(19) : m̂′, the mass of the complete three- or four-body final state in 2 → 3 or

2 → 4 processes (while m̂, given in PARI(13), here corresponds to the one- or
two-body central system). Kinematically m̂ ≤ m̂′ ≤ Ecm.

PARI(20) : ŝ′ = m̂′2; see PARI(19).
PARI(21) : Q of the hard-scattering subprocess. The exact definition is process-

dependent, see MSTP(32).
PARI(22) : Q2 of the hard-scattering subprocess; see PARI(21).
PARI(23) : Q of the outer hard-scattering subprocess. Agrees with PARI(21) for a 2 → 1

or 2 → 2 process. For a 2 → 3 or 2 → 4 W/Z fusion process, it is set by the
W/Z mass scale, and for subprocesses 121 and 122 by the heavy-quark mass.

PARI(24) : Q2 of the outer hard-scattering subprocess; see PARI(23).
PARI(25) : Q scale used as maximum virtuality in parton showers. Is equal to PARI(23),

except for deep-inelastic-scattering processes when MSTP(22)≥ 1.
PARI(26) : Q2 scale in parton showers; see PARI(25).
PARI(31), PARI(32) : the momentum fractions x of the initial-state parton-shower ini-

tiators on side 1 and 2, respectively.
PARI(33), PARI(34) : the momentum fractions x taken by the partons at the hard

interaction, as used e.g. in the parton-distribution functions.
PARI(35) : Feynman-x, xF = x1 − x2 =PARI(33)−PARI(34).
PARI(36) : τ = ŝ/s = x1 x2 =PARI(33)×PARI(34).
PARI(37) : y = (1/2) ln(x1/x2), i.e. rapidity of the hard-interaction subsystem in the

c.m. frame of the event as a whole.
PARI(38) : τ ′ = ŝ′/s =PARI(20)/PARI(12).
PARI(39), PARI(40) : the primordial k⊥ values selected in the two beam remnants.
PARI(41) : cos θ̂, where θ̂ is the scattering angle of a 2 → 2 (or 2 → 1 → 2) interaction,

defined in the rest frame of the hard-scattering subsystem.
PARI(42) : x⊥, i.e. scaled transverse momentum of the hard-scattering subprocess, x⊥ =

2p̂⊥/Ecm.
PARI(43), PARI(44) : xL3 and xL4, i.e. longitudinal momentum fractions of the two

165



scattered partons, in the range −1 < xL < 1, in the c.m. frame of the event
as a whole.

PARI(45), PARI(46) : x3 and x4, i.e. scaled energy fractions of the two scattered par-
tons, in the c.m. frame of the event as a whole.

PARI(47), PARI(48) : y∗3 and y∗4, i.e. rapidities of the two scattered partons in the c.m.
frame of the event as a whole.

PARI(49), PARI(50) : η∗3 and η∗4, i.e. pseudorapidities of the two scattered partons in
the c.m. frame of the event as a whole.

PARI(51), PARI(52) : cos θ∗3 and cos θ∗4, i.e. cosines of the polar angles of the two
scattered partons in the c.m. frame of the event as a whole.

PARI(53), PARI(54) : θ∗3 and θ∗4, i.e. polar angles of the two scattered partons, defined
in the range 0 < θ∗ < π, in the c.m. frame of the event as a whole.

PARI(55), PARI(56) : azimuthal angles φ∗
3 and φ∗

4 of the two scattered partons, defined
in the range −π < φ∗ < π, in the c.m. frame of the event as a whole.

PARI(61) : multiple interaction enhancement factor for current event. A large value
corresponds to a central collision and a small value to a peripheral one.

PARI(65) : sum of the transverse momenta of partons generated at the hardest interac-
tion of the event, excluding initial- and final-state radiation, i.e. 2×PARI(17).

PARI(66) : sum of the transverse momenta of all partons generated at the hardest inter-
action, including initial- and final-state radiation, resonance decay products,
and primordial k⊥.

PARI(67) : sum of transverse momenta of partons generated at hard interactions, exclud-
ing the hardest one (see PARI(65)), and also excluding initial- and final-state
radiation. Is non-vanishing only in the multiple-interaction scenario.

PARI(68) : sum of transverse momenta of all partons generated at hard interactions,
excluding the hardest one (see PARI(66)), but including initial- and final-state
radiation. Is non-vanishing only in the multiple-interaction scenario.

PARI(69) : sum of transverse momenta of all partons generated in hard interactions
(PARI(66) + PARI(68)) and, additionally, of all beam remnant partons.

PARI(71), PARI(72) : sum of the momentum fractions x taken by initial-state parton-
shower initiators on side 1 and and side 2, excluding those of the hardest
interaction. Is non-vanishing only in the multiple-interaction scenario.

PARI(73), PARI(74) : sum of the momentum fractions x taken by the partons at the
hard interaction on side 1 and side 2, excluding those of the hardest interaction.
Is non-vanishing only in the multiple-interaction scenario.

PARI(75), PARI(76) : the x value of a photon that branches into quarks or gluons, i.e.
x at interface between initial-state QED and QCD cascades.

PARI(77), PARI(78) : the χ values selected for beam remnants that are split into two
objects, describing how the energy is shared (see MSTP(92) and MSTP(94)); is
vanishing if no splitting is needed.

PARI(81) : size of the threshold factor (enhancement or suppression) in the latest event
with heavy-flavour production; see MSTP(35).

PARI(91) : average multiplicity n of pile-up events, see MSTP(133). Only relevant for
MSTP(133)= 1 or 2.

PARI(92) : average multiplicity 〈n〉 of pile-up events as actually simulated, i.e. with
multiplicity = 0 events removed and the high-end tail truncated. Only relevant
for MSTP(133)= 1 or 2.

PARI(93) : for MSTP(133)=1 it is the probability that a beam crossing will produce a pile-
up event at all, i.e. that there will be at least one hadron–hadron interaction;
for MSTP(133)=2 the probability that a beam crossing will produce a pile-up
event with one hadron–hadron interaction of the desired rare type.

166



9.5 How to include external processes in PYTHIA

Despite a large repertory of processes in Pythia, the number of missing ones clearly
is even larger, and with time this discrepancy is likely to increase. There are several
reasons why it is not practicable to imagine a Pythia which has ‘everything’. One is the
amount of time it takes to implement a process for the single Pythia author, compared
with the rate of new cross section results produced by the rather larger matrix-element
calculations community. Another is the length of currently produced matrix-element
expressions, which would make the program very bulky. A third argument is that, whereas
the phase space of 2 → 1 and 2 → 2 processes can be set up once and for all according
to a reasonably flexible machinery, processes with more final-state particles are less easy
to generate. To achieve a reasonable efficiency, it is necessary to tailor the phase-space
selection procedure to the dynamics of the given process, and to the desired experimental
cuts.

If the desired subprocess is missing, it can be included into Pythia as an ‘external’
subprocess. In this section we will describe how it is possible to specify the partonic state
of some hard-scattering process in an interface common block. Pythia will read this
common block, and add initial- and final-state showers, beam remnants and underlying
events, fragmentation and decays, to build up an event in as much detail as an ordinary
Pythia one. You may also use Pythia to mix events of different kinds, and to keep
track of cross section statistics. You have to provide the matrix elements, the phase-space
generator, and the storage of event information in the common block.

First a minor comment, however. Some processes may be seen just as trivial modifi-
cations of already existing ones. For instance, you might want to add some extra term,
corresponding to contact interactions, to the matrix elements of a Pythia 2 → 2 process.
In that case it is not necessary to go through the machinery below, but instead you can
use the PYEVWT routine to introduce an additional weight for the event, defined as the
ratio of the modified to the unmodified differential cross sections. If you use the option
MSTP(142)=2, this weight is considered as part of the ‘true’ cross section of the process,
and the generation is changed accordingly.

The more generic facility for including an external process is a bit more complicated,
and involves two routines and one common block. All names contain UP, which is short
for User Process.

If you want to include a new process, first you have to pick an unused subprocess
number ISUB (see tables in section 8.1). For instance, the numbers 191–200 are currently
unused, so this might be a logical place to put a new process. This number and the ‘title’
of the process (plus SIGMAX, to be described below) have to be given in to Pythia in a
subroutine call

CALL PYUPIN(ISUB,TITLE,SIGMAX)

before the call to PYINIT. The TITLE can be any character string up to 28 characters, e.g.

CALL PYUPIN(191,’g + g -> t + tbar + gamma’,SIGMAX)

The call to PYUPIN tells the program that a process ISUB exists, but not that you want
to generate it. This is done, as with normal processes, by setting MSUB(ISUB)=1 before
the PYINIT call.

Once the event generation chain has been started and PYEVNT is called to generate an
event, this routine may in its turn call the routine PYUPEV, which is the routine you must
supply, in which the next event is selected. (A dummy copy of PYUPEV has been included
at the end of Pythia; depending on the machine you may have to comment out this copy
when you link your own.) The call arguments are

167



CALL PYUPEV(ISUB,SIGEV)

where ISUB is given by PYEVNT, while SIGEV is to be calculated (see below) and returned
to PYEVNT. If there is only one user-defined process, then the ISUB input is superfluous;
otherwise it is necessary to branch to the relevant process.

The SIGEV variable is supposed to give the differential cross section ot the current
event, times the phase-space volume within which events are generated, expressed in
millibarns. This means that, in the limit that many events are generated, the average value
of SIGEV gives the total cross section of the simulated process. The SIGMAX value, handed
to Pythia in the PYUPIN call, is assumed to be the maximum value that SIGEV will reach.
Events will be accepted with a probability SIGEV/SIGMAX, i.e. the acceptance/rejection
of events according to differential cross section is done by PYEVNT, not by the user. This
means that the events that come out in the end all have unit weight, i.e. the user does
not have to worry about events with different weights. It also allows several subprocesses
to be generated together, in the proper mixture.

Of course, the tricky part is that the differential cross section usually is strongly
peaked in a few regions of the phase space, such that the average probability to accept an
event, 〈SIGEV〉/SIGMAX is small. It may then be necessary to find a suitable set of trans-
formed phase-space coordinates, for which the correspondingly transformed differential
cross section is better behaved.

To avoid unclarities, here is a more formal version of the two above paragraphs. Call
dX the differential phase space, e.g. for a 2 → 2 process dX = dx1 dx2 dt̂, where x1 and x2
are the momentum fractions carried by the two incoming partons and t̂ the Mandelstam
variable of the scattering. Call dσ/dX the differential cross section of the process, e.g. for
2 → 2: dσ/dX =

∑

ij fi(x1, Q
2) fj(x2, Q

2) dσ̂ij/dt̂, i.e. the product of parton distributions
and hard-scattering matrix elements, summed over all allowed incoming flavours i and j.
The physical cross section that one then wants to generate is σ =

∫

(dσ/dX) dX, where
the integral is over the allowed phase-space volume. The event generation procedure
consists of selecting an X uniformly in dX and then evaluating the weight dσ/dX at this
point. SIGEV is now simply SIGEV= dσ/dX

∫

dX, i.e. the differential cross section times
the considered volume of phase space. Clearly, when averaged over many events, SIGEV
will correctly estimate the desired cross section. If SIGEV fluctuates too much, one may
try to transform to new variables X ′, where events are now picked accordingly to dX ′

and SIGEV= dσ/dX ′
∫

dX ′.
A warning. It is important that X is indeed uniformly picked within the allowed phase

space, alternatively that any Jacobians are properly taken into account. For instance, in
the case above, one approach would be to pick x1, x2 and t̂ uniformly in the ranges
0 < x1 < 1, 0 < x2 < 1, and −s < t̂ < 0, with full phase space volume

∫

dX = s. The
cross section would only be non-vanishing inside the physical region given by −sx1x2 < t̂
(in the massless case), i.e. Monte Carlo efficiency is likely to be low. However, if one were
to choose t̂ values only in the range −ŝ < t̂ < 0, small ŝ values would be favoured, since
the density of selected t̂ values would be larger there. Without the use of a compensating
Jacobian ŝ/s, an incorrect answer would be obtained. Alternatively, one could start out

with a phase space like dX = dx1 dx2 d(cos θ̂), where the limits decouple. Of course, the

cos θ̂ variable can be translated back into a t̂, which will then always be in the desired
range −ŝ < t̂ < 0. The transformation itself here gives the necessary Jacobian.

If you do not know how big SIGMAX is, you can put it to some very small value (but
larger than zero, however) and do an exploratory run. When the program encounters
events with SIGEV>SIGMAX, a warning message is printed, which gives the new SIGMAX
that the program will use from then on. Hopefully such maximum violations only appear
at the beginning of the run, and later SIGMAX stabilizes to a level that can then be used

168



as input for a second, correct run.
If you want to do the event rejection yourself, simply put SIGEV equal to SIGMAX. In

that case events will not be rejected by Pythia (except if there is something else wrong
with them). If SIGMAX is the correct total cross section of the process, event mixing with
other processes will still work fine. You could also decide not to reject any events, but to
use weighted ones. In that case you can only have one ISUB switched on in a run, since the
program will not know how to mix different kinds of events, and you cannot use Pythia
to do cross section statistics for you. Therefore you could, for instance, put SIGMAX =
SIGEV = 1, and use a common block to transfer event weight and other information from
your PYUPEV routine to your main program.

In addition to the SIGEV value returned for each event, it is also necessary to return
the event itself. This is done via the common block

COMMON/PYUPPR/NUP,KUP(20,7),PUP(20,5),NFUP,IFUP(10,2),Q2UP(0:10)

The first part closely parallels the standard event record in the LUJETS common block,
see section 5.2, although with a few simplifications. The number NUP gives the number
of particles involved in the process, where a particle may be a quark, a lepton, a gauge
boson, or anything else. The first two are simply the two incoming particles that initiate
the hard scattering, while the remaining NUP-2 are the outgoing particles from the hard
process. For each particle I, with 1 ≤I≤NUP, the following information is stored:
KUP(I,1) : is = 1 normally. However, if you put it = 2 that signifies intermediate states

that are not to be treated by Pythia, but are included only to make the event
record easier to read.

KUP(I,2) : is the flavour code of a particle, i.e. the two incoming partons for I = 1 and
2, and the outgoing particles for I≥ 3. The flavour codes are the standard KF
ones, as used elsewhere in the program.

KUP(I,3) : may be used to indicate the position of a mother. Such information may
again make the record more readable, but is not really needed, and so one may
well put all KUP(I,3)=0.

KUP(I,4) : for a final-state parton which carries colour, KUP(I,4) gives the position of
the parton from which the colour comes; otherwise it must be 0.

KUP(I,5) : for a final-state parton that carries anticolour, KUP(I,5) gives the position
of the parton from which the anticolour comes; else it must be 0.

KUP(I,6) : for an initial-state parton that carries colour, KUP(I,6) gives the position of
the parton to which the colour goes; else it must be 0.

KUP(I,7) : for an initial-state parton which carries anticolour, KUP(I,7) gives the po-
sition of the parton to which the anticolour goes; else it must be 0.

PUP(I,1) : px, i.e. x momentum.
PUP(I,2) : py, i.e. y momentum.
PUP(I,3) : pz, i.e. z momentum.
PUP(I,4) : E, i.e. energy.
PUP(I,5) : m, i.e. mass.
After this brief summary, we proceed with more details and examples.

To illustrate the issue of documentation in KUP(I,1) and KUP(I,3), consider the case
of W+ production and decay to ud, maybe as part of a more complex process. The final-
state particles clearly are u and d, so the W+ need not be given at all, but it would make
the event listing easier to read. Therefore one should add the W+, but with KUP(I,1)=2.
(If the W+ would have been added with KUP(I,1)=1, it would later have been treated
by Pythia/Jetset, which means it would have been allowed to decay once more.) If
the W+ is in line 3, the u in 4 and the d in 5, one could further put KUP(4,3)=3 and
KUP(5,3)=3 to indicate that the u and d in lines 4 and 5 come from the W+ stored in

169



line 3.
The switch MSTP(128) works in the same way for user-defined processes as for ordinary

ones, i.e. decay products of resonances can optionally be omitted from the documentation
section of the event record, and history pointers can be set slightly differently. The
information the program has at its disposal for this purpose is in KUP(I,3); an entry with
this value non-zero is considered as a resonance decay product.

The colour-flow information for coloured particles (quarks, gluons, leptoquarks, . . . )
is needed to set up parton showers and fragmentation properly. Sometimes many different
colour flows are possible for one and the same process, as discussed in section 8.2.1. It
is up to you whether or not you will include all possible colour flows in the appropriate
mixture, but at least you must pick some representative colour configuration. Consider
e.g. the case of g(1) + g(2) → q(3) + q(4), where the numbers give the position in the
array. It is clear the q must get its colour from either of the two gluons, which means there
are (at least) two possibilities. Picking the q colour to come from gluon 1, one would thus
write KUP(3,4)=1, to be read ‘the colour of parton 3 comes from parton 1’. By implication
therefore also KUP(1,6)=3, i.e. ‘the colour of parton 1 goes to parton 3’, i.e. the colour
flow is bookkept doubly. The anticolour now must flow from parton 2 to parton 4, i.e.
KUP(2,7)=4 and KUP(4,5)=2. This completely specifies the colours of the q and q, but
not of the two gluons. In fact, one colour in the initial state ‘annihilates’ between the
g(1) and g(2), i.e. the anticolour of gluon 1 and the colour of gluon 2 match, which may
be expressed by KUP(1,7)=2 and KUP(2,6)=1. In other words colour/anticolour of an
initial-state parton may either go to a final-state parton or to another initial-state parton.
Correspondingly, the colour/anticolour of a final-state parton may come either from an
initial-state parton or from another final-state parton. An example of the latter possibility
is W decays, or generically the decay of any colour-singlet particle. (Thus a third colour
flow above is represented by gg → H0 → qq, where no colour passes through the Higgs,
and therefore colour flows between the two gluons and, separately, between the q and q.)

Storing of momenta should be straightforward, but a few comments must be made.
Even if you ask, in the PYINIT call, to have events generated in a fixed target or a user-
specified frame, at intermediate stages Pythia will still work in the c.m. frame of the
two incoming beam particles, with the first beam moving in the +z direction and the
second in the −z one. This c.m. frame must also be used when giving the momenta of
the process. In addition, the two incoming partons in lines 1 and 2 are assumed massless.
Therefore the initial-state partons are characterized only by the two energies P(1,4) and
P(2,4), with P(1,3) = P(1,4), P(2,3) = -P(2,4), and everything else is zero. In the
final state, energies, momenta and masses are free, but must add up to give the same
four-momentum as that of the initial state. All momenta are given in GeV, with the
speed of light c = 1.

The second part of the PYUPPR common block is used to regulate the initial- and
final-state showering, as follows:
Q2UP(0) : Q2 scale of initial-state showers.
NFUP : number of parton pairs that undergo final-state showers.
IFUP(IF,1), IFUP(IF,2) : positions of the two partons of a final-state showering pair,

where the index IF runs between 1 and NFUP.
Q2UP(IF) : the Q2 scale of the final-state shower between parton pair IF above.

If you do not want any showering at all, you can put MSTP(61)=0 and MSTP(71)=0,
and then you do not have to give the above quantities. In general the scale choices Q2

are not unique, which means that some guesswork is involved. Since the showers add
extra partonic activity at mass scales below the mentioned Q2 choices, the Q2UP should
be of the order of the phase-space cut-offs, so as to provide a reasonably smooth joining
between partonic activity from matrix elements and that from showers. There are a few
cases where choices are rather easy. In the decay of any s-channel colour neutral state,
such as a W±, the Q2 scale of final-state showers is just set by the squared mass of the

170



resonance. For initial-state radiation, Q2UP(0) should be about the same as the Q2 scale
used for the evaluation of parton distributions for the hard process, up to some factor of
order unity. (One frequent choice for this factor would be 4, if your parton-distribution
scale is something like the squared transverse momentum, simply because m2 is of order
4p2⊥.)

The ‘parton’-shower evolution actually also can include photon emission off quarks
and leptons, if the shower switches are properly set. It is not possible to define only one
particle in the above arrays, since it would then not be possible to conserve energy and
momentum in the shower. You can very well have a pair where only one of the two can
branch, however. For instance, in a gγ final state, only the gluon can shower, but the
photon can lose energy to the gluon in such a way that the gluon branchings becomes
possible.

Currently, it is not possible to do showering where three or more final-state particles are
involved at the same time. This may be added at a later stage. It is therefore necessary to
subdivide suitably into pairs, and maybe leave some (especially colour-neutral) particles
unshowered.

You are free to make use of whatever tools you want in your PYUPEV routine, and
normally there would be no contact with the rest of Pythia, except as described above.
However, you may want to use some of the tools already available. One attractive possibil-
ity is to use PYSTFU for parton-distribution-function evaluation. Other possible tools could
be RLU for random-number generation, ULALPS for αs evaluation, ULALEM for evaluation
of a running αem, and maybe a few more.

We end with a few comments on anomalous situations. In some cases one may want
to decide, inside PYUPEV, when to stop the event-generation loop. This is the case, for
instance, if event configurations are read in from a file, and the end of the file is reached.
One might be tempted just to put SIGEV=0 when this happens. Then PYEVNT will discard
the event, as part of the matrix-element-weighting procedure. However, next PYEVNT will
generate another event, which normally means a new request to PYUPEV, so one does not
really get out of the loop. Instead you should put NUP=0. If the program encounters this
value at a return from PYUPEV, then it will also exit from PYEVNT, without incrementing
the counters for the number of events generated. It is then up to you to have a check on
this condition in your main event-generation loop. This you do either by looking at NUP
or at MSTI(51); the latter is set to 1 if no event was generated.

It may also happen that a user-defined configuration fails elsewhere in the PYEVNT call.
For instance, the beam-remnant treatment occasionally encounters situations it cannot
handle, wherefore the hard interaction is rejected and a new one generated. This happens
also with ordinary (not user-defined) events, and usually comes about as a consequence
of the initial-state radiation description leaving too little energy for the remnant. If
the same hard scattering were to be used as input for a new initial-state radiation and
beam-remnant attempt, it could then work fine. There is a possibility to give events that
chance, as follows. MSTI(52) counts the number of times a hard-scattering configuration
has failed to date. If you come in to PYUPEV with MSTI(52) non-vanishing, this means
that the latest configuration failed. So long as the contents of the PYUPPR common block
are not changed, such an event may be given another try. For instance, a line

IF(MSTI(52).GE.1.AND.MSTI(52).LE.4) RETURN

at the beginning of PYUPEV will give each event up to five tries; thereafter a new one
would be generated as usual. Note that the counter for the number of events is updated
at each new try. The fraction of failed configurations is given in the bottom line of the
PYSTAT(1) table.

The above comment only refers to very rare occurrences (less than one in a hundred),
which are not errors in a strict sense; for instance, they do not produce any error messages
on output. If you get warnings and error messages that the program does not understand

171



the flavour codes or cannot reconstruct the colour flows, it is due to faults of yours, and
giving such events more tries is not going to help.

9.6 How to run PYTHIA with varying energies

It is possible to use Pythia in a mode where the energy can be varied from one event to
the next, without the need to reinitialize with a new PYINIT call. This allows a significant
speed-up of execution, although it is not as fast as running at a fixed energy. It can not
be used for everything — we will come to the fine print at the end — but it should be
applicable for most tasks.

The master switch to access this possibility is in MSTP(171). By default it is off,
so you must set MSTP(171)=1 before initialization. There are two submodes of running,
with MSTP(172) being 1 or 2. In the former mode, Pythia will generate an event at the
requested energy. This means that you have to know which energy you want beforehand.
In the latter mode, Pythia will often return without having generated an event — with
flag MSTI(61)=1 to signal that — and you are then requested to give a new energy. The
energy spectrum of accepted events will then, in the end, be your naive input spectrum
weighted with the cross-section of the processes you study. We will come back to this.

The energy can be varied, whichever frame is given in the PYINIT call. When the
frame is ’CMS’, PARP(171) should be filled with the fractional energy of each event, i.e.
Ecm =PARP(171)×WIN, where WIN is the nominal c.m. energy of the PYINIT call. Here
PARP(171) should normally be smaller than unity, i.e. initialization should be done at the
maximum energy to be encountered. For the ’FIXT’ frame, PARP(171) should be filled
by the fractional beam energy of that one, i.e. Ebeam =PARP(171)×WIN. For the ’USER’,
’FOUR’ and ’FIVE’ options, the two four-momenta are given in for each event in the same
format as used for the PYINIT call. Note that there is a minimum c.m. energy allowed,
PARP(2). If you give in values below this, the program will stop for MSTP(172)=1, and
will return with MSTI(61)=1 for MSTP(172)=1.

To illustrate the use of the MSTP(172)=2 facility, consider the case of beamstrahlung
in e+e− linear colliders. This is just for convenience; what is said here can be translated
easily into other situations. Assume that the beam spectrum is given by D(z), where z
is the fraction retained by the original e after beamstrahlung. Therefore 0 ≤ z ≤ 1 and
the integral of D(z) is unity. This is not perfectly general; one could imagine branchings
e− → e−γ → e−e+e−, which gives a multiplication in the number of beam particles. This
could either be expressed in terms of a D(z) with integral larger than unity or in terms
of an increased luminosity. We will assume the latter, and use D(z) properly normalized.
Given a nominal s = 4E2

beam, the actual s′ after beamstrahlung is given by s′ = z1z2s.
For a process with a cross section σ(s) the total cross section is then

σtot =
∫ 1

0

∫ 1

0
D(z1)D(z2)σ(z1z2s) dz1 dz2 . (121)

The cross section σ may in itself be an integral over a number of additional phase space
variables. If the maximum of the differential cross section is known, a correct procedure
to generate events is

1. pick z1 and z2 according to D(z1) dz1 and D(z2) dz2, respectively;
2. pick a set of phase space variables of the process, for the given s′ of the event;
3. evaluate σ(s′) and compare with σmax;
4. if event is rejected, then return to step 1 to generate new variables;
5. else continue the generation to give a complete event.

You as a user are assumed to take care of step 1, and present the resulting kinematics
with incoming e+ and e− of varying energy. Thereafter Pythia will do steps 2–5, and
either return an event or put MSTI(61)=1 to signal failure in step 4.

172



The maximization procedure does search in phase space to find σmax, but it does not
vary the s′ energy in this process. Therefore the maximum search in the PYINIT call
should be performed where the cross section is largest. For processes with increasing
cross section as a function of energy this means at the largest energy that will ever be
encountered, i.e. s′ = s in the case above. This is the ‘standard’ case, but often one
encounters other behaviours, where more complicated procedures are needed. One such
case would be the process e+e− → Z∗0 → Z0H0, which is known to have a cross section
that increases near the threshold but is decreasing asymptotically. If one already knows
that the maximum, for a given Higgs mass, appears at 300 GeV, say, then the PYINIT
call should be made with that energy, even if subsequently one will be generating events
for a 500 GeV collider.

In general, it may be necessary to modify the selection of z1 and z2 and assign a
compensating event weight. For instance, consider a process with a cross section behaving
roughly like 1/s. Then the σtot expression above may be rewritten as

σtot =
∫ 1

0

∫ 1

0

D(z1)

z1

D(z2)

z2
z1z2σ(z1z2s) dz1 dz2 . (122)

The expression z1z2σ(s′) is now essentially flat in s′, i.e. not only can σmax be found at
a convenient energy such as the maximum one, but additionally the Pythia generation
efficiency (the likelihood of surviving step 4) is greatly enhanced. The price to be paid is
that z has to be selected according to D(z)/z rather than according to D(z). Note that
D(z)/z is not normalized to unity. One therefore needs to define

ID =
∫ 1

0

D(z)

z
dz , (123)

and a properly normalized

D′(z) =
1

ID
D(z)

z
. (124)

Then

σtot =
∫ 1

0

∫ 1

0
D′(z1)D

′(z2) I2
D z1z2σ(z1z2s) dz1 dz2 . (125)

Therefore the proper event weight is I2
D z1z2. This weight should be stored, for each

event, in PARP(173). The maximum weight that will be encountered should be stored
in PARP(174) before the PYINIT call, and not changed afterwards. It is not necessary
to know the precise maximum; any value larger than the true maximum will do, but
the inefficiency will be larger the cruder the approximation. Additionally you must put
MSTP(173)=1 for the program to make use of weights at all. Often D(z) are not known
analytically; therefore ID is also not known beforehand, but may have to be evaluated (by
you) during the course of the run. Then you should just use the weight z1z2 in PARP(173)
and do the overall normalization yourself in the end. Since PARP(174)=1. by default, in
this case you need not set this variable specially. Only the cross sections are affected by
the procedure selected for overall normalization, the events themselves still are properly
distributed in s′ and internal phase space.

Above it has been assumed tacitly that D(z) → 0 for z → 0. If not, D(z)/z is
divergent, and it is not possible to define a properly normalized D′(z) = D(z)/z. If the
cross section is truly diverging like 1/s, then a D(z) which is nonvanishing for z → 0
does imply an infinite total cross section, whichever way things are considered. In cases
like that, it is necessary to impose a lower cut on z, based on some physics or detector
consideration. Some such cut is anyway needed to keep away from the minimum c.m.
energy required for Pythia events, see above.

173



The most difficult cases are those with a very narrow and high peak, such as the
Z0. One could initialize at the energy of maximum cross section and use D(z) as is,
but efficiency might turn out to be very low. One might then be tempted to do more
complicated transforms of the kind illustrated above. As a rule it is then convenient to
work in the variables τz = z1z2 and yz = (1/2) ln(z1/z2), cf. subsection 7.2.

Clearly, the better the behaviour of the cross section can be modelled in the choice
of z1 and z2, the better the overall event generation efficieny. Even under the best of
circumstances, the efficiency will still be lower than for runs with fix energy. There is also
a non-negligible time overhead for using variable energies in the first place, from kinematics
reconstruction and (in part) from the phase space selection. One should therefore not use
variable energies when not needed, and not use a large range of energies

√
s′ if in the end

only a smaller range is of experimental interest.
This facility may be combined with most other aspects of the program. For instance,

it is possible to simulate beamstrahlung as above and still include bremsstrahlung with
MSTP(11)=1. Further, one may multiply the overall event weight of PARP(173) with a
kinematics-dependent weight given by PYEVWT, although it is not recommended (since the
chances of making a mistake are also multiplied). However, a few things do not work.

• It is not possible to use pile-up events, i.e. you must have MSTP(131)=0.
• The possibility of giving in your own cross-section optimization coefficients, option
MSTP(121)=2, would require more input than with fixed energies, and this option
should therefore not be used. You can still use MSTP(121)=1, however.

• The multiple interactions scenario with MSTP(82)≥ 2 only works approximately for
energies different from the initialization one. If the c.m. energy spread is smaller
than a factor 2, say, the approximation should be reasonable, but if the spread is
larger one may have to subdivide into subruns of different energy bins. The initializa-
tion should be made at the largest energy to be encountered — whenever multiple
interactions are possible (i.e. for incoming hadrons and resolved photons) this is
where the cross sections are largest anyway, and so this is no further constraint.
There is no simple possibility to change PARP(82) during the course of the run, i.e.
an energy-independent p⊥0 must be assumed. The default option MSTP(82)=1 works
fine, i.e. does not suffer from the constraints above. If so desired, p⊥min =PARP(81)
can be set differently for each event, as a function of c.m. energy. Initialization
should then be done with PARP(81) as low as it is ever supposed to become.

9.7 Other Routines and Common Blocks

The subroutines and common blocks that you will come in direct contact with have
already been described. A number of other routines and common blocks exist, and those
not described elsewhere are here briefly listed for the sake of completeness. The PYG***
routines are slightly modified versions of the SAS*** ones of the SaSgam library. The
common block SASCOM is renamed PYINT8. If you want to use the parton distributions
for standalone purposes, you are encouraged to use the original SaSgam routines rather
than going the way via the Pythia adaptations.

SUBROUTINE PYINRE : to initialize the widths and effective widths of resonances.
SUBROUTINE PYINBM(CHFRAM,CHBEAM,CHTARG,WIN) : to read in and identify the beam

(CHBEAM) and target (CTTARG) particles and the frame (CHFRAM) as given in the
PYINIT call; also to save the original energy (WIN).

SUBROUTINE PYINKI(MODKI) : to set up the event kinematics, either at initialization
(MODKI=0) or for each separate event, the latter when the program is run with
varying kinematics (MODKI=1).

SUBROUTINE PYINPR : to set up the partonic subprocesses selected with MSEL. For γp
and γγ, also the MSTP(14) value affects the choice of processes. In particular,

174



the option MSTP(14)=10 sets up the three or six different processes that need
to be mixed, with separate cuts for each.

SUBROUTINE PYXTOT : to give the parametrized total, double diffractive, single diffractive
and elastic cross sections for different energies and colliding hadrons.

SUBROUTINE PYMAXI : to find optimal coefficients COEF for the selection of kinematical
variables, and to find the related maxima for the differential cross section times
Jacobian factors, for each of the subprocesses included.

SUBROUTINE PYPILE(MPILE) : to determine the number of pile-up events, i.e. events
appearing in the same beam–beam crossing.

SUBROUTINE PYSAVE(ISAVE,IGA) : saves and restores parameters and cross section val-
ues between the three γp and the six γγ components of MSTP(14)=10. The
options for ISAVE are (1) a complete save of all parameters specific to a given
component, (2) a partial save of cross-section information, (3) a restoration of
all parameters specific to a given component, (4) as 3 but preceded by a ran-
dom selection of component, and (5) a summation of component cross sections
(for PYSTAT). The subprocess code in IGA is the one described for MSTI(9); it
is input for options 1, 2 and 3 above, output for 4 and dummy for 5.

SUBROUTINE PYRAND : to generate the quantities characterizing a hard scattering on the
parton level, according to the relevant matrix elements.

SUBROUTINE PYSCAT : to find outgoing flavours and to set up the kinematics and colour
flow of the hard scattering.

SUBROUTINE PYRESD : to allow resonances to decay, including chains of successive decays
and parton showers.

SUBROUTINE PYMULT(MMUL) : to generate semi-hard interactions according to the multi-
ple interaction formalism.

SUBROUTINE PYREMN(IPU1,IPU2) : to add on target remnants and include primordial
k⊥.

SUBROUTINE PYDIFF : to handle diffractive and elastic scattering events.
SUBROUTINE PYDOCU : to compute cross sections of processes, based on current Monte

Carlo statistics, and to store event information in the MSTI and PARI arrays.
SUBROUTINE PYWIDT(KFLR,SH,WDTP,WDTE) : to calculate widths and effective widths of

resonances.
SUBROUTINE PYOFSH(MOFSH,KFMO,KFD1,KFD2,PMMO,RET1,RET2) : to calculate partial

widths into channels off the mass shell, and to select correlated masses of
resonance pairs.

SUBROUTINE PYKLIM(ILIM) : to calculate allowed kinematical limits.
SUBROUTINE PYKMAP(IVAR,MVAR,VVAR) : to calculate the value of a kinematical variable

when this is selected according to one of the simple pieces.
SUBROUTINE PYSIGH(NCHN,SIGS) : to give the differential cross section (multiplied by

the relevant Jacobians) for a given subprocess and kinematical setup.
SUBROUTINE PYSTFL(KF,X,Q2,XPQ) : to give parton distributions for p and n in the

option with modified behaviour at small Q2 and x, see MSTP(57).
SUBROUTINE PYSTFU(KF,X,Q2,XPQ) : to give parton-distribution functions (multiplied

by x, i.e. xfi(x,Q
2)) for an arbitrary particle (of those recognized by Pythia).

Generic driver routine for the following, specialized ones.
KF : flavour of probed particle, according to KF code.
X : x value at which to evaluate parton distributions.
Q2 : Q2 scale at which to evaluate parton distributions.
XPQ : array of dimensions XPQ(-25:25), which contains the evaluated parton

distributions xfi(x,Q
2). Components i ordered according to standard

KF code; additionally the gluon is found in position 0 as well as 21 (for
historical reasons).

SUBROUTINE PYSTEL(X,Q2,XPEL) : to give electron parton distributions.

175



SUBROUTINE PYSTGA(X,Q2,XPGA) : to give the photon parton distributions for sets other
than the SaS ones.

SUBROUTINE PYGGAM(ISET,X,Q2,P2,F2GM,XPDFGM) : to construct the SaS F2 and par-
ton distributions of the photon by summing homogeneous (VMD) and inhomo-
geneous (anomalous) terms. For F2, c and b are included by the Bethe-Heitler
formula; in the ‘MS’ scheme additionally a Cγ term is added. Calls PYGVMD,
PYGANO, PYGBEH, and PYGDIR.

SUBROUTINE PYGVMD(ISET,KF,X,Q2,P2,ALAM,XPGA) : to evaluate the VMD parton dis-
tributions of a photon, evolved homogeneously from an initial scale P 2 to Q2.

SUBROUTINE PYGANO(KF,X,Q2,P2,ALAM,XPGA) : to evaluate the parton distributions of
the anomalous photon, inhomogeneously evolved from a scale P 2 (where it
vanishes) to Q2.

SUBROUTINE PYGBEH(KF,X,Q2,P2,PM2,XPBH) : to evaluate the Bethe-Heitler cross sec-
tion for heavy flavour production.

SUBROUTINE PYGDIR(X,Q2,P2,AK0,XPGA) : to evaluate the direct contribution, i.e. the
Cγ term, as needed in MS parametrizations.

SUBROUTINE PYSTPI(X,Q2,XPPI) : to give pion parton distributions.
SUBROUTINE PYSTPR(X,Q2,XPPR) : to give proton parton distributions.
FUNCTION PYCTQ2(ISET,IPRT,X,Q) : to give the CTEQ2 proton parton distributions.
FUNCTION PYHFTH(SH,SQM,FRATT) : to give heavy-flavour threshold factor in matrix el-

ements.
SUBROUTINE PYSPLI(KF,KFLIN,KFLCH,KFLSP) : to give hadron remnant or remnants

left behind when the reacting parton is kicked out.
FUNCTION PYGAMM(X) : to give the value of the ordinary Γ(x) function (used in some

parton-distribution parametrizations).
SUBROUTINE PYWAUX(IAUX,EPS,WRE,WIM) : to evaluate the two auxiliary functions W1

and W2 appearing in the cross section expressions in PYSIGH.
SUBROUTINE PYI3AU(EPS,RAT,Y3RE,Y3IM) : to evaluate the auxiliary function I3 ap-

pearing in the cross section expressions in PYSIGH.
FUNCTION PYSPEN(XREIN,XIMIN,IREIM) : to calculate the real and imaginary part of

the Spence function.
SUBROUTINE PYQQBH(WTQQBH) : to calculate matrix elements for the two processes gg →

QQH0 and qq → QQH0.
BLOCK DATA PYDATA : to give sensible default values to all status codes and parameters.

COMMON/PYINT1/MINT(400),VINT(400)

Purpose: to collect a host of integer- and real-valued variables used internally in the pro-
gram during the initialization and/or event generation stage. These variables
must not be changed by you.

MINT(1) : specifies the general type of subprocess that has occurred, according to the
ISUB code given in section 8.1.

MINT(2) : whenever MINT(1) (together with MINT(15) and MINT(16)) are not sufficient
to specify the type of process uniquely, MINT(2) provides an ordering of the
different possibilities, see MSTI(2).

MINT(3) : number of partons produced in the hard interactions, i.e. the number n of the
2 → n matrix elements used; is sometimes 3 or 4 when a basic 2 → 1 or 2 → 2
process has been folded with two 1 → 2 initial branchings (like qq′ → q′′q′′′H0).

MINT(4) : number of documentation lines at the beginning of the common block LUJETS
that are given with K(I,1)=21; 0 for MSTP(125)=0.

MINT(5) : number of events generated to date in current run. In runs with the variable-
energy option, MSTP(171)=1 and MSTP(172)=2, only those events that survive

176



(i.e. that do not have MSTI(61)=1) are counted in this number. That is,
MINT(5) may be less than the total number of PYEVNT calls.

MINT(6) : current frame of event (see MSTP(124) for possible values).
MINT(7), MINT(8) : line number for documentation of outgoing partons/particles from

hard scattering for 2 → 2 or 2 → 1 → 2 processes (else = 0).
MINT(10) : is 1 if cross section maximum was violated in current event, and 0 if not.
MINT(11) : KF flavour code for beam (side 1) particle.
MINT(12) : KF flavour code for target (side 2) particle.
MINT(13), MINT(14) : KF flavour codes for side 1 and side 2 initial-state shower initia-

tors.
MINT(15), MINT(16) : KF flavour codes for side 1 and side 2 incoming partons to the

hard interaction.
MINT(17), MINT(18) : flag to signal if particle on side 1 or side 2 has been scattered

diffractively; 0 if no, 1 if yes.
MINT(19), MINT(20) : flag to signal initial-state structure with parton inside photon

inside electron on side 1 or side 2; 0 if no, 1 if yes.
MINT(21) - MINT(24) : KF flavour codes for outgoing partons from the hard interac-

tion. The number of positions actually used is process-dependent, see MINT(3);
trailing positions not used are set = 0.

MINT(25), MINT(26) : KF flavour codes of the products in the decay of a single s-
channel resonance formed in the hard interaction. Are thus only used when
MINT(3)=1 and the resonance is allowed to decay.

MINT(31) : number of hard or semi-hard scatterings that occurred in the current event
in the multiple-interaction scenario; is = 0 for a low-p⊥ event.

MINT(35) : in a true 2 → 3 process, where one particle is a resonance with decay channel
selected already before the PYRESD call, the decay channel number (in the
/LUDAT3/ numbering) is stored here.

MINT(41), MINT(42) : type of incoming beam or target particle; 1 for lepton and 2 for
hadron. A photon counts as a lepton if it is not resolved (MSTP(14)=0) and as
a hadron if it is resolved (MSTP(14)≥ 1).

MINT(43) : combination of incoming beam and target particles. A photon counts as a
hadron.

= 1 : lepton on lepton.
= 2 : lepton on hadron.
= 3 : hadron on lepton.
= 4 : hadron on hadron.

MINT(44) : as MINT(43), but a photon counts as a lepton.
MINT(45), MINT(46) : structure of incoming beam and target particles.

= 1 : no internal structure, i.e. an electron or photon carrying the full beam
energy.

= 2 : defined with parton distributions that are not peaked at x = 1, i.e. a
hadron or a resolved photon.

= 3 : defined with parton distributions that are peaked at x = 1, i.e. a resolved
electron.

MINT(47) : combination of incoming beam- and target-particle parton-distribution func-
tion types.

= 1 : no parton distribution either for beam or target.
= 2 : parton distributions for target but not for beam.
= 3 : parton distributions for beam but not for target.
= 4 : parton distributions for both beam and target, but not both peaked at

x = 1.
= 5 : parton distributions for both beam and target, with both peaked at x =

1.

177



MINT(48) : total number of subprocesses switched on.
MINT(49) : number of subprocesses that are switched on, apart from elastic scattering

and single, double and central diffractive.
MINT(50) : combination of incoming particles from a multiple interactions point of

view.
= 0 : the total cross section is not known; therefore no multiple interactions

are possible.
= 1 : the total cross section is known; therefore multiple interactions are pos-

sible if switched on.
MINT(51) : internal flag that event failed cuts.

= 0 : no problem.
= 1 : event failed; new one to be generated.
= 2 : event failed; no new event is to be generated but instead control is to be

given back to used. Is intended for user-defined processes, when NUP=0.
MINT(52) : internal counter for number of lines used (in /LUJETS/) before multiple in-

teractions are considered.
MINT(53) : internal counter for number of lines used (in /LUJETS/) before beam rem-

nants are considered.
MINT(55) : the heaviest new flavour switched on for QCD processes, specifically the

flavour to be generated for ISUB = 81, 82, 83 or 84.
MINT(56) : the heaviest new flavour switched on for QED processes, specifically for ISUB

= 85. Note that, unlike MINT(55), the heaviest flavour may here be a lepton,
and that heavy means the one with largest KF code.

MINT(57) : number of times the beam remnant treatment has failed, and the same basic
kinematical setup is used to produce a new parton shower evolution and beam
remnant set. Mainly used in leptoproduction, for the option when x and Q2

are to be preserved.
MINT(61) : internal switch for the mode of operation of resonance width calculations in

PYWIDT for γ∗/Z0 or γ∗/Z0/Z′0.
= 0 : without reference to initial-state flavours.
= 1 : with reference to given initial-state flavours.
= 2 : for given final-state flavours.

MINT(62) : internal switch for use at initialization of H0 width.
= 0 : use widths into ZZ∗ or WW∗ calculated before.
= 1 : evaluate widths into ZZ∗ or WW∗ for current Higgs mass.

MINT(65) : internal switch to indicate initialization without specified reaction.
= 0 : normal initialization.
= 1 : initialization with argument ’none’ in PYINIT call.

MINT(71) : switch to tell whether current process is singular for p⊥ → 0 or not.
= 0 : non-singular process, i.e. proceeding via an s-channel resonance or with

both products having a mass above CKIN(6).
= 1 : singular process.

MINT(72) : number of s-channel resonances that may contribute to the cross section.
MINT(73) : KF code of first s-channel resonance; 0 if there is none.
MINT(74) : KF code of second s-channel resonance; 0 if there is none.
MINT(81) : number of selected pile-up events.
MINT(82) : sequence number of currently considered pile-up event.
MINT(83) : number of lines in the event record already filled by previously considered

pile-up events.
MINT(84) : MINT(83) + MSTP(126), i.e. number of lines already filled by previously

considered events plus number of lines to be kept free for event documentation.
MINT(91) : is 1 for a lepton–hadron event and 0 else. Used to determine whether a

PYFRAM(3) call is possible.

178



MINT(92) : is used to denote region in (x,Q2) plane when MSTP(57)=2, according to
numbering in [Sch93a]. Simply put, 0 means that the modified proton parton
distributions were not used, 1 large x and Q2, 2 small Q2 but large x, 3 small
x but large Q2 and 4 small x and Q2.

MINT(93) : is used to keep track of parton distribution set used in the latest STRUCTM
call to Pdflib. The code for this set is stored in the form MINT(93) =
1000000×NPTYPE + 1000×NGROUP + NSET. The stored previous value is com-
pared with the current new value to decide whether a PDFSET call is needed to
switch to another set.

MINT(101), MINT(102) : is normally 1, but is 4 when a resolved photon (appearing on
side 1 or 2) can be represented by either of the four vector mesons ρ0, ω, φ
and J/ψ.

MINT(103), MINT(104) : KF flavour code for the two incoming particles, i.e. the same
as MINT(11) and MINT(12). The exception is when a resolved photon is rep-
resented by a vector meson (a ρ0, ω, φ or J/ψ). Then the code of the vector
meson is given.

MINT(105) : is either MINT(103) or MINT(104), depending on which side of the event
currently is being studied.

MINT(107), MINT(108) : if either or both of the two incoming particles is a photon,
then the respective value gives the nature assumed for that photon. The code
follows the one used for MSTP(14):

= 0 : direct photon.
= 1 : resolved photon.
= 2 : VMD-like photon.
= 3 : anomalous photon.

MINT(109) : is either MINT(107) or MINT(108), depending on which side of the event
currently is being studied.

MINT(111) : the frame given in PYINIT call, 0–5 for ’NONE’, ’CMS’, ’FIXT’, ’USER’,
’FOUR’ and ’FIVE’, respectively.

MINT(121) : number of separate event classes to initialize and mix.
= 1 : the normal value.
= 3 : for a γp interaction when MSTP(14)=10.
= 6 : for a γγ interaction when MSTP(14)=10.

MINT(122) : event class used in current event for γp or γγ events generated with the
MSTP(14)=10 option; code as described for MSTI(9).

MINT(123) : event class used in the current event, with the same list of possibilities as for
MSTP(14), except that options 1, 4 or 10 do not appear. Apart from a different
coding, this is exactly the same information as is available in MINT(122).

VINT(1) : Ecm, c.m. energy.
VINT(2) : s (= E2

cm) squared mass of complete system.
VINT(3) : mass of beam particle.
VINT(4) : mass of target particle.
VINT(5) : momentum of beam (and target) particle in c.m. frame.
VINT(6) - VINT(10) : θ, ϕ and β for rotation and boost from c.m. frame to user-

specified frame.
VINT(11) : τmin.
VINT(12) : ymin.
VINT(13) : cos θ̂min for cos θ̂ ≤ 0.
VINT(14) : cos θ̂min for cos θ̂ ≥ 0.
VINT(15) : x2⊥min.
VINT(16) : τ ′min.
VINT(21) : τ .

179



VINT(22) : y.
VINT(23) : cos θ̂.
VINT(24) : ϕ (azimuthal angle).
VINT(25) : x2⊥.
VINT(26) : τ ′.
VINT(31) : τmax.
VINT(32) : ymax.
VINT(33) : cos θ̂max for cos θ̂ ≤ 0.
VINT(34) : cos θ̂max for cos θ̂ ≥ 0.
VINT(35) : x2⊥max.
VINT(36) : τ ′max.
VINT(41), VINT(42) : the momentum fractions x taken by the partons at the hard

interaction, as used e.g. in the parton-distribution functions.
VINT(43) : m̂ =

√
ŝ, mass of hard-scattering subsystem.

VINT(44) : ŝ of the hard subprocess (2 → 2 or 2 → 1).
VINT(45) : t̂ of the hard subprocess (2 → 2 or 2 → 1 → 2).
VINT(46) : û of the hard subprocess (2 → 2 or 2 → 1 → 2).
VINT(47) : p̂⊥ of the hard subprocess (2 → 2 or 2 → 1 → 2), i.e. transverse momentum

evaluated in the rest frame of the scattering.
VINT(48) : p̂2⊥ of the hard subprocess; see VINT(47).
VINT(49) : m̂′, the mass of the complete three- or four-body final state in 2 → 3 or

2 → 4 processes.
VINT(50) : ŝ′ = m̂′2; see VINT(49).
VINT(51) : Q of the hard subprocess. The exact definition is process-dependent, see

MSTP(32).
VINT(52) : Q2 of the hard subprocess; see VINT(51).
VINT(53) : Q of the outer hard-scattering subprocess. Agrees with VINT(51) for a 2 → 1

or 2 → 2 process. For a 2 → 3 or 2 → 4 W/Z fusion process, it is set by the
W/Z mass scale, and for subprocesses 121 and 122 by the heavy-quark mass.

VINT(54) : Q2 of the outer hard-scattering subprocess; see VINT(53).
VINT(55) : Q scale used as maximum virtuality in parton showers. Is equal to VINT(53),

except for deep-inelastic-scattering processes when MSTP(22)> 0.
VINT(56) : Q2 scale in parton showers; see VINT(55).
VINT(57) : αem value of hard process.
VINT(58) : αs value of hard process.
VINT(59) : sin θ̂ (cf. VINT(23)); used for improved numerical precision in elastic and

diffractive scattering.
VINT(61), VINT(62) : nominal m2 values, i.e. without initial-state radiation effects,

for the two partons entering the hard interaction.
VINT(63), VINT(64) : nominal m2 values, i.e. without final-state radiation effects, for

the two (or one) partons/particles leaving the hard interaction.
VINT(65) : p̂init, i.e. common nominal absolute momentum of the two partons entering

the hard interaction, in their rest frame.
VINT(66) : p̂fin, i.e. common nominal absolute momentum of the two partons leaving

the hard interaction, in their rest frame.
VINT(67), VINT(68) : mass of beam and target particle, as VINT(3) and VINT(4),

except that an incoming γ is assigned the ρ0, ω or φ mass. Used for elastic
scattering γp → ρ0p and other similar processes.

VINT(71) : p⊥min of process, i.e. CKIN(3) or CKIN(5), depending on which is larger, and
whether the process is singular in p⊥ → 0 or not.

VINT(73) : τ = m2/s value of first resonance, if any; see MINT(73).
VINT(74) : mΓ/s value of first resonance, if any; see MINT(73).

180



VINT(75) : τ = m2/s value of second resonance, if any; see MINT(74).
VINT(76) : mΓ/s value of second resonance, if any; see MINT(74).
VINT(80) : correction factor (evaluated in PYOFSH) for the cross section of resonances

produced in 2 → 2 processes, if only some mass range of the full Breit–Wigner
shape is allowed by user-set mass cuts (CKIN(2), CKIN(45) - CKIN(48)).

VINT(81) - VINT(84) : the cos θ and ϕ variables of a true 2 → 3 process, where one
product is a resonance, effectively giving 2 → 4. The first two are cos θ and ϕ
for the resonance decay, the other two ditto for the effective system formed by
the other two particles.

VINT(85), VINT(86) : transverse momenta in a true 2 → 3 process; one is stored in
VINT(47) (that of the Z0 in gg → Z0QQ), while the smaller of the other two
is stored in VINT(85) and the larger in VINT(86).

VINT(91), VINT(92) : gives a dimensionless suppression factor, to take into account
reduction in cross section due to the allowed channels for a W+W+ or W−W−

pair, respectively, in the same sense as WIDS(24,1) gives it for a W+W− pair.
VINT(98) : is sum of VINT(100) values for current run.
VINT(99) : is weight WTXS returned from PYEVWT call when MSTP(142)≥ 1, otherwise is

1.
VINT(100) : is compensating weight 1./WTXS that should be associated with events when

MSTP(142)=1, otherwise is 1.
VINT(108) : ratio of maximum differential cross section observed to maximum differen-

tial cross section assumed for the generation; cf. MSTP(123).
VINT(109) : ratio of minimal (negative!) cross section observed to maximum differential

cross section assumed for the generation; could only become negative if cross
sections are incorrectly included.

VINT(111) - VINT(116) : for MINT(61)=1 gives kinematical factors for the different
pieces contributing to γ∗/Z0 or γ∗/Z0/Z′0 production, for MINT(61)=2 gives
sum of final-state weights for the same; coefficients are given in the order pure
γ∗, γ∗–Z0 interference, γ∗–Z′0 interference, pure Z0, Z0–Z′0 interference and
pure Z′0.

VINT(117) : width of Z0; needed in γ∗/Z0/Z′0 production.
VINT(131) : total cross section (in mb) for subprocesses allowed in the pile-up events

scenario according to the MSTP(132) value.
VINT(132) : n =VINT(131)×PARP(131), cf. PARI(91).
VINT(133) : 〈n〉 =

∑

i iPi/
∑

i Pi as actually simulated, i.e. 1 ≤ i ≤ 200 (or smaller),
see PARI(92).

VINT(134) : number related to probability to have event in beam–beam crossing; is
exp(−n)

∑

i n
i/i! for MSTP(133)=1 and exp(−n)

∑

i n
i/(i−1)! for MSTP(133)=2,

cf. PARI(93).
VINT(138) : size of the threshold factor (enhancement or suppression) in the latest event

with heavy-flavour production; see MSTP(35).
VINT(141), VINT(142) : x values for the parton-shower initiators of the hardest inter-

action; used to find what is left for multiple interactions.
VINT(143), VINT(144) : 1−∑i xi for all scatterings; used for rescaling each new x-value

in the multiple-interaction parton-distribution-function evaluation.
VINT(145) : estimate of total parton–parton cross section for multiple interactions; used

for MSTP(82)≥ 2.
VINT(146) : common correction factor fc in the multiple-interaction probability; used

for MSTP(82)≥ 2 (part of e(b), see eq. (171)).
VINT(147) : average hadronic matter overlap; used for MSTP(82)≥ 2 (needed in evalua-

tion of e(b), see eq. (171)).
VINT(148) : enhancement factor for current event in the multiple-interaction probability,

defined as the actual overlap divided by the average one; used for MSTP(82)≥ 2

181



(is e(b) of eq. (171)).
VINT(149) : x2⊥ cut-off or turn-off for multiple interactions. For MSTP(82)≤ 1 it is

4p2⊥min/s, for MSTP(82)≥ 2 it is 4p2⊥0/s.
VINT(150) : probability to keep the given event in the multiple-interaction scenario, as

given by the ‘Sudakov’ form factor.
VINT(151), VINT(152) : sum of x values for all the multiple-interaction partons.
VINT(153) : current differential cross section value obtained from PYSIGH; used in mul-

tiple interactions only.
VINT(155), VINT(156) : the x value of a photon that branches into quarks or gluons,

i.e. x at interface between initial-state QED and QCD cascades.
VINT(157), VINT(158) : the primordial k⊥ values selected in the two beam remnants.
VINT(159), VINT(160) : the χ values selected for beam remnants that are split into two

objects, describing how the energy is shared (see MSTP(92) and MSTP(94)); is
0 if no splitting is needed.

VINT(161) - VINT(200) : sum of Cabibbo–Kobayashi–Maskawa squared matrix ele-
ments that a given flavour is allowed to couple to. Results are stored in format
VINT(180+KF) for quark and lepton flavours and antiflavours (which need not
be the same; see MDME(IDC,2)). For leptons, these factors are normally unity.

VINT(201) - VINT(220) : additional variables needed in phase-space selection for 2 →
3 processes with ISET(ISUB)=5. Below indices 1, 2 and 3 refer to scattered
partons 1, 2 and 3, except that the q four-momentum variables are q1 + q2 →
q′1q

′
2q

′
3. All kinematical variables refer to the internal kinematics of the 3-body

final state — the kinematics of the system as a whole is described by τ ′ and
y, and the mass distribution of particle 3 (a resonance) by τ .

VINT(201) : m1.
VINT(202) : p2⊥1.
VINT(203) : ϕ1.
VINT(204) : M1 (mass of propagator particle).
VINT(205) : weight for the p2⊥1 choice.
VINT(206) : m2.
VINT(207) : p2⊥2.
VINT(208) : ϕ2.
VINT(209) : M2 (mass of propagator particle).
VINT(210) : weight for the p2⊥2 choice.
VINT(211) : y3.
VINT(212) : y3max.
VINT(213) : ǫ = ±1; choice between two mirror solutions 1 ↔ 2.
VINT(214) : weight associated to ǫ-choice.
VINT(215) : t1 = (q1 − q′1)

2.
VINT(216) : t2 = (q2 − q′2)

2.
VINT(217) : q1q

′
2 four-product.

VINT(218) : q2q
′
1 four-product.

VINT(219) : q′1q
′
2 four-product.

VINT(220) :
√

(m2
⊥12 −m2

⊥1 −m2
⊥2)

2 − 4m2
⊥1m

2
⊥2, where m⊥12 is the transverse

mass of the q′1q
′
2 system.

VINT(221) - VINT(225) : θ, ϕ and β for rotation and boost from c.m. frame to
hadronic c.m. frame of a lepton–hadron event.

VINT(231) : Q2
min scale for current parton-distribution function set.

VINT(281) : for resolved photon events, it gives the ratio between the total γX cross
section and the total π0X cross section, where X represents the target particle.

VINT(283), VINT(284) : virtuality scale at which an anomalous photon on the beam
or target side of the event is being resolved. More precisely, it gives the p2⊥ of
the γ → qq vertex.

182



VINT(285) : the CKIN(3) value provided by the user at initialization; subsequently
CKIN(3) may be overwritten (for MSTP(14)=10) but VINT(285) stays.

VINT(289) : squared c.m. energy found in PYINIT call.
VINT(290) : the WIN argument of a PYINIT call.
VINT(291) - VINT(300) : the two five-vectors of the two incoming particles, as recon-

structed in PYINKI. These may vary from one event to the next.

COMMON/PYINT2/ISET(200),KFPR(200,2),COEF(200,20),ICOL(40,4,2)

Purpose: to store information necessary for efficient generation of the different subpro-
cesses, specifically type of generation scheme and coefficients of the Jacobian.
Also to store allowed colour-flow configurations. These variables must not be
changed by you.

ISET(ISUB) : gives the type of kinematical-variable selection scheme used for subprocess
ISUB.

= 0 : elastic, diffractive and low-p⊥ processes.
= 1 : 2 → 1 processes (irrespective of subsequent decays).
= 2 : 2 → 2 processes (i.e. the bulk of processes).
= 3 : 2 → 3 processes (like qq′ → q′′q′′′H0).
= 4 : 2 → 4 processes (like qq′ → q′′q′′′W+W−).
= 5 : ‘true’ 2 → 3 processes, one method.
= 6 : ‘true’ 2 → 3 processes, another method; currently only gg → Z0QQ.
= 9 : 2 → 2 in multiple interactions (p⊥ as kinematics variable).
= 11 : a user-defined process.
= -1 : legitimate process which has not yet been implemented.
= -2 : ISUB is an undefined process code.

KFPR(ISUB,J) : give the KF flavour codes for the products produced in subprocess ISUB.
If there is only one product, the J=2 position is left blank. Also, quarks and
leptons assumed massless in the matrix elements are denoted by 0. The main
application is thus to identify resonances produced (Z0, W±, H0, etc.).

COEF(ISUB,J) : factors used in the Jacobians in order to speed up the selection of kine-
matical variables. More precisely, the shape of the cross section is given as
the sum of terms with different behaviour, where the integral over the allowed
phase space is unity for each term. COEF gives the relative strength of these
terms, normalized so that the sum of coefficients for each variable used is unity.
Note that which coefficients are indeed used is process-dependent.

ISUB : standard subprocess code.
J = 1 : τ selected according 1/τ .
J = 2 : τ selected according to 1/τ 2.
J = 3 : τ selected according to 1/(τ(τ + τR)), where τR = m2

R/s is τ value of
resonance; only used for resonance production.

J = 4 : τ selected according to Breit–Wigner of form 1/((τ − τR)2 + γ2R), where
τR = m2

R/s is τ value of resonance and γR = mRΓR/s is its scaled mass
times width; only used for resonance production.

J = 5 : τ selected according to 1/(τ(τ + τR′)), where τR′ = m2
R′/s is τ value

of second resonance; only used for simultaneous production of two reso-
nances.

J = 6 : τ selected according to second Breit–Wigner of form 1/((τ − τR′)2 +γ2R′),
where τR′ = m2

R′/s is τ value of second resonance and γR′ = mR′ΓR′/s is
its scaled mass times width; is used only for simultaneous production of
two resonances, like γ∗/Z0/Z′0.

J = 7 : τ selected according to 1/(1 − τ); only used when both parton distribu-

183



tions are peaked at x = 1.
J = 8 : y selected according to y − ymin.
J = 9 : y selected according to ymax − y.
J = 10 : y selected according to 1/ cosh(y).
J = 11 : y selected according to 1/(1−exp(y−ymax)); only used when beam parton

distribution is peaked close to x = 1.
J = 12 : y selected according to 1/(1 − exp(ymin − y)); only used when target

parton distribution is peaked close to x = 1.
J = 13 : z = cos θ̂ selected evenly between limits.
J = 14 : z = cos θ̂ selected according to 1/(a − z), where a = 1 + 2m2

3m
2
4/ŝ

2, m3

and m4 being the masses of the two final-state particles.
J = 15 : z = cos θ̂ selected according to 1/(a+ z), with a as above.

J = 16 : z = cos θ̂ selected according to 1/(a− z)2, with a as above.

J = 17 : z = cos θ̂ selected according to 1/(a+ z)2, with a as above.
J = 18 : τ ′ selected according to 1/τ ′.
J = 19 : τ ′ selected according to (1 − τ/τ ′)3/τ ′2.
J = 20 : τ ′ selected according to 1/(1− τ ′); only used when both parton distribu-

tions are peaked close to x = 1.
ICOL : contains information on different colour-flow topologies in hard 2 → 2 pro-

cesses.

COMMON/PYINT3/XSFX(2,-40:40),ISIG(1000,3),SIGH(1000)

Purpose: to store information on parton distributions, subprocess cross sections and
different final-state relative weights. These variables must not be changed by
you.

XSFX : current values of parton-distribution functions xf(x) on beam and target side.
ISIG(ICHN,1) : incoming parton/particle on the beam side to the hard interaction for

allowed channel number ICHN. The number of channels filled with relevant
information is given by NCHN, one of the arguments returned in a PYSIGH call.
Thus only 1 ≤ICHN≤NCHN is filled with relevant information.

ISIG(ICHN,2) : incoming parton/particle on the target side to the hard interaction for
allowed channel number ICHN. See also comment above.

ISIG(ICHN,3) : colour-flow type for allowed channel number ICHN; see MSTI(2) list. See
also above comment. For ‘subprocess’ 96 uniquely, ISIG(ICHN,3) is also used
to translate information on what is the correct subprocess number (11, 12, 13,
28, 53 or 68); this is used for reassigning subprocess 96 to either of these.

SIGH(ICHN) : evaluated differential cross section for allowed channel number ICHN, i.e.
matrix-element value times parton distributions, for current kinematical setup
(in addition, Jacobian factors are included in the figures, as used to speed up
generation). See also comment for ISIG(ICHN,1).

COMMON/PYINT4/WIDP(21:40,0:40),WIDE(21:40,0:40),WIDS(21:40,3)

Purpose: to store partial and effective decay widths for the different resonances. These
variables must not be changed by you.

WIDP(KF,J) : gives partial decay widths of resonances into different channels (in GeV),
given that all physically allowed final states are included.

KF : standard KF code for resonance considered. When top is treated like a
resonance (see MSTP(48)) it is stored in position 26. When the fourth
generation fermions l, h, χ− and νχ are treated like resonances (see

184



MSTP(49)) they are stored in positions 27, 28, 29 and 30, respectively.
J : enumerates the different decay channels possible for resonance KF, as

stored in the Jetset LUDAT3 common block, with the first channel in
J=1, etc.

WIDE(KF,J) : gives effective decay widths of resonances into different channels (in GeV),
given the decay modes actually left open in the current run. The on/off status
of decay modes is set by the MDME switches in Jetset; see section 14.6.

KF : standard KF code for resonance considered. For comment about top and
fourth generation see WIDP above.

J : enumerates the different decay channels possible for resonance KF, as
stored in the Jetset LUDAT3 common block, with the first channel in
J=1, etc.

WIDS(KF,J) : gives a dimensionless suppression factor, which is defined as the ratio
of the total width of channels switched on to the total width of all possible
channels (replace width by squared width for a pair of resonances). The on/off
status of channels is set by the MDME switches in Jetset; see section 14.6. The
information in WIDS is used e.g. in cross-section calculations.

KF : standard KF code for resonance considered. For comment about top and
fourth generation see WIDP above.

J = 1 : suppression when a pair of resonances of type KF are produced to-
gether. When an antiparticle exists, the particle–antiparticle pair (such
as W+W−) is the relevant combination, else the particle–particle one
(such as Z0Z0).

J = 2 : suppression for a particle of type KF when produced on its own, or
together with a particle of another type.

J = 3 : suppression for an antiparticle of type KF when produced on its own, or
together with a particle of another type.

COMMON/PYINT5/NGEN(0:200,3),XSEC(0:200,3)

Purpose: to store information necessary for cross-section calculation and differential
cross-section maximum violation. These variables must not be changed by
you.

NGEN(ISUB,1) : gives the number of times that the differential cross section (times Ja-
cobian factors) has been evaluated for subprocess ISUB, with NGEN(0,1) the
sum of these.

NGEN(ISUB,2) : gives the number of times that a kinematical setup for subprocess ISUB
is accepted in the generation procedure, with NGEN(0,2) the sum of these.

NGEN(ISUB,3) : gives the number of times an event of subprocess type ISUB is
generated, with NGEN(0,3) the sum of these. Usually NGEN(ISUB,3) =
NGEN(ISUB,2), i.e. an accepted kinematical configuration can normally be
used to produce an event.

XSEC(ISUB,1) : estimated maximum differential cross section (times the Jacobian fac-
tors used to speed up the generation process) for the different subprocesses in
use, with XSEC(0,1) the sum of these (except low-p⊥, i.e. ISUB = 95).

XSEC(ISUB,2) : gives the sum of differential cross sections (times Jacobian factors) for
the NGEN(ISUB,1) phase-space points evaluated so far.

XSEC(ISUB,3) : gives the estimated integrated cross section for subprocess ISUB, based
on the statistics accumulated so far, with XSEC(0,3) the estimated total cross
section for all subprocesses included (all in mb). This is exactly the information
obtainable by a PYSTAT(1) call.

185



COMMON/PYINT6/PROC(0:200)
CHARACTER PROC*28

Purpose: to store character strings for the different possible subprocesses; used when
printing tables.

PROC(ISUB) : name for the different subprocesses, according to ISUB code. PROC(0)
denotes all processes.

COMMON/PYINT7/SIGT(0:6,0:6,0:5)

Purpose: to store information on total, elastic and diffractive cross sections. These
variables should only be set by you for the option MSTP(31)=0; else they should
not be touched. All numbers are given in mb.

SIGT(I1,I2,J) : the cross section, both total and subdivided by class (elastic, diffractive
etc.). For a photon to be considered as a VMD meson the cross sections are
additionally split into the contributions from the various meson states.

I1, I2 : allowed states for the incoming particle on side 1 and 2, respectively.
= 0 : sum of all allowed states. Except for a photon to be considered as

a VMD meson this is the only nonvanishing entry.
= 1 : the contribution from the ρ0 VMD state.
= 2 : the contribution from the ω VMD state.
= 3 : the contribution from the φ VMD state.
= 4 : the contribution from the J/ψ VMD state.
= 5, 6 : reserved for future use.

J : the total and partial cross sections.
= 0 : the total cross section.
= 1 : the elastic cross section.
= 2 : the single diffractive cross section AB → XB.
= 3 : the single diffractive cross section AB → AX.
= 4 : the double diffractive cross section.
= 5 : the inelastic, non-diffractive cross section.

Warning: If you set these values yourself, it is important that they are internally
consistent, since this is not explicitly checked by the program. Thus the
contributions J=1–5 should add up to the J=0 one and, for VMD photons,
the contributions I=1–4 should add up to the I=0 one.

COMMON/PYINT8/XPVMD(-6:6),XPANL(-6:6),XPANH(-6:6),XPBEH(-6:6),
&XPDIR(-6:6)

Purpose: to store the various components of the photon parton distributions when the
PYGGAM routine is called.

XPVMD(KFL) : gives distributions of the VMD part (ρ0, ω and φ).
XPANL(KFL) : gives distributions of the anomalous part of light quarks (d, u and s).
XPANH(KFL) : gives distributions of the anomalous part of heavy quarks (c and b).
XPBEH(KFL) : gives Bethe-Heitler distributions of heavy quarks (c and b). This provides

an alternative to XPANH, i.e. both should not be used at the same time.
XPDIR(KFL) : gives direct correction to the production of light quarks (d, u and s). This

term is nonvanishing only in the MS scheme, and is applicable for F γ
2 rather

than for the parton distributions themselves.

Finally, in addition a number of routines and common blocks with names beginning

186



with RK come with the program. These contain the matrix-element evaluation for the
process gg → Zqq, based on a program of Ronald Kleiss, with only minor modifications.

9.8 Examples

The program is built as a slave system, i.e. you supply the main program, which calls on
the Pythia and Jetset routines to perform specific tasks and then resumes control.

A typical program for the analysis of collider events at 630 GeV c.m. energy with
a minimum p⊥ of 10 GeV/c at the hard scattering (because of initial-state radiation,
fragmentation effects, etc., the actual p⊥ cut-off will be smeared around this value) might
look like

COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5)
COMMON/PYSUBS/MSEL,MSUB(200),KFIN(2,-40:40),CKIN(200)
COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)
... ! set all common block variables that
... ! did not have desired default values
CKIN(3)=10. ! lower p_T cut-off
CALL PYINIT(’CMS’,’p’,’pbar’,630.) ! initialize
... ! initialize analysis statistics
DO 100 IEVENT=1,1000 ! loop over events
CALL PYEVNT ! generate event
IF(IEVENT.EQ.1) CALL LULIST(1) ! list first event
... ! insert desired analysis chain for
... ! each event

100 CONTINUE
CALL PYSTAT(1) ! print cross sections
... ! user output
END

187



10 Initial- and Final-State Radiation

Starting from the hard interaction, initial- and final-state radiation corrections may be
added. This is normally done by making use of the parton-shower language — only for the
e+e− → qq process does Jetset offer a matrix-element option (described in section 6.1).
The algorithms used to generate initial- and final-state showers are rather different, and
are therefore described separately below, starting with the conceptually easier final-state
one. Before that, some common elements are introduced.

The main reference for final-state showers is ref. [Ben87a] and for initial-state ones
ref. [Sjö85].

10.1 Shower Evolution

In the leading log picture, a shower may be viewed as a sequence of 1 → 2 branchings
a→ bc. Here a is called the mother and b and c the two daughters. Each daughter is free
to branch in its turn, so that a tree-like stucture can evolve. We will use the work ‘parton’
for all the objects a, b and c involved in the branching process, i.e. not only for quarks
and gluons but also for leptons and photons. The branchings included in the program
are q → qg, g → gg, g → qq, q → qγ and ℓ → ℓγ. Photon branchings, i.e. γ → qq and
γ → ℓℓ, have not been included so far, since they are reasonably rare and since no urgent
need for them has been perceived.

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Slightly different interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market differ. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1− z. To specify the
kinematics, an azimuthal angle ϕ of the b around the a direction is needed in addition;
normally ϕ is chosen to be isotropically distributed, although options for non-isotropic
distributions exist.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/Λ2) ⇒ dt = d ln(Q2) =
dQ2

Q2
, (126)

where Λ is the QCD Λ scale in αs. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the differential probability dP for parton a to branch is now

dPa =
∑

b,c

αabc
2π

Pa→bc(z) dt dz . (127)

Here the sum is supposed to run over all allowed branchings, for a quark q → qg and
q → qγ, and so on. The αabc factor is αem for QED branchings and αs for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa→bc(z) are

Pq→qg(z) = CF
1 + z2

1 − z
,

188



Pg→gg(z) = NC
(1 − z(1 − z))2

z(1 − z)
,

Pg→qq(z) = TR (z2 + (1 − z)2) ,

Pq→qγ(z) = e2q
1 + z2

1 − z
,

Pℓ→ℓγ(z) = e2ℓ
1 + z2

1 − z
, (128)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2q and e2ℓ the squared electric charge (4/9 for u-type quarks, 1/9
for d-type ones, and 1 for leptons).

Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’
and δ(1 − z) terms of the splitting kernels in eq. (128) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-off on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg→gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa→bc(z) is interpreted as the branching probability
for the original parton a. On the other hand, one could also write down the probability
that a parton b is produced with a fractional energy z. Almost all the above kernels can be
used unchanged also for this purpose, with the obvious symmetry Pa→bc(z) = Pa→cb(1−z).
For g → gg, however, the total probability to find a gluon with energy fraction z is the
sum of the probability to find either the first or the second daughter there, and that gives
the factor of 2 enhancement.

10.1.2 The Sudakov form factor

The t variable fills the function of a kind of time for the shower evolution. In final-state
showers, t is constrained to be gradually decreasing away from the hard scattering, in
initial-state ones to be gradually increasing towards the hard scattering. This does not
mean that an individual parton runs through a range of t values: in the end, each parton
is associated with a fixed t value, and the evolution procedure is just a way of picking
that value. It is only the ensemble of partons in many events that evolves continuously
with t, cf. the concept of parton distributions.

For a given t value we define the integral of the branching probability over all allowed
z values,

Ia→bc(t) =
∫ z+(t)

z−(t)
dz

αabc
2π

Pa→bc(z) . (129)

The näıve probability that a branching occurs during a small range of t values, δt, is given
by

∑

b,c Ia→bc(t) δt, and thus the probability for no emission by 1 −∑

b,c Ia→bc(t) δt.
If the evolution of parton a starts at a ‘time’ t0, the probability that the parton has

not yet branched at a ‘later time’ t > t0 is given by the product of the probabilities that
it did not branch in any of the small intervals δt between t0 and t. In other words, letting
δt→ 0, the no-branching probability exponentiates:

Pno−branching(t0, t) = exp







−
∫ t

t0
dt′

∑

b,c

Ia→bc(t
′)







= Sa(t) . (130)

189



Thus the actual probability that a branching of a occurs at t is given by

dPa
dt

= −dPno−branching(t0, t)

dt
=





∑

b,c

Ia→bc(t)



 exp







−
∫ t

t0
dt′

∑

b,c

Ia→bc(t
′)







. (131)

The first factor is the näıve branching probability, the second the suppression due
to the conservation of total probability: if a parton has already branched at a ‘time’
t′ < t, it can no longer branch at t. This is nothing but the exponential factor that
is familiar from radioactive decay. In parton-shower language the exponential factor
Sa(t) = Pno−branching(t0, t) is referred to as the Sudakov form factor [Sud56].

The ordering in terms of increasing t above is the appropriate one for initial-state
showers. In final-state showers the evolution is from an initial tmax (set by the hard
scattering) and towards smaller t. In that case the integral from t0 to t in eqs. (130) and
(131) is replaced by an integral from t to tmax. Since, by convention, the Sudakov factor
is still defined from the lower cut-off t0, i.e. gives the probability that a parton starting
at scale t will not have branched by the lower cut-off scale t0, the no-branching factor is
actually Pno−branching(tmax, t) = Sa(tmax)/Sa(t).

We note that the above structure is exactly of the kind discussed in section 4.2. The
veto algorithm is therefore extensively used in the Monte Carlo simulation of parton
showers.

10.1.3 Matching to the hard scattering

The evolution in Q2 is begun from some maximum scale Q2
max for final-state parton

showers, and is terminated at (a possibly different) Q2
max for initial-state showers. In

general Q2
max is not known. Indeed, since the parton-shower language does not guarantee

agreement with higher-order matrix-element results, neither in absolute shape nor nor-
malization, there is no unique prescription for a ‘best’ choice. Generically Qmax should be
of the order of the hard-scattering scale, i.e. the largest virtuality should be associated
with the hard scattering, and initial- and final-state parton showers should only involve
virtualities smaller than that. This may be viewed just as a matter of sound bookkeeping:
in a 2 → n graph, a 2 → 2 hard-scattering subgraph could be chosen several different
ways, but if all the possibilities were to be generated then the cross section would be
double-counted. Therefore one should define the 2 → 2 ‘hard’ piece of a 2 → n graph as
the one that involves the largest virtuality.

Of course, the issue of double-counting depends a bit on what processes are actually
generated in the program. If one considers a qqg final state in hadron colliders, this could
come either as final-state radiation off a qq pair, or by a gluon splitting in a qq pair, or
many other ways, so that the danger of double-counting is very real. On the other hand,
consider the production of a low-p⊥, low-mass Drell–Yan pair of leptons, together with two
quark jets. Such a process in principle could proceed by having a γ∗ emitted off a quark
leg, with a quark–quark scattering as hard interaction. However, since this process is not
included in the program, there is no actual danger of (this particular) double-counting,
and so the scale of evolution could be picked larger than the mass of the Drell–Yan pair,
at least by some amount.

For most 2 → 2 scattering processes in Pythia, the Q2 scale of the hard scattering
is chosen to be Q2

hard = p2⊥ (when the final-state particles are massless, otherwise masses
are added). In final-state showers, where Q is associated with the mass of the branching
parton, transverse momenta generated in the shower are constrained by p⊥ < Q/2. An
ordering that shower p⊥ be smaller than the hard-scattering p⊥ therefore corresponds
roughly to Q2

max = 4Q2
hard, which is the default assumption. In principle, the constraints

are slightly different for initial-state showers, but not enough to warrant a separate Qmax

choice.

190



The situation is rather better for the final-state showers in the decay of any colour-
singlet particles, such as the Z0 or the H0, either as part of a hard 2 → 1 → 2 process,
or anywhere else in the final state. Then we know that Qmax has to be put equal to
the particle mass. It is also possible to match the parton-shower evolution to the first-
order matrix-element results. In the program this is done under the assumption that the
resonance has spin one, and this approach is known to work very well for γ∗/Z0. The
machinery is not fully correct for the spin-zero H0, but should also there provide a rather
good description.

QCD processes such as qg → qg pose a special problem when the scattering angle is
small. Coherence effects (see below) may then restrict the emission further than what
is just given by the Qmax scale introduced above. This is most easily viewed in the rest
frame of the 2 → 2 hard scattering subprocess. Some colours flow from the initial to
the final state. The radiation associated with such a colour flow should be restricted
to a cone with opening angle given by the difference between the original and the final
colour directions; there is one such cone around the incoming parton for initial state
radiation and one around the outgoing parton for final state radiation. Colours that are
annihilated or created in the process effectively correspond to an opening angle of 180◦

and therefore the emission is not constrained for these. For a gluon, which have two
colours and therefore two different cones, a random choice is made between the two for
the first branching. Further, coherence effects also imply azimuthal anisotropies of the
emission inside the allowed cones.

10.2 Final-State Showers

Final-state showers are time-like, i.e. all virtualities m2 = E2 − p2 ≥ 0. The maxi-
mum allowed virtuality scale Q2

max is set by the hard-scattering process, and thereafter
the virtuality is decreased in each subsequent branching, down to the cut-off scale Q2

0.
This cut-off scale is used to regulate both soft and collinear divergences in the emission
probabilities.

The main points of the Jetset showering algorithm are as follows.
• It is a leading-log algorithm, of the improved, coherent kind, i.e. with angular

ordering.
• It can be used for an arbitrary initial pair of partons or, in fact, for any one, two

or three given entities (including hadrons and gauge bosons) although only quarks,
gluons and leptons can initiate a shower.

• The pair of showering partons may be given in any frame, but the evolution is
carried out in the c.m. frame of the showering partons.

• Energy and momentum are conserved exactly at each step of the showering process.
• If the initial pair is qq or ℓ+ℓ− (coming from a resonance decay) an additional

rejection technique is used in the first branching of each of the two original partons,
so as to reproduce the lowest-order differential 3-jet cross section.

• In subsequent branchings, angular ordering (coherence effects) is imposed.
• Gluon helicity effects, i.e. correlations between the production plane and the decay

plane of a gluon, can be included.
• The first-order αs expression is used, with the Q2 scale given by (an approximation

to) the squared transverse momentum of a branching. The default ΛQCD, which
should not be regarded as a proper ΛMS, is 0.4 GeV.

• The parton shower is by default cut off at a mass scale of 1 GeV.
Let us now proceed with a more detailed description.

191



10.2.1 The choice of evolution variable

In the Jetset shower algorithm, the evolution variable Q2 is associated with the squared
mass of the branching parton, Q2 = m2

a for a branching a → bc. As a consequence,
t = ln(Q2/Λ2) = ln(m2

a/Λ
2). This Q2 choice is not unique, and indeed other programs

have other definitions: Herwig uses Q2 ≈ m2/(2z(1 − z)) [Mar88] and Ariadne Q2 =
p2⊥ ≈ z(1 − z)m2 [Pet88].

With Q a mass scale, the lower cut-off Q0 is one in mass. To be more precise, in a
QCD shower, the Q0 parameter is used to derive effective masses

meff,g =
1

2
Q0 ,

meff,q =

√

m2
q +

1

4
Q2

0 , (132)

where the mq have been chosen as typical current-algebra quark masses. A parton cannot
branch unless its mass is at least the sum of the lightest pair of allowed decay products,
i.e. the minimum mass scale at which a branching is possible is

mmin,g = 2meff,g = Q0 ,

mmin,q = meff,q +meff,g ≥ Q0 . (133)

The above masses are used to constrain the allowed range of Q2 and z values. However,
once it has been decided that a parton cannot branch any further, that parton is put on
the mass shell, i.e. ‘final-state’ gluons are massless.

When also photon emission is included, a separate Q0 scale is introduced for the QED
part of the shower, exactly reproducing the QCD one above [Sjö92c]. By default the two
Q0 scales are chosen equal, and have the value 1 GeV. If anything, one would be inclined
to allow a cut-off lower for photon emission than for gluon one. In that case the allowed
z range of photon emission would be larger than that of gluon emission, and at the end
of the shower evolution only photon emission would be allowed.

Photon and gluon emission differ fundamentally in that photons appear as physical
particles in the final state, while gluons are confined. For photon emission off quarks,
however, the confinement forces acting on the quark may provide an effective photon
emission cut-off at larger scales than the bare quark mass. Soft and collinear photons
could also be emitted by the final-state charged hadrons; the matching between emission
off quarks and off hadrons is a delicate issue, and we therefore do not attempt to address
the soft-photon region.

For photon emission off leptons, there is no need to introduce any collinear emission
cut-off beyond what is given by the lepton mass, but we keep the same cut-off approach
as for quarks: firstly, the program is not aimed at high-precision studies of lepton pairs
(where interference terms between initial- and final-state radiation also would have to be
included); secondly, most experimental procedures would include the energy of collinear
photons into the effective energy of a final-state lepton.

10.2.2 The choice of energy splitting variable

The final-state radiation machinery is always applied in the c.m. frame of the hard
scattering, from which normally emerges a pair of evolving partons. Occasionally there
may be one evolving parton recoiling against a non-evolving one, as in qq → gγ, where
only the gluon evolves in the final state, but where the energy of the photon is modifed
by the branching activity of the gluon. (With only one evolving parton and nothing else,
it would not be possible to conserve energy and momentum when the parton is assigned
a mass.) Thus, before the evolution is performed, the parton pair is boosted to their

192



common c.m. frame, and rotated to sit along the z axis. After the evolution, the full
parton shower is rotated and boosted back to the original frame of the parton pair.

The interpretation of the energy and momentum splitting variable z is not unique,
and in fact the program allows the possibility to switch between four different alternatives
[Ben87a], ‘local’ and ‘global’ z definition combined with ‘constrained’ or ‘unconstrained’
evolution. In all four of them, the z variable is interpreted as an energy fraction, i.e.
Eb = zEa and Ec = (1 − z)Ea. In the ‘local’ choice of z definition, energy fractions are
defined in the rest frame of the grandmother, i.e. the mother of parton a. The preferred
choice is the ‘global’ one, in which energies are always evaluated in the c.m. frame of
the hard scattering. The two definitions agree for the branchings of the partons that
emerge directly from the hard scattering, since the hard scattering itself is considered to
be the ‘mother’ of the first generation of partons. For instance, in Z0 → qq the Z0 is
considered the mother of the q and q, even though the branching is not handled by the
parton-showering machinery. The ‘local’ and ‘global’ definitions diverge for subsequent
branchings, where the ‘global’ tends to allow more shower evolution.

In a branching a→ bc the kinematically allowed range of z = za values, z− < z < z+,
is given by

z± =
1

2







1 +
m2
b −m2

c

m2
a

± |pa|
Ea

√

(m2
a −m2

b −m2
c)

2 − 4m2
bm

2
c

m2
a







. (134)

With ‘constrained’ evolution, these bounds are respected in the evolution. The cut-off
masses meff,b and meff,c are used to define the maximum allowed z range, within which
za is chosen, together with the ma value. In the subsequent evolution of b and c, only
pairs of mb and mc are allowed for which the already selected za fulfils the constraints in
eq. (134).

For ‘unconstrained’ evolution, which is the preferred alternative, one may start off by
assuming the daughters to be massless, so that the allowed z range is

z± =
1

2

{

1 ± |pa|
Ea

θ(ma −mmin,a)

}

, (135)

where θ(x) is the step function, θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0. The decay

kinematics into two massless four-vectors p
(0)
b and p(0)c is now straightforward. Once mb

and mc have been found from the subsequent evolution, subject only to the constraints
mb < zaEa, mc < (1 − za)Ea and mb +mc < ma, the actual massive four-vectors may be
defined as

pb,c = p
(0)
b,c ± (rcp

(0)
c − rbp

(0)
b ) , (136)

where

rb,c =
m2
a ± (m2

c −m2
b) −

√

(m2
a −m2

b −m2
c)

2 − 4m2
bm

2
c

2m2
a

. (137)

In other words, the meaning of za is somewhat reinterpreted post facto. Needless to say,
the ‘unconstrained’ option allows more branchings to take place than the ‘constrained’
one. In the following discussion we will only refer to the ‘global, unconstrained’ z choice.

10.2.3 First branchings and matrix-element matching

The final-state evolution is normally started from some initial parton pair 1 + 2, at a
Q2

max scale determined by deliberations already discussed. When the evolution of parton
1 is considered, it is assumed that parton 2 is massless, so that the parton 1 energy and
momentum are simple functions of its mass (and of the c.m. energy of the pair, which

193



is fixed), and hence also the allowed z1 range for splittings is a function of this mass,
eq. (135). Correspondingly, parton 2 is evolved under the assumption that parton 1 is
massless. After both partons have been assigned masses, their correct energies may be
found, which are smaller than originally assumed. Therefore the allowed z ranges have
shrunk, and it may happen that a branching has been assigned a z value outside this
range. If so, the parton is evolved downwards in mass from the rejected mass value; if
both z values are rejected, the parton with largest mass is evolved further. It may also
happen that the sum of m1 and m2 is larger than the c.m. energy, in which case the one
with the larger mass is evolved downwards. The checking and evolution steps are iterated
until an acceptable set of m1, m2, z1 and z2 has been found.

The procedure is an extension of the veto algorithm, where an initial overestimation
of the allowed z range is compensated by rejection of some branchings. One should note,
however, that the veto algorithm is not strictly applicable for the coupled evolution in two
variables (m1 and m2), and that therefore some arbitrariness is involved. This is manifest
in the choice of which parton will be evolved further if both z values are unacceptable, or
if the mass sum is too large.

For quark and lepton pairs which come from the decay of a colour-singlet particle, the
first branchings are matched to the explicit first-order matrix elements for gauge boson
decays. This is also done, e.g. in H0 decays, which has spin 0 rather than 1, and for which
in principle therefore the matrix elements are slightly different.

The matching is based on a mapping of the parton-shower variables on to the 3-jet
phase space. To produce a 3-jet event, γ∗/Z0 → q(p1)q(p2)g(p3), in the shower language,
one will pass through an intermediate state, where either the q or the q is off the mass
shell. If the former is the case then

m2 = (p1 + p3)
2 = E2

cm(1 − x2) ,

z =
E1

E1 + E3

=
x1

x1 + x3
=

x1
2 − x2

, (138)

where xi = 2Ei/Ecm. The q emission case is obtained with 1 ↔ 2. The parton-shower
splitting expression in terms of m2 and z, eq. (127), can therefore be translated into the
following differential 3-jet rate:

1

σ

dσPS
dx1 dx2

=
αs

2π
CF

1

(1 − x1)(1 − x2)
×

×
{

1 − x1
x3

(

1 +
(

x1
2 − x2

)2
)

+
1 − x2
x3

(

1 +
(

x2
2 − x1

)2
)}

, (139)

where the first term inside the curly bracket comes from emission off the quark and the
second term from emission off the antiquark. The corresponding expression in matrix-
element language is

1

σ

dσME

dx1 dx2
=
αs

2π
CF

1

(1 − x1)(1 − x2)

{

x21 + x22
}

. (140)

With the kinematics choice of Jetset, the matrix-element expression is always smaller
than the parton-shower one. It is therefore possible to run the shower as usual, but to
impose an extra weight factor dσME/dσPS, which is just the ratio of the expressions in
curly brackets. If a branching is rejected, the evolution is continued from the rejected
Q2 value onwards (the veto algorithm). The weighting procedure is applied to the first
branching of both the q and the q, in each case with the (nominal) assumption that none
of the other partons branch (neither the sister nor the daughters), so that the relations
of eq. (138) are applicable.

194



If a photon is emitted instead of a gluon, the emission rate in parton showers is given
by

1

σ

dσPS
dx1 dx2

=
αem

2π

1

(1 − x1)(1 − x2)
×

×
{

e2q
1 − x1
x3

(

1 +
(

x1
2 − x2

)2
)

+ e2q
1 − x2
x3

(

1 +
(

x2
2 − x1

)2
)}

, (141)

and in matrix elements by [Gro81]

1

σ

dσME

dx1 dx2
=
αem

2π

1

(1 − x1)(1 − x2)

{

(

eq
1 − x1
x3

− eq
1 − x2
x3

)2
(

x21 + x22
)

}

. (142)

As in the gluon emission case, a weighting factor dσME/dσPS can therefore be applied when
either the original q (ℓ) or the original q (ℓ) emits a photon. For a neutral resonance,
such as Z0, where eq = −eq, the above expressions simplify and one recovers exactly the
same ratio dσME/dσPS as for gluon emission.

Compared with the standard matrix-element treatment, a few differences remain. The
shower one automatically contains the Sudakov form factor and an αs running as a function
of the p2⊥ scale of the branching. The shower also allows all partons to evolve further,
which means that the näıve kinematics assumed for a comparison with matrix elements
is modified by subsequent branchings, e.g. that the energy of parton 1 is reduced when
parton 2 is assigned a mass. All these effects are formally of higher order, and so do not
affect a first-order comparison. This does not mean that the corrections need be small,
but experimental results are encouraging: the approach outlined does every bit as good
as explicit second-order matrix elements for the description of 4-jet production.

10.2.4 Subsequent branches and angular ordering

The shower evolution is (almost) always done on a pair of partons, so that energy and
momentum can be conserved. In the first step of the evolution, the two original partons
thus undergo branchings 1 → 3 + 4 and 2 → 5 + 6. As described above, the allowed m1,
m2, z1 and z2 ranges are coupled by kinematical constraints. In the second step, the pair
3 + 4 is evolved and, separately, the pair 5 + 6. Considering only the former (the latter

is trivially obtained by symmetry), the partons thus have nominal initial energies E
(0)
3 =

z1E1 and E
(0)
4 = (1−z1)E1, and maximum allowed virtualities mmax,3 = min(m1, E

(0)
3 ) and

mmax,4 = min(m1, E
(0)
4 ). Initially partons 3 and 4 are evolved separately, giving masses

m3 and m4 and splitting variables z3 and z4. If m3 + m4 > m1, the parton of 3 and 4
that has the largest ratio of mi/mmax,i is evolved further. Thereafter eq. (136) is used to
construct corrected energies E3 and E4, and the z values are checked for consistency. If
a branching has to be rejected because the change of parton energy puts z outside the
allowed range, the parton is evolved further.

This procedure can then be iterated for the evolution of the two daughters of parton
3 and for the two of parton 4, etc., until each parton reaches the cut-off mass mmin. Then
the parton is put on the mass shell.

The model, as described so far, produces so-called conventional showers, wherein
masses are strictly decreasing in the shower evolution. Emission angles are decreasing
only in an average sense, however, which means that also fairly ‘late’ branchings can give
partons at large angles. Theoretical studies beyond the leading-log level show that this
is not correct [Mue81], but that destructive interference effects are large in the region of
non-ordered emission angles. To a very good first approximation, these so-called coher-
ence effects can be taken into account in parton shower programs by requiring a strict
ordering in terms of decreasing emission angles.

195



The coherence phenomenon is known already from QED. One manifestation is the
Chudakov effect [Chu55], discovered in the study of high-energy cosmic γ rays impinging
on a nuclear target. If a γ is converted into a highly collinear e+e− pair inside the
emulsion, the e+ and e− in their travel through the emulsion ionize atoms and thereby
produce blackening. However, near the conversion point the blackening is small: the e+

and e− then are still close together, so that an atom traversed by the pair does not resolve
the individual charges of the e+ and the e−, but only feels a net charge close to zero. Only
later, when the e+ and e− are separated by more than a typical atomic radius, are the
two able to ionize independently of each other.

The situation is similar in QCD, but is further extended, since now also gluons carry
colour. For example, in a branching q0 → qg the q and g share a colour–anticolour pair,
and therefore the q and g cannot emit subsequent gluons incoherently. Again the net
effect is to reduce the amount of soft gluon emission: since a soft gluon (emitted at large
angles) corresponds to a large (transverse) wavelength, the soft gluon is unable to resolve
the separate colour charges of the q and the g, and only feels the net charge carried
by the q0. Such a soft gluon g′ (in the region θq0g′ > θqg) could therefore be thought
of as being emitted by the q0 rather than by the q–g system. If one considers only
emission that should be associated with the q or the g, to a good approximation, there is
a complete destructive interference in the regions of non-decreasing opening angles, while
partons radiate independently of each other inside the regions of decreasing opening angles
(θqg′ < θqg and θgg′ < θqg), once azimuthal angles are averaged over. The details of the
colour interference pattern are reflected in non-uniform azimuthal emission probabilities.

The first branchings of the shower are not affected by the angular-ordering requirement
— since the evolution is performed in the c.m. frame of the original parton pair, where the
original opening angle is 180◦, any angle would anyway be smaller than this — but here
instead the matrix-element matching procedure is used, where applicable. Subsequently,
each opening angle is compared with that of the preceding branching in the shower.

For a branching a→ bc the kinematical approximation

θa ≈
p⊥b
Eb

+
p⊥c
Ec

≈
√

za(1 − za)ma

(

1

zaEa
+

1

(1 − za)Ea

)

=
1

√

za(1 − za)

ma

Ea
(143)

is used to derive the opening angle (this is anyway to the same level of approximation
as the one in which angular ordering is derived). With θb of the b branching calculated
similarly, the requirement θb < θa can be reduced to

zb(1 − zb)

m2
b

>
1 − za
zam2

a

. (144)

Since photons do not obey angular ordering, the check on angular ordering is not
performed when a photon is emitted. When a gluon is emitted in the branching after a
photon, its emission angle is restricted by that of the preceding QCD branching in the
shower, i.e. the photon emission angle does not enter.

10.2.5 Other final-state shower aspects

The electromagnetic coupling constant for the emission of photons on the mass shell is
αem = αem(Q2 = 0) ≈ 1/137. For the strong coupling constant several alternatives are
available, the default being the first-order expression αs(p

2
⊥), where p2⊥ is defined by the

approximate expression p2⊥ ≈ z(1 − z)m2. Studies of next-to-leading-order corrections
favour this choice [Ama80]. The other alternatives are a fixed αs and an αs(m

2).
With the default choice of p2⊥ as scale in αs, a further cut-off is introduced on the

allowed phase space of gluon emission, not present in the options with fixed αs or with

196



αs(m
2), nor in the QED shower. A minimum requirement, to ensure a well-defined αs,

is that p⊥/Λ > 1.1, but additionally Jetset requires that p⊥ > Q0/2. This latter
requirement is not a necessity, but it makes sense when p⊥ is taken to be the preferred
scale of the branching process, rather than e.g. m. It reduces the allowed z range,
compared with the purely kinematical constraints. Since the p⊥ cut is not present for
photon emission, the relative ratio of photon to gluon emission off a quark is enhanced
at small virtualities compared with näıve expectations; in actual fact this enhancement
is largely compensated by the running of αs, which acts in the opposite direction. The
main consequence, however, is that the gluon energy spectrum is peaked at around Q0

and rapidly vanishes for energies below that, whilst the photon spectum extends all the
way to zero energy.

Previously it was said that azimuthal angles in branchings are chosen isotropically.
In fact, as an option, it is possible to include some effects of gluon polarization, which
correlate the production and the decay planes of a gluon, such that a g → gg branching
tends to take place in the production plane of the gluon, while a decay out of the plane is
favoured for g → qq. The formulae are given e.g. in ref. [Web86], as simple functions of
the z value at the vertex where the gluon is produced and of the z value when it branches.
Also coherence phenomena lead to non-isotropic azimuthal distributions [Web86], which
are included as a further option. In either case the ϕ azimuthal variable is first chosen
isotropically, then the weight factor due to polarization times coherence is evaluated, and
the ϕ value is accepted or rejected. In case of rejection, a new ϕ is generated, and so on.

While the rule is to have an initial pair of partons, there are a few examples where
one or three partons have to be allowed to shower. If only one parton is given, it is not
possible to conserve both energy and momentum. The choice has been made to conserve
energy and jet direction, but the momentum vector is scaled down when the radiating
parton acquires a mass. The ‘rest frame of the system’, used e.g. in the z definition, is
taken to be whatever frame the jet is given in.

In Υ → ggg decays and other primary three-parton configurations, one is left with the
issue how the energy sharing variables x1 and x2 from the massless matrix elements should
be reinterpreted for a massive three-parton configuration. We have made the arbitrary
choice of preserving the energy of each parton, which means that relative angles between
the original partons is changed. Mass triplets outside the allowed phase space are rejected
and the evolution continued.

Finally, it should be noted that two toy shower models are included as options. One
is a scalar gluon model, in which the q → qg branching kernel is replaced by Pq→qg(z) =
2
3
(1−z). The couplings of the gluon, g → gg and g → qq, have been left as free parameters,

since they depend on the colour structure assumed in the model. The spectra are flat in
z for a spin 0 gluon. Higher-order couplings of the type g → ggg could well contribute
significantly, but are not included. The second toy model is an Abelian vector one. In this
option g → gg branchings are absent, and g → qq ones enhanced. More precisely, in the
splitting kernels, eq. (128), the Casimir factors are changed as follows: CF = 4/3 → 1,
NC = 3 → 0, TR = nf/2 → 3nf . When using either of these options, one should be
aware that also a number of other components in principle should be changed, from the
running of αs to the whole concept of fragmentation. One should therefore not take them
too seriously.

10.3 Initial-State Showers

The initial-state showe algorithm in Pythia is not quite as sophisticated as the final-state
one. This is partly because initial-state radiation is less well understood theoretically,
partly because the programming task is more complicated and ambiguous. Still, the
program at disposal is known to do a reasonably good job of describing existing data,
such as Z0 production properties at hadron colliders [Sjö85].

197



10.3.1 The shower structure

A fast hadron may be viewed as a cloud of quasireal partons. Similarly a fast lepton
may be viewed as surrounded by a cloud of photons and partons; in the program the two
situations are on an equal footing, but here we choose the hadron as example. At each
instant, an individual parton can initiate a virtual cascade, branching into a number of
partons. This cascade can be described in terms of a tree-like structure, composed of
many subsequent branchings a → bc. Each branching involves some relative transverse
momentum between the two daughters. In a language where four-momentum is conserved
at each vertex, this implies that at least one of the b and c partons must have a space-like
virtuality, m2 < 0. Since the partons are not on the mass shell, the cascade only lives a
finite time before reassembling, with those parts of the cascade that are most off the mass
shell living the shortest time.

A hard scattering, e.g. in deep inelastic leptoproduction, will probe the hadron at a
given instant. The probe, i.e. the virtual photon in the leptoproduction case, is able to
resolve fluctuations in the hadron up to the Q2 scale of the hard scattering. Thus probes
at different Q2 values will seem to see different parton compositions in the hadron. The
change in parton composition with t = ln(Q2/Λ2) is given by the evolution equations

dfb(x, t)

dt
=
∑

a,c

∫ dx′

x′
fa(x

′, t)
αabc
2π

Pa→bc

(

x

x′

)

. (145)

Here the fi(x, t) are the parton-distribution functions, expressing the probability of finding
a parton i carrying a fraction x of the total momentum if the hadron is probed at virtuality
Q2. The Pa→bc(z) are given in eq. (128). As before, αabc is αs for QCD shower and αem

for QED ones.
Eq. (145) is closely related to eq. (127): dPa describes the probability that a given

parton a will branch (into partons b and c), dfb the influx of partons b from the branchings
of partons a. (The expression dfb in principle also should contain a loss term for partons
b that branch; this term is important for parton-distribution evolution, but does not
appear explicitly in what we shall be using eq. (145) for.) The absolute form of hadron
parton distributions cannot be predicted in perturbative QCD, but rather have to be
parametrized at some Q0 scale, with the Q2 dependence thereafter given by eq. (145).
Available parametrizations are discussed in section 7.1. The lepton and photon parton
distributions inside a lepton can be fully predicted, but here for simplicity are treated on
equal footing with hadron parton distributions.

If a hard interaction scatters a parton out of the incoming hadron, the ‘coherence’
[Gri83] of the cascade is broken: the partons can no longer reassemble completely back
to the cascade-initiating parton. In this semiclassical picture, the partons on the ‘main
chain’ of consecutive branchings that lead directly from the initiating parton to the scat-
tered parton can no longer reassemble, whereas fluctuations on the ‘side branches’ to this
chain may still disappear. A convenient description is obtained by assigning a space-like
virtuality to the partons on the main chain, in such a way that the partons on the side
branches may still be on the mass shell. Since the momentum transfer of the hard process
can put the scattered parton on the mass shell (or even give it a time-like virtuality, so
that it can initiate a final-state shower), one is then guaranteed that no partons have a
space-like virtuality in the final state. (In real life, confinement effects obviously imply
that partons need not be quite on the mass shell.) If no hard scattering had taken place,
the virtuality of the space-like parton line would still force the complete cascade to re-
assemble. Since the virtuality of the cascade probed is carried by one single parton, it is
possible to equate the space-like virtuality of this parton with the Q2 scale of the cascade,
to be used e.g. in the evolution equations. Further, coherence effects [Gri83, Bas83] guar-
antee that the Q2 vaules of the partons along the main chain are strictly ordered, with
the largest Q2 values close to the hard scattering.

198



In recent years, further coherence effects have been studied [Cia87], with particular
implications for the structure of parton showers at small x. None of these additional
complications are implemented in the current algorithm, with the exception of a few
rather primitive options that do not address the full complexity of the problem.

Instead of having a tree-like structure, where all legs are treated democratically, the
cascade is reduced to a single sequence of branchings a → bc, where the a and b partons
are on the main chain of space-like virtuality, m2

a,b < 0, while the c partons are on the
mass shell and do not branch. (Later we will include the possibility that the c partons
may have positive virtualities, m2

c > 0, which leads to the appearance of time-like ‘final-
state’ parton showers on the side branches.) This truncation of the cascade is only possible
when it is known which parton actually partakes in the hard scattering: of all the possible
cascades that exist virtually in the incoming hadron, the hard scattering will select one.

To obtain the correct Q2 evolution of parton distributions, e.g., it is essential that all
branches of the cascade be treated democratically. In Monte Carlo simulation of space-
like showers this is a major problem. If indeed the evolution of the complete cascade is to
be followed from some small Q2

0 up to the Q2 scale of the hard scattering, it is no possible
at the same time to handle kinematics exactly, since the virtuality of the various partons
cannot be found until after the hard scattering has been selected. This kind of ‘forward
evolution’ scheme therefore requires a number of extra tricks to be made to work. Further,
in this approach it is not known e.g. what the ŝ of the hard scattering subsystem will be
until the evolution has been carried out, which means that the initial-state evolution and
the hard scattering have to be selected jointly, a not so trivial task.

Instead we use the ‘backwards evolution’ approach [Sjö85], in which the hard scattering
is first selected, and the parton shower that preceded it is subsequently reconstructed.
This reconstruction is started at the hard interaction, at the Q2

max scale, and thereafter
step by step one moves ‘backwards’ in ‘time’, towards smaller Q2, all the way back to
the parton-shower initiator at the cut-off scale Q2

0. This procedure is possible if evolved
parton distributions are used to select the hard scattering, since the fi(x,Q

2) contain
the inclusive summation of all initial-state parton-shower histories that can lead to the
appearance of an interacting parton i at the hard scale. What remains is thus to select
an exclusive history from the set of inclusive ones.

10.3.2 Longitudinal evolution

The evolution equations, eq. (145), express that, during a small increase dt there is a
probability for parton a with momentum fraction x′ to become resolved into parton b
at x = zx′ and another parton c at x′ − x = (1 − z)x′. Correspondingly, in backwards
evolution, during a decrease dt a parton b may be ‘unresolved’ into parton a. The relative
probability dPb for this to happen is given by the ratio dfb/fb. Using eq. (145) one obtains

dPb =
dfb(x, t)

fb(x, t)
= |dt|

∑

a,c

∫ dx′

x′
fa(x

′, t)

fb(x, t)

αabc
2π

Pa→bc

(

x

x′

)

. (146)

Summing up the cumulative effect of many small changes dt, the probability for no radi-
ation exponentiates. Therefore one may define a form factor

Sb(x, tmax, t) = exp

{

−
∫ tmax

t
dt′

∑

a,c

∫ dx′

x′
fa(x

′, t′)

fb(x, t′)

αabc(t
′)

2π
Pa→bc

(

x

x′

)

}

= exp

{

−
∫ tmax

t
dt′

∑

a,c

∫

dz
αabc(t

′)

2π
Pa→bc(z)

x′fa(x
′, t′)

xfb(x, t′)

}

, (147)

giving the probability that a parton b remains at x from tmax to a t < tmax.

199



It may be useful to compare this with the corresponding expression for forward evo-
lution, i.e. with Sa(t) in eq. (130). The most obvious difference is the appearance of
parton distributions in Sb. Parton distributions are absent in Sa: the probability for a
given parton a to branch, once it exists, is independent of the density of partons a or b.
The parton distributions in Sb, on the other hand, express the fact that the probability
for a parton b to come from the branching of a parton a is proportional to the number of
partons a there are in the hadron, and inversely proportional to the number of partons b.
Thus the numerator fa in the exponential of Sb ensures that the parton composition of
the hadron is properly reflected. As an example, when a gluon is chosen at the hard scat-
tering and evolved backwards, this gluon is more likely to have been emitted by a u than
by a d if the incoming hadron is a proton. Similarly, if a heavy flavour is chosen at the
hard scattering, the denominator fb will vanish at the Q2 threshold of the heavy-flavour
production, which means that the integrand diverges and Sb itself vanishes, so that no
heavy flavour remain below threshold.

Another difference between Sb and Sa, already touched upon, is that the Pg→gg(z)
splitting kernel appears with a normalization 2NC in Sb but only with NC in Sa, since
two gluons are produced but only one decays in a branching.

A knowledge of Sb is enough to reconstruct the parton shower backwards. At each
branching a→ bc, three quantities have to be found: the t value of the branching (which
defines the space-like virtuality Q2

b of parton b), the parton flavour a and the splitting
variable z. This information may be extracted as follows:

1. If parton b partook in the hard scattering or branched into other partons at a scale
tmax, the probability that b was produced in a branching a→ bc at a lower scale t is

dPb
dt

= −dSb(x, tmax, t)

dt
=

(

∑

a,c

∫

dz
αabc(t

′)

2π
Pa→bc(z)

x′fa(x
′, t′)

xfb(x, t′)

)

Sb(x, tmax, t) .

(148)
If no branching is found above the cut-off scale t0 the iteration is stopped and parton
b is assumed to be massless.

2. Given the t of a branching, the relative probabilities for the different allowed branch-
ings a→ bc are given by the z integrals above, i.e. by

∫

dz
αabc(t)

2π
Pa→bc(z)

x′fa(x
′, t)

xfb(x, t)
. (149)

3. Finally, with t and a known, the probability distribution in the splitting variable
z = x/x′ = xb/xa is given by the integrand in eq. (149).

In addition, the azimuthal angle ϕ of the branching is selected isotropically, i.e. no spin
or coherence effects are included in this distribution.

The selection of t, a and z is then a standard task of the kind than can be performed
with the help of the veto algorithm. Specifically, upper and lower bounds for parton dis-
tributions are used to find simple functions that are everywhere larger than the integrands
in eq. (149). Based on these simple expressions, the integration over z may be carried out,
and t, a and z values selected. This set is then accepted with a weight given by a ratio of
the correct integrand in eq. (149) to the simple approximation used, both evaluated for
the given set. Since parton distributions, as a rule, are not in a simple analytical form,
it may be tricky to find reasonably good bounds to parton distributions. It is necessary
to make different assumptions for valence and sea quarks, and be especially attentive
close to a flavour threshold ([Sjö85]). An electron distribution inside an electron behaves
differently from parton distributions encountered in hadrons, and has to be considered
separately.

A comment on soft gluon emission. Nominally the range of the z integral in Sb is
x ≤ z ≤ 1. The lower limit corresponds to x′ = x/z = 1, and parton distributions vanish

200



in this limit, wherefore no problems are encountered here. At the upper cut-off z = 1 the
splitting kernels Pq→qg(z) and Pg→gg diverge. This is the soft gluon singularity: the energy
carried by the emitted gluon is vanishing, xg = x′ − x = (1 − z)x′ = (1 − z)x/z → 0 for
z → 1. In order to calculate the integral over z in Sb, an upper cut-off zmax = x/(x+ xǫ)
is introduced, i.e. only branchings with z ≤ zmax are included in Sb. Here xǫ is a small
number, typically chosen so that the gluon energy xg

√
s/2 ≥ xǫ

√
s/2 = 2 GeV. The

average amount of energy carried away by gluons in the range xg < xǫ, over the given
range of t values from ta to tb, may be estimated [Sjö85]. The finally selected z value may
thus be picked as z = zhard〈zsoft(ta, tb)〉, where zhard is the originally selected z value and
zsoft is the correction factor for soft gluon emission.

In QED showers, the smallness of αem means that one can use rather smaller cut-off
values without obtaining large amounts of emission. A fixed small cut-off xγ > 10−6 is
therefore used to avoid the region of very soft photons. As has been discussed in section
7.1.3, the electron distribution inside the electron is cut off at xe < 1−10−6, for numerical
reasons, so the two cuts are closely matched.

The cut-off scale Q0 may be chosen separately for QCD and QED showers, just as in
final-state radiation. The defaults are 1 GeV and 0.001 GeV, respectively. The former
is the typical hadronic mass scale, below which radiation is not expected resolvable; the
latter is of the order of the electron mass.

Normally QED and QCD showers do not appear mixed. The most notable exception
is resolved photoproduction (in ep) and resolved 2γ events (in e+e−), i.e. shower histories
of the type e → γ → q. Here the Q2 scales need not be ordered at the interface, i.e.
the last e → eγ branching may well have a larger Q2 than the first q → qg one, and the
branching γ → q does not even have a strict parton-shower interpretation for the vector
dominance model part of the photon parton distribution. These issues are currently not
addressed in full. Rather, based on the x selected for the parton (quark or gluon) at the
hard scattering, the xγ is selected once and for all in the range x < xγ < 1, according to
the distribution implied by eq. (54). The QCD parton shower is then traced backwards
from the hard scattering to the QCD shower initiator at t0. No attempt is made to
perform the full QED shower, but rather the beam remnant treatment (see section 11.1)
is used to find the q (or g) remnant that matches the q (or g) QCD shower initiator, with
the electron itself considered as a second beam remnant.

10.3.3 Transverse evolution

We have above seen that two parton lines may be defined, stretching back from the
hard scattering to the initial incoming hadron wavefunctions at small Q2. Specifically,
all parton flavours i, virtualities Q2 and energy fractions x may be found. The exact
kinematical interpretation of the x variable is not unique, however. For partons with
small virtualities and transverse momenta, essentially all definitions agree, but differences
may appear for branchings close to the hard scattering.

In first-order QED [Ber85] and in some simple QCD toy models [Got86], one may
show that the ‘correct’ choice is the ‘ŝ approach’. Here one requires that ŝ = x1x2s,
both at the hard scattering scale and at any lower scale, i.e. ŝ(Q2) = x1(Q

2) x2(Q
2) s,

where x1 and x2 are the x values of the two resolved partons (one from each incoming
beam particle) at the given Q2 scale. In practice this means that, at a branching with
the splitting variable z, the total ŝ has to be increased by a factor 1/z in the backwards
evolution. It also means that branchings on the two incoming legs have to be interleaved
in a single monotonic sequence of Q2 values of branchings.

For a reconstruction of the complete kinematics in this approach, one should start
with the hard scattering, for which ŝ has been chosen according to the hard scattering
matrix element. By backwards evolution, the virtualities Q2

1 = −m2
1 and Q2

2 = −m2
2 of

the two interacting partons are reconstructed. Initially the two partons are considered in

201



their common c.m. frame, coming in along the ±z directions. Then the four-momentum
vectors have the non-vanishing components

E1,2 =
ŝ± (Q2

2 −Q2
1)

2
√
ŝ

,

pz1 = −pz2 =

√

(ŝ+Q2
1 +Q2

2)
2 − 4Q2

1Q
2
2

4ŝ
, (150)

with (p1 + p2)
2 = ŝ.

If, say, Q2
1 > Q2

2, then the branching 3 → 1 + 4, which produced parton 1, is the one
that took place closest to the hard scattering, and the one to be reconstructed first. With
the four-momentum p3 known, p4 = p3 − p1 is automatically known, so there are four
degrees of freedom. One corresponds to a trivial azimuthal angle around the z axis. The
z splitting variable for the 3 → 1 +4 vertex is found as the same time as Q2

1, and provides
the constraint (p3 + p2)

2 = ŝ/z. The virtuality Q2
3 is given by backwards evolution of

parton 3.
One degree of freedom remains to be specified, and this is related to the possibility

that parton 4 initiates a time-like parton shower, i.e. may have a non-zero mass. The
maximum allowed squared mass m2

max,4 is found for a collinear branching 3 → 1 + 4. In
terms of the combinations

s1 = ŝ+Q2
2 +Q2

1 ,

s3 =
ŝ

z
+Q2

2 +Q2
3 ,

r1 =
√

s21 − 4Q2
2Q

2
1 ,

r3 =
√

s23 − 4Q2
2Q

2
3 , (151)

one obtains

m2
max,4 =

s1s3 − r1r3
2Q2

2

−Q2
1 −Q2

3 , (152)

which, for the special case of Q2
2 = 0, reduces to

m2
max,4 =

{

Q2
1

z
−Q2

3

}{

ŝ

ŝ+Q2
1

− ŝ

ŝ/z +Q2
3

}

. (153)

These constraints on m4 are only the kinematical ones, in addition coherence phenomena
could constrain the mmax,4 values further. Some options of this kind are available; the
default one is to require additionally that m2

4 ≤ Q2
1, i.e. lesser than the space-like virtuality

of the sister parton.
With the maximum virtuality given, the final-state showering machinery may be used

to give the development of the subsequent cascade, including the actual mass m2
4, with

0 ≤ m2
4 ≤ m2

max,4. The evolution is performed in the c.m. frame of the two ‘resolved’
partons, i.e. that of partons 1 and 2 for the branching 3 → 1+4, and parton 4 is assumed
to have a nominal energy Enom,4 = (1/z− 1)

√
ŝ/2. (Slight modifications appear if parton

4 has a non-vanishing mass mq or mℓ.)
Using the relation m2

4 = (p3 − p1)
2, the momentum of parton 3 may now be found as

E3 =
1

2
√
ŝ

{

ŝ

z
+Q2

2 −Q2
1 −m2

4

}

,

pz3 =
1

2pz1
{s3 − 2E2E3} ,

p2⊥,3 =
{

m2
max,4 −m2

4

} (s1s3 + r1r3)/2 −Q2
2(Q

2
1 +Q2

3 +m2
4)

r21
. (154)

202



The requirement that m2
4 ≥ 0 (or ≥ m2

f for heavy flavours) imposes a constraint on

allowed z values. This constraint cannot be included in the choice of Q2
1, where it logically

belongs, since it also depends on Q2
2 and Q2

3, which are unknown at this point. It is fairly
rare (in the order of 10% of all events) that an unallowed z value is generated, and when it
happens it is almost always for one of the two branchings closest to the hard interaction:
for Q2

2 = 0 eq. (153) may be solved to yield z ≤ ŝ/(ŝ+Q2
1 −Q2

3), which is a more severe
cut for ŝ small and Q2

1 large. Therefore an essentially bias-free way of coping is to redo
completely any initial-state cascade for which this problem appears.

This completes the reconstruction of the 3 → 1 + 4 vertex. The subsystem made out
of partons 3 and 2 may now be boosted to its rest frame and rotated to bring partons 3
and 2 along the ±z directions. The partons 1 and 4 now have opposite and compensating
transverse momenta with respect to the event axis. When the next vertex is considered,
either the one that produces parton 3 or the one that produces parton 2, the 3–2 subsystem
will fill the function the 1–2 system did above, e.g. the rôle of ŝ = ŝ12 in the formulae above
is now played by ŝ32 = ŝ12/z. The internal structure of the 3–2 system, i.e. the branching
3 → 1 + 4, appears nowhere in the continued description, but has become ‘unresolved’.
It is only reflected in the successive rotations and boosts performed to bring back the
new endpoints to their common rest frame. Thereby the hard scattering subsystem 1–2
builds up a net transverse momentum and also an overall rotation of the hard scattering
subsystem.

After a number of steps, the two outermost partons have virtualities Q2 < Q2
0 and

then the shower is terminated and the endpoints assigned Q2 = 0. Up to small corrections
from primordial k⊥, discussed in section 11.1, a final boost will bring the partons from
their c.m. frame to the overall c.m. frame, where the x values of the outermost partons
agree also with the light-cone definition.

10.3.4 Other initial-state shower aspects

In the formulae above, Q2 has been used as argument for αs, and not only as the space-like
virtuality of partons. This is one possibility, but in fact loop calculations tend to indicate
that the proper argument for αs is not Q2 but p2⊥ = (1 − z)Q2 [Bas83]. The variable
p⊥ does have the interpretation of transverse momentum, although it is only exactly so
for a branching a → bc with a and c massless and Q2 = −m2

b , and with z interpreted
as light-cone fraction of energy and momentum. The use of αs((1 − z)Q2) is default in
the program. Indeed, if one wanted to, the complete shower might be interpreted as an
evolution in p2⊥ rather than in Q2.

As we see, the initial-state showering algorithm leads to a net boost and rotation of
the hard scattering subsystems. The overall final state is made even more complex by the
additional final-state radiation. In principle, the complexity is very physical, but it may
still have undesirable side effects. One such, discussed further in section 9.2, is that it is
very difficult to generate events that fulfill specific kinematics conditions, since kinematics
is smeared and even, at times, ambiguous.

A special case is encountered in deep inelastic scattering in ep collisions. Here the
DIS x and Q2 values are defined in terms of the scattered electron direction and energy,
and therefore are unambiguous (except for issues of final-state photon radiation close to
the electron direction). Neither initial- nor final-state showers preserve the kinematics of
the scattered electron, however, and hence the DIS x and Q2 are changed. In principle,
this is perfectly legitimate, with the caveat that one then also should use different sets of
parton distributions than ones derived from DIS, since these are based on the kinematics
of the scattered lepton and nothing else. Alternatively, one might consider showering
schemes that leave x and Q2 unchanged. In [Ben88] detailed modifications are presented
that make a preservation possible when radiation off the incoming and outgoing electron
is neglected, but these are not included in the current version of Pythia.

203



What is available, as an option, is a simple machinery which preserves x and Q2 from
the effects of QCD radiation, and also from those of primordial k⊥ and the beam remnant
treatment, as follows. After the showers have been generated, the four-momentum of
the scattered lepton is changed to the expected one, based on the nominal x and Q2

values. The azimuthal angle of the lepton is maintained when the transverse momentum
is adjusted. Photon radiation off the lepton leg is not fully accounted for, i.e. it is assumed
that the energy of final-state photons is added to that of the scattered electron for the
definition of x and Q2 (this is the normal procedure for parton-distribution definitions).

The change of three-momentum on the lepton side of the event is balanced by the
final state partons on the hadron side, excluding the beam remnant but including all the
partons both from initial- and final-state showering. The fraction of three-momentum
shift taken by each parton is proportional to its original light-cone momentum in the
direction of the incoming lepton, i.e. to E ∓ pz for a hadron moving in the ± direction.
This procedure guarantees momentum but not energy conservation. For the latter, one
additional degree of freedom is needed, which is taken to be the longitudinal momentum
of the initial state shower initiator. As this momentum is modified, the change is shared
by the final state partons on the hadron side, according to the same light-cone fractions
as before (based on the original momenta). Energy conservation requires that the total
change in final state parton energies plus the change in lepton side energy equals the
change in initiator energy. This condition can be turned into an iterative procedure to
find the initiator momentum shift.

Sometimes the procedure may break down. For instance, an initiator with x > 1 may
be reconstructed. If this should happen, the x and Q2 values of the event are preserved,
but new initial and final state showers are generated. After five such failures, the event
is completely discared in favour of a new kinematical setup.

Kindly note that the four-momentum of intermediate partons in the shower history
are not being adjusted. In a listing of the complete event history, energy and momentum
need then not be conserved in shower branchings. This mismatch could be fixed up, if
need be.

The scheme presented above should not be taken too literally, but is rather intended
as a contrast to the more sophisticated schemes already on the market, if one would like
to understand whether the kind of conservation scheme chosen does affect the observable
physics.

10.4 Routines and Common Block Variables

In this section we collect information on how to use the initial- and final-state showering
routines. Of these LUSHOW for final-state radiation is the more generally interesting, since
it can be called to let a user-defined parton configuration shower. PYSSPA, on the other
hand, is so intertwined with the general structure of a Pythia event that it is of little
use as a stand-alone product.

CALL LUSHOW(IP1,IP2,QMAX)

Purpose: to generate time-like parton showers, conventional or coherent. The perfor-
mance of the program is regulated by the switches MSTJ(40) - MSTJ(50) and
parameters PARJ(81) - PARJ(89). In order to keep track of the colour flow
information, the positions K(I,4) and K(I,5) have to be organized properly
for showering partons. Inside the Jetset/Pythia programs, this is done
automatically, but for external use proper care must be taken.

IP1 > 0, IP2 = 0 : generate a time-like parton shower for the parton in line IP1 in
common block LUJETS, with maximum allowed mass QMAX. With only one

204



parton at hand, one cannot simultaneously conserve both energy and momen-
tum: we here choose to conserve energy and jet direction, while longitudinal
momentum (along the jet axis) is not conserved.

IP1 > 0, IP2 > 0 : generate time-like parton showers for the two partons in lines IP1
and IP2 in the common block LUJETS, with maximum allowed mass for each
parton QMAX. For shower evolution, the two partons are boosted to their c.m.
frame. Energy and momentum is conserved for the pair of partons, although
not for each individually. One of the two partons may be replaced by a nonra-
diating particle, such as a photon or a diquark; the energy and momentum of
this particle will then be modified to conserve the total energy and momentum.

IP1 > 0, IP2 < 0 : generate time-like parton showers for the -IP2 (at most 3) partons
in lines IP1, IP1+1, . . . IPI-IP2-1 in the common block LUJETS, with maxi-
mum allowed mass for each parton QMAX. The actions for IP2=-1 and IP2=-2
correspond to what is described above, but additionally IP2=-3 may be used
to generate the evolution starting from three given partons (e.g. in Υ → ggg).
Then the three partons are boosted to their c.m. frame, energy is conserved
for each parton individually and momentum for the system as a whole.

QMAX : the maximum allowed mass of a radiating parton, i.e. the starting value for the
subsequent evolution. (In addition, the mass of a single parton may not exceed
its energy, the mass of a parton in a system may not exceed the invariant mass
of the system.)

SUBROUTINE PYSSPA(IPU1,IPU2) : to generate the space-like showers of the initial-state
radiation.

COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the
performance of Jetset. Most parameters are described in section 14.4; here
only those related to LUSHOW are described.

MSTJ(40) : (D=0) possibility to suppress the branching probability for a branching q →
qg (or q → qγ) of a quark produced in the decay of an unstable particle with
width Γ, where this width has to be specified by the user in PARJ(89). The
algorithm used is not exact, but still gives some impression of potential effects.
This switch ought to have appeared at the end of the current list of shower
switches (after MSTJ(50)), but because of lack of space it appears immediately
before.

= 0 : no suppression, i.e. the standard parton-shower machinery.
= 1 : suppress radiation by a factor χ(ω) = Γ2/(Γ2 + ω2), where ω is the

energy of the gluon (or photon) in the rest frame of the radiating dipole.
Essentially this means that hard radiation with ω > Γ is removed.

= 2 : suppress radiation by a factor 1 − χ(ω) = ω2/(Γ2 + ω2), where ω is the
energy of the gluon (or photon) in the rest frame of the radiating dipole.
Essentially this means that soft radiation with ω < Γ is removed.

MSTJ(41) : (D=2) type of branchings allowed in shower.
= 0 : no branchings at all, i.e. shower is switched off.
= 1 : QCD type branchings of quarks and gluons.
= 2 : also emission of photons off quarks and leptons; the photons are assumed

on the mass shell.
= 10 : as =2, but enhance photon emission by a factor PARJ(84). This option

is unphysical, but for moderate values, PARJ(84)≤ 10, it may be used
to enhance the prompt photon signal in qq events. The normalization of

205



the prompt photon rate should then be scaled down by the same factor.
The dangers of an improper use are significant, so do not use this option
if you do not know what you are doing.

MSTJ(42) : (D=2) branching mode for time-like showers.
= 1 : conventional branching, i.e. without angular ordering.
= 2 : coherent branching, i.e. with angular ordering.

MSTJ(43) : (D=4) choice of z definition in branching.
= 1 : energy fraction in grandmother’s rest frame (‘local, constrained’).
= 2 : energy fraction in grandmother’s rest frame assuming massless daughters,

with energy and momentum reshuffled for massive ones (‘local, uncon-
strained’).

= 3 : energy fraction in c.m. frame of the showering partons (‘global, con-
strained’).

= 4 : energy fraction in c.m. frame of the showering partons assuming mass-
less daughters, with energy and momentum reshuffled for massive ones
(‘global, unconstrained’).

MSTJ(44) : (D=2) choice of αs scale for shower.
= 0 : fixed at PARU(111) value.
= 1 : running with Q2 = m2/4, m mass of decaying parton, Λ as stored in

PARJ(81) (natural choice for conventional showers).
= 2 : running with Q2 = z(1− z)m2, i.e. roughly p2⊥ of branching, Λ as stored

in PARJ(81) (natural choice for coherent showers).
MSTJ(45) : (D=5) maximum flavour that can be produced in shower by g → qq; also

used to determine the maximum number of active flavours in the αs factor in
parton showers (here with a minimum of 3).

MSTJ(46) : (D=3) nonhomogeneous azimuthal distributions in a shower branching.
= 0 : azimuthal angle is chosen uniformly.
= 1 : nonhomogeneous azimuthal angle in gluon decays due to a kinematics-

dependent effective gluon polarization. Not meaningful for scalar model,
i.e. then same as =0.

= 2 : nonhomogeneous azimuthal angle in gluon decay due to interference with
nearest neighbour (in colour). Not meaningful for Abelian model, i.e.
then same as =0.

= 3 : nonhomogeneous azimuthal angle in gluon decay due to both polarization
(=1) and interference (=2). Not meaningful for Abelian model, i.e. then
same as =1. Not meaningful for scalar model, i.e. then same as =2.

MSTJ(47) : (D=3) corrections to the lowest-order qqg, qqγ, ℓ+ℓ−γ or ℓνℓγ 3-parton
matrix element at the first branching of either initial parton in a shower.

= 0 : no corrections.
= 1 : included whenever scattered partons are qq, ℓ+ℓ− or ℓνℓ.
= 2 : always included when shower starts from two partons.
= 3 : as =1 except that for massive quarks also the massive matrix element

expression is used, eq. (30), while =1 is always based on massless matrix
elements.

= 4 : as =2 except that for massive quarks also the massive matrix element
expression is used, while =2 is always based on massless matrix elements.

MSTJ(48) : (D=0) possibility to impose maximum angle for the first branching in a
shower.

= 0 : no explicit maximum angle.
= 1 : maximum angle given by PARJ(85) for single showering parton, by

PARJ(85) and PARJ(86) for pair of showering partons.
MSTJ(49) : (D=0) possibility to change the branching probabilities according to some

alternative toy models (note that the Q2 evolution of αs may well be different

206



in these models, but that only the MSTJ(44) options are at the disposal of the
user).

= 0 : standard QCD branchings.
= 1 : branchings according to a scalar gluon theory, i.e. the splitting kernels

in the evolution equations are, with a common factor αs/(2π) omitted,
Pq→qg = (2/3)(1 − z), Pg→gg = PARJ(87), Pg→qq = PARJ(88) (for each
separate flavour). The couplings of the gluon have been left as free pa-
rameters, since they depend on the colour structure assumed. Note that,
since a spin 0 object decays isotropically, the gluon splitting kernels con-
tain no z dependence.

= 2 : branchings according to an Abelian vector gluon theory, i.e. the colour
factors are changed (compared with QCD) according to CF = 4/3 → 1,
NC = 3 → 0, TR = 1/2 → 3. Note that an Abelian model is not
expected to contain any coherence effects between gluons, so that one
should normally use MSTJ(42)=1 and MSTJ(46)= 0 or 1. Also, αs is
expected to increase with increasing Q2 scale, rather than decrease. No
such αs option is available; the one that comes closest is MSTJ(44)=0, i.e.
a fix value.

MSTJ(50) : (D=3) possibility to introduce colour coherence effects in the first branching
of a final state shower; mainly of relevance for QCD parton–parton scattering
processes.

= 0 : none.
= 1 : impose an azimuthal anisotropy.
= 2 : restrict the polar ange of a branching to be smaller than the scattering

angle of the relevant colour flow.
= 3 : both azimuthal anisotropy and restricted polar angles.
Note: for subsequent branchings the (polar) angular ordering is automatic

(MSTP(42)=2) and MSTJ(46)=3).

PARJ(81) : (D=0.29 GeV) Λ value in running αs for parton showers (see MSTJ(44)).
This is used in all user calls to LUSHOW, in the e+e− routines of Jetset, and in
a Pythia (or Jetset) resonance decay. It is not intended for other timelike
showers in Pythia, however, for which PARP(72) is used.

PARJ(82) : (D=1.0 GeV) invariant mass cut-off mmin of parton showers, below which
partons are not assumed to radiate. For Q2 = p2⊥ (MSTJ(44)=2) PARJ(82)/2
additionally gives the minimum p⊥ of a branching. To avoid infinite αs values,
one must have PARJ(82)> 2×PARJ(81) for MSTJ(44)≥ 1 (this is automatically
checked in the program, with 2.2×PARJ(81) as the lowest value attainable).

PARJ(83) : (D=1.0 GeV) invariant mass cut-off mmin used for photon emission in parton
showers, below which quarks and leptons are not assumed to radiate. The
function of PARJ(83) closely parallels that of PARJ(82) for QCD branchings,
but there is a priori no requirement that the two be equal.

PARJ(84) : (D=1.) used for option MSTJ(41)=10 as a multiplicative factor in the promt
photon emission rate in final state parton showers. Unphysical but useful
technical trick, so beware!

PARJ(85), PARJ(86) : (D=10.,10.) maximum opening angles allowed in the first
branching of parton showers; see MSTJ(48).

PARJ(87) : (D=0.) coupling of g → gg in scalar gluon shower, see MSTJ(49)=1.
PARJ(88) : (D=0.) coupling of g → qq in scalar gluon shower (per quark species), see

MSTJ(49)=1.
PARJ(89) : (D=0. GeV) the width of the unstable particle studied for the MSTJ(40) >

0 options; to be set by the user (separately for each LUSHOW call, if need be).

207



COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

Purpose: to give access to status code and parameters which regulate the performance
of Pythia. Most parameters are described in section 9.3; here only those
related to PYSSPA and LUSHOW are described.

MSTP(22) : (D=0) special override of normal Q2 definition used for maximum of parton-
shower evolution. This option only affects processes 10 and 83 (deep inelastic
scattering) and only in lepton–hadron events.

= 0 : use the scale as given in MSTP(32).
= 1 : use the DIS Q2 scale, i.e. −t̂.
= 2 : use the DIS W 2 scale, i.e. (−t̂)(1 − x)/x.

= 3 : use the DIS Q×W scale, i.e. (−t̂)
√

(1 − x)/x.

= 4 : use the scale Q2(1−x) max(1, ln(1/x)), as motivated by first order matrix
elements [Ing80, Alt78].

Note: in all of these alternatives, a multiplicative factor is introduced by
PARP(67) and PARP(71), as usual.

MSTP(61) : (D=1) master switch for initial-state QCD and QED radiation.
= 0 : off.
= 1 : on.

MSTP(62) : (D=3) level of coherence imposed on the space-like parton-shower evolu-
tion.

= 1 : none, i.e. neither Q2 values nor angles need be ordered.
= 2 : Q2 values at branches are strictly ordered, increasing towards the hard

interaction.
= 3 : Q2 values and opening angles of emitted (on-mass-shell or time-like) par-

tons are both strictly ordered, increasing towards the hard interaction.
MSTP(63) : (D=2) structure of associated time-like showers, i.e. showers initiated by

emission off the incoming space-like partons.
= 0 : no associated showers are allowed, i.e. emitted partons are put on the

mass shell.
= 1 : a shower may evolve, with maximum allowed time-like virtuality set by

the phase space only.
= 2 : a shower may evolve, with maximum allowed time-like virtuality set by

phase space or by PARP(71) times the Q2 value of the space-like parton
created in the same vertex, whichever is the stronger constraint.

MSTP(64) : (D=2) choice of αs and Q2 scale in space-like parton showers.
= 0 : αs is taken to be fix at the value PARU(111).
= 1 : first-order running αs with argument PARP(63)Q2.
= 2 : first-order running αs with argument PARP(64)k2⊥ =PARP(64)(1 − z)Q2.

MSTP(65) : (D=1) treatment of soft gluon emission in space-like parton-shower evolu-
tion.

= 0 : soft gluons are entirely neglected.
= 1 : soft gluon emission is resummed and included together with the hard

radiation as an effective z shift.
MSTP(66) : (D=1) choice of lower cut-off for initial-state QCD radiation in anomalous

photoproduction events (see MSTP(14)=3).
= 0 : the lower Q2 cutoff is the standard one in PARP(62)2.
= 1 : the lower cutoff is the larger of PARP(62)2 and VINT(283) or VINT(284),

where the latter is the virtuality scale of the γ → qq vertex on the
appropriate side of the event.

MSTP(67) : (D=2) possibility to introduce colour coherence effects in the first branching
of the backwards evolution of an initial state shower; mainly of relevance for

208



QCD parton–parton scattering processes.
= 0 : none.
= 2 : restrict the polar angle of a branching to be smaller than the scattering

angle of the relevant colour flow.
Note 1: azimuthal anisotropies have not yet been included.
Note 2: for subsequent branchings, MSTP(62)=3 is used to restrict the (polar)

angular range of branchings.
MSTP(71) : (D=1) master switch for final-state QCD and QED radiation.

= 0 : off.
= 1 : on.

PARP(61) : (D=0.25 GeV) Λ value used in space-like parton shower (see MSTP(64)).
This value may be overwritten, see MSTP(3).

PARP(62) : (D=1. GeV) effective cut-off Q or k⊥ value (see MSTP(64)), below which
space-like parton showers are not evolved.

PARP(63) : (D=0.25) in space-like shower evolution the virtuality Q2 of a parton is
multiplied by PARP(63) for use as a scale in αs and parton distributions when
MSTP(64)=1.

PARP(64) : (D=1.) in space-like parton-shower evolution the squared transverse mo-
mentum evolution scale k2⊥ is multiplied by PARP(64) for use as a scale in αs

and parton distributions when MSTP(64)=2.
PARP(65) : (D=2. GeV) effective minimum energy (in c.m. frame) of time-like or on-

shell parton emitted in space-like shower; see also PARP(66).
PARP(66) : (D=0.001) effective lower cut-off on 1 − z in space-like showers, in addition

to the cut implied by PARP(65).
PARP(67) : (D=4.) the Q2 scale of the hard scattering (see MSTP(32)) is multiplied

by PARP(67) to define the maximum parton virtuality allowed in space-like
showers. This does not apply to s-channel resonances, where the maximum
virtuality is set by m2.

PARP(68) : (D=1E-3) lower Q cut-off for QED space-like showers.
PARP(71) : (D=4.) the Q2 scale of the hard scattering (see MSTP(32)) is multiplied

by PARP(71) to define the maximum parton virtuality allowed in time-like
showers. This does not apply to s-channel resonances, where the maximum
virtuality is set by m2.

PARP(72) : (D=0.25 GeV) Λ value used in running αs for timelike parton showers, except
for showers in the decay of a resonance. (Resonance decay, e.g. γ∗/Z0 decay,
is instead set by PARJ(81).)

209



11 Beam Remnants and Underlying Events

Each incoming beam particle may leave behind a beam remnant, which does not take part
in the initial-state radiation or hard scattering process. If nothing else, the remnants need
be reconstructed and connected to the rest of the event. In hadron–hadron collisions, the
composite nature of the two incoming beam particles implies the additional possibility
that several parton pairs undergo separate hard or semi-hard scatterings, ‘multiple inter-
actions’. This may give a non-negligible contribution to the ‘underlying event’ structure,
and thus to the total multiplicity. Finally, in high-luminosity colliders, it is possible to
have several collisions between beam particles in one and the same beam crossing, i.e.
pile-up events, which further act to build up the general particle production activity that
is to be observed by detectors. These three aspects are described in turn, with emphasis
on the middle one, that of multiple interactions within a single hadron–hadron collision.

The main reference on the multiple interactions model is [Sjö87a].

11.1 Beam Remnants

The initial-state radiation algorithm reconstructs one shower initiator in each beam. (If
initial-state radiation is not included, the initiator is nothing but the incoming parton
to the hard interaction.) Together the two initiators delineate an interaction subsystem,
which contains all the partons that participate in the initial-state showers, in the hard
interaction, and in the final-state showers. Left behind are two beam remnants which,
to first approximation, just sail through, unaffected by the hard process. (The issue of
additional interactions is covered in the next section.)

A description of the beam remnant structure contains a few components. First, given
the flavour content of a (colour-singlet) beam particle, and the flavour and colour of the
initiator parton, it is possible to reconstruct the flavour and colour of the beam remnant.
Sometimes the remnant may be represented by just a single parton or diquark, but often
the remnant has to be subdivided into two separate objects. In the latter case it is
necessary to share the remnant energy and momentum between the two. Due to Fermi
motion inside hadron beams, the initiator parton may have a ‘primordial k⊥’ transverse
momentum motion, which has to be compensated by the beam remnant. If the remnant
is subdivided, there may also be a relative transverse momentum. In the end, total energy
and momentum has to be conserved. To first approximation, this is ensured within each
remnant separately, but some final global adjustments are necessary to compensate for
the primordial k⊥ and any effective beam remnant mass.

Consider first a proton (or, with trivial modifications, any other baryon or antibaryon).
• If the initiator parton is a u or d quark, it is assumed to be a valence quark, and

therefore leaves behind a diquark beam remnant, i.e. either a ud or a uu diquark,
in a colour antitriplet state. Relative probabilities for different diquark spins are
derived within the context of the non-relativistic SU(6) model, i.e. flavour SU(3)
times spin SU(2). Thus a ud is 3/4 ud0 and 1/4 ud1, while a uu is always uu1.

• An initiator gluon leaves behind a colour octet uud state, which is subdivided into a
colour triplet quark and a colour antitriplet diquark. SU(6) gives the appropriate
subdivision, 1/2 of the time into u + ud0, 1/6 into u + ud1 and 1/3 into d + uu1.

• A sea quark initiator, such as an s, leaves behind a uuds four-quark state. The PDG
flavour coding scheme and the fragmentation routines do not foresee such a state, so
therefore it is subdivided into a meson plus a diquark, i.e. 1/2 into us+ud0, 1/6 into
us + ud1 and 1/3 into ds + uu1. Once the flavours of the meson are determined, the
choice of meson multiplet is performed as in the standard fragmentation description.

• Finally, an antiquark initiator, such as an s, leaves behind a uuds four-quark state,
which is subdivided into a baryon plus a quark. Since, to first approximation, the
ss pair comes from the branching g → ss of a colour octet gluon, the subdivision

210



uud + s is not allowed, since it would correspond to a colour-singlet ss. Therefore
the subdivision is 1/2 into ud0s + u, 1/6 into ud1s + u and 1/3 into uu1s + d. A
baryon is formed among the ones possible for the given flavour content and diquark
spin, according to the relative probabilities used in the fragmentation. One could
argue for an additional weighting to count the number of baryon states available for
a given diquark plus quark combination, but this has not been included.

One may note that any u or d quark taken out of the proton is automatically assumed
to be a valence quark. Clearly this is unrealistic, but not quite as bad as it might seem.
In particular, one should remember that the beam remnant scenario is applied to the
initial-state shower initiators at a scale of Q0 ≈ 1 GeV and at an x value usually much
larger than the x at the hard scattering. The sea quark contribution therefore normally
is negligible.

For a meson beam remnant, the rules are in the same spirit, but somewhat easier, since
no diquark or baryons need be taken into account. Thus a valence quark (antiquark)
initiator leaves behind a valence antiquark (quark), a gluon initiator leaves behind a
valence quark plus a valence antiquark, and a sea quark (antiquark) leaves behind a
meson (which contains the partner to the sea parton) plus a valence antiquark (quark).

A resolved photon is even simpler than a meson, since one does not have to make the
distinction between valence and sea flavour. Thus any quark (antiquark) initiator leaves
behind the matching antiquark (quark), and a gluon leaves behind a quark + antiquark
pair. The relative quark flavour composition in the latter case is assumed proportional
to e2q among light flavours, i.e. 2/3 into u + u, 1/6 into d + d, and 1/6 into s + s. If one
wanted to, one could also have chosen to represent the remnant by a single gluon.

If no initial-state radiation is assumed, an electron (or, in general, a lepton or a
neutrino) leaves behind no beam remnant. Also when radiation is included, one would
expect to recover a single electron with the full beam energy when the shower initiator is
reconstructed. This does not have to happen, e.g. if the initial-state shower is cut off at
a non-vanishing scale, such that some of the emission at low Q2 values is not simulated.
Further, for purely technical reasons, the distribution of an electron inside an electron,
f e
e (x,Q2), is cut off at x = 1− 10−6. This means that always, when initial-state radiation

is included, a fraction of at least 10−6 of the beam energy has to be put into one single
photon along the beam direction, to represent this not simulated radiation. The physics
is here slightly different from the standard beam remnant concept, but it is handled with
the same machinery. Beam remnants can also apper when the electron is resolved with
the use of parton distributions, but initial-state radiation is switched off. Conceptually,
this is a contradiction, since it is the initial-state radiation that builds up the parton
distributions, but sometimes the combination is still useful. Finally, since QED radiation
has not yet been included in events with resolved photons inside electrons, also in this
case effective beam remnants have to be assigned by the program.

The beam remnant assignments inside an electron, in either of the cases above, is as
follows.

• An e− initiator leaves behind a γ remnant.
• A γ initiator leaves behind an e− remnant.
• An e+ initiator leaves behind an e− + e− remnant.
• A q (q) initiator leaves behind a q + e− (q + e−) remnant.
• A g initiator leaves behind a g + e− remnant. One could argue that, in agreement

with the treatment of photon beams above, the remnant should be q + q + e−. The
program currently does not allow for three beam remnant objects, however.

By the hard scattering and initial-state radiation machinery, the shower initiator has
been assigned some fraction x of the four-momentum of the beam particle, leaving behind
1− x to the remnant. If the remnant consists of two objects, this energy and momentum
has to be shared, somehow. For an electron, the sharing is given from first principles:
if, e.g., the initiator is a q, then that q was produced in the sequence of branchings

211



e → γ → q, where xγ is distributed according to the convolution in eq. (54). Therefore
the q remnant takes a fraction χ = (xγ − x)/(1− x) of the total remnant energy, and the
e takes 1 − χ.

For the other beam remnants, the relative energy-sharing variable χ is not known from
first principles, but picked according to some suitable parametrization. Normally several
different options are available, that can be set separately for baryon and meson beams,
and for hadron + quark and quark + diquark (or antiquark) remnants. In one extreme
are shapes in agreement with näıve counting rules, i.e. where energy is shared evenly
between ‘valence’ partons. For instance, P(χ) = 2 (1 − χ) for the energy fraction taken
by the q in a q + qq remnant. In the other extreme, an uneven distribution could be
used, like in parton distributions, where the quark only takes a small fraction and most
is retained by the diquark. The default for a q + qq remnant is of this type,

P(χ) ∝ (1 − χ)3
√

χ2 + c2min

, (155)

with cmin = 2〈mq〉/Ecm = (0.6 GeV)/Ecm providing a lower cut-off. In general, the more
uneven the sharing of the energy, the less the total multiplicity in the beam remnant
fragmentation. If no multiple interactions are allowed, a rather even sharing is needed to
come close to the experimental multiplicity (and yet one does not quite make it). With
an uneven sharing there is room to generate more of the total multiplicity by multiple
interactions [Sjö87a].

In a photon beam, with a remnant q + q, the χ variable is chosen the same way it
would have been in a corresponding meson remnant.

Before the χ variable is used to assign remnant momenta, it is also necessary to
consider the issue of primordial k⊥. The initiator partons are thus assigned each a k⊥
value, vanishing for an electron or photon inside an electron, distributed either according
to a Gaussian or an exponential shape for a hadron, and according to either of these
shapes or a power-like shape for a quark or gluon inside a photon (which may in its turn
be inside an electron). The interaction subsystem is boosted and rotated to bring it from
the frame assumed so far, with each initiator along the ±z axis, to one where the initiators
have the required primordial k⊥ values.

The p⊥ recoil is taken by the remnant. If the remnant is composite, the recoil is all
taken by one of the two, namely the one that, in some imagined perturbative splitting
language, is the sister of the initiator parton. For instance, when a gluon is taken out
of a proton, the recoil is all taken by the lone quark (i.e. nothing by the diquark), since
one could have imagined an earlier branching q0 → qg, below the shower cut-off scale
Q0, with p⊥q0 = 0. In addition, however, two beam remnants may be given a relative p⊥,
which is then always chosen as for qiqi pairs in the fragmentation description.

The χ variable is interpreted as a sharing of light-cone energy and momentum, i.e.
E + pz for the beam moving in the +z direction and E − pz for the other one. When the
two transverse masses m⊥1 and m⊥2 of a composite remnant have been constructed, the
total transverse mass can therefore be found as

m2
⊥ =

m2
⊥1

χ
+

m2
⊥2

1 − χ
, (156)

if remnant 1 is the one that takes the fraction χ. The choice of a light-cone interpretation
to χ means the definition is invariant under longitudinal boosts, and therefore does not
depend on the beam energy itself. A χ value close to the näıve borders 0 or 1 can lead
to an unreasonably large remnant m⊥. Therefore an additional check is introduced, that
the remnant m⊥ be smaller than the näıve c.m. frame remnant energy, (1 − x)Ecm/2. If
this is not the case, a new χ and a new relative transverse momentum is selected.

212



Whether there is one remnant parton or two, the transverse mass of the remnant is
not likely to agree with 1−x times the mass of the beam particle, i.e. it is not going to be
possible to preserve the energy and momentum in each remnant separately. One therefore
allows a shuffling of energy and momentum between the beam remnants from each of the
two incoming beams. This may be achieved by performing a (small) longitudinal boost of
each remnant system. Since there are two boost degrees of freedom, one for each remnant,
and two constraints, one for energy and one for longitudinal momentum, a solution may
be found.

Under some circumstances, one beam remnant may be absent or of very low energy,
while the other one is more complicated. One example is deep inelastic scattering in ep
collisions, where the electron leaves no remnant, or maybe only a low-energy photon. It is
clearly then not possible to balance the two beam remnants against each other. Therefore,
if one beam remnant has an energy below 0.2 of the beam energy, i.e. if the initiator parton
has x > 0.8, then the two boosts needed to ensure energy and momentum conservation
are instead performed on the other remnant and on the interaction subsystem. If there is
a low-energy remnant at all then, before that, energy and momentum are assigned to the
remnant constituent(s) so that the appropriate light-cone combination E±pz is conserved,
but not energy or momentum separately. If both beam remnants have low energy, but
both still exist, then the one with lower m⊥/E is the one that will not be boosted.

11.2 Multiple Interactions

In this section we present the model used in Pythia to describe the possibility that
several parton pairs undergo hard interactions in a hadron–hadron collision, and thereby
contribute to the overall event activity, in particular at low p⊥. The same model is
also used to describe the VMD γp events, where the photon interacts like a hadron.
It should from the onset be made clear that this is not an easy topic. In fact, in the
full event generation process, probably no other area is as poorly understood as this
one. The whole concept of multiple interactions is very controversial, with contraditory
experimental conclusions [AFS87].

The multiple interactions scenario presented here [Sjö87a] was the first detailed model
for this kind of physics, and is still one of the very few available. We will present two
related but separate scenarios, one ‘simple’ model and one somewhat more sophisticated.
In fact, neither of them are all that simple, which may make the models look unattractive.
However, the world of hadron physics is complicated, and if we err, it is most likely in
being too unsophisticated. The experience gained with the model(s), in failures as well
as successes, could be used as a guideline in the evolution of yet more detailed models.

Our basic philosophy will be as follows. The total rate of parton–parton interactions,
as a function of the transverse momentum scale p⊥, is assumed to be given by pertur-
bative QCD. This is certainly true for reasonably large p⊥ values, but here we shall also
extend the perturbative parton–parton scattering framework into the low-p⊥ region. A
regularization of the divergence in the cross section for p⊥ → 0 has to be introduced,
however, which will provide us with the main free parameter of the model. Since each
incoming hadron is a composite object, consisting of many partons, there should exist
the possibility of several parton pairs interacting when two hadrons collide. It is not
unreasonable to assume that the different pairwise interactions take place essentially in-
dependently of each other, and that therefore the number of interactions in an event is
given by a Poissonian distribution. This is the strategy of the ‘simple’ scenario.

Furthermore, hadrons are not only composite but also extended objects, meaning that
collisions range from very central to rather peripheral ones. Reasonably, the average num-
ber of interactions should be larger in the former than in the latter case. Whereas the
assumption of a Poissonian distribution should hold for each impact parameter separately,
the distribution in number of interactions should be widened by the spread of impact pa-

213



rameters. The amount of widening depends on the assumed matter distribution inside the
colliding hadrons. In the ‘complex’ scenario, different matter distributions are therefore
introduced.

11.2.1 The basic cross sections

The QCD cross section for hard 2 → 2 processes, as a function of the p2⊥ scale, is given
by

dσ

dp2⊥
=
∑

i,j,k

∫

dx1

∫

dx2

∫

dt̂ fi(x1, Q
2) fj(x2, Q

2)
dσ̂kij
dt̂

δ

(

p2⊥ − t̂û

ŝ

)

, (157)

cf. section 7.2. Implicitly, from now on we are assuming that the ‘hardness’ of processes
is given by the p⊥ scale of the scattering. For an application of the formula above to small
p⊥ values, a number of caveats could be made. At low p⊥, the integrals receive major
contributions from the small-x region, where parton distributions are poorly understood
theoretically (Regge limit behaviour, dense packing problems etc. [Lev90]) and not yet
measured. Different sets of parton distributions can therefore give numerically rather
different results for the phenomenology of interest. One may also worry about higher-
order corrections to the jet rates (K factors), beyond what is given by parton-shower
corrections — one simple option we allow here is to evaluate αs of the hard scattering
process at an optimized scale, αs(0.075p2⊥) [Ell86].

The hard scattering cross section above some given p⊥min is given by

σhard(p⊥min) =
∫ s/4

p2
⊥min

dσ

dp2⊥
dp2⊥ . (158)

Since the differential cross section diverges roughly like dp2⊥/p
4
⊥, σhard is also divergent for

p⊥min → 0. We may compare this with the total inelastic, non-diffractive cross section
σnd(s) — elastic and diffractive events are not the topic of this section. At current collider
energies σhard(p⊥min) becomes comparable with σnd for p⊥min ≈1.5–2 GeV. This need
not lead to contradictions: σhard does not give the hadron–hadron cross section but the
parton–parton one. Each of the incoming hadrons may be viewed as a beam of partons,
with the possibility of having several parton–parton interactions when the hadrons pass
through each other. In this language, σhard(p⊥min)/σnd(s) is simply the average number
of parton–parton scatterings above p⊥min in an event, and this number may well be larger
than unity.

While the introduction of several interactions per event is the natural consequence of
allowing small p⊥min values and hence large σhard ones, it is not the solution of σhard(p⊥min)
being divergent for p⊥min → 0: the average ŝ of a scattering decreases slower with p⊥min

than the number of interactions increases, so näıvely the total amount of scattered partonic
energy becomes infinite. One cut-off is therefore obtained via the need to introduce proper
multi-parton correlated parton distributions inside a hadron. This is not a part of the
standard perturbative QCD formalism and is therefore not built into eq. (158). In practice,
even correlated parton-distribution functions seems to provide too weak a cut, i.e. one is
lead to a picture with too little of the incoming energy remaining in the small-angle beam
jet region.

A more credible reason for an effective cut-off is that the incoming hadrons are colour
neutral objects. Therefore, when the p⊥ of an exchanged gluon is made small and the
transverse wavelength correspondingly large, the gluon can no longer resolve the indi-
vidual colour charges, and the effective coupling is decreased. This mechanism is not in
contradiction to perturbative QCD calculations, which are always performed assuming
scattering of free partons (rather than partons inside hadrons), but neither does present
knowledge of QCD provide an understanding of how such a decoupling mechanism would

214



work in detail. In the simple model one makes use of a sharp cut-off at some scale p⊥min,
while a more smooth dampening is assumed for the complex scenario.

11.2.2 The simple model

In an event with several interactions, it is convenient to impose an ordering. The logical
choice is to arrange the scatterings in falling sequence of x⊥ = 2p⊥/Ecm. The ‘first’ scat-
tering is thus the hardest one, with the ‘subsequent’ (‘second’, ‘third’, etc.) successively
softer. It is important to remember that this terminology is in no way related to any
picture in physical time; we do not know anything about the latter. In principle, all the
scatterings that occur in an event must be correlated somehow, näıvely by momentum
and flavour conservation for the partons from each incoming hadron, less näıvely by var-
ious quantum mechanical effects. When averaging over all configurations of soft partons,
however, one should effectively obtain the standard QCD phenomenology for a hard scat-
tering, e.g. in terms of parton distributions. Correlation effects, known or estimated, can
be introduced in the choice of subsequent scatterings, given that the ‘preceding’ (harder)
ones are already known.

With a total cross section of hard interactions σhard(p⊥min) to be distributed among
σnd(s) (non-diffractive, inelastic) events, the average number of interactions per event is
just the ratio n = σhard(p⊥min)/σnd(s). As a starting point we will assume that all hadron
collisions are equivalent (no impact parameter dependence), and that the different parton–
parton interactions take place completely independently of each other. The number of
scatterings per event is then distributed according to a Poissonian with mean n. A fit to
collider multiplicity data gives p⊥min ≈ 1.6 GeV, which corresponds to n ≈ 1. For Monte
Carlo generation of these interactions it is useful to define

f(x⊥) =
1

σnd(s)

dσ

dx⊥
, (159)

with dσ/dx⊥ obtained by analogy with eq. (157). Then f(x⊥) is simply the probability
to have a parton–parton interaction at x⊥, given that the two hadrons undergo a non-
diffractive, inelastic collision.

The probability that the hardest interaction, i.e. the one with highest x⊥, is at x⊥1,
is now given by

f(x⊥1) exp
{

−
∫ 1

x⊥1

f(x′⊥) dx′⊥

}

, (160)

i.e. the näıve probability to have a scattering at x⊥1 multiplied by the probability that
there was no scattering with x⊥ larger than x⊥1. This is the familiar exponential damp-
ening in radioactive decays, encountered e.g. in parton showers in section 10.1.2. Using
the same technique as in the proof of the veto algorithm, section 4.2, the probability to
have an i:th scattering at an x⊥i < x⊥i−1 < · · · < x⊥1 < 1 is found to be

f(x⊥i)
1

(i− 1)!

(∫ 1

x⊥i

f(x′⊥) dx′⊥

)i−1

exp
{

−
∫ 1

x⊥i

f(x′⊥) dx′⊥

}

. (161)

The total probability to have a scattering at a given x⊥, irrespectively of it being the
first, the second or whatever, obviously adds up to give back f(x⊥). The multiple inter-
action formalism thus retains the correct perturbative QCD expression for the scattering
probability at any given x⊥.

With the help of the integral

F (x⊥) =
∫ 1

x⊥

f(x′⊥) dx′⊥ =
1

σnd(s)

∫ s/4

sx2
⊥
/4

dσ

dp2⊥
dp2⊥ (162)

215



(where we assume F (x⊥) → ∞ for x⊥ → 0) and its inverse F−1, the iterative procedure
to generate a chain of scatterings 1 > x⊥1 > x⊥2 > · · · > x⊥i is given by

x⊥i = F−1(F (x⊥i−1) − lnRi) . (163)

Here the Ri are random numbers evenly distributed between 0 and 1. The iterative
chain is started with a fictitious x⊥0 = 1 and is terminated when x⊥i is smaller than
x⊥min = 2p⊥min/Ecm. Since F and F−1 are not known analytically, the standard veto
algorithm is used to generate a much denser set of x⊥ values, whereof only some are
retained in the end. In addition to the p2⊥ of an interaction, it is also necessary to generate
the other flavour and kinematics variables according to the relevant matrix elements.

Whereas the ordinary parton distributions should be used for the hardest scattering,
in order to reproduce standard QCD phenomenology, the parton distributions to be used
for subsequent scatterings must depend on all preceding x values and flavours chosen. We
do not know enough about the hadron wave function to write down such joint probability
distributions. To take into account the energy ‘already’ used in harder scatterings, a con-
servative approach is to evaluate the parton distributions, not at xi for the i:th scattered
parton from hadron, but at the rescaled value

x′i =
xi

∑i−1
j=1 xj

. (164)

This is our standard procedure in the program; we have tried a few alternatives without
finding any significantly different behaviour in the final physics.

In a fraction exp(−F (x⊥min)) of the events studied, there will be no hard scattering
above x⊥min when the iterative procedure in eq. (163) is applied. It is therefore also
necessary to have a model for what happens in events with no (semi)hard interactions.
The simplest possible way to produce an event is to have an exchange of a very soft
gluon between the two colliding hadrons. Without (initially) affecting the momentum
distribution of partons, the ‘hadrons’ become colour octet objects rather than colour
singlet ones. If only valence quarks are considered, the colour octet state of a baryon can
be decomposed into a colour triplet quark and an antitriplet diquark. In a baryon-baryon
collision, one would then obtain a two-string picture, with each string stretched from the
quark of one baryon to the diquark of the other. A baryon-antibaryon collision would give
one string between a quark and an antiquark and another one between a diquark and an
antidiquark.

In a hard interaction, the number of possible string drawings are many more, and the
overall situation can become quite complex when several hard scatterings are present in
an event. Specifically, the string drawing now depends on the relative colour arrangement,
in each hadron individually, of the partons that are about to scatter. This is a subject
about which nothing is known. To make matters worse, the standard string fragmentation
description would have to be extended, to handle events where two or more valence quarks
have been kicked out of an incoming hadron by separate interactions. In particular, the
position of the baryon number would be unclear. We therefore here assume that, following
the hardest interaction, all subsequent interactions belong to one of three classes.

• Scatterings of the gg → gg type, with the two gluons in a colour-singlet state, such
that a double string is stretched directly between the two outgoing gluons, decoupled
from the rest of the system.

• Scatterings gg → gg, but colour correlations assumed to be such that each of the
gluons is connected to one of the strings ‘already’ present. Among the different pos-
sibilities of connecting the colours of the gluons, the one which minimizes the total
increase in string length is chosen. This is in contrast to the previous alternative,
which roughly corresponds to a maximization of the extra string length.

216



• Scatterings gg → qq, with the final pair again in a colour-singlet state, such that a
single string is stretched between the outgoing q and q.

By default, the three possibilities are assumed equally probable. Note that the total jet
rate is maintained at its nominal value, i.e. scatterings such as qg → qg are included in
the cross section, but are replaced by a mixture of gg and qq events for string drawing
issues. Only the hardest interaction is guaranteed to give strings coupled to the beam
remnants. One should not take this approach to colour flow too seriously — clearly it
is a simplification — but the overall picture does not tend to be very dependent on the
particular choice you make.

Since a gg → gg or qq scattering need not remain that if initial- and final-state showers
were to be included, radiation is only included for the hardest interaction. In practice,
there is no problem: except for the hardest interaction, which can be hard because of
experimental trigger conditions, it is unlikely for a parton scattering to be so hard that
radiation plays a significant rôle.

In events with multiple interactions, the beam remnant treatment is slightly modified.
First the hard scattering is generated, with its associated initial- and final-state radia-
tion, and next any additional multiple interactions. Only thereafter are beam remnants
attached to the initator partons of the hardest scattering, using the same machinery as be-
fore, except that the energy and momentum already taken away from the beam remnants
also include that of the subsequent interactions.

11.2.3 A model with varying impact parameters

Up to this point, it has been assumed that the initial state is the same for all hadron
collisions, whereas in fact each collision also is characterized by a varying impact param-
eter b. Within the classical framework of this paper, b is to be thought of as a distance
of closest approach, not as the Fourier transform of the momentum transfer. A small
b value corresponds to a large overlap between the two colliding hadrons, and hence an
enhanced probability for multiple interactions. A large b, on the other hand, corresponds
to a grazing collision, with a large probability that no parton–parton interactions at all
take place.

In order to quantify the concept of hadronic matter overlap, one may assume a spheri-
cally symmetric distribution of matter inside the hadron, ρ(x) d3x = ρ(r) d3x. For simplic-
ity, the same spatial distribution is taken to apply for all parton species and momenta.
Several different matter distributions have been tried, and are available. We will here
concentrate on the most extreme one, a double Gaussian

ρ(r) ∝ 1 − β

a31
exp

{

−r
2

a21

}

+
β

a32
exp

{

−r
2

a22

}

. (165)

This corresponds to a distribution with a small core region, of radius a2 and containing a
fraction β of the total hadronic matter, embedded in a larger hadron of radius a1. While
it is mathematically convenient to have the origin of the two Gaussians coinciding, the
physics could well correspond to having three disjoint core regions, reflecting the presence
of three valence quarks, together carrying the fraction β of the proton momentum. One
could alternatively imagine a hard hadronic core surrounded by a pion cloud. Such details
would affect e.g. the predictions for the t distribution in elastic scattering, but are not of
any consequence for the current topics. To be specific, the values β = 0.5 and a2/a1 = 0.2
have been picked as default values. It should be noted that the overall distance scale
a1 never enters in the subsequent calculations, since the inelastic, non-diffractive cross
section σnd(s) is taken from literature rather than calculated from the ρ(r).

Compared to other shapes, like a simple Gaussian, the double Gaussian tends to give
larger fluctuations, e.g. in the multiplicity distribution of minimum bias events: a collision

217



in which the two cores overlap tends to have a strongly increased activity, while ones where
they do not are rather less active. One also has a biasing effect: hard processes are more
likely when the cores overlap, thus hard scatterings are associated with an enhanced
multiple interaction rate. This provides one possible explanation for the experimental
‘pedestal effect’.

For a collision with impact parameter b, the time-integrated overlap O(b) between the
matter distributions of the colliding hadrons is given by

O(b) ∝
∫

dt
∫

d3x ρ(x, y, z) ρ(x+ b, y, z + t)

∝ (1 − β)2

2a21
exp

{

− b2

2a21

}

+
2β(1 − β)

a21 + a22
exp

{

− b2

a21 + a22

}

+
β2

2a22
exp

{

− b2

2a22

}

.(166)

The necessity to use boosted ρ(x) distributions has been circumvented by a suitable scale
transformation of the z and t coordinates.

The overlap O(b) is obviously strongly related to the eikonal Ω(b) of optical models. We
have kept a separate notation, since the physics context of the two is slightly different: Ω(b)
is based on the quantum mechanical scattering of waves in a potential, and is normally
used to describe the elastic scattering of a hadron-as-a-whole, while O(b) comes from a
purely classical picture of point-like partons distributed inside the two colliding hadrons.
Furthermore, the normalization and energy dependence is differently realized in the two
formalisms.

The larger the overlap O(b) is, the more likely it is to have interactions between partons
in the two colliding hadrons. In fact, there should be a linear relationship

〈ñ(b)〉 = kO(b) , (167)

where ñ = 0, 1, 2, . . . counts the number of interactions when two hadrons pass each
other with an impact parameter b. The constant of proportionality, k, is related to the
parton–parton cross section and hence increases with c.m. energy.

For each given impact parameter, the number of interactions is assumed to be dis-
tributed according to a Poissonian. If the matter distribution has a tail to infinity (as the
double Gaussian does), events may be obtained with arbitrarily large b values. In order
to obtain finite total cross sections, it is necessary to assume that each event contains
at least one semi-hard interaction. The probability that two hadrons, passing each other
with an impact parameter b, will actually undergo a collision is then given by

Pint(b) = 1 − exp(−〈ñ(b)〉) = 1 − exp(−kO(b)) , (168)

according to Poissonian statistics. The average number of interactions per event at impact
parameter b is now

〈n(b)〉 =
〈ñ(b)〉
Pint(b)

=
kO(b)

1 − exp(−kO(b))
, (169)

where the denominator comes from the removal of hadron pairs which pass without col-
liding, i.e. with ñ = 0.

The relationship 〈n〉 = σhard/σnd was earlier introduced for the average number of in-
teractions per non-diffractive, inelastic event. When averaged over all impact parameters,
this relation must still hold true: the introduction of variable impact parameters may give
more interactions in some events and less in others, but it does not affect either σhard or
σnd. For the former this is because the perturbative QCD calculations only depend on
the total parton flux, for the latter by construction. Integrating eq. (169) over b, one then
obtains

〈n〉 =

∫ 〈n(b)〉 Pint(b) d2b
∫ Pint(b) d2b

=

∫

kO(b) d2b
∫

(1 − exp(−kO(b))) d2b
=
σhard
σnd

. (170)

218



For O(b), σhard and σnd given, with σhard/σnd > 1, k can thus always be found (numeri-
cally) by solving the last equality.

The absolute normalization of O(b) is not interesting in itself, but only the relative
variation with impact parameter. It is therefore useful to introduce an ‘enhancement
factor’ e(b), which gauges how the interaction probability for a passage with impact
parameter b compares with the average, i.e.

〈ñ(b)〉 = kO(b) = e(b) 〈kO(b)〉 . (171)

The definition of the average 〈kO(b)〉 is a bit delicate, since the average number of inter-
actions per event is pushed up by the requirement that each event contain at least one
interaction. However, an exact meaning can be given [Sjö87a].

With the knowledge of e(b), the f(x⊥) function of the simple model generalizes to

f(x⊥, b) = e(b) f(x⊥) . (172)

The näıve generation procedure is thus to pick a b according to the phase space d2b, find
the relevant e(b) and plug in the resulting f(x⊥, b) in the formalism of the simple model.
If at least one hard interaction is generated, the event is retained, else a new b is to be
found. This algorithm would work fine for hadronic matter distributions which vanish
outside some radius, so that the d2b phase space which needs to be probed is finite. Since
this is not true for the distributions under study, it is necessary to do better.

By analogy with eq. (160), it is possible to ask what the probability is to find the
hardest scattering of an event at x⊥1. For each impact parameter separately, the proba-
bility to have an interaction at x⊥1 is given by f(x⊥, b), and this should be multiplied by
the probability that the event contains no interactions at a scale x′⊥ > x⊥1, to yield the
total probability distribution

dPhardest

d2b dx⊥1

= f(x⊥1, b) exp
{

−
∫ 1

x⊥1

f(x′⊥, b) dx′⊥

}

= e(b) f(x⊥1) exp
{

−e(b)
∫ 1

x⊥1

f(x′⊥) dx′⊥

}

. (173)

If the treatment of the exponential is deferred for a moment, the distribution in b and x⊥1

appears in factorized form, so that the two can be chosen independently of each other.
In particular, a high-p⊥ QCD scattering or any other hard scattering can be selected
with whatever kinematics desired for that process, and thereafter assigned some suitable
‘hardness’ x⊥1. With the b chosen according to e(b) d2b, the neglected exponential can now
be evaluated, and the event retained with a probability proportional to it. From the x⊥1

scale of the selected interaction, a sequence of softer x⊥i values may again be generated
as in the simple model, using the known f(x⊥, b). This sequence may be empty, i.e. the
event need not contain any further interactions.

It is interesting to understand how the algorithm above works. By selecting b according
to e(b) d2b, i.e. O(b) d2b, the primary b distribution is maximally biased towards small
impact parameters. If the first interaction is hard, by choice or by chance, the integral
of the cross section above x⊥1 is small, and the exponential close to unity. The rejection
procedure is therefore very efficient for all standard hard processes in the program — one
may even safely drop the weighting with the exponential completely. The large e(b) value
is also likely to lead to the generation of many further, softer interactions. If, on the other
hand, the first interaction is not hard, the exponential is no longer close to unity, and many
events are rejected. This pulls down the efficiency for ‘minimum bias’ event generation.
Since the exponent is proportional to e(b), a large e(b) leads to an enhanced probability
for rejection, whereas the chance of acceptance is larger with a small e(b). Among events

219



where the hardest interaction is soft, the b distribution is therefore biased towards larger
values (smaller e(b)), and there is a small probability for yet softer interactions.

To evaluate the exponential factor, the program pretabulates the integral of f(x⊥) at
the initialization stage, and further increases the Monte Carlo statistics of this tabulation
as the run proceeds. The x⊥ grid is concentrated towards small x⊥, where the integral
is large. For a selected x⊥1 value, the f(x⊥) integral is obtained by interpolation. After
multiplication by the known e(b) factor, the exponential factor may be found.

In this section, nothing has yet been assumed about the form of the dσ/dp⊥ spectrum.
Like in the impact parameter independent case, it is possible to use a sharp cut-off at
some given p⊥min value. However, now each event is required to have at least one inter-
action, whereas before events without interactions were retained and put at p⊥ = 0. It is
therefore aesthetically more appealing to assume a gradual turn-off, so that a (semi)hard
interaction can be rather soft part of the time. The matrix elements roughly diverge like
αs(p

2
⊥) dp2⊥/p

4
⊥ for p⊥ → 0. They could therefore be regularized as follows. Firstly, to

remove the 1/p4⊥ behaviour, multiply by a factor p4⊥/(p
2
⊥ +p2⊥0)

2. Secondly, replace the p2⊥
argument in αs by p2⊥ + p2⊥0 or, with the inclusion of the K factor procedure introduced
earlier, replace 0.075 p2⊥ by 0.075 (p2⊥ + p2⊥0).

With these substitutions, a continuous p⊥ spectrum is obtained, stretching from p⊥ = 0
to Ecm/2. For p⊥ ≫ p⊥0 the standard perturbative QCD cross section is recovered,
while values p⊥ ≪ p⊥0 are strongly damped. The p⊥0 scale, which now is the main free
parameter of the model, in practice comes out to be of the same order of magnitude as
the sharp cut-off p⊥min did, i.e. 1.5–2 GeV.

If gluons with large transverse wavelength decouple because of the colour-singlet nature
of hadrons, and if the transverse structure of hadrons is assumed to be energy-independent,
it is natural to assume that also p⊥min and p⊥0 are independent of the c.m. energy of the
hadron collision. For the impact parameter independent picture this works out fine, with
all events being reduced to low-p⊥ two-string ones when the c.m. energy is reduced. In the
variable impact parameter picture, the whole formalism only makes sense if σhard > σnd,
see e.g. eq. (170). Since σnd does not vanish with decreasing energy, but σhard would do
that for a fixed p⊥0, this means that p⊥0 has to be reduced when the energy is decreased
below some given threshold. The more ‘sophisticated’ model of this section therefore
makes sense at collider energies, whereas it is not well suited for applications at lower
energies.

11.3 Pile-up Events

In high luminosity colliders, there is a non-negligible probability that one single bunch
crossing may produce several separate events, so-called pile-up events. This in particular
applies to future pp colliders like LHC, but one could also consider e.g. e+e− colliders
with high rates of γγ collisions. The program therefore contains an option, currently only
applicable to hadron–hadron collisions, wherein several events may be generated and put
one after the other in the event record, to simulate the full amount of particle production
a detector might be facing.

The program needs to know the assumed luminosity per bunch–bunch crossing, ex-
pressed in mb−1. Multiplied by the cross section for pile-up processes studied, σpile, this
gives the average number of collisions per beam crossing, n. These pile-up events are
taken to be of the minimum bias type, with diffractive and elastic events included or not
(and a further subdivision of diffractive events into single and double). This means that
σpile may be either σtot, σtot−σel or σtot−σel−σdiffr. Which option to choose depends on
the detector: most detectors would not be able to observe elastic pp scattering, and there-
fore it would be superfluous to generate that kind of events. In addition, we allow for the
possibility that one interaction may be of a rare kind, selected freely by the user. There
is no option to generate two ‘rare’ events in the same crossing; normally the likelihood

220



for that kind of occurences should be small.
If only minimum bias type events are generated, i.e. if only one cross section is

involved in the problem, then the number of events in a crossing is distributed according
to a Poissonian with the average number n as calculated above. The program actually
will simulate only those beam crossings where at least one event occurs, i.e. not consider
the fraction exp(−n) of zero-event crossings. Therefore the actually generated average
number of pile-up events is 〈n〉 = n/(1 − exp(−n)).

Now instead consider the other extreme, where one event is supposed be rare, with a
cross section σrare much smaller than σpile, i.e. f ≡ σrare/σpile ≪ 1. The probability that
a bunch crossing will give i events, whereof one of the rare kind, now is

Pi = f i exp(−n)
ni

i!
= f n exp(−n)

ni−1

(i− 1)!
. (174)

The näıve Poissonian is suppressed by a factor f , since one of the events is rare rather
than of the normal kind, but enhanced by a factor i, since any one of the i events may
be the rare one. As the equality shows, the probability distribution is now a Poissonian
in i− 1: in a beam crossing which produces one rare event, the multiplicity of additional
pile-up events is distributed according to a Poissonian with average number n. The total
average number of events thus is 〈n〉 = n+ 1.

Clearly, for processes with intermediate cross sections, nσrare/σpile ≃ 1, also the aver-
age number of events will be intermediate, and it is not allowed to assume only one event
to be of the ‘rare’ type. We do not consider that kind of situations.

Kindly note that, in the current implementation, all events are supposed to be pro-
duced at the same vertex (the origin). To simulate the spatial extent of the colliding
beams, you would have to assign interaction points yourself, and then shift each event
separately by the required amount in space and time.

When the pile-up option is used, one main limitation is that event records may become
very large when several events are put one after the other, so that the space limit in the
LUJETS common block is reached. It is possible to expand the dimension of the common
block, see MSTU(4) and MSTU(5), but only up to about 20 000 entries, which might not
always be enough.

For practical reasons, the program will only allow a n up to 120. The multiplicity
distribution is truncated above 200, or when the probability for a multiplicity has fallen
below 10−6, whichever occurs sooner. Also low multiplicities with probabilities below 10−6

are truncated.

11.4 Common Block Variables

Of the routines used to generate beam remnants, multiple interactions and pile-up events,
none are intended to be used in standalone mode. The only way to regulate these aspects
is therefore via the variables in the PYPARS common block.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

Purpose: to give access to a number of status codes and parameters which regulate the
performance of Pythia. Most parameters are described in section 9.3; here
only those related to beam remnants, multiple interactions and pile-up events
are described. If the default values, below denoted by (D=. . . ), are not satis-
factory, they must in general be changed before the PYINIT call. Exceptions,
i.e. variables which can be changed for each new event, are denoted by (C).

MSTP(81) : (D=1) master switch for multiple interactions.
= 0 : off.

221



= 1 : on.
MSTP(82) : (D=1) structure of multiple interactions. For QCD processes, used down

to p⊥ values below p⊥min, it also affects the choice of structure for the one
hard/semi-hard interaction.

= 0 : simple two-string model without any hard interactions.
= 1 : multiple interactions assuming the same probability in all events, with

an abrupt p⊥min cut-off at PARP(81).
= 2 : multiple interactions assuming the same probability in all events, with a

continuous turn-off of the cross section at p⊥0 =PARP(82).
= 3 : multiple interactions assuming a varying impact parameter and a

hadronic matter overlap consistent with a Gaussian matter distribution,
with a continuous turn-off of the cross section at p⊥0 =PARP(82).

= 4 : multiple interactions assuming a varying impact parameter and a
hadronic matter overlap consistent with a double Gaussian matter dis-
tribution given by PARP(83) and PARP(84), with a continuous turn-off
of the cross section at p⊥0 =PARP(82).

Note 1: For MSTP(82)≥ 2 and CKIN(3)>PARP(82), cross sections given with
PYSTAT(1) may be somewhat too large, since (for reasons of efficiency)
the probability factor that the hard interaction is indeed the hardest in
the event is not included in the cross sections. It is included in the event
selection, however, so the events generated are correctly distributed. For
CKIN(3) values a couple of times larger than PARP(82) this ceases to be
a problem.

Note 2: The PARP(81) and, in particular, PARP(82) values are sensitive to the
choice of parton distributions, ΛQCD, etc., in the sense that a change in
the latter variables leads to a net change in the multiple interaction rate,
which has to be compensated by a retuning of PARP(81) or PARP(82) if
one wants to keep the net multiple interaction structure the same. The
default PARP(81) value is consistent with the other default values give,
i.e. CTEQ 2L parton distributions etc. When options MSTP(82)= 2–4
are used, the default PARP(82) value is to be used in conjunction with
MSTP(2)=2 and MSTP(33)=3. These switches should be set by you.

MSTP(83) : (D=100) number of Monte Carlo generated phase-space points per bin
(whereof there are 20) in the initialization (in PYMULT) of multiple interac-
tions for MSTP(82)≥ 2.

MSTP(91) : (D=1) (C) primordial k⊥ distribution in hadron. See MSTP(93) for pho-
ton.

= 0 : no primordial k⊥.
= 1 : Gaussian, width given in PARP(91), upper cut-off in PARP(93).
= 2 : exponential, width given in PARP(92), upper cut-off in PARP(93).

MSTP(92) : (D=4) (C) energy partitioning in hadron or resolved photon remnant, when
this remnant is split into two jets. (For a splitting into a hadron plus a jet, see
MSTP(94).) The energy fraction χ taken by one of the two objects, with con-
ventions as described for PARP(94) and PARP(96), is chosen according to the
different distributions below. Here cmin = 2〈mq〉/Ecm = 0.6 GeV/Ecm.

= 1 : 1 for meson or resolved photon, 2(1−χ) for baryon, i.e. simple counting
rules.

= 2 : (k + 1)(1 − χ)k, with k given by PARP(94) or PARP(96).

= 3 : proportional to (1 − χ)k/ 4

√

χ2 + c2min, with k given by PARP(94) or
PARP(96).

= 4 : proportional to (1 − χ)k/
√

χ2 + c2min, with k given by PARP(94) or
PARP(96).

222



= 5 : proportional to (1 − χ)k/(χ2 + c2min)b/2, with k given by PARP(94) or
PARP(96), and b by PARP(98).

MSTP(93) : (D=1) (C) primordial k⊥ distribution in photon, either it is one of the in-
coming particles or inside an electron.

= 0 : no primordial k⊥.
= 1 : Gaussian, width given in PARP(99), upper cut-off in PARP(100).
= 2 : exponential, width given in PARP(99), upper cut-off in PARP(100).
= 3 : power-like of the type dk2⊥/(k

2
⊥0 + k2⊥)2, with k⊥0 in PARP(99) and upper

k⊥ cut-off in PARP(100).
= 4 : power-like of the type dk2⊥/(k

2
⊥0 + k2⊥), with k⊥0 in PARP(99) and upper

k⊥ cut-off in PARP(100).
= 5 : power-like of the type dk2⊥/(k

2
⊥0 + k2⊥), with k⊥0 in PARP(99) and upper

k⊥ cut-off given by the p⊥ of the hard process or by PARP(100), whichever
is smaller.

Note: for options 1 and 2 the PARP(100) value is of minor importance, once
PARP(100)≫PARP(99). However, options 3 and 4 correspond to distri-
butions with infinite 〈k2⊥〉 if the k⊥ spectrum is not cut off, and therefore
the PARP(100) value is as important for the overall distribution as is
PARP(99).

MSTP(94) : (D=2) (C) energy partitioning in hadron or resolved photon remnant, when
this remnant is split into a hadron plus a remainder-jet. The energy fraction
chi is taken by one of the two objects, with conventions as described below or
for PARP(95) and PARP(97).

= 1 : 1 for meson or resolved photon, 2(1−χ) for baryon, i.e. simple counting
rules.

= 2 : (k + 1)(1 − χ)k, with k given by PARP(95) or PARP(97).
= 3 : the χ of the hadron is selected according to the normal fragmentation

function used for the hadron in jet fragmentation, see MSTJ(11). The
possibility of a changed fragmentation function shape in diquark frag-
mentation (see PARJ(45)) is not included.

= 4 : as =3, but the shape is changed as allowed in diquark fragmentation (see
PARJ(45)); this change is here also allowed for meson production. (This
option is not so natural for mesons, but has been added to provide the
same amount of freedom as for baryons).

MSTP(131) : (D=0) master switch for pile-up events, i.e. several independent hadron–
hadron interactions generated in the same bunch–bunch crossing, with the
events following one after the other in the event record.

= 0 : off, i.e. only one event is generated at a time.
= 1 : on, i.e. several events are allowed in the same event record. Information

on the processes generated may be found in MSTI(41) - MSTI(50).
MSTP(132) : (D=4) the processes that are switched on for pile-up events. The first event

may be set up completely arbitrarily, using the switches in the PYSUBS common
block, while all the subsequent events have to be of one of the ‘inclusive’
processes which dominate the cross section, according to the options below. It
is thus not possible to generate two rare events in the pile-up option.

= 1 : low-p⊥ processes (ISUB = 95) only. The low-p⊥ model actually used,
both in the hard event and in the pile-up events, is the one set by
MSTP(81) etc. This means that implicitly also high-p⊥ jets can be gen-
erated in the pile-up events.

= 2 : low-p⊥ + double diffractive processes (ISUB = 95 and 94).
= 3 : low-p⊥ + double diffractive + single diffractive processes (ISUB = 95,

94, 93 and 92).
= 4 : low-p⊥ + double diffractive + single diffractive + elastic processes, to-

223



gether corresponding to the full hadron–hadron cross section (ISUB =
95, 94, 93, 92 and 91).

MSTP(133) : (D=0) multiplicity distribution of pile-up events.
= 0 : selected by user, before each PYEVNT call, by giving the MSTP(134) value.
= 1 : a Poissonian multiplicity distribution in the total number of pile-up

events. This is the relevant distribution if the switches set for the
first event in PYSUBS give the same subprocesses as are implied by
MSTP(132). In that case the mean number of events per beam cross-
ing is n = σpile×PARP(31), where σpile is the sum of the cross section for
allowed processes. Since bunch crossing which do not give any events at
all (probability exp(−n)) are not simulated, the actual average number
per PYEVNT call is 〈n〉 = n/(1 − exp(−n)).

= 2 : a biased distribution, as is relevant when one of the events to be generated
is assumed to belong to an event class with a cross section much smaller
than the total hadronic cross section. If σrare is the cross section for this
rare process (or the sum of the cross sections of several rare processes)
and σpile the cross section for the processes allowed by MSTP(132), then
define n = σpile×PARP(131) and f = σrare/σpile. The probability that a
bunch crossing will give i events is then Pi = f i exp(−n)ni/i!, i.e. the
näıve Poissonian is suppressed by a factor f since one of the events will
be rare rather than frequent, but enhanced by a factor i since any of the
i events may be the rare one. Only beam crossings which give at least
one event of the required rare type are simulated, and the distribution
above normalized accordingly.

Note: for practical reasons, it is required that n < 120, i.e. that an aver-
age beam crossing does not contain more than 120 pile-up events. The
multiplicity distribution is truncated above 200, or when the probability
for a multiplicity has fallen below 10−6, whichever occurs sooner. Also
low multiplicities with probabilities below 10−6 are truncated. See also
PARI(91) - PARI(93).

MSTP(134) : (D=1) a user selected multiplicity, i.e. total number of pile-up events, to
be generated in the next PYEVNT call. May be reset for each new event, but
must be in the range 1 ≤MSTP(134)≤ 200.

PARP(81) : (D=1.40 GeV/c) effective minimum transverse momentum p⊥min for multiple
interactions with MSTP(82)=1.

PARP(82) : (D=1.55 GeV/c) regularization scale p⊥0 of the transverse momentum spec-
trum for multiple interactions with MSTP(82)≥ 2.

PARP(83), PARP(84) : (D=0.5, 0.2) parameters of an assumed double Gaussian matter
distribution inside the colliding hadrons for MSTP(82)=4, of the form given in
eq. (165), i.e. with a core of radius PARP(84) of the main radius and containing
a fraction PARP(83) of the total hadronic matter.

PARP(85) : (D=0.33) probability that an additional interaction in the multiple inter-
action formalism gives two gluons, with colour connections to ‘nearest neigh-
bours’ in momentum space.

PARP(86) : (D=0.66) probability that an additional interaction in the multiple interac-
tion formalism gives two gluons, either as described in PARP(85) or as a closed
gluon loop. Remaining fraction is supposed to consist of quark–antiquark
pairs.

PARP(87), PARP(88) : (D=0.7, 0.5) in order to account for an assumed dominance of
valence quarks at low transverse momentum scales, a probability is introduced
that a gg-scattering according to näıve cross section is replaced by a qq one;
this is used only for MSTP(82)≥ 2. The probability is parametrized as P =

224



a(1 − (p2⊥/(p
2
⊥ + b2)2), where a =PARP(87) and b =PARP(88)×PARP(82).

PARP(91) : (D=0.44 GeV/c) (C) width of Gaussian primordial k⊥ distribution inside
hadron for MSTP(91)=1, i.e. exp(−k2⊥/σ2) k⊥ dk⊥ with σ =PARP(91) and
〈k2⊥〉 =PARP(91)2.

PARP(92) : (D=0.20 GeV/c) (C) width parameter of exponential primordial k⊥ distribu-
tion inside hadron for MSTP(91)=2, i.e. exp(−k⊥/σ) k⊥ dk⊥ with σ =PARP(92)

and 〈k2⊥〉 = 6×PARP(92)2. Thus one should put PARP(92)≈PARP(91)/
√

6 to
have continuity with the option above.

PARP(93) : (D=2. GeV/c) (C) upper cut-off for primordial k⊥ distribution inside
hadron.

PARP(94) : (D=1.) (C) for MSTP(92)≥ 2 this gives the value of the parameter k for
the case when a meson or resolved photon remnant is split into two fragments
(which is which is chosen at random).

PARP(95) : (D=0.) (C) for MSTP(94)=2 this gives the value of the parameter k for the
case when a meson or resolved photon remnant is split into a meson and a
spectator fragment jet, with χ giving the energy fraction taken by the meson.

PARP(96) : (D=3.) (C) for MSTP(92)≥ 2 this gives the value of the parameter k for the
case when a nucleon remnant is split into a diquark and a quark fragment,
with χ giving the energy fraction taken by the quark jet.

PARP(97) : (D=1.) (C) for MSTP(94)=2 this gives the value of the parameter k for the
case when a nucleon remnant is split into a baryon and a quark jet or a meson
and a diquark jet, with χ giving the energy fraction taken by the quark jet or
meson, respectively.

PARP(98) : (D=0.75) (C) for MSTP(92)=5 this gives the power of an assumed basic 1/χb

behaviour in the splitting distribution, with b =PARP(98).
PARP(99) : (D=0.44 GeV/c) (C) width parameter of primordial k⊥ distribution inside

photon; exact meaning depends on MSTP(93) value chosen (cf. PARP(91) and
PARP(92) above).

PARP(100) : (D=2. GeV/c) (C) upper cut-off for primordial k⊥ distribution inside pho-
ton.

PARP(131) : (D=0.01 mb−1) in the pile-up events scenario, PARP(131) gives the assumed
luminosity per bunch–bunch crossing, i.e. if a subprocess has a cross section
σ, the average number of events of this type per bunch–bunch crossing is
n = σ×PARP(131). PARP(131) may be obtained by dividing the integrated
luminosity over a given time (1 s, say) by the number of bunch–bunch crossings
that this corresponds to. Since the program will not generate more than 200
pile-up events, the initialization procedure will crash if n is above 120.

225



12 Fragmentation

The main fragmentation option in Jetset/Pythia is the Lund string scheme, but in-
dependent fragmentation options are also available. These latter options should not be
taken too seriously, since we know that independent fragmentation does not provide a
consistent alternative, but occasionally one may like to compare string fragmentation
with something else.

The subsequent four subsections give further details; the first one on flavour selection,
which is common to the two approaches, the second on string fragmentation, the third
on independent fragmentation, while the fourth and final contains information on a few
other minor issues.

The Lund fragmentation model is described in [And83], where all the basic ideas are
presented and earlier papers [And79, And80, And82, And82a] summarized. The details
given there on how a multiparton jet system is allowed to fragment are out of date,
however, and for this one should turn to [Sjö84]. Also the ‘popcorn’ baryon production
mechanism is not covered, see [And85]. Reviews of fragmentation models in general may
be found in [Sjö88, Sjö89].

12.1 Flavour Selection

In either string or independent fragmentation, an iterative approach is used to describe
the fragmentation process. Given an initial quark q = q0, it is assumed that a new q1q1

pair may be created, such that a meson q0q1 is formed, and a q1 is left behind. This q1

may at a later stage pair off with a q2, and so on. What need be given is thus the relative
probabilities to produce the various possible qiqi pairs, uu, dd, ss, etc., and the relative
probilities that a given qi−1qi quark pair combination forms a specific meson, e.g. for uu
either π+, ρ+ or some higher state.

In Jetset, it is assumed that the two aspects can be factorized, i.e. that it is possible
first to select a qiqi pair, without any reference to allowed physical meson states, and
that, once the qi−1qi flavour combination is given, it can be assigned to a given meson
state with total probability unity.

12.1.1 Quark flavours and transverse momenta

In order to generate the quark–antiquark pairs qiqi which lead to string breakups, the
Lund model invokes the idea of quantum mechanical tunnelling, as follows. If the qi and
qi have no (common) mass or transverse momentum, the pair can classically be created at
one point and then be pulled apart by the field. If the quarks have mass and/or transverse
momentum, however, the qi and qi must classically be produced at a certain distance so
that the field energy between them can be transformed into the sum of the two transverse
masses m⊥. Quantum mechanically, the quarks may be created in one point (so as to keep
the concept of local flavour conservation) and then tunnel out to the classically allowed
region. In terms of a common transverse mass m⊥ of the qi and the qi, the tunnelling
probability is given by

exp

(

−πm
2
⊥

κ

)

= exp

(

−πm
2

κ

)

exp

(

−πp
2
⊥

κ

)

. (175)

The factorization of the transverse momentum and the mass terms leads to a flavour-
independent Gaussian spectrum for the px and py components of qiqi pairs. Since the
string is assumed to have no transverse excitations, this p⊥ is locally compensated between
the quark and the antiquark of the pair. The p⊥ of a meson qi−1qi is given by the vector
sum of the p⊥:s of the qi−1 and qi constituents, which implies Gaussians in px and py with

226



a width
√

2 that of the quarks themselves. The assumption of a Gaussian shape may be
a good first approximation, but there remains the possibility of non-Gaussian tails, that
can be important in some situations.

In a perturbative QCD framework, a hard scattering is associated with gluon radiation,
and further contributions to what is näıvely called fragmentation p⊥ comes from unre-
solved radiation. This is used as an explanation why the experimental 〈p⊥〉 is somewhat
higher than obtained with the formula above.

The formula also implies a suppression of heavy quark production u : d : s : c ≈
1 : 1 : 0.3 : 10−11. Charm and heavier quarks are hence not expected to be produced in the
soft fragmentation. Since the predicted flavour suppressions are in terms of quark masses,
which are notoriously difficult to assign (should it be current algebra, or constituent, or
maybe something in between?), the suppression of ss production is left as a free parameter
in the program: uu : dd : ss = 1 : 1 : γs, where by default γs = 0.3. At least qualitatively,
the experimental value agrees with theoretical prejudice. There is no production at all of
heavier flavours in the fragmentation process, but only as part of the shower evolution.

12.1.2 Meson production

Once the flavours qi−1 and qi have been selected, a choice is made between the possible
multiplets. The relative composition of different multiplets is not given from first princi-
ples, but must depend on the details of the fragmentation process. To some approximation
one would expect a negligible fraction of states with radial excitations or non-vanishing
orbital angular momentum. Spin counting arguments would then suggest a 3:1 mixture
between the lowest lying vector and pseudoscalar multiplets. Wave function overlap ar-
guments lead to a relative enhancement of the lighter pseudoscalar states, which is more
pronounced the larger the mass splitting is [And82a].

In the program, six meson multiplets are included. If the nonrelativistic classification
scheme is used, i.e. mesons are assigned a valence quark spin S and an internal orbital
angular momentum L, with the physical spin s denoted J , J = L+S, then the multiplets
are:

• L = 0, S = 0, J = 0: the ordinary pseudoscalar meson multiplet;
• L = 0, S = 1, J = 1: the ordinary vector meson multiplet;
• L = 1, S = 0, J = 1: an axial vector meson multiplet;
• L = 1, S = 1, J = 0: the scalar meson multiplet;
• L = 1, S = 1, J = 1: another axial vector meson multiplet; and
• L = 1, S = 1, J = 2: the tensor meson multiplet.

Each multiplet has the full four-generation setup of 8× 8 states included in the program,
although many could never actually be produced. Some simplifications have been made;
thus there is no mixing included between the two axial vector multiplets.

In the program, the spin S is first chosen to be either 0 or 1. This is done according to
parametrized relative probabilities, where the probability for spin 1 by default is taken to
be 0.5 for a meson consisting only of u and d quark, 0.6 for one which contains s as well,
and 0.75 for quarks with c or heavier quark, in accordance with the deliberations above.

By default, it is assumed that L = 0, such that only pseudoscalar and vector mesons
are produced. For inclusion of L = 1 production, four parameters can be used, one to
give the probability that a S = 0 state also has L = 1, the other three for the probability
that a S = 1 state has L = 1 and J either 0, 1, or 2.

For the flavour-diagonal meson states uu, dd and ss, it is also necessary to include
mixing into the physical mesons. This is done according to a parametrization, based on
the mixing angles given in the Review of Particle Properties [PDG88]. In particular, the

227



default choices correspond to

η =
1

2
(uu + dd) − 1√

2
ss ;

η′ =
1

2
(uu + dd) +

1√
2

ss ;

ω =
1√
2

(uu + dd)

φ = ss . (176)

In the π0 − η − η′ system, no account is therefore taken of the difference in masses, an
approximation which seems to lead to an overestimate of η′ rates [ALE92]. Recently,
parameters have been introduced to allow an additional ‘brute force’ suppression of η and
η′ states.

12.1.3 Baryon production

Baryon production may, in its simplest form, be obtained by assuming that any flavour
qi given above could represent either a quark or an antidiquark in a colour triplet state.
Then the same basic machinery can be run through as above, supplemented with the
probability to produce various diquark pairs. In principle, there is one parameter for each
diquark, but if tunnelling is still assumed to give an effective description, mass relations
can be used to reduce the effective number of parameters. There are three main ones
appearing in the program:

• the relative probability to pick a qq diquark rather than a q;
• the extra suppression associated with a diquark containing a strange quark (over

and above the ordinary s/u suppression factor γs); and
• the suppression of spin 1 diquarks relative to spin 0 ones (apart from the factor of

3 enhancement of the former based on counting the number of spin states).
The extra strange diquark suppression factor comes about since what appears in the
exponent of the tunnelling formula is m2 and not m, so that the diquark and the strange
quark suppressions do not factorize.

Only two baryon multiplets are included, i.e. there are no L = 1 excited states. The
two multiplets are:

• S = J = 1/2: the ‘octet’ multiplet of SU(3) (in the full four-generation scenario in
the program 168 states are available);

• S = J = 3/2: the ‘decuplet’ multiplet of SU(3) (120 states in the program).
In contrast to the meson case, different flavour combinations have different numbers of
states available: for uuu only ∆++, whereas uds may become either Λ, Σ0 or Σ∗0.

An important constraint is that a baryon is a symmetric state of three quarks, ne-
glecting the colour degree of freedom. When a diquark and a quark are joined to form
a baryon, the combination is therefore weighted with the probability that they form a
symmetric three-quark state. The program implementation of this principle is to first
select a diquark at random, with the strangeness and spin 1 suppression factors above
included, but then to accept the selected diquark with a weight proportional to the num-
ber of states available for the quark-diquark combination. This means that, were it not
for the tunnelling suppression factors, all states in the SU(6) (flavour SU(3) times spin
SU(2)) 56-multiplet would become equally populated. Of course also heavier baryons
may come from the fragmentation of e.g. c quark jets, but although the particle clas-
sification scheme used in the program is SU(16), i.e. with eight flavours, all possible
quark-diquark combinations can be related to SU(6) by symmetry arguments. As in the
case for mesons, one could imagine an explicit further suppression of the heavier spin 3/2

228



baryons. We do not expect it to be an important effect, since baryon mass splittings are
much smaller than in the meson case.

In case of rejection, a new diquark is selected and tested, etc. A corresponding pro-
cedure is used for the quark selection when a diquark has already been formed in the
previous step. Properly speaking both the quark and the diquark flavour should be cho-
sen anew. This would become a tedious process, since also the hadron produced in the
step before would have to be rejected. In practice only the last produced pair, be that
the quark or diquark one, is rejected. The error introduced by this is small.

A more general framework for baryon production is the ‘popcorn’ one [And85], in
which diquarks as such are never produced, but rather baryons appear from the successive
production of several qiqi pairs. The picture is the following. Assume that the original q
is red r and the q is r. Normally a new q1q1 pair produced in the field would also be rr,
so that the q1 is pulled towards the q end and vice versa, and two separate colour-singlet
systems qq1 and q1q are formed. Occasionally, the q1q1 pair may be e.g. gg (g = green),
in which case there is no net colour charge acting on either q1 or q1. Therefore, the pair
cannot gain energy from the field, and normally would exist only as a fluctuation. If q1

moves towards q and q1 towards q, the net field remaining between q1 and q1 is bb (b =
blue; g+r = b if only colour triplets are assumed). In this central field, an additional q2q2

pair can be created, where q2 now is pulled towards qq1 and q2 towards qq1, with no net
colour field between q2 and q2. If this is all that happens, the baryon B will be made up
out of q1, q2 and some q4 produced between q and q1, and B of q1, q2 and some q5, i.e.
the B and B will be nearest neighbours in rank and share two quark pairs. Specifically,
q1 will gain energy from q2 in order to end up on mass shell, and the tunnelling formula
for an effective q1q2 diquark is recovered.

Part of the time, several bb colour pair productions may take place between the q1 and
q1, however. With two production vertices q2q2 and q3q3, a central meson q2q3 may be
formed, surrounded by a baryon q4q1q2 and an antibaryon q3q1q5. We call this a BMB
configuration to distinguish it from the q4q1q2 + q2q1q5 BB configuration above. For
BMB the B and B only share one quark–antiquark pair, as opposed to two for BB con-
figurations. The relative probability for a BMB configuration is given by the uncertainty
relation suppression for having the q1 and q1 sufficiently far apart that a meson may
be formed in between. Strictly speaking, also configurations like BMMB, BMMMB,
etc. should be possible, but the probability for this is small in our model. Further, since
larger masses corresponds to longer string pieces, the production of pseudoscalar mesons
is favoured over that of vector ones. If only BB and BMB states are included, and if the
probability for having a vector meson M is not suppressed extra, two partly compensat-
ing errors are made (since a vector meson typically decays into two or more pseudoscalar
ones).

In total, the flavour iteration procedure therefore contains the following possible sub-
processes (plus, of course, their charge conjugates):

• q1 → q2 + (q1q2) meson;
• q1 → q2q3 + (q1q2q3) baryon;
• q1q2 → q3 + (q1q2q3) baryon;
• q1q2 → q1q3 + (q2q3) meson;

with the constraint that the last process cannot be iterated to obtain several mesons in
between the baryon and the antibaryon.

Unfortunately, the resulting baryon production model has a fair number of parame-
ters, which would be given by the model only if quark and diquark masses were known
unambiguously. We have already mentioned the s/u ratio and the qq/q one; the latter
has to be increased from 0.09 to 0.10 for the popcorn model, since the total number of
possible baryon production configurations is lower in this case (the particle produced be-
tween the B and B is constrained to be a meson). For the popcorn model, exactly the

229



same parameters as already found in the diquark model are needed to describe the BB
configurations. For BMB configurations, the square root of a suppression factor should
be applied if the factor is relevant only for one of the B and B, e.g. if the B is formed
with a spin 1 ‘diquark’ q1q2 but the B with a spin 0 diquark q1q3. Additional parameters
include the relative probability for BMB configurations, which is assumed to be roughly
0.5 (with the remaining 0.5 being BB), a suppression factor for having a strange meson M
between the B and B (as opposed to having a lighter nonstrange one) and a suppression
factor for having a ss pair (rather than a uu one) shared between the B and B of a BMB
configuration. The default parameter values are based on a combination of experimental
observation and internal model predictions.

In the diquark model, a diquark is expected to have exactly the same transverse mo-
mentum distribution as a quark. For BMB configurations the situation is somewhat more
unclear, but we have checked that various possibilities give very similar results. The op-
tion implemented in the program is to assume no transverse momentum at all for the q1q1

pair shared by the B and B, with all other pairs having the standard Gaussian spectrum
with local momentum conservation. This means that the B and B p⊥:s are uncorrelated
in a BMB configuration and (partially) anticorrelated in the BB configurations, with the
same mean transverse momentum for primary baryons as for primary mesons.

Occasionally, the endpoint of a string is not a single parton, but a diquark or antidi-
quark, e.g. when a quark has been kicked out of a proton beam particle. One could
consider fairly complex schemes for the resulting fragmentation. One such [And81] was
available in Jetset version 6 but is no longer found in version 7. Instead the same basic
scheme is used as for diquark pair production above. Thus a qq diquark endpoint is let
to fragment just as would a qq produced in the field behind a matching qq flavour, i.e.
either the two quarks of the diquark enter into the same leading baryon, or else a meson
is first produced, containing one of the quarks, while the other is contained in the baryon
produced in the next step.

12.2 String Fragmentation

An iterative procedure can also be used for other aspects of the fragmentation. This is
possible because, in the string picture, the various points where the string break by the
production of qq pairs are causally disconnected. Whereas the space–time picture in the
c.m. frame is such that slow particles (in the middle of the system) are formed first, this
ordering is Lorentz frame dependent and hence irrelevant. One may therefore make the
convenient choice of starting an iteration process at the ends of the string and proceeding
towards the middle.

The string fragmentation scheme is rather complicated for a generic multiparton state.
In order to simplify the discussion, we will therefore start with the simple qq process, and
only later survey the complications that appear when additional gluons are present. (This
distinction is made for pedagogical reasons, in the program there is only one general-
purpose algorithm).

12.2.1 Fragmentation functions

Assume a qq jet system, in its c.m. frame, with the quark moving out in the +z direction
and the antiquark in the −z one. We have discussed how it is possible to start the flavour
iteration from the q end, i.e. pick a q1q1 pair, form a hadron qq1, etc. It has also been
noted that the tunnelling mechanism is assumed to give a transverse momentum p⊥ for
each new qiqi pair created, with the p⊥ locally compensated between the qi and the qi
member of the pair, and with a Gaussian distribution in px and py separately. In the
program, this is regulated by one parameter, which gives the root-mean-square p⊥ of a

230



quark. Hadron transverse momenta are obtained as the sum of p⊥:s of the constituent qi
and qi+1, where a diquark is considered just as a single quark.

What remains to be determined is the energy and longitudinal momentum of the
hadron. In fact, only one variable can be selected independently, since the momentum of
the hadron is constrained by the already determined hadron transverse mass m⊥,

(E + pz)(E − pz) = E2 − p2z = m2
⊥ = m2 + p2x + p2y . (177)

In an iteration from the quark end, one is led (by the desire for longitudinal boost invari-
ance and other considerations) to select the z variable as the fraction of E + pz taken by
the hadron, out of the available E + pz. As hadrons are split off, the E + pz (and E − pz)
left for subsequent steps is reduced accordingly:

(E + pz)new = (1 − z)(E + pz)old ,

(E − pz)new = (E − pz)old −
m2

⊥

z(E + pz)old
. (178)

The fragmentation function f(z), which expresses the probability that a given z is
picked, could in principle be arbitrary — indeed, several such choices can be used inside
the program, see below.

If one, in addition, requires that the fragmentation process as a whole should look
the same, irrespectively of whether the iterative procedure is performed from the q end
or the q one, ‘left–right symmetry’, the choice is essentially unique [And83a]: the ‘Lund
symmetric fragmentation function’,

f(z) ∝ 1

z
zaα

(

1 − z

z

)aβ

exp

(

−bm
2
⊥

z

)

. (179)

There is one separate parameter a for each flavour, with the index α corresponding to the
‘old’ flavour in the iteration process, and β to the ‘new’ flavour. It is customary to put
all aα,β the same, and thus arrive at the simplified expression

f(z) ∝ z−1(1 − z)a exp(−bm2
⊥/z) . (180)

In the program, only two separate a values can be given, that for quark pair production
and that for diquark one; by default the two are taken to be the same. In addition, there
is the b parameter, which is universal.

It should be noted that the explicit mass dependence in f(z) implies a harder frag-
mentation function for heavier hadrons; the asymptotic behaviour of the mean z value for
heavy hadrons is

〈z〉 ≈ 1 − 1 + a

bm2
⊥

. (181)

Unfortunately it seems this predicts a somewhat harder spectrum for B mesons than
observed in data.

For future reference we note that the derivation of f(z) as a by-product also gives the
probability distribution in proper time τ of qiqi breakup vertices. In terms of Γ = (κτ)2,
this distribution is

P(Γ) dΓ ∝ Γa exp(−bΓ) dΓ , (182)

with the same a and b as above.
Many different other fragmentation functions have been proposed, and a few are avail-

able as options in the program.

231



• The Field-Feynman parametrization [Fie78],

f(z) = 1 − a+ 3a(1 − z)2 , (183)

with default value a = 0.77, is intended to be used only for ordinary hadrons made
out of u, d and s quarks.

• Since there are indications that the shape above is too strongly peaked at z = 0,
instead a shape like

f(z) = (1 + c)(1 − z)c (184)

may be used.
• Charm and bottom data clearly indicate the need for a harder fragmentation func-

tion for heavy flavours. The best known of these is the Peterson et al. formula
[Pet83]

f(z) ∝ 1

z
(

1 − 1
z − ǫQ

1 − z

)2 , (185)

where ǫQ is a free parameter, expected to scale between flavours like ǫQ ∝ 1/m2
Q.

• As a crude alternative, that is also peaked at z = 1, one may use

f(z) = (1 + c)zc . (186)

• Bowler [Bow81] has shown, within the framework of the Artru–Mennessier model
[Art74], that a massive endpoint quark with mass mQ leads to a modification of
the symmetric fragmentation function, due to the fact that the string area swept
out is reduced for massive endpoint quarks, compared with massless ditto. The
Artru–Mennessier model in principle only applies for clusters with a continuous
mass spectrum, and does not allow an a term (i.e. a ≡ 0); however, it has been
shown [Mor89] that, for a discrete mass spectrum, one may still retain an effective a
term. In the program an approximate form with an a term has therefore been used:

f(z) ∝ 1

z1+rQbm
2
Q

zaα
(

1 − z

z

)aβ

exp

(

−bm
2
⊥

z

)

. (187)

In principle the prediction is that rQ ≡ 1, but so as to be able to extrapolate
smoothly between this form and the Lund symmetric one, it is possible to pick rQ
separately for c, b and t hadrons.

12.2.2 Joining the jets

The f(z) formula above is only valid, for the breakup of a jet system into a hadron plus
a remainder-system, when the remainder mass is large. If the fragmentation algorithm
were to be used all the way from the q end to the q one, the mass of the last hadron
to be formed at the q end would be completely constrained by energy and momentum
conservation, and could not be on its mass shell. In theory it is known how to take such
effects into account, but the resulting formulae are wholly unsuitable for Monte Carlo
implementation.

The practical solution to this problem is to carry out the fragmentation both from the
q and the q end, such that for each new step in the fragmentation process, a random choice
is made as to from what side the step is to be taken. If the step is on the q side, then z
is interpreted as fraction of the remaining E + pz of the system, while z is interpreted as
E− pz fraction for a step from the q end. At some point, when the remaining mass of the
system has dropped below a given value, it is decided that the next breakup will produce
two final hadrons, rather than a hadron and a remainder-system. Since the momenta of

232



two hadrons are to be selected, rather than that of one only, there are enough degrees of
freedom to have both total energy and total momentum completely conserved.

The mass at which the normal fragmentation process is stopped and the final two
hadrons formed is not actually a free parameter of the model: it is given by the require-
ment that the string everywhere looks the same, i.e. that the rapidity spacing of the final
two hadrons, internally and with respect to surrounding hadrons, is the same as elsewhere
in the fragmentation process. The stopping mass, for a given setup of fragmentation pa-
rameters, has therefore been determined in separate runs. If the fragmentation parameters
are changed, some retuning should be done but, in practice, reasonable changes can be
made without any special arrangements.

Consider a fragmentation process which has already split off a number of hadrons from
the q and q sides, leaving behind a a qiqj remainder system. When this system breaks by
the production of a qnqn pair, it is decided to make this pair the final one, and produce
the last two hadrons qiqn and qnqj, if

((E + pz)(E − pz))remaining = W 2
rem < W 2

min . (188)

The Wmin is calculated according to

Wmin = (Wmin0 +mqi +mqj + kmqn) (1 ± δ) . (189)

Here Wmin0 is the main free parameter, typically around 1 GeV, determined to give a flat
rapidity plateau (separately for each particle species), while the default k = 2 corresponds
to the mass of the final pair being taken fully into account. Smaller values may also be
considered, depending on what criteria are used to define the ‘best’ joining of the q and
the q chain. The factor 1±δ, by default evenly distributed between 0.8 and 1.2, signifies a
smearing of the Wmin value, to avoid an abrupt and unphysical cut-off in the invariant mass
distribution of the final two hadrons. Still, this distribution will be somewhat different
from that of any two adjacent hadrons elsewhere. Due to the cut there will be no tail up
to very high masses; there are also fewer events close to the lower limit, where the two
hadrons are formed at rest with respect to each other.

This procedure does not work all that well for heavy flavours, since it does not fully
take into account the harder fragmentation function encountered. Therefore, in addition
to the check above, one further test is performed for charm and heavier flavours, as follows.
If the check above allows more particle production, a heavy hadron qiqn is formed, leaving
a remainder qnqj. The range of allowed z values, i.e. the fraction of remaining E + pz
that may be taken by the qiqn hadron, is constrained away from 0 and 1 by the qiqn mass
and minimal mass of the qnqj system. The limits of the physical z range is obtained when
the qnqj system only consists of one single particle, which then has a well-determined

transverse mass m
(0)
⊥ . From the z value obtained with the infinite-energy fragmentation

function formulae, a rescaled z′ value between these limits is given by

z′ =
1

2















1 +
m2

⊥in

W 2
rem

− m
(0)2
⊥nj

W 2
rem

+

√

√

√

√

√



1 − m2
⊥in

W 2
rem

− m
(0)2
⊥nj

W 2
rem





2

− 4
m2

⊥in

W 2
rem

m
(0)2
⊥nj

W 2
rem

(2z − 1)















. (190)

From the z′ value, the actual transverse mass m⊥nj ≥ m
(0)
⊥nj of the qnqj system may be

calculated. For more than one particle to be produced out of this system, the requirement

m2
⊥nj = (1 − z′)

(

W 2
rem − m2

⊥in

z′

)

> (mqj +Wmin0)
2 + p2⊥ (191)

has to be fulfilled. If not, the qnqj system is assumed to collapse to one single particle.

233



The consequence of the procedure above is that, the more the infinite energy fragmen-
tation function f(z) is peaked close to z = 1, the more likely it is that only two particles
are produced. In particular, for tt systems, where very large 〈z〉 values are predicted, the
expectation is that two particle final states will dominate far above the threshold region.
The procedure above has been constructed so that the two particle fraction can be calcu-
lated directly from the shape of f(z) and the (approximate) mass spectrum, but it is not
unique. For the symmetric Lund fragmentation function, a number of alternatives tried
all give essentially the same result, whereas other fragmentation functions may be more
sensitive to details.

Assume now that two final hadrons have been picked. If the transverse mass of the
remainder-system is smaller than the sum of transverse masses of the final two hadrons,
the whole fragmentation chain is rejected, and started over from the q and q endpoints.
This does not introduce any significant bias, since the decision to reject a fragmentation
chain only depends on what happens in the very last step, specifically that the next-to-last
step took away too much energy, and not on what happened in the steps before that.

If, on the other hand, the remainder-mass is large enough, there are two kinematically
allowed solutions for the final two hadrons: the two mirror images in the rest frame
of the remainder-system. Also the choice between these two solutions is given by the
consistency requirements, and can be derived from studies of infinite energy jets. The
probability for the reverse ordering, i.e. where the rapidity and the flavour orderings
disagree, is parametrized by

Preverse =
1

2

(

m⊥in +m⊥nj

Wrem

)d

. (192)

For symmetric fragmentation, the ordering is expected to be increasingly strict when the
particles involved are more massive. In the program it is therefore assumed that d is a
function of the masses, d = d0(m⊥in +m⊥nj)

2, where d0 is a free parameter.
When baryon production is included, some particular problems arise. First consider

BB situations. In the näıve iterative scheme, away from the middle of the event, one
already has a quark and is to chose a matching diquark flavour or the other way around.
In either case the choice of the new flavour can be done taking into account the number of
SU(6) states available for the quark-diquark combination. For a case where the final qnqn
breakup is an antidiquark-diquark one, the weights for forming qiqn and qnqi enter at the
same time, however. We do not know how to handle this problem; what is done is to use
weights as usual for the qiqn baryon to select qn, but then consider qnqi as given (or the
other way around with equal probability). If qnqi turns out to be an antidiquark-diquark
combination, the whole fragmentation chain is rejected, since we do not know how to form
corresponding hadrons. A similar problem arises, and is solved in the same spirit, for a
BMB configuration in which the B (or B) was chosen as third-last particle. When only
two particles remain to be generated, it is obviously too late to consider having a BMB
configuration. This is as it should, however, as can be found by looking at all possible
ways a hadron of given rank can be a baryon.

While some practical compromises have to be accepted in the joining procedure, the
fact that the joining takes place in different parts of the string in different events means
that, in the end, essentially no visible effects remain.

12.2.3 String motion and infrared stability

We have now discussed the SF scheme for the fragmentation of a simple qq jet system.
In order to understand how these results generalize to arbitrary jet systems, it is first
necessary to understand the string motion for the case when no fragmentation takes
place. In the following we will assume that quarks as well as gluons are massless, but all
arguments can be generalized to massive quarks without too much problem.

234



For a qq event viewed in the c.m. frame, with total energy W , the partons start
moving out back-to-back, carrying half the energy each. As they move apart, energy
and momentum is lost to the string. When the partons are a distance W/κ apart, all
the energy is stored in the string. The partons now turn around and come together
again with the original momentum vectors reversed. This corresponds to half a period
of the full string motion; the second half the process is repeated, mirror-imaged. For
further generalizations to multiparton systems, a convenient description of the energy
and momentum flow is given in terms of ‘genes’ [Art83], infinitesimal packets of the four-
momentum given up by the partons to the string. Genes with pz = E, emitted from the q
end in the initial stages of the string motion above, will move in the q direction with the
speed of light, whereas genes with pz = −E given up by the q will move in the q direction.
Thus, in this simple case, the direction of motion for a gene is just opposite to that of
a free particle with the same four-momentum. This is due to the string tension. If the
system is not viewed in the c.m. frame, the rules are that any parton gives up genes with
four-momentum proportional to its own four-momentum, but the direction of motion of
any gene is given by the momentum direction of the genes it meets, i.e. that were emitted
by the parton at the other end of that particular string piece. When the q has lost all
its energy, the q genes, which before could not catch up with q, start impinging on it,
and the q is pulled back, accreting q genes in the process. When the q and q meet in the
origin again, they have completely traded genes with respect to the initial situation.

A 3-jet qqg event initially corresponds to having a string piece stretched between q and
g and another between g and q. Gluon four-momentum genes are thus flowing towards
the q and q. Correspondingly, q and q genes are flowing towards the g. When the gluon
has lost all its energy, the g genes continue moving apart, and instead a third string region
is formed in the ‘middle’ of the total string, consisting of overlapping q and q genes. The
two ‘corners’ on the string, separating the three string regions, are not of the gluon-kink
type: they do not carry any momentum.

If this third region would only appear at a time later than the typical time scale for
fragmentation, it could not affect the sharing of energy between different particles. This
is true in the limit of high energy, well separated partons. For a small gluon energy,
on the other hand, the third string region appears early, and the overall drawing of the
string becomes fairly 2-jet-like, since the third string region consists of q and q genes and
therefore behaves exactly as a sting pulled out directly between the q and q. In the limit of
vanishing gluon energy, the two initial string regions collapse to naught, and the ordinary
2-jet event is recovered. Also for a collinear gluon, i.e. θqg (or θqg) small, the stretching
becomes 2-jet-like. In particular, the q string endpoint first moves out a distance pq/κ
losing genes to the string, and then a further distance pg/κ, a first half accreting genes
from the g and the second half re-emitting them. (This latter half actually includes yet
another string piece; a corresponding piece appears at the q end, such that half a period
of the system involves five different string regions.) The end result is, approximately, that
a string is drawn out as if there had only been a single parton with energy |pq +pg|, such
that the simple 2-jet event again is recovered in the limit θqg → 0. These properties of
the string motion are the reason why the string fragmentation scheme is ‘infrared safe’
with respect to soft or collinear gluon emission.

The discussions for the 3-jet case can be generalized to the motion of a string with q
and q endpoints and an arbitrary number of intermediate gluons. For n partons, whereof
n− 2 gluons, the original string contains n− 1 pieces. Anytime one of the original gluons
has lost its energy, a new string region is formed, delineated by a pair of ‘corners’. As
the extra ‘corners’ meet each other, old string regions vanish and new are created, so that
half a period of the string contains 2n2 − 6n + 5 different string regions. Each of these
regions can be understood simply as built up from the overlap of (opposite-moving) genes
from two of the original partons, according to well specified rules.

235



12.2.4 Fragmentation of multiparton systems

The full machinery needed for a multiparton system is very complicated, and is described
in detail in [Sjö84]. The following outline is far from complete, and is complicated nonethe-
less. The main message to be conveyed is that a Lorentz covariant algorithm exists for
handling an arbitrary parton configuration, but that the necessary machinery is more
complex than in either cluster or independent fragmentation.

Assume n partons, with ordering along the string, and related four-momenta, given
by q(p1)g(p2)g(p3) · · · g(pn−1)q(pn). The initial string then contains n− 1 separate pieces.
The string piece between the quark and its neigbouring gluon is, in four-momentum space,

spanned by one side with four-momentum p
(1)
+ = p1 and another with p

(1)
− = p2/2. The

factor of 1/2 in the second expression comes from the fact that the gluon shares its energy
between two string pieces. The indices ‘+’ and ‘−’ denotes direction towards the q and
q end, respectively. The next string piece, counted from the quark end, is spanned by

p
(2)
+ = p2/2 and p

(2)
− = p3/2, and so on, with the last one being p

(n−1)
+ = pn−1/2 and

p
(n−1)
− = pn.

For the algorithm to work, it is important that all p
(i)
± be light-cone-like, i.e. p

(i)2
± = 0.

Since gluons are massless, it is only the two endpoint quarks which can cause problems.
The procedure here is to create new p± vectors for each of the two endpoint regions,
defined to be linear combinations of the old p± ones for the same region, with coefficients
determined so that the new vectors are light-cone-like. De facto, this corresponds to
replacing a massive quark at the end of a string piece with a massless quark at the end of
a somewhat longer string piece. With the exception of the added fictitious piece, which
anyway ends up entirely within the heavy hadron produced from the heavy quark, the
string motion remains unchanged by this.

In the continued string motion, when new string regions appear as time goes by, the

first such string regions that appear can be represented as being spanned by one p
(j)
+

and another p
(k)
− four-vector, with j and k not necessarily adjacent. For instance, in

the qgq case, the ‘third’ string region is spanned by p
(1)
+ and p

(3)
− . Later on in the string

evolution history, it is also possible to have regions made up of two p+ or two p− momenta.
These appear when an endpoint quark has lost all its original momentum, has accreted
the momentum of an gluon, and is now re-emitting this momentum. In practice, these

regions may be neglected. Therefore only pieces made up by a (p
(j)
+ , p

(k)
− ) pair of momenta

are considered in the program.
The allowes string regions may be ordered in an abstract parameter plane, where the

(j, k) indices of the four-momentum pairs define the position of each region along the
two (parameter plane) coordinate axes. In this plane the fragmentation procedure can
be described as a sequence of steps, starting at the quark end, where (j, k) = (1, 1), and
ending at the antiquark one, (j, k) = (n−1, n−1). Each step is taken from an ‘old’ qi−1qi−1

pair production vertex, to the production vertex of a ‘new’ qiqi pair, and the string piece
between these two string breaks represent a hadron. Some steps may be taken within
one and the same region, while others may have one vertex in one region and the other
vertex in another region. Consistency requirements, like energy-momentum conservation,
dictates that vertex j and k region values be ordered in a monotonic sequence, and that
the vertex positions are monotonically ordered inside each region. The four-momentum of
each hadron can be read off, for p+ (p−) momenta, by projecting the separation between

the old and the new vertex on to the j (k) axis. If the four-momentum fraction of p
(i)
±

taken by a hadron is denoted x
(i)
± , then the total hadron four-momentum is given by

p =
j2
∑

j=j1

x
(j)
+ p

(j)
+ +

k2
∑

k=k1

x
(k)
− p

(k)
− + px1ê

(j1k1)
x + py1ê

(j1k1)
y + px2ê

(j2k2)
x + py2ê

(j2k2)
y , (193)

236



for a step from region (j1, k1) to region (j2, k2). By necessity, x
(j)
+ is unity for a j1 < j < j2,

and correspondingly for x
(k)
− .

The (px, py) pairs are the transverse momenta produced at the two string breaks,
and the (êx, êy) pairs four-vectors transverse to the string directions in the regions of the
respective string breaks:

ê(jk)2x = ê(jk)2y = −1 ,

ê(jk)x ê(jk)y = ê(jk)x,y p
(j)
+ = ê(jk)x,y p

(k)
− = 0 . (194)

The fact that the hadron should be on mass shell, p2 = m2, puts one constraint on
where a new breakup may be, given that the old one is already known, just as eq. (177)
did in the simple 2-jet case. The remaining degree of freedom is, as before, to be given by
the fragmentation function f(z). The interpretation of the z is only well-defined for a step
entirely constrained to one of the initial string regions, however, which is not enough. In
the 2-jet case, the z values can be related to the proper times of string breaks, as follows.
The variable Γ = (κτ)2, with κ the string tension and τ the proper time between the
production vertex of the partons and the breakup point, obeys an iterative relation of the
kind

Γ0 = 0 ,

Γi = (1 − zi)

(

Γi−1 +
m2

⊥i

zi

)

. (195)

Here Γ0 represents the value at the q and q endpoints, and Γi−1 and Γi the values at
the old and new breakup vertices needed to produce a hadron with transverse mass m⊥i,
and with the zi of the step chosen according to f(zi). The proper time can be defined
in an unambiguous way, also over boundaries between the different string regions, so for
multijet events the z variable may be interpreted just as an auxiliary variable needed to
determine the next Γ value. (In the Lund symmetric fragmentation function derivation,
the Γ variable actually does appear naturally, so the choice is not as arbitrary as it may
seem here.) The mass and Γ constraints together are sufficient to determine where the
next string breakup is to be chosen, given the preceding one in the iteration scheme.
Actually, several ambiguities remain, but are of no importance for the overall picture.

The algorithm for finding the next breakup then works something like follows. Pick
a hadron, p⊥, and z, and calculate the next Γ. If the old breakup is in the region (j, k),
and if the new breakup is also assumed to be in the same region, then the m2 and Γ

constraints can be reformulated in terms of the fractions x
(j)
+ and x

(k)
− the hadron must

take of the total four-vectors p
(j)
+ and p

(k)
− :

m2 = c1 + c2x
(j)
+ + c3x

(k)
− + c4x

(j)
+ x

(k)
− ,

Γ = d1 + d2x
(j)
+ + d3x

(k)
− + d4x

(j)
+ x

(k)
− . (196)

Here the coefficients cn are fairly simple expressions, obtainable by squaring eq. (193),
while dn are slightly more complicated in that they depend on the position of the old
string break, but both the cn and the dn are explicitly calculable. What remains is an

equation system with two unknowns, x
(j)
+ and x

(k)
− . The absence of any quadratic terms is

due to the fact that all p
(i)2
± = 0, i.e. to the choice of a formulation based on light-cone-like

longitudinal vectors. Of the two possible solutions to the equation system (elimination of
one variable gives a second degree equation in the other), one is unphysical and can be
discarded outright. The other solution is checked for whether the x± values are actually
inside the physically allowed region, i.e. whether the x± values of the current step, plus

237



whatever has already been used up in previous steps, are less than unity. If yes, a solution
has been found. If no, it is because the breakup could not take place inside the region
studied, i.e. because the equation system was solved for the wrong region. One therefore
has to change either index j or index k above by one step, i.e. go to the next nearest
string region. In this new region, a new equation system of the type in eq. (196) may be
written down, with new coefficients. A new solution is found and tested, and so on until
a physically acceptable solution is found. The hadron four-momentum is now given by
an expression of the type (193). The breakup found forms the starting point for the new
step in the fragmentation chain, and so on. The final joining in the middle is done as in
the 2-jet case, with minor extensions.

12.3 Independent Fragmentation

The independent fragmentation (IF) approach dates back to the early seventies [Krz72],
and gained widespread popularity with the Field-Feynman paper [Fie78]. Subsequently,
IF was the basis for two programs widely used in the early PETRA/PEP days, the Hoyer
et al. [Hoy79] and the Ali et al. [Ali80] programs. JETSET has as (non-default) options
a wide selection of independent fragmentation algorithms.

12.3.1 Fragmentation of a single jet

In the IF approach, it is assumed that the fragmentation of any system of partons can be
described as an incoherent sum of independent fragmentation procedures for each parton
separately. The process is to be carried out in the overall c.m. frame of the jet system,
with each jet fragmentation axis given by the direction of motion of the corresponding
parton in that frame.

Exactly as in string fragmentation, an iterative ansatz can be used to describe the
sucessive production of one hadron after the next. Assume that a quark is kicked out by
some hard interaction, carrying a well-defined amount of energy and momentum. This
quark jet q is split into a hadron qq1 and a remainder-jet q1, essentially collinear with
each other. New quark and hadron flavours are picked as already described. The sharing
of energy and momentum is given by some probability distribution f(z), where z is the
fraction taken by the hadron, leaving 1 − z for the remainder-jet. The remainder-jet is
assumed to be just a scaled-down version of the original jet, in an average sense. The
process of splitting off a hadron can therefore be iterated, to yield a sequence of hadrons.
In particular, the function f(z) is assumed to be the same at each step, i.e. independent
of remaining energy. If z is interpreted as the fraction of the jet E + pL, i.e. energy plus
longitudinal momentum with respect to the jet axis, this leads to a flat central rapidity
plateau dn/dy for a large initial energy.

Fragmentation functions can be chosen among those listed above for string fragmen-
tation, but also here the default is the Lund symmetric fragmentation function.

The normal z interpretation means that a choice of a z value close to 0 corresponds to a
particle moving backwards, i.e. with pL < 0. It makes sense to allow only the production of
particles with pL > 0, but to explicitly constrain z accordingly would destroy longitudinal
invariance. The most straightforward way out is to allow all z values but discard hadrons
with pL < 0. Flavour, transverse momentum and E + pL carried by these hadrons are
‘lost’ for the forward jet. The average energy of the final jet comes out roughly right
this way, with a spread of 1–2 GeV around the mean. The jet longitudinal momentum
is decreased, however, since the jet acquires an effective mass during the fragmentation
procedure. For a 2-jet event this is as it should be, at least on average, because also the
momentum of the compensating opposite-side parton is decreased.

In addition to local flavour conservation in qiqi splittings, it is also assumed that
transverse momentum is locally conserved, i.e. the net p⊥ of the qiqi pair as a whole is

238



assumed to be vanishing. The p⊥ of the q is taken to be a Gaussian in the two transverse
degrees of freedom separately, with the transverse momentum of a hadron obtained by
the sum of constituent quark transverse momenta.

Within the IF framework, there is no unique recipe for how gluon jet fragmentation
should be handled. One possibility is to treat it exactly like a quark jet, with the initial
quark flavour chosen at random among u, u, d, d, s and s, including the ordinary s quark
suppression factor. Since the gluon is supposed to fragment more softly than a quark
jet, the fragmentation fuction may be chosen independently. Another common option is
to split the g jet into a pair of parallel q and q ones, sharing the energy, e.g. as in a
perturbative branching g → qq, i.e. f(z) ∝ z2 + (1 − z)2. The fragmentation function
could still be chosen independently, if so desired. Further, in either case the fragmentation
p⊥ could be chosen to have a different mean.

12.3.2 Fragmentation of a jet system

In a system of many jets, each jet is fragmented independently. Since each jet by itself
does not conserves the flavour, energy and momentum, then neither does a system of jets.
At the end of the generation, special algorithms are therefore used to patch this up. The
choice of approach has major consequences, e.g. for event shapes and αs determinations
[Sjö84a].

Little attention is usually given to flavour conservation, and we only offer one scheme.
When the fragmentation of all jets has been performed, independently of each other,
the net initial flavour composition, i.e. number of u quarks minus number of u quarks
etc., is compared with the net final flavour composition. In case of an imbalance, the
flavours of the hadron with lowest three-momentum are removed, and the imbalance is
re-evaluated. If the remaining imbalance could be compensated by a suitable choice of
new flavours for this hadron, flavours are so chosen, a new mass is found and the new
energy can be evaluated, keeping the three-momentum of the original hadron. If the
removal of flavours from the hadron with lowest momentum is not enough, flavours are
removed from the one with next-lowest momentum, and so on until enough freedom is
obtained, whereafter the necessary flavours are recombined at random to form the new
hadrons. Occasionally one extra qiqi pair must be created, which is then done according
to the customary probabilities.

Several different schemes for energy and momentum conservation have been devised.
One [Hoy79] is to conserve transverse momentum locally within each jet, so that the final
momentum vector of a jet is always parallel with that of the corresponding parton. Then
longitudinal momenta may be rescaled separately for particles within each jet, such that
the ratio of rescaled jet momentum to initial parton momentum is the same in all jets.
Since the initial partons had net vanishing three-momentum, so do now the hadrons. The
rescaling factors may be chosen such that also energy comes out right. Another common
approach [Ali80] is to boost the event to the frame where the total hadronic momentum
is vanishing. After that, energy conservation can be obtained by rescaling all particle
three-momenta by a common factor.

The number of possible schemes is infinite. Two further options are available in the
program. One is to shift all particle three-momenta by a common amount to give net
vanishing momentum, and then rescale as before. Another is to shift all particle three-
momenta, for each particle by an amount proportional to the longitudinal mass with
respect to the imbalance direction, and with overall magnitude selected to give momentum
conservation, and then rescale as before. In addition, there is a choice of whether to treat
separate colour singlets (like qq′ and q′q in a qqq′q′ event) separately or as one single big
system.

A serious conceptual weakness of the IF framework is the issue of Lorentz invariance.
The outcome of the fragmentation procedure depends on the coordinate frame chosen,

239



a problem circumvented by requiring fragmentation always to be carried out in the c.m.
frame. This is a consistent procedure for 2-jet events, but only a technical trick for
multijets.

It should be noted, however, that a Lorentz covariant generalization of the independent
fragmentation model exists, in which separate ‘gluon-type’ and ‘quark-type’ strings are
used, the Montvay scheme [Mon79]. The ‘quark string’ is characterized by the ordinary
string constant κ, whereas a ‘gluon string’ is taken to have a string constant κg. If κg > 2κ
it is always energetically favourable to split a gluon string into two quark ones, and the
ordinary Lund string model is recovered. Otherwise, for a 3-jet qqg event the three
different string pieces are joined at a junction. The motion of this junction is given by the
composant of string tensions acting on it. In particular, it is always possible to boost an
event to a frame where this junction is at rest. In this frame, much of the standard näıve
IF picture holds for the fragmentation of the three jets; additionally, a correct treatment
would automatically give flavour, momentum and energy conservation. Unfortunately,
the simplicity is lost when studying events with several gluon jets. In general, each event
will contain a number of different junctions, resulting in a polypod shape with a number
of quark and gluons strings sticking out from a skeleton of gluon strings. With the shift
of emphasis from three-parton to multi-parton configurations, the simple option existing
in Jetset 6.3 therefore is no longer included.

A second conceptual weakness of IF is the issue of collinear divergences. In a parton-
shower picture, where a quark or gluon is expected to branch into several reasonably
collimated partons, the independent fragmentation of one single parton or of a bunch of
collinear ones gives quite different outcomes, e.g. with a much larger hadron multiplicity
in the latter case. It is conceivable that a different set of fragmentation functions could be
constructed in the shower case in order to circumvent this problem (local parton–hadron
duality [Dok89] would correspond to having f(z) = δ(z − 1)).

12.4 Other Fragmentation Aspects

Here two aspects are considered, which are applicable regardless of whether string or
independent fragmentation is used.

12.4.1 Small mass systems

Occasionally, a jet system may have too small an invariant mass for the ordinary jet
fragmentation schemes. This is particularly a problem when showers are used, since two
nearby g → q′q′ branchings may give rise to an intermediate low-mass colour-singlet
system. Before the ordinary fragmentation, one includes an optional additional step, to
catch situations of this kind. First the jet system with lowest invariant mass, minus
endpoint quark masses, is found. If this is too low for jet fragmentation, an attempt is
made to split the system into two hadrons by producing a new qnqn pair (with qn chosen
according to the standard fragmentation scheme, so that e.g. also diquarks are allowed)
to go with the existing endpoint flavours. If the sum of the two thus constructed hadron
masses is smaller than the total invariant mass, a simple isotropic two-particle decay is
performed. If not, the endpoint flavours are combined to give one single hadron. Next,
the parton (or hadron) is found which, when taken together with the jet system, has the
largest invariant mass. A minimal transfer of four-momentum is then performed, which
puts the hadron on mass shell while keeping the mass of the parton unchanged. With this
done, one may again search for a low-mass jet system, and iterate the procedure above,
if need be. The procedure may be seen as a ‘poor man’s cluster fragmentation’, i.e. a
cluster and a low-mass string are considered to be more or less the same thing.

240



12.4.2 Bose–Einstein effects

A crude option for the simulation of Bose–Einstein effects is included, but is turned off by
default. Here the detailed physics is not that well understood, see e.g. [Lör89]. What is
offered is an algorithm, more than just a parametrization (since very specific assumptions
and choices have been made), and yet less than a true model (since the underlying physics
picture is rather fuzzy). In this scheme, the fragmentation is allowed to proceed as usual,
and so is the decay of short-lived particles like ρ. Then pairs of identical particles, π+

say, are considered one by one. The Qij value of a pair i and j is evaluated,

Qij =
√

(pi + pj)2 − 4m2 , (197)

where m is the common particle mass. A shifted (smaller) Q′
ij is then to be found such

that the (infinite statistics) ratio C2(Q) of shifted to unshifted Q distributions is given by
the requested parametrization. The shape may be chosen either exponential or Gaussian,

C2(Q) = 1 + λ exp (−(Q/d)r) , r = 1 or 2 . (198)

(In fact, the distribution has to dip slightly below unity at Q values outside the Bose
enhancement region, from conservation of total multiplicity.) If the inclusive distribution
of Qij values is assumed given just by phase space, at least at small relative momentum
then, with d3p/E ∝ Q2 dQ/

√
Q2 + 4m2, then Q′

ij is found as the solution to the equation

∫ Qij

0

Q2 dQ√
Q2 + 4m2

=
∫ Q′

ij

0
C2(Q)

Q2 dQ√
Q2 + 4m2

. (199)

The change of Qij can be translated into an effective shift of the three-momenta of the
two particles, if one uses as extra constraint that the total three-momentum of each pair
be conserved in the c.m. frame of the event. Only after all pairwise momentum shifts
have been evaluated, with respect to the original momenta, are these momenta actually
shifted, for each particle by the sum of evaluated shifts. The total energy of the event is
slightly reduced in the process, which is compensated by an overall rescaling of all c.m.
frame momentum vectors. It can be discussed which are the particles to involve in this
rescaling. Currently the only exceptions to using everything are leptons and neutrinos
coming from resonance decays (such as W’s) and photons radiated by leptons (also in
initial state radiation). Finally, the decay chain is resumed with more long-lived particles
like π0.

Two comments can be made. The Bose–Einstein effect is here interpreted almost as a
classical force acting on the ‘final state’, rather than as a quantum mechanical phenomenon
on the production amplitude. This is not a credo, but just an ansatz to make things
manageable. Also, since only pairwise interactions are considered, the effects associated
with three or more nearby particles tend to get overestimated. (More exact, but also
more time-consuming methods may be found in [Zaj87].) Thus the input λ may have
to be chosen smaller than what one wants to get out. (On the other hand, many of the
pairs of an event contains at least one particle produced in some secondary vertex, like a
D decay. This reduces the fraction of pairs which may contribute to the Bose–Einstein
effects, and thus reduces the potential signal.) This option should therefore be used with
caution, and only as a first approximation to what Bose–Einstein effects can mean.

241



13 Particles and Their Decays

Particles are the building blocks from which events are constructed. We here use the
word ‘particle’ in its broadest sense, i.e. including partons, resonances, hadrons, and so
on, subgroups we will describe in the following. Each particle is characterized by some
quantities, such as charge and mass. In addition, many of the particles are unstable and
subsequently decay. This section contains a survey of the particle content of the programs,
and the particle properties assumed. In particular, the decay treatment is discussed. Some
particle and decay properties form part already of the hard subprocess description, and
are therefore described in sections 6, 7 and 8.

13.1 The Particle Content

In order to describe both current and potential future physics, a number of different
particles are needed. A list of some particles, along with their codes, is given in section
5.1. Here we therefore emphasize the generality rather than the details.

Four full generations of quarks and leptons are included in the program, although
indications from LEP strongly suggest that only three exist in Nature. There is no
standard terminology for the fourth generation; we use l for the down type quark (l for
low), h for the up type quark (h for high), χ for the lepton and νχ for the neutrino. Quarks
may appear either singly or in pairs; the latter are called diquarks and are characterized
by their flavour content and their spin. A diquark is always assumed to be in a colour
antitriplet state.

From the coloured quarks (and diquarks), the colour neutral hadrons may be build up.
Six full meson multiplets are included and two baryon ones, see section 12.1. In addition,

K0
S and K0

L are considered as separate particles coming from the ‘decay’ of K0 and K
0

(or,
occasionally, produced directly).

Other particles from the Standard Model include the gluon g, the photon γ, the
intermediate gauge bosons Z0 and W±, and the standard Higgs H0. Non-standard particles
include additional gauge bosons, Z′0 and W′±, additional Higgs bosons H′0, A0 and H±,
a leptoquark LQ and a horizontal gauge boson R0. It is also possible to use the particle
codes of the current fourth generation fermions to represent excited quarks and leptons,
q∗ and ℓ∗.

From the point of view of usage inside the programs, particles may be subdivided into
three classes, partly overlapping.

1. A parton is generically any object which may be found in the wave function of the
incoming beams, and may participate in initial- or final-state showers. This includes
what is normally meant by partons, i.e. quarks and gluons, but here also leptons
and photons. In a few cases other particles may be classified as partons in this sense.

2. A resonance is an unstable particle produced as part of the hard process, and where
the decay treatment normally is also part of the hard process. Resonance partial
widths are perturbatively calculable, and therefore it is possible to dynamically
recalculate branching ratios as a function of the mass assigned to a resonance. Res-
onances includes particles like the Z0 and other massive gauge bosons and Higgs
particles. It does not include hadrons with non-vanishing width, like the ρ, which
are just called ‘unstable hadrons’.

3. Hadrons, i.e. mesons and baryons produced either in the fragmentation process, in
secondary decays or as part of the beam remnant treatment, but not directly as
part of the hard process (except in a few special cases). Hadrons may be stable
or unstable. Branching ratios are not assumed perturbatively calculable, and can
therefore be set freely. Also leptons and photons produced in decays belong to this
class.

242



Usually the subdivision above is easy to understand and gives you the control you
would expect. However, the classification of top and the fourth generation fermions may
lead to some confusion, as already mentioned, section 8.2.2. The problem is that the top
did not use to be treated as a resonance, but was rather allowed to fragment to hadrons,
which subsequently decayed. This approach was a reasonable choice in the days when the
top mass was assumed quite light by today’s standards. However, given current top limits,
the fragmentation and the decay of the top quark is being played out on comparable time
scales, and the treatment becomes much more difficult (see e.g. ref. [Sjö92a] for a toy
model description). Starting at masses of around 120 GeV the top decay time is so short
that no top hadrons at all are formed, and then a true resonance description is appropriate,
but still with some complications due to the net colour charge of the top quark. Such
an option is now default, wherein the top quark is assumed to decay immediately, but
intermediate scenarios can not be modelled. The appearance of intermediate top hadrons
in the description has little influence on event shapes, even for a very heavy top.

13.2 Masses, Widths and Lifetimes

13.2.1 Masses

Quark masses are not particularly well defined. In the program it is necessary to make
use of two kinds of masses, current algebra ones and constituent ones. The former are
relevant for the kinematics in hard processes (e.g. in gg → cc) and for couplings to Higgs
particles, and therefore directly affect cross sections. These values are the ones stored
in the standard mass array PMAS. Constituent masses are used to derive the masses of
hadrons, and are stored separately in the PARF array. We maintain this distinction for
the five first flavours, using the following values by default:
quark current algebra mass constituent mass

d 0.0099 GeV 0.325 GeV
u 0.0056 GeV 0.325 GeV
s 0.199 GeV 0.5 GeV
c 1.35 GeV 1.6 GeV
b 5.0 GeV 5.0 GeV.

For top and fourth generation quarks the distinction is not as important, so only one
set of mass values is used, namely the one in PMAS. The default top mass is 160 GeV.
Constituent masses for diquarks are defined as the sum of the respective quark masses.
The gluon is always assumed massless.

Particle masses, when known, are taken from ref. [PDG92]. Hypothesized particles,
such as fourth generation fermions and Higgs bosons, are assigned some not unreasonable
set of default values, in the sense of where you want to search for them in the not too
distant future. Here it is understood that you will go in and change the default values
according to your own opinions at the beginning of a run.

The total number of hadrons in the program is very large, whereof many are not yet
discovered (like charm and bottom baryons) and other may or may not exist (top and
fourth generation hadrons). In particular for the latter, it would be messy for the user to
have to recalculate the masses of hadron each time the assumed quark mass is changed.
Therefore the masses of yet undiscovered mesons and baryons are built up, when needed,
from the constituent masses. For this purpose one uses formulae of the type [DeR75]

m = m0 +
∑

i

mi + km2
d

∑

i<j

〈σi · σj〉
mimj

, (200)

i.e. one constant term, a sum over constituent masses and a spin-spin interaction term
for each quark pair in the hadron. The constants m0 and k are fitted from known masses,

243



treating mesons and baryons separately. For mesons with orbital angular momentum
L = 1 the spin-spin coupling is assumed vanishing, and only m0 is fitted. One may also
define ‘constituent diquarks masses’ using the formula above, with a k value 2/3 that of
baryons. The default values are:

multiplet m0 k
pseudoscalars and vectors 0. 0.16 GeV

axial vectors (S = 0) 0.50 GeV 0.
scalars 0.45 GeV 0.

axial vectors (S = 1) 0.55 GeV 0.
tensors 0.60 GeV 0.
baryons 0.11 GeV 0.048 GeV
diquarks 0.077 GeV 0.048 GeV.

There is one exception to the rule above, and that is flavour neutral mesons, i.e. the onia
states of a heavy quark–antiquark pair. These are defined individually, to allow more
flexibility.

13.2.2 Widths

A width is calculated perturbatively for those resonances which appear in the Pythia
hard process generation machinery. The width is used to select masses in hard processes
according to a relativistic Breit–Wigner shape. In many processes the width is allowed
to be ŝ-dependent, see section 7.3.

Other particle masses, as discussed so far, have been fixed at their nominal value, i.e.
with no mass broadening for short-lived particles such as ρ, K∗ or ∆. Compared to the
Z0, it is much more difficult to describe the ρ resonance shape, since nonperturbative and
threshold effects act to distort the näıve shape. Thus the ρ mass is limited from below
by its decay ρ → ππ, but also from above, e.g. in the decay φ → ρπ. In some decay
chains, several mass choices are coupled, like in a2 → ρπ, where also the a2 has a non-
negligible width. Finally, there are some extreme cases, like the f0, which has a nominal
mass below the KK threshold, but a tail extending beyond that threshold, and therefore
a non-negligible branching ratio to the KK channel.

In view of examples like these, no attempt is made to provide a full description. Instead
a simplified description is used, which should be enough to give the general smearing of
events due to mass broadening, but maybe not sufficient for detailed studies of a specific
resonance. By default, hadrons are therefore given a mass distribution according to a
non-relativistic Breit–Wigner

P(m) dm ∝ 1

(m−m0)2 + Γ2/4
dm . (201)

Leptons and resonances not taken care of by the hard process machinery are distributed
according to a relativistic Breit–Wigner

P(m2) dm2 ∝ 1

(m2 −m2
0)

2 +m2
0Γ

2
dm2 . (202)

Here m0 and Γ are the nominal mass and width of the particle. The Breit–Wigner shape
is truncated symmetrically, |m −m0| < δ, with δ arbitrarily chosen for each particle so
that no problems are encountered in the decay chains. It is possible to switch off the mass
broadening, or to use either a non-relativistic or a relativistic Breit–Wigners everywhere.

The f0 problem has been ‘solved’ by shifting the f0 mass to be slightly above the KK
threshold and have vanishing width. Then kinematics in decays f0 → KK is reasonably
well modelled. The f0 mass is too large in the f0 → ππ channel, but this does not really
matter, since one anyway is far above threshold here.

244



13.2.3 Lifetimes

Clearly the lifetime and the width of a particle are inversely related. For practical applica-
tions, however, any particle with a non-negligible width decays too close to its production
vertex for the lifetime to be of any interest. In the program, the two aspects are therefore
considered separately. Particles with a non-vanishing nominal proper lifetime τ0 = 〈τ〉
are assigned an actual lifetime according to

P(τ) dτ ∝ exp(−τ/τ0) dτ , (203)

i.e. a simple exponential decay is assumed. Since the program uses dimensions where the
speed of light c ≡ 1, and space dimensions are in mm, then actually the unit of cτ0 is mm
and of τ0 itself mm/c ≈ 3.33 × 10−12 s.

If a particle is produced at a vertex v = (x, t) with a momentum p = (p, E) and a
lifetime τ , the decay vertex position is assumed to be

v′ = v + τ
p

m
, (204)

where m is the mass of the particle. With the primary interaction (normally) in the
origin, it is therefore possible to construct all secondary vertices in parallel with the
ordinary decay treatment.

The formula above does not take into account any detector effects, such as a magnetic
field. It is therefore possible to stop the decay chains at some suitable point, and leave
any subsequent decay treatment to the detector simulation program. One may select
that particles are only allowed to decay if they have a nominal lifetime τ0 shorter than
some given value or, alternatively, if their decay vertices x′ are inside some spherical or
cylindrical volume around the origin.

13.3 Decays

Several different kinds of decay treatment are used in the program, depending on the
nature of the decay. Not discussed here are the decays of resonances which are handled
as part of the hard process.

13.3.1 Strong and electromagnetic decays

The decays of hadrons containing the ‘ordinary’ u, d and s quarks into two or three
particles are known, and branching ratios may be found in [PDG92]. We normally assume
that the momentum distributions are given by phase space. There are a few exceptions,
where the phase space is weighted by a matrix-element expression, as follows.

In ω and φ decays to π+π−π0, a matrix element of the form

|M|2 ∝ |pπ+ × pπ− |2 (205)

is used, with the pπ the pion momenta in the rest frame of the decay. (Actually, what is
coded is the somewhat more lengthy Lorentz invariant form of the expression above.)

Consider the decay chain P0 → P1+V → P1+P2+P3, with P representing pseudoscalar
mesons and V a vector one. Here the decay angular distribution of the V in its rest frame
is

|M|2 ∝ cos2 θ02 , (206)

where θ02 is the angle between P0 and P2. The classical example is D → K∗π → Kππ. If
the P1 is replaced by a γ, the angular distribution in the V decay is instead ∝ sin2 θ02.

245



In Dalitz decays, π0 or η → e+e−γ, the mass m∗ of the e+e− pair is selected according
to

P(m∗2) dm∗2 ∝ dm∗2

m∗2

(

1 +
2m2

e

m∗2

)

√

1 − 4m2
e

m∗2

(

1 − m∗2

m2
π,η

)3
1

(m2
ρ −m∗2)2 +m2

ρΓ
2
ρ

.

(207)
The last factor, the VMD-inspired ρ0 propagator, is negligible for π0 decay. Once the m∗

has been selected, the angular distribution of the e+e− pair is given by

|M|2 ∝ (m∗2−2m2
e)
{

(pγpe+)2 + (pγpe−)2
}

+4m2
e

{

(pγpe+)(pγpe−) + (pγpe+)2 + (pγpe−)2
}

.

(208)
Also a number of simple decays involving resonances of heavier hadrons, e.g. Σ0

c →
Λ+

c π
− or B∗− → B−γ are treated in the same way as the other two-particle decays.

13.3.2 Weak decays of charm hadrons

The charm hadrons have a mass in an intermediate range, where the effects of the näıve
V − A weak decay matrix element is partly but not fully reflected in the kinematics of
final-state particles. Therefore different decay strategies ar combined. We start with
hadronic decays, and subseqently consider semileptonic ones.

For the four ‘main’ charm hadrons, D+, D0, D+
s and Λ+

c , a number of branching ratios
are already known. The known braching ratios have been combined with reasonable
guesses, to construct more or less complete tables of all channels. For hadronic decays of
D0 and D+, where rather much is known, all channels have an explicitly listed particle
content. However, only for the two-body decays is resonance production properly taken
into account. It means that the experimentally measured branching ratio for a Kππ decay
channel, say, is represented by contributions from a direct Kππ channel as well as from
indirect ones, such as K∗π and Kρ. For a channel like Kπππ, on the other hand, only the
K∗ρ appears separately, while the rest is lumped into one entry in the decay tables. This
is more or less in agreement with the philosophy adopted in the PDG tables [PDG92]. For
D+

s and Λ+
c knowledge is rather incomplete, and only two-body decay channels are listed.

Final states with three or more hadron are only listed in terms of a flavour content.
The way the program works, it is important to include all the allowed decay channels

up to a given multiplicity. Channels with multiplicity higher than this may then be
generated according to a simple flavour combination scheme. For instance, in a D+

s decay,
the normal quark content is ssud, where one s is the spectator quark and the others come
from the weak decay of the c quark. The spectator quark may also be annihilated, like in
D+

s → ud. The flavour content to make up one or two hadrons is therefore present from
the onset. If one decides to generate more hadrons, this means new flavour-antiflavour
pairs have to be generated and combined with the existing flavours. This is done using
the same flavour approach as in fragmentation.

In more detail, the following scheme is used.
1. The multiplicity is first selected. The D+

s and Λ+
c multiplicity is selected according

to a distribution described further below. The program can also be asked to generate
events of a predetermined multiplicity.

2. One of the non-spectator flavours is selected at random. This flavour is allowed
to ‘fragment’ into a hadron plus a new remaining flavour, using exactly the same
flavour generation algorithm as in the standard jet fragmentation, section 12.1.

3. Step 2 is iterated until only one or two hadrons remain to be generated, depending on
whether the original number of flavours is two or four. In each step one ‘unpaired’
flavour is replaced by another one as a hadron is ‘peeled off’, so the number of
unpaired flavours is preserved.

246



4. If there are two flavours, these are combined to form the last hadron. If there are
four, then one of the two possible pairings into two final hadrons is selected at
random. To find the hadron species, the same flavour rules are used as when final
flavours are combined in the joining of two jets.

5. If the sum of decay product masses is larger than the mass of the decaying particle,
the flavour selection is rejected and the process is started over at step 1. Normally
a new multiplicity is picked, but for D0 and D+ the old multiplicity is retained.

6. Once an acceptable set of hadrons has been found, these are distributed according
to phase space.

The picture then is one of a number of partons moving apart, fragmenting almost like
jets, but with momenta so low that phase-space considerations are enough to give the
average behaviour of the momentum distribution. Like in jet fragmentation, endpoint
flavours are not likely to recombine with each other. Instead new flavour pairs are created
in between them. One should also note that, while vector and pseudoscalar mesons are
produced at their ordinary relative rates, events with many vectors are likely to fail in
step 5. Effectively, there is therefore a shift towards lighter particles, especially at large
multiplicities.

When a multiplicity is to be picked, this is done according to a Gaussian distribution,
centered at c+nq/4 and with a width

√
c, with the final number rounded off to the nearest

integer. The value for the number of quarks nq is 2 or 4, as described above, and

c = c1 ln
(

m−∑

mq

c2

)

, (209)

where m is the hadron mass and c1 and c2 have been tuned to give a reasonable description
of multiplicities. There is always some lower limit for the allowed multiplicity; if a number
smaller than this is picked the choice is repeated. Since two-body decays are explicitly
enumerated for D+

s and Λ+
c , there the mimimum multiplicity is three.

Semileptonic branching ratios are explicitly given in the program for all the four par-
ticles discussed here, i.e. it is never necessary to generate the flavour content using the
fragmentation description. This does not mean that all branching ratios are known; a fair
amount of guesswork is involved for the channels with higher multiplicities, based on a
knowledge of the inclusive semileptonic branching ratio and the exclusive branching ratios
for low multiplicities.

In semileptonic decays it is not appropriate to distribute the lepton and neutrino
momenta according to phase space. Instead the simple V −A matrix element is used, in
the limit that decay product masses may be neglected and that quark momenta can be
replaced by hadron momenta. Specifically, in the decay H → ℓ+νℓh, where H is a charm
hadron and h and ordinary hadron, the matrix element

|M|2 = (pHpℓ)(pνph) (210)

is used to distribute the products. It is not clear how to generalize this formula when
several hadrons are present in the final state. In the program, the same matrix element
is used as above, with ph replaced by the total four-momentum of all the hadrons. This
tends to favour a low invariant mass for the hadronic system compared with näıve phase
space.

There are a few charm hadrons, such as Ξc and Ωc, which decay weakly but are so rare
that little is known about them. For these a simplified generic charm decay treatment is
used. For hadronic decays only the quark content is given, and then a multiplicity and a
flavour composition is picked at random, as already described. Semileptonic decays are
assumed to produce only one hadron, so that V −A matrix element can be simply applied.

247



13.3.3 Weak decays of the τ lepton

For the τ lepton, an explicit list of decay channels has been put together, which includes
channels with up to five final-state particles, some of which may be unstable and sub-
sequently decay to produce even larger total multiplicities. Because of the well-known
‘τ puzzle’, i.e. that experimentally the sum of branching ratios for exclusive one-prong
decays is lower than the inclusive one-prong branching ratio, such a table cannot be con-
structed in full agreement with the PDG data. (The problem is nowadays less severe than
it used to be, but still not fully resolved.)

The leptonic decays τ− → ντℓ
−νℓ, where ℓ is e or µ, are distributed according to the

standard V − A matrix element

|M|2 = (pτpνℓ)(pℓpντ ) . (211)

(The corresponding matrix element is also used in µ decays, but normally the µ is assumed
stable.)

In τ decays to hadrons, the hadrons and the ντ are distributed according to phase
space times the factor xν (3 − xν), where xν = 2Eν/mτ in the rest frame of the τ . The
latter factor is the ντ spectrum predicted by the parton level V −A matrix element, and
therefore represents an attempt to take into account that the ντ should take a larger
momentum fraction than given by phase space alone.

The probably largest shortcoming of the τ decay treatment is that no polarization
effects are included, i.e. the τ is always assumed to decay isotropically. Usually this is
not correct, since a τ is produced polarized in Z0 and W± decays. The LUTAUD routine
provides a generic interface to an external τ decay library, where such effects could be
handled (see also MSTJ(28)).

13.3.4 Weak decays of bottom hadrons

Some exclusive branching ratios now start to be known for B decays. In this version, the
B0, B+, B0

s and Λ0
b therefore appear in a similar vein to the one outlined above for D+

s

and Λ+
c above. That is, all leptonic channels and all hadronic two-body decay channels

are explicitly listed, while hadronic channels with three or more particles are only given
in terms of a quark content. The Bc is exceptional, in that either the bottom or the
charm quark may decay first, and in that annihilation graphs may be non-negligible.
Leptonic and semileptonic channels are here given in full, while hadronic channels are
only listed in terms of a quark content, with a relative composition as given in [Lus91].
No separate branching ratios are set for any of the other weakly decaying bottom hadrons,
but instead a pure ‘spectator quark’ model is assumed, where the decay of the b quark
is the same in all hadrons and the only difference in final flavour content comes from the
spectator quark. Compared to the charm decays, the weak decay matrix elements are
given somewhat larger importance in the hadronic decay channels.

In semileptonic decays b → cℓ−νℓ the c quark is combined with the spectator antiquark
or diquark to form one single hadron. This hadron may be either a pseudoscalar, a vector
or a higher resonance (tensor etc.). The relative fraction of the higher resonances has been
picked to be about 30%, in order to give a leptonic spectrum in reasonable experiment
with data. (This only applies to the main particles B0, B+, B0

s and Λ0
b; for the rest the

choice is according to the standard composition in the fragmentation.) The overall process
is therefore H → hℓ−νℓ, where H is a bottom antimeson or a bottom baryon (remember
that B is the one that contains a b quark), and the matrix element used to distribute
momenta is

|M|2 = (pHpν)(pℓph) . (212)

Again decay product masses have been neglected in the matrix element, but in the branch-
ing ratios the τ−ντ channel has been reduced in rate, compared with e−νe and µ−νµ ones,

248



according to the expected mass effects. No CKM-suppressed decays b → uℓ−νℓ are cur-
rently included.

In most multibody hadronic decays, e.g. b → cdu, the c quark is again combined
with the spectator flavour to form one single hadron, and thereafter the hadron and the
two quark momenta are distributed according to the same matrix element as above, with
ℓ− ↔ d and νℓ ↔ u. The invariant mass of the two quarks is calculated next. If this
mass is so low that two hadrons cannot be formed from the system, the two quarks are
combined into one single hadron. Else the same kind of approach as in hadronic charm
decays is adopted, wherein a multiplicity is selected, a number of hadrons are formed and
thereafter momenta are distributed according to phase space. The difference is that here
the charm decay product is distributed according to the V −A matrix element, and only
the rest of the system is assumed isotropic in its rest frame, while in charm decays all
hadrons are distributed isotropically.

Note that the c quark and the spectator are assumed to form one colour singlet and
the du another, separate one. It is thus assumed that the original colour assignments of
the basic hard process are better retained than in charm decays. However, sometimes
this will not be true, and with about 20% probability the colour assignment is flipped
around so that cu forms one singlet. (In the program, this is achieved by changing the
order in which decay products are given.) In particular, the decay b → csc is allowed to
give a cc colour-singlet state part of the time, and this state may collapse to a single J/ψ.
Two-body decays of this type are explicitly listed for B0, B+, B0

s and Λ0
b; while other J/ψ

production channels appear from the flavour content specification.

The B0–B
0

and B0
s–B

0
s systems mix before decay. This is optionally included. With a

probability

Pflip = sin2

(

x τ

2 〈τ〉

)

(213)

a B is therefore allowed to decay like a B, and vice versa. The mixing parameters are by

default xd = 0.7 in the B0–B
0

system and xs = 10 in the B0
s–B

0
s one.

The generic B meson and baryon decay properties are stored for ‘particle’ 85. This
particle contains a description of the free b quark decay, with an instruction to find the
spectator flavour according to the particle code of the actual decaying hadron. Currently
baryons other than Λ0

b are treated this way. If so desired, each hadron could be given a
separate decay channel list, or all B hadrons could be mapped to particle 85, as used to
be the case..

13.3.5 Weak decays of top and fourth generation

As already explained in section 13.1, heavy quarks are normally assumed to decay before
they fragment. Optionally, they may be allowed to fragment before they decay. In either
case, the decay itself is handled as if the heavy flavour is free.

For a hadron, some of the hadron energy is reserved for the spectator quark. The
decay matrix element used for Q → qff is

|M|2 ∝ (pQpf)(pfpq)

((pf + pf)
2 −m2

W)
2

+m2
WΓ2

W

. (214)

Here Q may represent the t or any of the fourth generation quarks, l and h. With trivial
change of notation, the lepton χ obeys the same formula. The ff pair are the fermions
from the W decay, either quarks or leptons. The program takes care of the effects of the W
propagator, whatever the mass difference mQ−mq, with one proviso: the selection of the
q flavour is done according to fixed branching ratios, and does thus not take into account
the relative enhancement of a CKM-suppressed q due to mass effects. This would play a

249



rôle around thresholds, e.g., with mt ≈ mW, the t → s would be enhanced compared with
t → b. On the other hand, threshold factors are included for the choice of the ff fermion
pair from the W decay.

For the alternative with a rapidly decaying top quark, so that no hadron is formed,
one is not close to threshold. The composition of the light flavour produced in the decay
is then calculated according to the respective phase space times CKM weight. By default
the W decays with the spin information implicit in the matrix element above, but isotropic
W decay is an option.

The b quark produced in the decay t → bW+ may be allowed to radiate. It thereby
acquires an effective mass, which means that the kinematics of the decay is changed, with
energy shuffled from the W to the b.

The system containing the spectator quark will often have a mass too small to allow
it to fragment like a jet system. In these cases a single particle is formed from the flavour
content, with a momentum vector given by the sum of the two quark momenta. Since the
energy of this particle then will come out wrong, the momenta of the other jets or leptons
in the decay are modified slightly to obtain total energy conservation. (Of course, for χ
decay, there is no spectator and thus no treatment of this kind.)

The ff pair from the W decay is allowed to shower, i.e. emit gluons and photons ac-
cording to the standard final-state radiation algorithm, including matching to first-order
matrix elements. The resulting jet system is fragmented with ordinary string fragmen-
tation — the mass is here so high that a fragmentation description is quite appropriate.
Only very rarely would the W mass be below the threshold for the production of a pair
of particles; such kinematical configurations are rejected.

13.3.6 Other decays

For onia spin 1 resonances, decay channels into a pair of leptons are explicitly given.
Hadronic decays of the J/ψ are simulated using the flavour generation model introduced
for charm. For Υ a fraction of the hadronic decays is into qq pairs, while the rest is into
ggg or ggγ, using the matrix elements of eq. (44). The ηc and ηb are both allowed to decay
into a gg pair, which then subsequently fragments. In Υ and ηb decays the partons are
allowed to shower before fragmentation, but energies are too low for showering to have
any impact.

With current bounds on the top mass, one does not expect the formation of well-defined
toponium states. A complete description of the resonance structure in the threshold region
is beyond the scope of the program. The approach taken for the toponium states that have
been defined is to let either the t or the t decay weakly first, then do the fragmentation,
and subsequently let the produced antitop or top hadron decay. A better description is
provided by the Pythia machinery for resonance decays.

Default branching ratios are given for resonances like the Z0, the W± or the H0. When
Pythia is initialized, these numbers are replaced by branching ratios evaluated from the
given masses. For Z0 and W± the branching ratios depend only marginally on the masses
assumed, while effects are large e.g. for the H0. In fact, branching ratios may vary over
the Breit–Wigner resonance shape, something which is also taken into account in Pythia.
Therefore the default resonance treatment of Jetset is normally not so useful, and should
be avoided (except, of course, the standard e+e− → γ∗/Z0 → qq description). When it is
used, a channel is selected according to the given fixed branching ratios. If the decay is
into a qq pair, the quarks are allowed to shower and subsequently the parton system is
fragmented.

250



14 The JETSET Program Elements

In this section we collect information on most of the routines and common block variables
found in Jetset. A few parts are discussed elsewhere; this includes the e+e− routines,
parton showers and event-analysis routines. In this section the emphasis is on the frag-
mentation and decay package, and on generic utilities for things like event listing.

14.1 Definition of Initial Configuration or Variables

With the use of the conventions described for the event record, it is possible to specify any
initial jet/particle configuration. This task is simplified for a number of often occuring
situations by the existence of the filling routines below. It should be noted that many
users do not come in direct contact with these routines, since that is taken care of by
higher-level routines for specific processes, particularly LUEEVT and PYEVNT.

Several calls to the routines can be combined in the specification. In case one call is
enough, the complete fragmentation/decay chain may be simulated at the same time. At
each call, the value of N is updated to the last line used for information in the call, so if
several calls are used, they should be made with increasing IP number, or else N should
be redefined by hand afterwards.

The routine LUJOIN is very useful to define the colour flow in more complicated parton
configurations; thereby one can bypass the not so trivial rules for how to set the K(I,4)
and K(I,5) colour-flow information.

As an experiment, the routine LUGIVE contains a facility to set various comonblock
variables in a controlled and documented fashion.

CALL LU1ENT(IP,KF,PE,THE,PHI)

Purpose: to add one entry to the event record, i.e. either a jet or a particle.
IP : normally line number for the jet/particle. There are two exceptions.

If IP=0, line number 1 is used and LUEXEC is called.
If IP<0, line -IP is used, with status code K(-IP,2)=2 rather than 1; thus a
jet system may be built up by filling all but the last jet of the system with
IP<0.

KF : jet/particle flavour code.
PE : jet/particle energy. If PE is smaller than the mass, the jet/particle is taken to

be at rest.
THE, PHI : polar and azimuthal angle for the momentum vector of the jet/particle.

CALL LU2ENT(IP,KF1,KF2,PECM)

Purpose: to add two entries to the event record, i.e. either a 2-jet system or two separate
particles.

IP : normally line number for the first jet/particle, with second in line IP+1. There
are two exceptions.
If IP=0, lines 1 and 2 are used and LUEXEC is called.
If IP<0, lines -IP and -IP+1 are used, with status code K(I,1)=3, i.e. with
special colour connection information, so that a parton shower can be generated
by a LUSHOW call, followed by a LUEXEC call, if so desired (only relevant for jets).

KF1, KF2 : flavour codes for the two jets/particles.
PECM : (= Ecm) the total energy of the system.
Remark: the system is given in the c.m. frame, with the first jet/particle going out in

the +z direction.

251



CALL LU3ENT(IP,KF1,KF2,KF3,PECM,X1,X3)

Purpose: to add three entries to the event record, i.e. either a 3-jet system or three
separate particles.

IP : normally line number for the first jet/particle, with other two in IP+1 and
IP+2. There are two exceptions.
If IP=0, lines 1, 2 and 3 are used and LUEXEC is called.
If IP<0, lines -IP through -IP+2 are used, with status code K(I,1)=3, i.e.
with special colour connection information, so that a parton shower can be
generated by a LUSHOW call, followed by a LUEXEC call, if so desired (only
relevant for jets).

KF1, KF2, KF3: flavour codes for the three jets/particles.
PECM : (Ecm) the total energy of the system.
X1, X3 : xi = 2Ei/Ecm, i.e. twice the energy fraction taken by the i’th jet. Thus

x2 = 2 − x1 − x3, and need not be given. Note that not all combinations of xi
are inside the physically allowed region.

Remark : the system is given in the c.m. frame, in the xz-plane, with the first jet going
out in the +z direction and the third one having px > 0.

CALL LU4ENT(IP,KF1,KF2,KF3,KF4,PECM,X1,X2,X4,X12,X14)

Purpose: to add four entries to the event record, i.e. either a 4-jet system or four
separate particles (or, for qqq′q′ events, two 2-jet systems).

IP : normally line number for the first jet/particle, with other three in lines IP+1,
IP+2 and IP+3. There are two exceptions.
If IP=0, lines 1, 2, 3 and 4 are used and LUEXEC is called.
If IP<0, lines -IP through -IP+3 are used, with status code K(I,1)=3, i.e.
with special colour connection information, so that a parton shower can be
generated by a LUSHOW call, followed by a LUEXEC call, if so desired (only
relevant for jets).

KF1,KF2,KF3,KF4 : flavour codes for the four jets/particles.
PECM : (= Ecm) the total energy of the system.
X1,X2,X4 : xi = 2Ei/Ecm, i.e. twice the energy fraction taken by the i’th jet. Thus

x3 = 2 − x1 − x2 − x4, and need not be given.
X12,X14 : xij = 2pipj/E

2
cm, i.e. twice the four-vector product of the momenta for jets

i and j, properly normalized. With the masses known, other xij may be
constructed from the xi and xij given. Note that not all combinations of xi
and xij are inside the physically allowed region.

Remark: the system is given in the c.m. frame, with the first jet going out in the +z
direction and the fourth jet lying in the xz-plane with px > 0. The second
jet will have py > 0 and py < 0 with equal probability, with the third jet
balancing this py (this corresponds to a random choice between the two possible
stereoisomers).

CALL LUJOIN(NJOIN,IJOIN)

Purpose: to connect a number of previously defined partons into a string configuration.
Initially the partons must be given with status codes K(I,1)= 1, 2 or 3. Af-
terwards the partons all have status code 3, i.e. are given with full colour-flow
information. Compared to the normal way of defining a parton system, the
partons need therefore not appear in the same sequence in the event record as

252



they are assumed to do along the string. It is also possible to call LUSHOW for
all or some of the entries making up the string formed by LUJOIN.

NJOIN: the number of entries that are to be joined by one string.
IJOIN: an one-dimensional array, of size at least NJOIN. The NJOIN first numbers

are the positions of the partons that are to be joined, given in the order the
partons are assumed to appear along the string. If the system consists entirely
of gluons, the string is closed by connecting back the last to the first entry.

Remarks: only one string (i.e. one colour singlet) may be defined per call, but one is at
liberty to use any number of LUJOIN calls for a given event. The program will
check that the parton configuration specified makes sense, and not take any
action unless it does. Note, however, that an initially sensible parton config-
uration may become nonsensical, if only some of the partons are reconnected,
while the others are left unchanged.

CALL LUGIVE(CHIN)

Purpose: to set the value of any variable residing in the commmonblocks LUJETS,
LUDAT1, LUDAT2, LUDAT3, LUDAT4, LUDATR, PYSUBS, PYPARS, PYINT1, PYINT2,
PYINT3, PYINT4, PYINT5, PYINT6, or PYINT7. This is done in a more controlled
fashion than by directly including the common blocks in the user program, in
that array bounds are checked and the old and new values for the variable
changed are written to the output for reference.

CHIN : character expression of length at most 100 characters, with requests for vari-
ables to be changed, stored in the form
variable1=value1;variable2=value2;variable3=value3. . . .
Note that an arbitrary number of instructions can be stored in one call if
separated by semicolons, and that blanks may be included anyplace. The
variablei may be any single variable in the Jetset/Pythia common blocks,
and the valuei must be of the correct integer, real or character (without extra
quotes) type. Array indices and values must be given explicitly, i.e. cannot
be variables in their own right. The exception is that the first index can be
preceded by a C, signifying that the index should be translated from normal
KF to compressed KC code with a LUCOMP call; this is allowed for the KCHG,
PMAS, MDCY and CHAF arrays. If a valuei is omitted, i.e. with the construction
variable=, the current value is written to the output, but the variable itself
is not changed.

Remark : The checks on array bounds are hardwired into this routine. Therefore, if
some user changes array dimensions and MSTU(3), MSTU(6) and/or MSTU(7),
as allowed by other considerations, these changes will not be known to LUGIVE.
Normally this should not be a problem, however.

14.2 The JETSET Physics Routines

The physics routines form the major part of Jetset, but once the initial jet/particle
configuration has been specified and default parameter values changed, if so desired, only
a LUEXEC call is necessary to simulate the whole fragmentation and decay chain. Therefore
a normal user will not directly see any of the other routines in this section. Some of them
could be called directly, but the danger of faulty usage is then non-negligible.

The LUTAUD routine provides an optional interface to an external τ decay library, where
polarization effects could be included. It is up to the user to write the appropriate calls,
as explained at the end of this section.

253



CALL LUEXEC

Purpose: to administrate the fragmentation and decay chain. LUEXEC may be called sev-
eral times, but only entries which have not yet been treated (more precisely,
which have 1 ≤K(I,1)≤ 10) can be affected by further calls. This may apply
if more jets/particles have been added by the user, or if particles previously
considered stable are now allowed to decay. The actions that will be taken dur-
ing a LUEXEC call can be tailored extensively via the LUDAT1–LUDAT3 common
blocks, in particular by setting the MSTJ values suitably.

SUBROUTINE LUPREP(IP) : to rearrange parton shower end products (marked with
K(I,1)=3) sequentially along strings; also to (optionally) allow small jet sys-
tems to collapse into two particles or one only, in the latter case with energy
and momentum to be shuffled elsewhere in the event; also to perform checks
that e.g. flavours of colour-singlet systems make sense.

SUBROUTINE LUSTRF(IP) : to generate the fragmentation of an arbitrary colour-singlet
jet system according to the Lund string fragmentation model. In many re-
spects, this routine is the very heart and soul of Jetset.

SUBROUTINE LUINDF(IP) : to handle the fragmentation of a jet system according to
independent fragmentation models, and implement energy, momentum and
flavour conservation, if so desired. Also the fragmentation of a single jet, not
belonging to a jet system, is considered here (this is of course physical nonsense,
but may sometimes be convenient for specific tasks).

SUBROUTINE LUDECY(IP) : to perform a particle decay, according to known branching
ratios or different kinds of models, depending on our level of knowledge. Var-
ious matrix elements are included for specific processes.

SUBROUTINE LUKFDI(KFL1,KFL2,KFL3,KF) : to generate a new quark or diquark flavour
and to combine it with an existing flavour to give a hadron.

KFL1: incoming flavour.
KFL2: extra incoming flavour, e.g. for formation of final particle, where the

flavours are completely specified. Is normally 0.
KFL3: newly created flavour; is 0 if KFL2 is non-zero.
KF: produced hadron. Is 0 if something went wrong (e.g. inconsistent com-

bination of incoming flavours).
SUBROUTINE LUPTDI(KFL,PX,PY) : to give transverse momentum, e.g. for a qq pair

created in the colour field, according to independent Gaussian distributions in
px and py.

SUBROUTINE LUZDIS(KFL1,KFL3,PR,Z) : to generate the longitudinal scaling variable z
in jet fragmentation, either according to the Lund symmetric fragmentation
function, or according to a choice of other shapes.

SUBROUTINE LUBOEI : to include Bose–Einstein effects according to a simple parametri-
zation. By default, this routine is not called. If called from LUEXEC, this is
done after the decay of short-lived resonances, but before the decay of long-
lived ones. This means the routine should never be called directly by you, nor
would effects be correctly simulated if decays are switched off. See MSTJ(51)
- MSTJ(52) for switching on the routine.

FUNCTION ULMASS(KF) : to give the mass for a parton/particle.
SUBROUTINE LUNAME(KF,CHAU) : to give the parton/particle name (as a string of type

CHARACTER CHAU*16).
FUNCTION LUCHGE(KF) : to give three times the charge for a parton/particle.
FUNCTION LUCOMP(KF) : to give the compressed parton/particle code KC for a given KF

code, as required to find entry into mass and decay data tables. Also checks
whether the given KF code is actually an allowed one (i.e. known by the

254



program), and returns 0 if not. Note that KF may be positive or negative,
while the resulting KC code is never negative.

SUBROUTINE LUERRM(MERR,MESSAG) : to keep track of the number of errors and warnings
encountered, write out information on them, and abort the program in case of
too many errors.

FUNCTION ULANGL(X,Y) : to calculate the angle from the x and y coordinates.
SUBROUTINE LULOGO : to write a titlepage for the Jetset/Pythia programs. Called by

LULIST(0).
BLOCK DATA LUDATA : to give default values for variables in the LUDAT1, LUDAT2, LUDAT3,

LUDAT4 and LUDATR common blocks.

CALL LUTAUD(ITAU,IORIG,KFORIG,NDECAY)

Purpose: to act as an interface between the standard decay routine LUDECY and a user-
supplied τ lepton decay library. The latter library would normally know how
to handle polarized τ ’s, given the τ polarization as input, so one task of the
interface routine is to construct the τ polarization/helicity from the informa-
tion available. Input to the routine (from LUDECY) is provided in the first
three arguments, while the last argument and some event record information
have to be set before return. To use this facility you have to set the switch
MSTJ(28), include your own interface routine LUTAUD and see to it that the
dummy routine LUTAUD in Jetset is not linked. The dummy routine is there
only to avoid unresolved external references when no user-supplied interface is
linked.

ITAU : line number in the event record where the τ is stored. The four-momentum
of this τ has first been boosted back to the rest frame of the decaying mother
and thereafter rotated to move out along the +z axis. It would have been
possible to also perform a final boost to the rest frame of the τ itself, but
this has been avoided so as not to suppress the kinematics aspect of close-
to-threshold production (e.g. in B decays) vs. high-energy production (e.g.
in real W decays). The choice of frame should help the calculation of the
helicity configuration. After the LUTAUD call the τ and its decay products will
automatically be rotated and boosted back. However, seemingly, the event
record does not conserve momentum at this intermediate stage.

IORIG : line number where the mother particle to the τ is stored. Is 0 if the mother is
not stored. This does not have to mean the mother is unknown. For instance,
in semileptonic B decays the mother is a W± with known four-momentum
pW = pτ +pντ , but there is no W line in the event record. When several copies
of the mother is stored (e.g. one in the documentation section of the event
record and one in the main section), IORIG points to the last. If a branchings
like τ → τγ occurs, the ‘grandmother’ is given, i.e. the mother of the direct τ
before branching.

KFORIG : flavour code for the mother particle. Is 0 if the mother is unknown. The mother
would typically be a resonance such as γ∗/Z0 (23), W± (±24), H0 (25), or H±

(±37). Often the helicity choice would be clear just by the knowledge of this
mother species, e.g., W± vs. H±. However, sometimes further complications
may exist. For instance, the KF code 23 represents a mixture of γ∗ and Z0; a
knowledge of the mother mass (in P(IORIG,5)) would here be required to make
the choice of helicities. Further, a W± or Z0 may either be (predominantly)
transverse or longitudinal, depending on the production process under study.

NDECAY : the number of decay products of the τ ; to be given by the user. You must also
store the KF flavour codes of those decay products in the positions K(I,2),

255



N+1≤I≤N+NDECAY, of the event record. The corresponding five-momentum
(momentum, energy and mass) should be stored in the associated P(I,J)
positions, 1≤J≤5. The four-momenta are expected to add up to the four-
momentum of the τ in position ITAU. You should not change the N value or
any of the other K or V values (neither for the τ nor for its decay products)
since this is automatically done in LUDECY.

14.3 Event Study and Data Listing Routines

After an LUEXEC call, the event generated is stored in the LUJETS common block, and
whatever physical variable is desired may be constructed from this record. An event
may be rotated, boosted or listed, and particle data may be listed or modified. Via the
functions KLU and PLU the values of some frequently appearing variables may be obtained
more easily. As described in section 15.4, also more detailed event shape analyses may be
performed simply.

CALL LUROBO(THE,PHI,BEX,BEY,BEZ)

Purpose: to perform rotations and Lorentz boosts (in that order, if both in the same
call) of jet/particle momenta and vertex position variables.

THE, PHI : standard polar coordinates θ, ϕ, giving the rotated direction of a momentum
vector initially along the +z axis.

BEX, BEY, BEZ : gives the direction and size β of a Lorentz boost, such that a particle
initially at rest will have p/E =β afterwards.

Remark: all entries 1 through N are affected by the transformation, unless lower and
upper bounds are explicitly given by MSTU(1) and MSTU(2), or if status code
K(I,1)≤ 0.

ENTRY LUDBRB(IMI,IMA,THE,PHI,DBEX,DBEY,DBEZ)

Purpose: to perform rotations and Lorentz boosts (in that order, if both in the same
call) of jet/particle momenta and vertex position variables, for a specific range
of entries, and with the boost vector given in double precision. Is entry to
LUROBO, mainly intended for internal use.

IMI, IMA : range of entries affected by transformation, IMI≤I≤IMA.
THE, PHI : standard polar coordinates θ, ϕ, giving the rotated direction of a momentum

vector initially along the +z axis.
DBEX, DBEY, DBEZ : gives the direction and size β of a Lorentz boost, such that a

particle initially at rest will have p/E =β afterwards. Is to be given in double
precision.

Remark: all entries with status codes K(I,1)>0 in the requested range are affected by
the transformation.

CALL LUEDIT(MEDIT)

Purpose: to exclude unstable or undetectable jets/particles from the event record. One
may also use LUEDIT to store spare copies of events (specifically initial par-
ton configuration) that can be recalled to allow e.g. different fragmentation
schemes to be run through with one and the same parton configuration. Fi-
nally, an event which has been analyzed with LUSPHE, LUTHRU or LUCLUS (see
section 15.4) may be rotated to align the event axis with the z direction.

256



MEDIT : tells which action is to be taken.
= 0 : empty (K(I,1)=0) and documentation (K(I,1)>20) lines are removed.

The jets/particles remaining are compressed in the beginning of the
LUJETS common block and the N value is updated accordingly. The event
history is lost, so that information stored in K(I,3), K(I,4) and K(I,5)
is no longer relevant.

= 1 : as =0, but in addition all jets/particles that have fragmented/decayed
(K(I,1)>10) are removed.

= 2 : as =1, but also all neutrinos and unknown particles (i.e. compressed code
KC= 0) are removed.

= 3 : as =2, but also all uncharged, colour neutral particles are removed, leaving
only charged, stable particles (and unfragmented partons, if fragmenta-
tion has not been performed).

= 5 : as =0, but also all partons which have branched or been rearranged in a
parton shower and all particles which have decayed are removed, leaving
only the fragmenting parton configuration and the final-state particles.

= 11 : remove lines with K(I,1)<0. Update event history information (in
K(I,3) - K(I,5)) to refer to remaining entries.

= 12 : remove lines with K(I,1)=0. Update event history information (in
K(I,3) - K(I,5)) to refer to remaining entries.

= 13 : remove lines with K(I,1)= 11, 12 or 15, except for any line with
K(I,2)=94. Update event history information (in K(I,3) - K(I,5)) to
refer to remaining entries. In particular, try to trace origin of daughters,
for which the mother is decayed, back to entries not deleted.

= 14 : remove lines with K(I,1)= 13 or 14, and also any line with K(I,2)=94.
Update event history information (in K(I,3) - K(I,5)) to refer to re-
maining entries. In particular, try to trace origin of rearranged jets back
through the parton-shower history to the shower initiator.

= 15 : remove lines with K(I,1)>20. Update event history information (in
K(I,3) - K(I,5)) to refer to remaining entries.

= 16 : try to reconstruct missing daughter pointers of decayed particles from the
mother pointers of decay products. These missing pointers typically come
from the need to use K(I,4) and K(I,5) also for colour flow information.

= 21 : all partons/particles in current event record are stored (as a spare copy)
in bottom of common block LUJETS (is e.g. done to save original partons
before calling LUEXEC).

= 22 : partons/particles stored in bottom of event record with =21 are placed in
beginning of record again, overwriting previous information there (so that
e.g. a different fragmentation scheme can be used on the same partons).
Since the copy at bottom is unaffected, repeated calls with =22 can be
made.

= 23 : primary partons/particles in the beginning of event record are marked as
not fragmented or decayed, and number of entries N is updated accord-
ingly. Is simpe substitute for =21 plus =22 when no fragmentation/decay
products precede any of the original partons/particles.

= 31 : rotate largest axis, determined by LUSPHE, LUTHRU or LUCLUS, to sit along
the z direction, and the second largest axis into the xz plane. For LUCLUS
it can be further specified to +z axis and xz plane with x > 0, respec-
tively. Requires that one of these routines has been called before.

= 32 : mainly intended for LUSPHE and LUTHRU, this gives a further alignment of
the event, in addition to the one implied by =31. The ‘slim’ jet, defined
as the side (z > 0 or z < 0) with the smallest summed p⊥ over square
root of number of particles, is rotated into the +z hemisphere. In the

257



opposite hemisphere (now z < 0), the side of x > 0 and x < 0 which
has the largest summed |pz| is rotated into the z < 0, x > 0 quadrant.
Requires that LUSPHE or LUTHRU has been called before.

Remark: all entries 1 through N are affected by the editing. For options 0–5 lower and
upper bounds can be explicitly given by MSTU(1) and MSTU(2).

CALL LULIST(MLIST)

Purpose: to list an event, jet or particle data, or current parameter values.
MLIST : determines what is to be listed.

= 0 : writes a title page, common for Jetset and Pythia, with program
version numbers and last dates of change; is mostly for internal use.

= 1 : gives a simple list of current event record, in an 80 column format suitable
for viewing directly on the computer terminal. For each entry, the follow-
ing information is given: the entry number I, the parton/particle name
(see below), the status code (K(I,1)), the flavour code KF (K(I,2)), the
line number of the mother (K(I,3)), and the three-momentum, energy
and mass (P(I,1) - P(I,5)). If MSTU(3) is non-zero, lines immediately
after the event record proper are also listed. A final line contains infor-
mation on total charge, momentum, energy and invariant mass.
The particle name is given by a call to the routine LUNAME. For an entry
which has decayed/fragmented (K(I,1)= 11–20), this particle name is
given within parentheses. Similarly, a documentation line (K(I,1)= 21–
30) has the name enclosed in expression signs (!. . . !) and an event/jet
axis information line the name within inequality signs (<. . .>). If the
last character of the name is a ‘?’, it is a signal that the complete name
has been truncated to fit in, and can therefore not be trusted; this is
very rare. For partons which have been arranged along strings (K(I,1)=
1, 2, 11 or 12), the end of the parton name column contains information
about the colour string arrangement: an A for the first entry of a string,
an I for all intermediate ones, and a V for the final one (a poor man’s
rendering of a vertical doublesided arrow, l).
It is possible to insert lines just consisting of sequences of ====== to sep-
arate different sections of the event record, see MSTU(70) - MSTU(80).

= 2 : gives a more extensive list of the current event record, in a 132 column
format, suitable for printers or workstations. For each entry, the fol-
lowing information is given: the entry number I, the parton/particle
name (with padding as described for =1), the status code (K(I,1)), the
flavour code KF (K(I,2)), the line number of the mother (K(I,3)), the
decay product/colour-flow pointers (K(I,4), K(I,5)), and the three-
momentum, energy and mass (P(I,1) - P(I,5)). If MSTU(3) is non-
zero, lines immediately after the event record proper are also listed. A
final line contains information on total charge, momentum, energy and
invariant mass. Lines with only ====== may be inserted as for =1.

= 3 : gives the same basic listing as =2, but with an additional line for each
entry containing information on production vertex position and time
(V(I,1) - V(I,4)) and, for unstable particles, proper lifetime (V(I,5)).

= 11 : provides a simple list of all parton/particle codes defined in the program,
with KF code and corresponding particle name. The list is grouped by
particle kind, and only within each group in ascending order.

= 12 : provides a list of all parton/particle and decay data used in the pro-
gram. Each parton/particle code is represented by one line containing

258



KF flavour code, KC compressed code, particle name, antiparticle name
(where appropriate), electrical and colour charge (stored in KCHG), mass,
resonance width and maximum broadening, average proper lifetime (in
PMAS) and whether the particle is considered stable or not (in MDCY).
Immediately after a particle, each decay channel gets one line, contain-
ing decay channel number (IDC read from MDCY), on/off switch for the
channel, matrix element type (MDME), branching ratio (BRAT), and decay
products (KFDP). The MSTU(14) flag can be used to set the maximum
flavour for which particles are listed, with the default (= 0) correspond-
ing to separately defined ones (KC> 100 if KF> 0). In order to keep the
size down, decay modes of heavy hadrons collectively defined are never
listed; these have KC codes 84–88, where the relevant information may
be found.

= 13 : gives a list of current parameter values for MSTU, PARU, MSTJ and PARJ,
and the first 200 entries of PARF. This is useful to keep check of which
default values were changed in a given run.

Remark: for options 1–3 and 12 lower and upper bounds of the listing can be explicitly
given by MSTU(1) and MSTU(2).

CALL LUUPDA(MUPDA,LFN)

Purpose: to give you the ability to update particle data, or to keep several versions of
modified particle data for special purposes (e.g. charm studies).

MUPDA : gives the type of action to be taken.
= 1 : write a table of particle data, that you then can edit at leisure. For ordi-

nary listing of decay data, LULIST(12) should be used, but that listing
could not be read back in by the program.
For each compressed flavour code KC = 1–500, one line is written contain-
ing KC (I5), the basic particle name (i.e. excluding charge etc.) (2X,A8)
in CHAF, the electric (I3), colour charge (I3) and particle/antiparticle dis-
tinction (I3) codes in KCHG, the mass (F12.5), the mass width (F12.5),
maximum broadening (F12.5) and average proper lifetime (2X,F12.5)
in PMAS, and the on/off decay switch (I3) in MDCY(KC,1).
After a KC line follows one line for each possible decay channel, contain-
ing the MDME codes (5X,2I5), the branching ratio (5X,F12.5) in BRAT,
and the KFDP codes for the decay products (5I8), with trailing 0’s if the
number of decay products is smaller than 5.

= 2 : read in particle data, as written with =1 and thereafter edited by you,
and use this data subsequently in the current run. Reading is done with
fixed format, which means that you have to preserve the format codes
described for =1 during the editing. A number of checks will be made to
see if input looks reasonable, with warnings if not. If some decay channel
is said not to conserve charge, it should be taken seriously. Warnings
that decay is kinematically unallowed need not be as serious, since that
particular decay mode may not be switched on unless the particle mass
is increased.

= 3 : write current particle data as data lines, which can be edited into BLOCK
DATA LUDATA for a permanent replacement of the particle data. This
option is intended for the program author only, not for you.

LFN : the file number which the data should be written to or read from. You must
see to it that this file is properly opened for read or write (since the definition
of file names is machine dependent).

259



KK = KLU(I,J)

Purpose: to provide various integer-valued event data. Note that many of the options
available (in particular I> 0, J≥ 14) which refer to event history will not work
after a LUEDIT call. Further, the options 14–18 depend on the way the event
history has been set up, so with the explosion of different allowed formats these
options are no longer as safe as they may have been. For instance, option 16
can only work if MSTU(16)=2.

I=0, J= : properties referring to the complete event.
= 1 : N, total number of lines in event record.
= 2 : total number of partons/particles remaining after fragmentation and de-

cay.
= 6 : three times the total charge of remaining (stable) partons and particles.

I>0, J= : properties referring to the entry in line no. I of the event record.
= 1 - 5 : K(I,1) - K(I,5), i.e. parton/particle status KS, flavour code KF and

origin/decay product/colour-flow information.
= 6 : three times parton/particle charge.
= 7 : 1 for a remaining entry, 0 for a decayed, fragmented or documentation

entry.
= 8 : KF code (K(I,2)) for a remaining entry, 0 for a decayed, fragmented or

documentation entry.
= 9 : KF code (K(I,2)) for a parton (i.e. not colour neutral entry), 0 for a

particle.
= 10 : KF code (K(I,2)) for a particle (i.e. colour neutral entry), 0 for a parton.
= 11 : compressed flavour code KC.
= 12 : colour information code, i.e. 0 for colour neutral, 1 for colour triplet, -1

for antitriplet and 2 for octet.
= 13 : flavour of ‘heaviest’ quark or antiquark (i.e. with largest code) in hadron

or diquark (including sign for antiquark), 0 else.
= 14 : generation number. Beam particles or virtual exchange particles are

generation 0, original jets/particles generation 1 and then 1 is added for
each step in the fragmentation/decay chain.

= 15 : line number of ancestor, i.e. predecessor in first generation (generation
0 entries are disregarded).

= 16 : rank of a hadron in the jet it belongs to. Rank denotes the ordering
in flavour space, with hadrons containing the original flavour of the jet
having rank 1, increasing by 1 for each step away in flavour ordering. All
decay products inherit the rank of their parent. Whereas the meaning
of a first-rank hadron in a quark jet is always well-defined, the definition
of higher ranks is only meaningful for independently fragmenting quark
jets. In other cases, rank refers to the ordering in the actual simulation,
which may be of little interest.

= 17 : generation number after a collapse of a jet system into one particle, with
0 for an entry not coming from a collapse, and -1 for entry with unknown
history. A particle formed in a collapse is generation 1, and then one is
added in each decay step.

= 18 : number of decay/fragmentation products (only defined in a collective
sense for fragmentation).

= 19 : origin of colour for showering parton, 0 else.
= 20 : origin of anticolour for showering parton, 0 else.
= 21 : position of colour daughter for showering parton, 0 else.
= 22 : position of anticolour daughter for showering parton, 0 else.

260



PP = PLU(I,J)

Purpose: to provide various real-valued event data. Note that some of the options
available (I> 0, J= 20–25), which are primarily intended for studies of systems
in their respective c.m. frame, requires that a LUEXEC call has been made for
the current initial parton/particle configuration, but that the latest LUEXEC
call has not been followed by a LUROBO one.

I=0, J= : properties referring to the complete event.
= 1 - 4 : sum of px, py, pz and E, respectively, for the stable remaining entries.
= 5 : invariant mass of the stable remaining entries.
= 6 : sum of electric charge of the stable remaining entries.

I>0, J= : properties referring to the entry in line no. I of the event record.
= 1 - 5 : P(I,1) - P(I,5), i.e. normally px, py, pz, E and m for jet/particle.
= 6 : electric charge e.
= 7 : squared momentum |p|2 = p2x + p2y + p2z.
= 8 : absolute momentum |p|.
= 9 : squared transverse momentum p2⊥ = p2x + p2y.
= 10 : transverse momentum p⊥.
= 11 : squared transverse mass m2

⊥ = m2 + p2x + p2y.
= 12 : transverse mass m⊥.
= 13 - 14 : polar angle θ in radians (between 0 and π) or degrees, respectively.
= 15 - 16 : azimuthal angle ϕ in radians (between −π and π) or degrees, respec-

tively.
= 17 : true rapidity y = (1/2) ln((E + pz)/(E − pz)).
= 18 : rapidity yπ obtained by assuming that the particle is a pion when calcu-

lating the energy E, to be used in the formula above, from the (assumed
known) momentum p.

= 19 : pseudorapidity η = (1/2) ln((p+ pz)/(p− pz)).
= 20 : momentum fraction xp = 2|p|/W , where W is the total energy of initial

jet/particle configuration.
= 21 : xF = 2pz/W (Feynman-x if system is studied in the c.m. frame).
= 22 : x⊥ = 2p⊥/W .
= 23 : xE = 2E/W .
= 24 : z+ = (E + pz)/W .
= 25 : z− = (E − pz)/W .

14.4 The General Switches and Parameters

The common block LUDAT1 is, next to LUJETS, the one a Jetset user is most likely to
access. Here one may control in detail what the program is to do, if the default mode of
operation is not satisfactory.

COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the
performance of the program as a whole. Here MSTU and PARU are related to
utility functions, as well as a few parameters of the Standard Model, while MSTJ
and PARJ affect the underlying physics assumptions. Some of the variables in
LUDAT1 are described elsewhere, and are therefore here only reproduced as
references to the relevant sections. This in particular applies to many coupling
constants mainly used by Pythia, which are found just after this, in section
14.5.

261



MSTU(1),MSTU(2) : (D=0,0) can be used to replace the ordinary lower and upper limits
(normally 1 and N) for the action of LUROBO, and most LUEDIT and LULIST
calls. Are reset to 0 in a LUEXEC call.

MSTU(3) : (D=0) number of lines with extra information added after line N. Is reset to
0 in a LUEXEC call, or in an LUEDIT call when particles are removed.

MSTU(4) : (D=4000) number of lines available in the common block LUJETS. Should
always be changed if the dimensions of the K and P arrays are changed by
the user, but should otherwise never be touched. Maximum allowed value is
10000, unless MSTU(5) is also changed.

MSTU(5) : (D=10000) is used in building up the special colour-flow information stored
in K(I,4) and K(I,5) for K(I,3)= 3, 13 or 14. The generic form for j= 4 or
5 is
K(I,j)= 2×MSTU(5)2×MCFR+MSTU(5)2×MCTO+MSTU(5)×ICFR+ICTO,
with notation as in section 5.2. One should always have MSTU(5)≥MSTU(4).
On a 32 bit machine, values MSTU(5)> 20000 may lead to overflow problems,
and should be avoided.

MSTU(6) : (D=500) number of KC codes available in the KCHG, PMAS, MDCY, and CHAF
arrays; should be changed if these dimensions are changed.

MSTU(7) : (D=2000) number of decay channels available in the MDME, BRAT and KFDP
arrays; should be changed if these dimensions are changed.

MSTU(10) : (D=2) use of parton/particle masses in filling routines (LU1ENT, LU2ENT,
LU3ENT, LU4ENT).

= 0 : assume the mass to be zero.
= 1 : keep the mass value stored in P(I,5), whatever it is. (This may be used

e.g. to describe kinematics with off-mass-shell partons).
= 2 : find masses according to mass tables as usual.

MSTU(11) : (D=6) file number to which all program output is directed. It is your re-
sponsibility to see to it that the corresponding file is also opened for output.

MSTU(12) : (D=1) writing of title page (version number and last date of change for
Pythia and Jetset) on output file.

= 0 : not done.
= 1 : title page is written at first occasion, at which time MSTU(12) is set =0.

MSTU(13) : (D=1) writing of information on variable values changed by a LUGIVE
call.

= 0 : no information is provided.
= 1 : information is written to standard output.

MSTU(14) : (D=0) if non-zero, this gives the maximum flavour for which a LULIST(12)
call will give particle data on possible hadrons. With MSTU(14)=5 only known
hadrons, i.e. up to bottom, are listed. If =0, only separately specified particles
are listed (i.e. either KF≤ 100 or else both KF> 100 and KC> 100).

MSTU(15) : (D=1) selection for characters used in particle names to denote an antipar-
ticle; appear in LULIST listings or other LUNAME applications.

= 1 : the tilde character ‘∼’.
= 2 : the characters ‘bar’.

MSTU(16) : (D=1) choice of mother pointers for the particles produced by a fragmenting
parton system.

= 1 : all primary particles of a system point to a line with KF = 92 or 93, for
string or independent fragmentation, respectively, or to a line with KF
= 91 if a jet system has so small a mass that it is forced to decay into
one or two particles. The two (or more) shower initiators of a showering
parton system point to a line with KF = 94. The entries with KF =
91–94 in their turn point back to the predecessor partons, so that the
KF = 91–94 entries form a part of the event history proper.

262



= 2 : although the lines with KF = 91–94 are present, and contain the correct
mother and daughter pointers, they are not part of the event history
proper, in that particles produced in string fragmentation point directly
to either of the two endpoint partons of the string (depending on the side
they were generated from), particles produced in independent fragmen-
tation point to the respective parton they were generated from, particles
in small mass systems point to either endpoint parton, and shower initia-
tors point to the original on-mass-shell counterparts. Also the daugher
pointers bypass the KF = 91–94 entries. In independent fragmentation,
a parton need not produce any particles at all, and then have daughter
pointers 0.

Note : MSTU(16) should not be changed between the generation of an event and
the translation of this event record with a LUHEPC call, since this may
give an erroneous translation of the event history.

MSTU(17) : (D=0) storage option for MSTU(90) and associated information on z values
for heavy-flavour production.

= 0 : MSTU(90) is reset to zero at each LUEXEC call. This is the appropriate
course if LUEXEC is only called once per event, as is normally the case
when you do not yourself call LUEXEC.

= 1 : you have to reset MSTU(90) to zero yourself before each new event. This
is the appropriate course if several LUEXEC calls may appear for one event,
i.e. if you call LUEXEC directly.

MSTU(19) : (D=0) advisory warning for unphysical flavour setups in LU2ENT, LU3ENT or
LU4ENT calls.

= 0 : yes.
= 1 : no; MSTU(19) is reset to 0 in such a call.

MSTU(21) : (D=2) check on possible errors during program execution. Obviously no
guarantee is given that all errors will be caught, but some of the most trivial
user-caused errors may be found.

= 0 : errors do not cause any immediate action, rather the program will try to
cope, which may mean e.g. that it runs into an infinite loop.

= 1 : parton/particle configurations are checked for possible errors. In case
of problem, an exit is made from the misbehaving subprogram, but the
generation of the event is continued from there on. For the first MSTU(22)
errors a a message is printed; after that no messages appear.

= 2 : parton/particle configurations are checked for possible errors. In case of
problem, an exit is made from the misbehaving subprogram, and sub-
sequently from LUEXEC. You may then choose to correct the error, and
continue the execution by another LUEXEC call. For the first MSTU(22)
errors a message is printed, after that the last event is printed and exe-
cution is stopped.

MSTU(22) : (D=10) maximum number of errors that are printed.
MSTU(23) : (I) count of number of errors experienced to date.
MSTU(24) : (R) type of latest error experienced; reason that event was not generated in

full. Is reset at each LUEXEC call.
= 0 : no error experienced.
= 1 : have reached end of or are writing outside LUJETS memory.
= 2 : unknown flavour code or unphysical combination of codes; may also be

caused by erroneous string connection information.
= 3 : energy or mass too small or unphysical kinematical variable setup.
= 4 : program is caught in an infinite loop.
= 5 : momentum, energy or charge was not conserved (even allowing for ma-

chine precision errors, see PARU(11)); is evaluated only after event has

263



been generated in full, and does not apply when independent fragmenta-
tion without momentum conservation was used.

= 6 : error call from outside the fragmentation/decay package (e.g. the e+e−

routines).
= 7 : inconsistent particle data input in LUUPDA (MUPDA = 2) or other LUUPDA-

related problem.
= 8 : problems in more peripheral service routines.
= 9 : various other problems.

MSTU(25) : (D=1) printing of warning messages.
= 0 : no warnings are written.
= 1 : first MSTU(26) warnings are printed, thereafter no warnings appear.

MSTU(26) : (D=10) maximum number of warnings that are printed.
MSTU(27) : (I) count of number of warnings experienced to date.
MSTU(28) : (R) type of latest warning given, with codes paralleling those for MSTU(24),

but of a less serious nature.
MSTU(31) : (I) number of LUEXEC calls in present run.
MSTU(32) : (I) number of entries stored with LUEDIT(-1) call.
MSTU(33) : (I) if set 1 before a LUDBRB call, the V vectors (in the particle range to be

rotated/boosted) are set 0 before the rotation/boost. MSTU(33) is set back to
0 in the LUDBRB call. Is inactive in a LUROBO call.

MSTU(41) - MSTU(63) : switches for event-analysis routines, see section 15.4.
MSTU(70) : (D=0) the number of lines consisting only of equal signs (======) that are in-

serted in the event listing obtained with LULIST(1), LULIST(2) or LULIST(3),
so as to distinguish different sections of the event record on output. At most
10 such lines can be inserted; see MSTU(71) - MSTU(80). Is reset at LUEDIT
calls with arguments 0–5.

MSTU(71) - MSTU(80) : line numbers below which lines consisting only of equal signs
(======) are inserted in event listings. Only the first MSTU(70) of the 10
allowed positions are enabled.

MSTU(90) : number of heavy-flavour hadrons (i.e. hadrons containing charm or heavier
flavours) produced in current event, for which the positions in the event record
are stored in MSTU(91) - MSTU(98) and the z values in the fragmentation in
PARU(91) - PARU(98). At most eight values will be stored (normally this is
no problem). No z values can be stored for those heavy hadrons produced
when a string has so small mass that it collapses to one or two particles, nor
for those produced as one of the final two particles in the fragmentation of a
string. If MSTU(17)=1, MSTU(90) should be reset to zero by you before each
new event, else this is done automatically.

MSTU(91) - MSTU(98) : the first MSTU(90) positions will be filled with the line numbers
of the heavy-flavour hadrons produced in the current event. See MSTU(90)
for additional comments. Note that the information is corrupted by calls to
LUEDIT with options 0–5 and 21–23; calls with options 11–15 work, however.

MSTU(101) - MSTU(118) : switches related to couplings, see section 14.5.
MSTU(161), MSTU(162) : information used by event-analysis routines, see section 15.4.
MSTU(181) : (R) Jetset version number.
MSTU(182) : (R) Jetset subversion number.
MSTU(183) : (R) last year of change for Jetset.
MSTU(184) : (R) last month of change for Jetset.
MSTU(185) : (R) last day of change for Jetset.
MSTU(186) : (R) earliest subversion of Pythia version 5 with which this Jetset sub-

version can be run.

PARU(1) : (R) π ≈ 3.1415927.

264



PARU(2) : (R) 2π ≈ 6.2831854.
PARU(3) : (D=0.1973) conversion factor for GeV−1 → fm or fm−1 → GeV.
PARU(4) : (D=5.068) conversion factor for fm → GeV−1 or GeV → fm−1.
PARU(5) : (D=0.3894) conversion factor for GeV−2 → mb or mb−1 → GeV2.
PARU(6) : (D=2.568) conversion factor for mb → GeV−2 or GeV2 → mb−1.
PARU(11) : (D=0.001) relative error, i.e. nonconservation of momentum and energy di-

vided by total energy, that may be attributable to machine precision problems
before a physics error is suspected (see MSTU(24)=5).

PARU(12) : (D=0.09 GeV2) effective cut-off in squared mass, below which partons may
be recombined to simplify (machine precision limited) kinematics of string
fragmentation.

PARU(13) : (D=0.01) effective angular cut-off in radians for recombination of partons,
used in conjunction with PARU(12).

PARU(21) : (I) contains the total energy W of all first generation jets/particles after a
LUEXEC call; to be used by the PLU function for I>0, J= 20–25.

PARU(41) - PARU(63) : parameters for event-analysis routines, see section 15.4.
PARU(91) - PARU(98) : the first MSTU(90) positions will be filled with the fragmenta-

tion z values used internally in the generation of heavy-flavour hadrons —
how these are translated into the actual energies and momenta of the observed
hadrons is a complicated function of the string configuration. The particle
with z value stored in PARU(i) is to be found in line MSTU(i) of the event
record. See MSTU(90) and MSTU(91) - MSTU(98) for additional comments.

PARU(101) - PARU(195) : various coupling constants and parameters related to cou-
plings, see section 14.5.

MSTJ(1) : (D=1) choice of fragmentation scheme.
= 0 : no jet fragmentation at all.
= 1 : string fragmentation according to the Lund model.
= 2 : independent fragmentation, according to specification in MSTJ(2) and

MSTJ(3).
MSTJ(2) : (D=3) gluon jet fragmentation scheme in independent fragmentation.

= 1 : a gluon is assumed to fragment like a random d, u or s quark or antiquark.
= 2 : as =1, but longitudinal (see PARJ(43), PARJ(44) and PARJ(59)) and

transverse (see PARJ(22)) momentum properties of quark or antiquark
substituting for gluon may be separately specified.

= 3 : a gluon is assumed to fragment like a pair of a d, u or s quark and
its antiquark, sharing the gluon energy according to the Altarelli-Parisi
splitting function.

= 4 : as =3, but longitudinal (see PARJ(43), PARJ(44) and PARJ(59)) and
transverse (see PARJ(22)) momentum properties of quark and antiquark
substituting for gluon may be separately specified.

MSTJ(3) : (D=0) energy, momentum and flavour conservation options in independent
fragmentation. Whenever momentum conservation is described below, energy
and flavour conservation is also implicitly assumed.

= 0 : no explicit conservation of any kind.
= 1 : particles share momentum imbalance compensation according to their

energy (roughly equivalent to boosting event to c.m. frame). This is
similar to the approach in the Ali et al. program [Ali80].

= 2 : particles share momentum imbalance compensation according to their
longitudinal mass with respect to the imbalance direction.

= 3 : particles share momentum imbalance compensation equally.
= 4 : transverse momenta are compensated separately within each jet, longi-

tudinal momenta are rescaled so that ratio of final jet to initial parton

265



momentum is the same for all the jets of the event. This is similar to the
approach in the Hoyer et al. program [Hoy79].

= 5 : only flavour is explicitly conserved.
= 6 - 10 : as =1 - 5, except that above several colour singlet systems that fol-

lowed immediately after each other in the event listing (e.g. qqqq) were
treated as one single system, whereas here they are treated as separate
systems.

= -1 : independent fragmentation, where also particles moving backwards with
respect to the jet direction are kept, and thus the amount of energy and
momentum mismatch may be large.

MSTJ(11) : (D=4) choice of longitudinal fragmentation function, i.e. how large a fraction
of the energy available a newly-created hadron takes.

= 1 : the Lund symmetric fragmentation function, see PARJ(41) - PARJ(45).
= 2 : choice of some different forms for each flavour separately, see PARJ(51)

- PARJ(59).
= 3 : hybrid scheme, where light flavours are treated with symmetric Lund

(=1), but charm and heavier can be separately chosen, e.g. according to
the SLAC function (=2).

= 4 : the Lund symmetric fragmentation function (=1), for heavy endpoint
quarks modified according to the Bowler (Artru–Mennessier, Morris)
space–time picture of string evolution, see PARJ(46).

= 5 : as =4, but with possibility to interpolate between Bowler and Lund sep-
arately for c, b and t; see PARJ(46) - PARJ(48).

MSTJ(12) : (D=2) choice of baryon production model.
= 0 : no baryon-antibaryon pair production at all; initial diquark treated as a

unit.
= 1 : diquark-antidiquark pair production allowed; diquark treated as a unit.
= 2 : diquark-antidiquark pair production allowed, with possibility for diquark

to be split according to the ‘popcorn’ scheme.
= 3 : as =2, but additionally the production of first rank baryons may be sup-

pressed by a factor PARJ(19).
MSTJ(13) : (D=0) generation of transverse momentum for endpoint quark(s) of single

quark jet or qq jet system (in multijet events no endpoint transverse momen-
tum is ever allowed for).

= 0 : no transverse momentum for endpoint quarks.
= 1 : endpoint quarks obtain transverse momenta like ordinary qq pairs pro-

duced in the field (see PARJ(21)); for 2-jet systems the endpoints obtain
balancing transverse momenta.

MSTJ(14) : (D=1) treatment of a colour-singlet jet system with a low invariant
mass.

= 0 : no precautions are taken, meaning that problems may occur in LUSTRF
(or LUINDF) later on.

= 1 : small jet systems are allowed to collapse into two particles or, failing
that, one single particle. Normally all small systems are treated this
way, starting with the smallest one, but some systems would require
more work and are left untreated; they include diquark-antidiquark pairs
below the two-particle threshold.

= -1 : special option for LUPREP calls, where no precautions are taken (as for
=0), but, in addition, no checks are made on the presence of small-mass
systems; i.e. LUPREP only rearranges colour strings.

MSTJ(15) : (D=0) production probability for new flavours.
= 0 : according to standard Lund parametrization, as given by PARJ(1) -

PARJ(20).

266



= 1 : according to probabilities stored in PARF(201) - PARF(1960); note that
no default values exist here, i.e. PARF must be set by you. The MSTJ(12)
switch can still be used to set baryon production mode, with the modifi-
cation that MSTJ(12)=2 here allows an arbitrary number of mesons to be
produced between a baryon and an antibaryon (since the probability for
diquark → meson + new diquark is assumed independent of prehistory).

MSTJ(21) : (D=2) form of particle decays.
= 0 : all particle decays are inhibited.
= 1 : a particle declared unstable in the MDCY vector, and with decay channels

defined, may decay within the region given by MSTJ(22). A particle may
decay into jets, which then fragment further according to the MSTJ(1)
value.

= 2 : as =1, except that a qq jet system produced in a decay (e.g. of a B
meson) is always allowed to fragment according to string fragmentation,
rather than according to the MSTJ(1) value (this means that momentum,
energy and charge are conserved in the decay).

MSTJ(22) : (D=1) cut-off on decay length for a particle that is allowed to decay according
to MSTJ(21) and the MDCY value.

= 1 : a particle declared unstable is also forced to decay.
= 2 : a particle is decayed only if its average proper lifetime is larger than

PARJ(71).
= 3 : a particle is decayed only if the decay vertex is within a distance PARJ(72)

of the origin.
= 4 : a particle is decayed only if the decay vertex is within a cylindrical volume

with radius PARJ(73) in the xy-plane and extent to ±PARJ(74) in the z
direction.

MSTJ(23) : (D=1) possibility of having a shower evolving from a qq pair created as decay
products.

= 0 : never.
= 1 : whenever the decay channel matrix-element code is MDME(IDC,2)= 4, 32,

33, 44 or 46, the two first decay products (if they are partons) are allowed
to shower, like a colour-singlet subsystem, with maximum virtuality given
by the invariant mass of the pair.

MSTJ(24) : (D=2) particle masses.
= 0 : discrete mass values are used.
= 1 : particles registered as having a mass width in the PMAS vector are given a

mass according to a truncated Breit–Wigner shape, linear in m, eq. (201).
= 2 : as =1, but gauge bosons (actually all particles with |KF| ≤ 100) are

distributed according to a Breit–Wigner quadratic in m, as obtained
from propagators.

= 3 : as =1, but Breit–Wigner shape is always quadratic in m, eq. (202).
MSTJ(25) : (D=1) inclusion of the W± propagator, in addition to the standard, ‘in-

finitely heavy’ weak V − A matrix element, in the decay of a t, l or h quark,
or χ lepton.

= 0 : not included.
= 1 : included.

MSTJ(26) : (D=2) inclusion of B–B mixing in decays.
= 0 : no.
= 1 : yes, with mixing parameters given by PARJ(76) and PARJ(77). Mixing

decays are not specially marked.
= 2 : yes, as =1, but a B (B) that decays as a B (B) is marked as K(I,1)=12

rather than the normal K(I,1)=11.
MSTJ(27) : (D=2) possibility for the b quark to develop a shower in the decay of a top

267



hadron, i.e. T → W+bq, where q is a spectator quark.
= 0 : no, i.e. b jet is narrow, low-multiplicity.
= 1 : the b is allowed to shower and the W momentum (in the rest frame of

the T) is reduced acccordingly. The W is therafter assumed to decay
isotropically.

= 2 : the b is allowed to shower, as in =1, but the W decays anisotropically,
with the same polarization as in the standard weak decay of option =0.
In principle this is better than option =1, but in practice there is no big
difference.

MSTJ(28) : (D=0) call to an external τ decay library. For this option to be meaningful,
it is up to you to write the appropriate interface and include that in the routine
LUTAUD, as explained in section 14.2.

= 0 : not done, i.e. the internal LUDECY treatment is used.
= 1 : done whenever the τ mother particle species can be identified, else the

internal LUDECY treatment is used. Normally the mother particle should
always be identified, but it is possible for a user to remove event history
information or to add extra τ ’s directly to the event record, and then the
mother is not known.

= 2 : always done.
MSTJ(40) - MSTJ(50) : switches for time-like parton showers, see section 10.4.
MSTJ(51) : (D=0) inclusion of Bose–Einstein effects.

= 0 : no effects included.
= 1 : effects included according to an exponential parametrization C2(Q) =

1+PARJ(92)× exp(−Q/PARJ(93)), where C2(Q) represents the ratio of
particle production at Q with Bose–Einstein effects to that without, and
the relative momentum Q is defined by Q2(p1, p2) = −(p1 − p2)

2 = (p1 +
p2)

2 − 4m2. Particles with width broader than PARJ(91) are assumed to
have time to decay before Bose–Einstein effects are to be considered.

= 2 : effects included according to a Gaussian parametrization C2(Q) =
1+PARJ(92)× exp(−(Q/PARJ(93))2), with notation and comments as
above.

MSTJ(52) : (D=3) number of particle species for which Bose–Einstein correlations are
to be included, ranged along the chain π+, π−, π0, K+, K−, K0

L, K0
S, η and

η′. Default corresponds to including all pions (π+, π−, π0), 7 to including all
Kaons as well, and 9 is maximum.

MSTJ(91) : (I) flag when generating gluon jet with options MSTJ(2)= 2 or 4 (then =1,
else =0).

MSTJ(92) : (I) flag that a qq or gg pair or a ggg triplet created in LUDECY should be
allowed to shower, is 0 if no pair or triplet, is the entry number of the first
parton if a pair indeed exists, is the entry number of the first parton, with a
− sign, if a triplet indeed exists.

MSTJ(93) : (I) switch for ULMASS action. Is reset to 0 in ULMASS call.
= 0 : ordinary action.
= 1 : light (d, u, s, c, b) quark masses are taken from PARF(101) - PARF(105)

rather than PMAS(1,1) - PMAS(5,1). Diquark masses are given as sum
of quark masses, without spin splitting term.

= 2 : as =1. Additionally the constant terms PARF(121) and PARF(122) are
subtracted from quark and diquark masses, respectively.

MSTJ(101) - MSTJ(121) : switches for e+e− event generation, see section 6.3.

PARJ(1) : (D=0.10) is P(qq)/P(q), the suppression of diquark-antidiquark pair produc-
tion in the colour field, compared with quark–antiquark production.

PARJ(2) : (D=0.30) is P(s)/P(u), the suppression of s quark pair production in the field

268



compared with u or d pair production.
PARJ(3) : (D=0.4) is (P(us)/P(ud))/(P(s)/P(d)), the extra suppression of strange di-

quark production compared with the normal suppression of strange quarks.
PARJ(4) : (D=0.05) is (1/3)P(ud1)/P(ud0), the suppression of spin 1 diquarks compared

with spin 0 ones (excluding the factor 3 coming from spin counting).
PARJ(5) : (D=0.5) parameter determining relative occurence of baryon production by

BMB and by BB configurations in the popcorn baryon production model,
roughly P(BMB)/(P(BB) + P(BMB)) = PARJ(5)/(0.5+PARJ(5)).

PARJ(6) : (D=0.5) extra suppression for having a ss pair shared by the B and B of a
BMB situation.

PARJ(7) : (D=0.5) extra suppression for having a strange meson M in a BMB config-
uration.

PARJ(11) - PARJ(17) : parameters that determine the spin of mesons.
PARJ(11) : (D=0.5) is the probability that a light meson (containing u and d

quarks only) has spin 1 (with 1-PARJ(11) the probability for spin 0)
when formed in fragmentation.

PARJ(12) : (D=0.6) is the probability that a strange meson has spin 1.
PARJ(13) : (D=0.75) is the probability that a charm or heavier meson has spin 1.
PARJ(14) : (D=0.) is the probability that a spin = 0 meson is produced with an

orbital angular momentum 1, for a total spin = 1.
PARJ(15) : (D=0.) is the probability that a spin = 1 meson is produced with an

orbital angular momentum 1, for a total spin = 0.
PARJ(16) : (D=0.) is the probability that a spin = 1 meson is produced with an

orbital angular momentum 1, for a total spin = 1.
PARJ(17) : (D=0.) is the probability that a spin = 1 meson is produced with an

orbital angular momentum 1, for a total spin = 2.
Note : the end result of the numbers above is that, with i = 11, 12 or 13,

depending on flavour content,
P(S = 0, L = 0, J = 0) = (1 − PARJ(i)) × (1 − PARJ(14)),
P(S = 0, L = 1, J = 1) = (1 − PARJ(i)) × PARJ(14),
P(S = 1, L = 0, J = 1) =

PARJ(i) × (1 − PARJ(15) − PARJ(16) − PARJ(17)),
P(S = 1, L = 1, J = 0) = PARJ(i) × PARJ(15),
P(S = 1, L = 1, J = 1) = PARJ(i) × PARJ(16),
P(S = 1, L = 1, J = 2) = PARJ(i) × PARJ(17),
where S is the quark ‘true’ spin and J is the total spin, usually called
the spin s of the meson.

PARJ(18) : (D=1.) is an extra suppression factor multiplying the ordinary SU(6) weight
for spin 3/2 baryons, and hence a means to break SU(6) in addition to the dy-
namic breaking implied by PARJ(2), PARJ(3), PARJ(4), PARJ(6) and PARJ(7).

PARJ(19) : (D=1.) extra baryon suppression factor, which multiplies the ordinary
diquark-antidiquark production probability for the breakup closest to the
endpoint of a string, but leaves other breaks unaffected. Is only used for
MSTJ(12)=3.

PARJ(21) : (D=0.36 GeV) corresponds to the width σ in the Gaussian px and py trans-
verse momentum distributions for primary hadrons. See also PARJ(22) -
PARJ(24).

PARJ(22) : (D=1.) relative increase in transverse momentum in a gluon jet generated
with MSTJ(2)= 2 or 4.

PARJ(23), PARJ(24) : (D=0.01, 2.) a fraction PARJ(23) of the Gaussian transverse
momentum distribution is taken to be a factor PARJ(24) larger than input in
PARJ(21). This gives a simple parametrization of non-Gaussian tails to the
Gaussian shape assumed above.

269



PARJ(25) : (D=1.) extra suppression factor for η production in fragmentation; if an η
is rejected a new flavour pair is generated and a new hadron formed.

PARJ(26) : (D=0.4) extra suppression factor for η′ production in fragmentation; if an η′

is rejected a new flavour pair is generated and a new hadron formed.
PARJ(31) : (D=0.1 GeV) gives the remaining W+ below which the generation of a single

jet is stopped (it is chosen smaller than a pion mass, so that no hadrons moving
in the forward direction are missed).

PARJ(32) : (D=1. GeV) is, with quark masses added, used to define the minimum
allowable energy of a colour-singlet jet system.

PARJ(33) - PARJ(34) : (D=0.8 GeV, 1.5 GeV) are, together with quark masses, used
to define the remaining energy below which the fragmentation of a jet system
is stopped and two final hadrons formed. PARJ(33) is normally used, except
for MSTJ(11)=2, when PARJ(34) is used.

PARJ(36) : (D=2.) represents the dependence on the mass of the final quark pair for
defining the stopping point of the fragmentation. Is strongly correlated to the
choice of PARJ(33) - PARJ(35).

PARJ(37) : (D=0.2) relative width of the smearing of the stopping point energy.
PARJ(38) - PARJ(39) : (D=2.5, 0.6) refers to the probability for reverse rapidity or-

dering of the final two hadrons, according to eq. (192), where d0 =PARJ(39)
for MSTJ(11) 6= 2, and d =PARJ(39) for MSTJ(11)=2.

PARJ(41), PARJ(42) : (D=0.3, 0.58 GeV−2) give the a and b parameters of the sym-
metric Lund fragmentation function for MSTJ(11)=1, 4 and 5 (and MSTJ(11)=3
for ordinary hadrons).

PARJ(43), PARJ(44) : (D=0.5, 0.9 GeV−2) give the a and b parameters as above for
the special case of a gluon jet generated with IF and MSTJ(2)= 2 or 4.

PARJ(45) : (D=0.5) the amount by which the effective a parameter in the Lund flavour
dependent symmetric fragmentation function is assumed to be larger than the
normal a when diquarks are produced. More specifically, referring to eq. (179),
aα =PARJ(41) when considering the fragmentation of a quark and = PARJ(41)
+ PARJ(45) for the fragmentation of a diquark, with corresponding expression
for aβ depending on whether the newly created object is a quark or diquark (for
an independent gluon jet generated with MSTJ(2)= 2 or 4, replace PARJ(41)
by PARJ(43)). In the popcorn model, a meson created in between the baryon
and antibaryon has aα = aβ =PARJ(41) + PARJ(45).

PARJ(46) - PARJ(48) : (D=3*1.) modification of the Lund symmetric fragmentation
for heavy endpoint quarks according to the recipe by Bowler, available when
MSTJ(11)= 4 or 5 is selected. The shape is given by eq. (187). If MSTJ(11)=4
then rQ =PARJ(46) for all flavours, while if MSTJ(11)=5 then rc =PARJ(46),
rb =PARJ(47) and rQ =PARJ(48) for t and heavier. PARJ(46) - PARJ(48)
thus provide a possibility to interpolate between the ‘pure’ Bowler shape, r =
1, and the normal Lund one, r = 0. The additional modifications made in
PARJ(43) - PARJ(45) are automatically taken into account, if necessary.

PARJ(51) - PARJ(58) : (D=3*0.77, −0.05, −0.005, 3*−0.00001) give a choice of four
possible ways to parametrize the fragmentation function for MSTJ(11)=2 (and
MSTJ(11)=3 for charm and heavier). The fragmentation of each flavour KF
may be chosen separately; for a diquark the flavour of the heaviest quark is
used. With c =PARJ(50+KF), the parametrizations are:
0 ≤ c ≤ 1 : Field-Feynman, f(z) = 1 − c+ 3c(1 − z)2;
−1 ≤ c < 0 : SLAC, f(z) = 1/(z(1 − 1/z − (−c)/(1 − z))2);
c > 1 : power peaked at z = 0, f(z) = (1 − z)c−1;
c < −1 : power peaked at z = 1, f(z) = z−c−1.

PARJ(59) : (D=1.) replaces PARJ(51) - PARJ(53) for gluon jet generated with
MSTJ(2)= 2 or 4.

270



PARJ(61) - PARJ(63) : (D=4.5, 0.7, 0.) parametrizes the energy dependence of the
primary multiplicity distribution in phase-space decays. The former two cor-
respond to c1 and c2 of eq. (209), while the latter allows a further additive
term in the multiplicity specifically for onium decays.

PARJ(64) : (0.003 GeV) minimum kinetic energy in decays (safety margin for numerical
precision errors).

PARJ(65) : (D=0.5 GeV) mass which, in addition to the spectator quark ordiquark mass,
is not assumed to partake in the weak decay of a heavy quark in a hadron.

PARJ(66) : (D=0.5) relative probability that colour is rearranged when two singlets are
to be formed from decay products. Only applies for MDME(IDC,2)= 11–30, i.e.
low-mass phase-space decays.

PARJ(71) : (D=10 mm) maximum average proper lifetime for particles allowed to decay
in the MSTJ(22)=2 option. With the default value, K0

S, Λ, Σ−, Σ+, Ξ−, Ξ0 and
Ω− are stable (in addition to those normally taken to be stable), but charm
and bottom do still decay.

PARJ(72) : (D=1000 mm) maximum distance from the origin at which a decay is allowed
to take place in the MSTJ(22)=3 option.

PARJ(73) : (D=100 mm) maximum cylindrical distance ρ =
√
x2 + y2 from the origin

at which a decay is allowed to take place in the MSTJ(22)=4 option.
PARJ(74) : (D=1000 mm) maximum z distance from the origin at which a decay is

allowed to take place in the MSTJ(22)=4 option.

PARJ(76) : (D=0.7) mixing parameter xd = ∆M/Γ in B0–B
0

system.

PARJ(77) : (D=10.) mixing parameter xs = ∆M/Γ in B0
s–B

0
s system.

PARJ(81) - PARJ(89) : parameters for time-like parton showers, see section 10.4.
PARJ(91) : (D=0.020 GeV) minimum particle width in PMAS(KC,2), above which par-

ticle decays are assumed to take place before the stage where Bose–Einstein
effects are introduced.

PARJ(92) : (D=1.) nominal strength of Bose–Einstein effects for Q = 0, see MSTJ(51).
This parameter, often denoted λ, expresses the amount of incoherence in parti-
cle production. Due to the simplified picture used for the Bose–Einstein effects,
in particular for effects from three nearby identical particles, the actual λ of
the simulated events may be larger than the input value.

PARJ(93) : (D=0.20 GeV) size of the Bose–Einstein effect region in terms of the Q
variable, see MSTJ(51). The more conventional measure, in terms of the
radius R of the production volume, is given by R = h̄/PARJ(93)≈ 0.2
fm×GeV/PARJ(93)=PARU(3)/PARJ(93).

PARJ(121) - PARJ(171) : parameters for e+e− event generation, see section 6.3.

14.5 Couplings

In this section we collect information on the two routines for running αs and αem, and
on other couplings of standard and non-standard particles. Although originally begun
for Jetset applications, this section has rapidly expanded towards the non-standard
aspects, and is thus more of interest for Pythia applications than for Jetset itself. It
could therefore equally well have been put somewhere else in this manual. A few couplings
indeed appear in the PARP array, see section 9.3.

ALEM = ULALEM(Q2)

Purpose: to calculate the running electromagnetic coupling constant αem. Expressions
used are described in ref. [Kle89]. See MSTU(101), PARU(101), PARU(103) and
PARU(104).

271



Q2 : the momentum transfer scale Q2 at which to evaluate αem.

ALPS = ULALPS(Q2)

Purpose: to calculate the running strong coupling constant αs. The first- and second-
order expressions are given by eqs. (27) and (32). See MSTU(111) - MSTU(118)
and PARU(111) - PARU(118) for options.

Q2 : the momentum transfer scale Q2 at which to evaluate αs.

COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the
performance of the program as a whole. Here only those related to couplings
are described; the main description is found in section 14.4.

MSTU(101) : (D=1) procedure for αem evaluation in the ULALEM function.
= 0 : αem is taken fixed at the value PARU(101).
= 1 : αem is running with the Q2 scale, taking into account corrections from

fermion loops (e, µ, τ , d, u, s, c, b).
= 2 : αem is fixed, but with separate values at low and high Q2. For Q2 be-

low (above) PARU(104) the value PARU(101) (PARU(103)) is used. The
former value is then intended for real photon emission, the latter for
electroweak physics, e.g. of the W/Z gauge bosons.

MSTU(111) : (D=1) order of αs evaluation in the ULALPS function. Is overwritten in
LUEEVT, LUONIA or PYINIT calls with the value desired for the process under
study.

= 0 : αs is fixed at the value PARU(111).
= 1 : first-order running αs is used.
= 2 : second-order running αs is used.

MSTU(112) : (D=5) the nominal number of flavours assumed in the αs expression, with
respect to which Λ is defined.

MSTU(113) : (D=3) minimum number of flavours that may be assumed in αs expression,
see MSTU(112).

MSTU(114) : (D=5) maximum number of flavours that may be assumed in αs expression,
see MSTU(112).

MSTU(115) : (D=0) treatment of αs singularity for Q2 → 0.
= 0 : allow it to diverge like 1/ ln(Q2/Λ2).
= 1 : soften the divergence to 1/ ln(1 +Q2/Λ2).
= 2 : freeze Q2 evolution below PARU(114), i.e. the effective argument is

max(Q2,PARU(114)).
MSTU(118) : (I) number of flavours nf found and used in latest ULALPS call.

PARU(101) : (D=0.00729735=1/137.04) αem, the electromagnetic fine structure constant
at vanishing momentum transfer.

PARU(102) : (D=0.232) sin2θW , the weak mixing angle of the standard electroweak
model.

PARU(103) : (D=0.007764=1/128.8) typical αem in electroweak processes; used for
Q2 >PARU(104) in the option MSTU(101)=2 of ULALEM.

PARU(104) : (D=1 GeV2) dividing line between ‘low’ and ‘high’ Q2 values in the option
MSTU(101)=2 of ULALEM.

PARU(105) : (D=1.16639E-5 GeV−2) GF, the Fermi constant of weak interactions.
PARU(108) : (I) the αem value obtained in the latest call to the ULALEM function.
PARU(111) : (D=0.20) fix αs value assumed in ULALPS when MSTU(111)=0 (and also in

272



parton showers when αs is assumed fix there).
PARU(112) : (D=0.25 GeV) Λ used in running αs expression in ULALPS. Like MSTU(111),

this value is overwritten by the calling physics routines, and is therefore purely
nominal.

PARU(113) : (D=1.) the flavour thresholds, for the effective number of flavours nf to
use in the αs expression, are assumed to sit at Q2 =PARU(113)×m2

q, where mq

is the quark mass. May be overwritten from the calling physics routine.
PARU(114) : (D=4 GeV2) Q2 value below which the αs value is assumed constant for

MSTU(115)=2.
PARU(115) : (D=10.) maximum αs value that ULALPS will ever return; is used as a last

resort to avoid singularities.
PARU(117) : (I) Λ value (associated with MSTU(118) effective flavours) obtained in latest

ULALPS call.
PARU(118) : (I) αs value obtained in latest ULALPS call.
PARU(121) - PARU(130) : couplings of a new Z′0; for fermion default values are given

by the Standard Model Z0 values, assuming sin2θW = 0.23. Note that e.g. the
Z′0 width contains squared couplings, and thus depends quadratically on the
values below.

PARU(121), PARU(122) : (D=-0.693,-1.) vector and axial couplings of down type
quarks to Z′0.

PARU(123), PARU(124) : (D=0.387,1.) vector and axial couplings of up type
quarks to Z′0.

PARU(125), PARU(126) : (D=-0.08,-1.) vector and axial couplings of leptons to
Z′0.

PARU(127), PARU(128) : (D=1.,1.) vector and axial couplings of neutrinos to Z′0.
PARU(129) : (D=1.) the coupling Z ′0 → W+W− is taken to be PARU(129)×(the

Standard Model Z0 → W+W− coupling)×(mW/mZ′)2. This gives a
Z′0 → W+W− partial width that increases proportionately to the Z′0

mass.
PARU(130) : (D=0.) in the decay chain Z′0 → W+W− → 4 fermions, the angular

distribution in the W decays is supposed to be a mixture, with fraction
1-PARU(130) corresponding to the same angular distribution between the
four final fermions as in Z0 → W+W− (mixture of transverse and lon-
gitudinal W’s), and fraction PARU(130) corresponding to H0 → W+W−

the same way (longitudinal W’s).
PARU(131) - PARU(136) : couplings of a new W′±; for fermions default values are given

by the Standard Model W± values (i.e. V − A). Note that e.g. the W′±

width contains squared couplings, and thus depends quadratically on the values
below.

PARU(131), PARU(132) : (D=1.,-1.) vector and axial couplings of a quark–
antiquark pair to W′±; is further multiplied by the ordinary CKM factors.

PARU(133), PARU(134) : (D=1.,-1.) vector and axial couplings of a lepton-
neutrino pair to W′±.

PARU(135) : (D=1.) the coupling W′± → Z0W± is taken to be PARU(135)×(the
Standard Model W± → Z0W± coupling)×(mW/mW ′)2. This gives a
W′± → Z0W± partial width that increases proportionately to the W′

mass.
PARU(136) : (D=0.) in the decay chain W′± → Z0W± → 4 fermions, the angular

distribution in the W/Z decays is supposed to be a mixture, with fraction
1-PARU(130) corresponding to the same angular distribution between
the four final fermions as in W± → Z0W± (mixture of transverse and
longitudinal W/Z’s), and fraction PARU(130) corresponding to H± →
Z0W± the same way (longitudinal W/Z’s).

273



PARU(141) : (D=5.) tan β parameter of a two Higgs doublet scenario, i.e. the ratio of
vacuum expectation values. This affects mass relations and couplings in the
Higgs sector.

PARU(142) : (D=1.) the Z0 → H+H− coupling is taken to be PARU(142)×(the MSSM
Z0 → H+H− coupling).

PARU(143) : (D=1.) the Z′0 → H+H− coupling is taken to be PARU(143)×(the MSSM
Z0 → H+H− coupling).

PARU(145) : (D=1.) quadratically multiplicative factor in the Z′0 → Z0H0 partial width
in left–right-symmetric models, expected to be unity (see [Coc91]).

PARU(146) : (D=1.) sin(2α) parameter, enters quadratically as multiplicative factor in
the W′± → W±H0 partial width in left–right-symmetric models (see [Coc91]).

PARU(151) : (D=1.) multiplicative factor in the LQ → qℓ squared Yukawa coupling,
and thereby in the LQ partial width and the qℓ→ LQ and other cross sections.
Specifically, λ2/(4π) =PARU(151)×αem, i.e. it corresponds to the k factor of
[Hew88].

PARU(153) : (D=0.) anomalous magnetic moment of the W±; η = κ − 1, where η = 0
(κ = 1) is the Standard Model value.

PARU(155) : (D=1000. GeV) compositeness scale Λ.
PARU(156) : (D=1.) sign of interference term between standard cross section and com-

posite term (η parameter); should be ±1.
PARU(157) - PARU(159) : (D=3*1.) strength of SU(2), U(1) and SU(3) couplings,

respectively, in an excited fermion scenario; cf. f , f ′ and fs of [Bau90].
PARU(161) - PARU(168) : (D=5*1.,3*0.) multiplicative factors that can be used to

modify the default couplings of the H0 particle in Pythia. Note that the
factors enter quadratically in the partial widths. The default values correspond
to the couplings given in the minimal one-Higgs-doublet Standard Model.

PARU(161) : H0 coupling to down type quarks.
PARU(162) : H0 coupling to up type quarks.
PARU(163) : H0 coupling to leptons.
PARU(164) : H0 coupling to Z0.
PARU(165) : H0 coupling to W±.
PARU(168) : H0 coupling to H± in γγ → H0 loops, in MSSM sin(β − α) +

cos(2β) sin(β + α)/(2 cos2θW ).
PARU(171) - PARU(178) : (D=7*1.,0.) multiplicative factors that can be used to mod-

ify the default couplings of the H′0 particle in Pythia. Note that the factors
enter quadratically in partial widths. The default values for PARU(171) -
PARU(175) correspond to the couplings given to H0 in the minimal one-Higgs-
doublet Standard Model, and are therefore not realistic in a two-Higgs-doublet
scenario. The default values should be changed appropriately by you. Also the
last two default values should be changed; for these the expressions of the min-
imal supersymmetric Standard Model (MSSM) are given to show parameter
normalization.

PARU(171) : H′0 coupling to down type quarks.
PARU(172) : H′0 coupling to up type quarks.
PARU(173) : H′0 coupling to leptons.
PARU(174) : H′0 coupling to Z0.
PARU(175) : H′0 coupling to W±.
PARU(176) : H′0 coupling to H0H0, in MSSM cos(2α) cos(β+α)−2 sin(2α) sin(β+

α).
PARU(177) : H′0 coupling to A0A0, in MSSM cos(2β) cos(β + α).
PARU(178) : H′0 coupling to H± in γγ → H′0 loops, in MSSM cos(β − α) −

cos(2β) cos(β + α)/(2 cos2θW ).
PARU(181) - PARU(190) : (D=3*1.,2*0.,2*1.,3*0.) multiplicative factors that can be

274



used to modify the default couplings of the A0 particle in PYTHIA. Note
that the factors enter quadratically in partial widths. The default values for
PARU(181) - PARU(183) correspond to the couplings given to H0 in the min-
imal one-Higgs-doublet Standard Model, and are therefore not realistic in a
two-Higgs-doublet scenario. The default values should be changed appropri-
ately by you. PARU(184) and PARU(185) should be vanishing at the tree level,
and are so set; normalization of these couplings agrees with what is used for
H and H′0. Also the other default values should be changed; for these the ex-
pressions of the Minimal Supersymmetric Standard Model (MSSM) are given
to show parameter normalization.

PARU(181) : A0 coupling to down type quarks.
PARU(182) : A0 coupling to up type quarks.
PARU(183) : A0 coupling to leptons.
PARU(184) : A0 coupling to Z0.
PARU(185) : A0 coupling to W±.
PARU(186) : A0 coupling to Z0H0 (or Z∗ to A0H0), in MSSM cos(β − α).
PARU(187) : A0 coupling to Z0H′0 (or Z∗ to A0H′0), in MSSM sin(β − α).
PARU(188) : As PARU(186), but coupling to Z′0 rather than Z0.
PARU(189) : As PARU(187), but coupling to Z′0 rather than Z0.
PARU(190) : A0 coupling to H± in γγ → A0 loops, 0 in MSSM.

PARU(191) - PARU(195) : (D=4*0.,1.) multiplicative factors that can be used to mod-
ify the couplings of the H± particle in Pythia. Currently only PARU(195) is
in use. See above for related comments.

PARU(195) : H± coupling to W±H0 (or W∗± to H±H0), in MSSM cos(β − α).

14.6 Further Parameters and Particle Data

The following common blocks are maybe of a more peripheral interest, with the exception
of the MDCY array, which allows a selective inhibiting of particle decays, and masses of not
yet discovered particles, such as PMAS(6,1), the top quark mass.

COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4)

Purpose: to give access to a number of flavour treatment constants or parameters and
particle/parton data. Particle data is stored by compressed code KC rather
than by the full KF code. You are reminded that the way to know the KC
value is to use the LUCOMP function, i.e. KC = LUCOMP(KF).

KCHG(KC,1) : three times particle/parton charge for compressed code KC.
KCHG(KC,2) : colour information for compressed code KC.

= 0 : colour-singlet particle.
= 1 : quark or antidiquark.
= -1 : antiquark or diquark.
= 2 : gluon.

KCHG(KC,3) : particle/antiparticle distinction for compressed code KC.
= 0 : the particle is its own antiparticle.
= 1 : a nonidentical antiparticle exists.

PMAS(KC,1) : particle/parton mass m (in GeV) for compressed code KC.
PMAS(KC,2) : the total width Γ (in GeV) of an assumed symmetric Breit–Wigner mass

shape for compressed particle code KC.
PMAS(KC,3) : the maximum deviation (in GeV) from the PMAS(KC,1) value at which

the Breit–Wigner shape above is truncated. (Is used in particle decays, but

275



not in the Pythia resonance treatment; cf. the CKIN variables.)
PMAS(KC,4) : the average lifetime τ for compressed particle code KC, with cτ in mm,

i.e. τ in units of about 3.33 × 10−12 s.

PARF(1) - PARF(60) : give a parametrization of the dd–uu–ss flavour mixing in produc-
tion of flavour-diagonal mesons. Numbers are stored in groups of 10, for the
six multiplets pseudoscalar, vector, axial vector (S = 0), scalar, axial vector
(S = 1) and tensor, in this order; see section 12.1.2. Within each group, the
first two numbers determine the fate of a dd flavour state, the second two that
of a uu one, the next two that of an ss one, while the last four are unused. Call
the numbers of a pair p1 and p2. Then the probability to produce the state
with smallest KF code is 1 − p1, the probability for the middle one is p1 − p2
and the probability for the one with largest code is p2, i.e. p1 is the probability
to produce either of the two ‘heavier’ ones.

PARF(61) - PARF(80) : give flavour SU(6) weights for the production of a spin 1/2
or spin 3/2 baryon from a given diquark–quark combination. Should not be
changed.

PARF(101) - PARF(108) : first five contain d, u, s, c and b constituent masses, as to be
used in mass formulae, and should not be changed. For t, l and h masses the
current values stored in PMAS(6,1) - PMAS(8,1) are copied in.

PARF(111), PARF(112) : (D=0.0, 0.11 GeV) constant terms in the mass formulae for
heavy mesons and baryons, respectively (with diquark getting 2/3 of baryon).

PARF(113), PARF(114) : (D=0.16,0.048 GeV) factors which, together with Clebsch-
Gordan coefficients and quark constituent masses, determine the mass splitting
due to spin-spin interactions for heavy mesons and baryons, respectively. The
latter factor is also used for the splitting between spin 0 and spin 1 diquarks.

PARF(115) - PARF(118) : (D=0.50, 0.45, 0.55, 0.60 GeV), constant mass terms, added
to the constituent masses, to get the mass of heavy mesons with orbital angular
momentum L = 1. The four numbers are for pseudovector mesons with quark
spin 0, and for scalar, pseudovector and tensor mesons with quark spin 1,
respectively.

PARF(121), PARF(122) : (D=0.1, 0.2 GeV) constant terms, which are subtracted for
quark and diquark masses, respectively, in defining the allowed phase space in
particle decays into partons.

PARF(201) - PARF(1960) : (D=1760*0) relative probabilities for flavour production in
the MSTJ(15)=1 option; to be defined by you before any Jetset calls.
The index in PARF is of the compressed form
120 + 80×KTAB1+25×KTABS+KTAB3.
Here KTAB1 is the old flavour, fixed by preceding fragmentation history, while
KTAB3 is the new flavour, to be selected according to the relevant relative
probabilities (except for the very last particle, produced when joining two jets,
where both KTAB1 and KTAB3 are known). Only the most frequently ap-
pearing quarks/diquarks are defined, according to the code 1 = d, 2 = u,
3 = s, 4 = c, 5 = b, 6 = t, 7 = dd1, 8 = ud0, 9 = ud1, 10 = uu1, 11 = sd0,
12 = sd1, 13 = su0, 14 = su1, 15 = ss1, 16 = cd0, 17 = cd1, 18 = cu0, 19 = cu1,
20 = cs0, 21 = cs1, 22 = cc1. These are thus the only possibilities for the
new flavour to be produced; for an occasional old flavour not on this list, the
ordinary relative flavour production probabilities will be used.
Given the initial and final flavour, the intermediate hadron that is produced
is almost fixed. (Initial and final diquark here corresponds to ‘popcorn’ pro-
duction of mesons intermediate between a baryon and an antibaryon). The
additional index KTABS gives the spin type of this hadron, with
0 = pseudoscalar meson or Λ-like spin 1/2 baryon,

276



1 = vector meson or Σ-like spin 1/2 baryon,
2 = tensor meson or spin 3/2 baryon.
(Some meson multiplets, not frequently produced, are not accessible by this
parametrization.)
Note that some combinations of KTAB1, KTAB3 and KTABS do not cor-
respond to a physical particle (a Λ-like baryon must contain three differ-
ent quark flavours, a Σ-like one at least two), and that you must see to
it that the corresponding PARF entries are vanishing. One additional com-
plication exist when KTAB3 and KTAB1 denote the same flavour content
(normally KTAB3=KTAB1, but for diquarks the spin freedom may give
KTAB3=KTAB1±1): then a flavour neutral meson is to be produced, and
here dd, uu and ss states mix (heavier flavour states do not, and these are
therefore no problem). For these cases the ordinary KTAB3 value gives the
total probability to produce either of the mesons possible, while KTAB3=23
gives the relative probability to produce the lightest meson state (π0, ρ0, a0

2),
KTAB3=24 relative probability for the middle meson (η, ω, f02), and KTAB3 =
25 relative probability for the heaviest one (η′, φ, f ′0

2 ). Note that, for simplic-
ity, these relative probabilities are assumed the same whether initial and final
diquark have the same spin or not; the total probability may well be assumed
different, however.
As a general comment, the sum of PARF values for a given KTAB1 need not
be normalized to unity, but rather the program will find the sum of relevant
weights and normalize to that. The same goes for the KTAB3=23–25 weights.
This makes it straightforward to use one common setup of PARF values and
still switch between different MSTJ(12) baryon production modes.

VCKM(I,J) : squared matrix elements of the Cabibbo-Kobayashi-Maskawa flavour mix-
ing matrix.

I : up type generation index, i.e. 1 = u, 2 = c, 3 = t and 4 = h.
J : down type generation index, i.e. 1 = d, 2 = s, 3 = b and 4 = l.

COMMON/LUDAT3/MDCY(500,3),MDME(2000,2),BRAT(2000),KFDP(2000,5)

Purpose: to give access to particle decay data and parameters. In particular, the
MDCY(KC,1) variables may be used to switch on or off the decay of a given
particle species, and the MDME(IDC,1) ones to switch on or off an individual
decay channel of a particle. For quarks, leptons and gauge bosons, a number
of decay channels are included that are not allowed for on-mass-shell particles,
see MDME(IDC,2)=102. These channels are not currently used in Jetset, but
instead find applications in Pythia. Particle data is stored by compressed
code KC rather than by the full KF code. You are reminded that the way to
know the KC value is to use the LUCOMP function, i.e. KC = LUCOMP(KF).

MDCY(KC,1) : switch to tell whether a particle with compressed code KC may be allowed
to decay or not.

= 0 : the particle is not allowed to decay.
= 1 : the particle is allowed to decay (if decay information is defined below for

the particle).
MDCY(KC,2) : gives the entry point into the decay channel table for compressed particle

code KC. Is 0 if no decay channels have been defined.
MDCY(KC,3) : gives the total number of decay channels defined for compressed particle

code KC, independently of whether they have been assigned a non-vanishing
branching ratio or not. Thus the decay channels are found in positions

277



MDCY(KC,2) to MDCY(KC,2)+MDCY(KC,3)-1.

MDME(IDC,1) : on/off switch for individual decay channel IDC. In addition, a channel
may be left selectively open; this has some special applications in Pythia
which are not currently used in Jetset. Effective branching ratios are auto-
matically recalculated for the decay channels left open. Also process cross
sections are affected; see section 7.6.2. If a particle is allowed to decay
by the MDCY(KC,1) value, at least one channel must be left open by you.
A list of decay channels with current IDC numbers may be obtained with
LULIST(12).

= -1 : this is a non-Standard Model decay mode, which by default is assumed
not to exist. Normally, this option is used for decays involving fourth
generation or H± particles.

= 0 : channel is switched off.
= 1 : channel is switched on.
= 2 : channel is switched on for a particle but off for an antiparticle. It is also

on for a particle its own antiparticle, i.e. here it means the same as =1.
= 3 : channel is switched on for an antiparticle but off for a particle. It is off

for a particle its own antiparticle.
= 4 : in the production of a pair of equal or charge conjugate resonances in

Pythia, say H0 → W+W−, either one of the resonances is allowed to
decay according to this group of channels, but not both. If the two
particles of the pair are different, the channel is on. Within Jetset, this
option only means that the channel is switched off.

= 5 : as =4, but an independent group of channels, such that in a pair of equal
or charge conjugate resonances the decay of either resonance may be
specified independently. If the two particles in the pair are different, the
channel is off. Within Jetset, this option only means that the channel
is switched off.

Warning: the two values -1 and 0 may look similar, but in fact are quite different.
In neither case the channel so set is generated, but in the latter case the
channel still contributes to the total width of a resonance, and thus affects
both simulated line shape and the generated cross section when Pythia
is run. The value 0 is appropriate to a channel we assume exists, even if
we are not currently simulating it, while -1 should be used for channels
we believe do not exist. In particular, you are warned unwittingly to set
fourth generation channels 0 (rather than -1), since by now the support
for a fourth generation is small.

Remark: all the options above may be freely mixed. The difference, for those cases
where both make sense, between using values 2 and 3 and using 4 and
5 is that the latter automatically include charge conjugate states, e.g.
H0 → W+W− → e+νedu or due−νe, but the former only one of them. In
calculations of the joint branching ratio, this makes a factor 2 difference.

Example: to illustrate the above options, consider the case of a W+W− pair. One
might then set the following combination of switches for the W:

278



channel value comment
ud 1 allowed for W+ and W− in any combination,
us 0 never produced but contributes to W width,
cd 2 allowed for W+ only,
cs 3 allowed for W− only, i.e. properly W− → cs,
tb 0 never produced but contributes to W width

if the channel is kinematically allowed,
νee

+ 4 allowed for one of W+ or W−, but not both,
νµµ

+ 4 allowed for one of W+ or W−, but not both,
and not in combination with νee

+,
νττ

+ 5 allowed for the other W, but not both,
νχχ

− −1 not produced and does not contribute to W width.

A W+W− final state ud + cs is allowed, but not its charge conjugate
ud + cs, since the latter decay mode is not allowed for a W+. The
combination νee

+ + ν̄ττ
− is allowed, since the two channels belong to

different groups, but not νee
+ + ν̄µµ

−, where both belong to the same.
Both ud + ν̄ττ

− and ud + νττ
+ are allowed, since there is no clash. The

full rulebook, for this case, is given by eq. (95). A term r2i means channel
i is allowed for W+ and W− simultaneously, a term rirj that channels
i and j may be combined, and a term 2rirj that channels i and j may
be combined two ways, i.e. that also a charge conjugate combination is
allowed.

MDME(IDC,2) : information on special matrix-element treatment for decay channel IDC.
In addition to the outline below, special rules apply for the order in which
decay products should be given, so that matrix elements and colour flow is
properly treated. One such example is the weak matrix elements, which only
will be correct if decay products are given in the right order. The program
does not police this, so if you introduce channels of your own and use these
codes, you should be guided by the existing particle data.

= 0 : no special matrix-element treatment; partons and particles are copied
directly to the event record, with momentum distributed according to
phase space.

= 1 : ω and φ decays into three pions, eq. (205).
= 2 : π0 or η Dalitz decay to γe+e−, eq. (207).
= 3 : used for vector meson decays into two pseudoscalars, to signal non-

isotropic decay angle according to eq. (206), where relevant.
= 4 : decay of a spin 1 onium resonance to three gluons or to a photon and

two gluons, eq. (44). The gluons may subsequently develop a shower if
MSTJ(23)=1.

= 11 : phase-space production of hadrons from the quarks available.
= 12 : as =11, but for onia resonances, with the option of modifying the multi-

plicity distribution separately.
= 13 : as =11, but at least three hadrons to be produced (useful when the two-

body decays are given explicitly).
= 14 : as =11, but at least four hadrons to be produced.
= 15 : as =11, but at least five hadrons to be produced.
= 22 - 30 : phase-space production of hadrons from the quarks available, with

the multiplicity fixed to be MDME(IDC,2)-20, i.e. 2–10.
= 31 : two or more quarks and particles are distributed according to phase space.

If three or more products, the last product is a spectator quark, i.e.
sitting at rest with respect to the decaying hadron.

= 32 : a qq or gg pair, distributed according to phase space (in angle), and

279



allowed to develop a shower if MSTJ(23)=1.
= 33 : a triplet qXq, where X is either a gluon or a colour-singlet particle; the

final particle (q) is assumed to sit at rest with respect to the decaying
hadron, and the two first particles (q and X) are allowed to develop a
shower if MSTJ(23)=1.

= 41 : weak decay, where particles are distributed according to phase space,
multiplied by a factor from the expected shape of the momentum spec-
trum of the direct product of the weak decay (the ντ in τ decay).

= 42 : weak decay matrix element for quarks and leptons. Products may be
given either in terms of quarks or hadrons, or leptons for some channels.
If the spectator system is given in terms of quarks, it is assumed to
collapse into one particle from the onset. If the virtual W decays into
quarks, these quarks are converted to particles, according to phase space
in the W rest frame, as in =11. Is intended for τ , charm and bottom.

= 43 : as =42, but if the W decays into quarks, these will either appear as jets
or, for small masses, collapse into a one- or two-body system.

= 44 : weak decay matrix element for quarks and leptons, where the spectator
system may collapse into one particle for a small invariant mass. If the
first two decay products are a qq′ pair, they may develop a parton shower
if MSTJ(23)=1. Is intended for top and beyond, but largely superseded
by the following option.

= 45 : weak decay q → Wq′ or ℓ → Wνℓ, where the W is registered as a decay
product and subsequently treated with MDME=46. To distinguish from
ordinary W’s on the mass shell, code KF= ±89 is used. The virtual W
mass is selected according to the standard weak decay matrix element,
times the W propagator (for MSTJ(25)=1). There may be two or three
decay products; if a third this is a spectator taken to sit at rest. The
spectator system may collapse into one particle. Is intended for top and
beyond.

= 46 : W (KF = 89) decay into qq′ or ℓνℓ according to relative probabilities given
by couplings (as stored in the BRAT vector) times a dynamical phase-space
factor given by the current W mass. In the decay, the correct V − A
angular distribution is generated if the W origin is known (heavy quark
or lepton). This is therefore the second step of a decay with MDME=45. A
qq′ pair may subsequently develop a shower if MSTJ(23)=1.

= 84 - 88 : map the decay of this particle onto the generic c, b, t, l or h decay
modes defined for KC=84–88.

= 48 : as =42, but require at least three decay products.
= 101 : this is not a proper decay channel, but only to be considered as a con-

tinuation line for the decay product listing of the immediately preceding
channel. Since the KFDP array can contain five decay products per chan-
nel, with this code it is possible to define channels with up to ten decay
products. It is not allowed to have several continuation lines after each
other.

= 102 : this is not a proper decay channel for a decaying particle on the mass shell
(or nearly so), and is therefore assigned branching ratio 0. For a particle
off the mass shell, this decay mode is allowed, however. By including
this channel among the others, the switches MDME(IDC,1) may be used
to allow or forbid these channels in hard processes, with cross sections
to be calculated separately. As an example, γ → uu is not possible for a
massless photon, but is an allowed channel in e+e− annihilation.

BRAT(IDC) : give branching ratios for the different decay channels. In principle, the

280



sum of branching ratios for a given particle should be unity. Since the pro-
gram anyway has to calculate the sum of branching ratios left open by the
MDME(IDC,1) values and normalize to that, you need not explicitly ensure this
normalization, however. (Warnings are printed in LUUPDA(2) calls if the sum
is not unity, but this is entirely intended as a help for finding user mistypings.)
For decay channels with MDME(IDC,2)> 80 the BRAT values are dummy.

KFDP(IDC,J) : contain the decay products in the different channels, with five positions
J= 1–5 reserved for each channel IDC. The decay products are given following
the standard KF code for jets and particles, with 0 for trailing empty positions.
Note that the MDME(IDC+1,2)=101 option allows you to double the maximum
number of decay product in a given channel from 5 to 10, with the five latter
products stored KFDP(IDC+1,J).

COMMON/LUDAT4/CHAF(500)
CHARACTER CHAF*8

Purpose: to give access to character type variables.

CHAF : particle names (excluding charge) according to KC code.

14.7 Miscellaneous Comments

The previous sections have dealt with the subroutine options and variables one at a time.
This is certainly important, but for a full use of the capabilities of the program, it is also
necessary to understand how to make different pieces work together. This is something
that cannot be explained fully in a manual, but must also be learnt by trial and error. This
section contains some examples of relationships between subroutines, common blocks and
parameters. It also contains comments on issues that did not fit in naturally anywhere
else, but still might be useful to have on record.

14.7.1 Interfacing to detector simulation

Very often, the output of the program is to be fed into a subsequent detector simulation
program. It therefore becomes necessary to set up an interface between the LUJETS
common block and the detector model. Preferrably this should be done via the HEPEVT
standard common block, see section 5.4, but sometimes this may not be convenient. If a
LUEDIT(2) call is made, the remaining entries exactly correspond to those an ideal detector
could see: all non-decayed particles, with the exception of neutrinos. The translation of
momenta should be trivial (if need be, a LUROBO call can be made to rotate the ‘preferred’
z direction to whatever is the longitudinal direction of the detector), and so should the
translation of particle codes. In particular, if the detector simulation program also uses
the standard Particle Data Group codes, no conversion at all is needed. The problem
then is to select which particles are allowed to decay, and how decay vertex information
should be used.

Several switches regulate which particles are allowed to decay. First, the master switch
MSTJ(21) can be used to switch on/off all decays (and it also contains a choice of how
fragmentation should be interfaced). Second, a particle must have decay modes defined
for it, i.e. the corresponding MDCY(KC,2) and MDCY(KC,3) entries must be non-zero for
compressed code KC = LUCOMP(KF). This is true for all colour neutral particles except
the neutrinos, the photon, the proton and the neutron. (This statement is actually not
fully correct, since irrelevant ‘decay modes’ with MDME(IDC,2)=102 exist in some cases.)

281



Third, the individual switch in MDCY(KC,1) must be on. Of all the particles with decay
modes defined, only µ±, π±, K± and K0

L are by default considered stable.
Finally, if MSTJ(22) does not have its default value 1, checks are also made on the

lifetime of a particle before it is allowed to decay. In the simplest alternative, MSTJ(22)=2,
the comparison is based on the average lifetime, or rather cτ , measured in mm. Thus if
the limit PARJ(71) is (the default) 10 mm, then decays of K0

S, Λ, Σ−, Σ+, Ξ−, Ξ0 and
Ω− are all switched off, but charm and bottom still decay. No cτ values below 1 micron
are defined. With the two options MSTJ(22)= 3 or 4, a spherical or cylindrical volume is
defined around the origin, and all decays taking place inside this volume are ignored.

Whenever a particle is in principle allowed to decay, i.e. MSTJ(21) and MDCY on, an
proper lifetime is selected once and for all and stored in V(I,5). The K(I,1) is then also
changed to 4. For MSTJ(22)=1, such a particle will also decay, but else it could remain
in the event record. It is then possible, at a later stage, to expand the volume inside
which decays are allowed, and do a new LUEXEC call to have particles fulfilling the new
conditions (but not the old) decay. As a further option, the K(I,1) code may be put to
5, signalling that the particle will definitely decay in the next LUEXEC call, at the vertex
position given (by the user) in the V vector.

This then allows the Jetset decay routines to be used inside a detector simulation
program, as follows. For a particle which did not decay before entering the detector, its
point of decay is still well defined (in the absence of deflections by electric or magnetic
fields), eq. (204). If it interacts before that point, the detector simulation program is left
to handle things. If not, the V vector is updated according to the formula above, K(I,1)
is set to 5, and LUEXEC is called, to give a set of decay products, that can again be tracked.

A further possibility is to force particles to decay into specific decay channels; this
may be particularly interesting for charm or bottom physics. The choice of channels left
open is determined by the values of the switches MDME(IDC,1) for decay channel IDC
(use LULIST(12) to obtain the full listing). One or several channels may be left open; in
the latter case effective branching ratios are automatically recalculated without the need
for your intervention. It is also possible to differentiate between which channels are left
open for particles and which for antiparticles. Lifetimes are not affected by the exclusion
of some decay channels. Note that, whereas forced decays can enhance the efficiency for
several kinds of studies, it can also introduce unexpected biases, in particular when events
may contain several particles with forced decays, cf. section 7.6.2.

14.7.2 Parameter values

A non-trivial question is to know which parameter values to use. The default values
stored in the program are based on comparisons with LEP e+e− → Z0 data at around
91 GeV [LEP90], using a parton-shower picture followed by string fragmentation. If
fragmentation is indeed an universal phenomenon, as we would like to think, then the
same parameters should also apply at other energies and in other processes. The former
aspect, at least, seems to be borne out by comparisons with lower-energy PETRA/PEP
data. Note, however, that the choice of parameters is intertwined with the choice of
perturbative QCD description. If instead matrix elements are used, a best fit to 30 GeV
data would require the values PARJ(21)=0.40, PARJ(41)=1.0 and PARJ(42)=0.7. With
matrix elements one does not expect an energy independence of the parameters, since the
effective minimum invariant mass cut-off is then energy dependent, i.e. so is the amount
of soft gluon emission effects lumped together with the fragmentation parameters. This
is indeed confirmed by the LEP data. A mismatch in the perturbative QCD treatment
could also lead to small differences between different processes.

It is often said that the string fragmentation model contains a wealth of parameters.
This is certainly true, but it must be remembered that most of these deal with flavour
properties, and to a large extent factorize from the treatment of the general event shape.

282



In a fit to the latter it is therefore usually enough to consider the parameters of the per-
turbative QCD treatment, like Λ in αs and a shower cut-off Q0 (or αs itself and ymin, if
matrix elements are used), the a and b parameter of the Lund symmetric fragmentation
function (PARJ(41) and PARJ(42)) and the width of the transverse momentum distribu-
tion (σ =PARJ(21)). In addition, the a and b parameters are very strongly correlated by
the requirement of having the correct average multiplicity, such that in a typical χ2 plot,
the allowed region corresponds to a very narrow but very long valley, stretched diagonally
from small (a,b) pairs to large ones. As to the flavour parameters, these are certainly
many more, but most of them are understood qualitiatively within one single framework,
that of tunnelling pair production of flavours.

Since the use of independent fragmentation has fallen in disrespect, it should be
pointed out that the default parameters here are not particularly well tuned to the data.
This especially applies if one, in addition to asking for independent fragmentation, also
asks for another setup of fragmentation functions, i.e. other than the standard Lund
symmetric one. In particular, note that most fits to the popular Peterson et al. (SLAC)
heavy-flavour fragmentation function are based on the actual observed spectrum. In a
Monte Carlo simulation, one must then start out with something harder, to compensate
for the energy lost by initial-state photon radiation and gluon bremsstrahlung. Since
independent fragmentation is not collinear safe (i.e, the emission of a collinear gluon
changes the properties of the final event), the tuning is strongly dependent on the per-
turbative QCD treatment chosen. All the parameters needed for a tuning of independent
fragmentation are available, however.

14.7.3 Particle properties

The masses of most frequently used particles are taken from tables. For some rare charm
and bottom hadrons, and for heavier flavour hadrons, this would be unwieldy, and in-
stead mass formulae are used, based on the quark content. For the known quarks d, u,
s, c and b, the masses used for this purpose are actually the ones stored in positions
101–105 in the PARF vector, rather than the ones found in PMAS. This means that the
PMAS masses can be freely changed by you, to modify the masses that appear in the
event record, without courting disaster elsewhere (since mass formulae typically contain
1/m terms from spin-spin splittings, it is necessary to have the non-zero ‘constituent’
masses here). Thus you should never touch the mass values stored in PARF. For the
heavier flavours top, low and high, the current PMAS values are always used. For these
flavours, the only individually defined hadrons are the flavour neutral η, Θ, h1, χ0, χ1

and χ2 states. A complete change of top mass in the program thus requires chang-
ing PMAS(6,1), PMAS(LUCOMP(661),1), PMAS(LUCOMP(663),1), PMAS(LUCOMP(665),1),
PMAS(LUCOMP(10661),1), PMAS(LUCOMP(10663),1) and PMAS(LUCOMP(20663),1). Since
the latter heavy-flavour-diagonal states are not normally produced in fragmentation, it
would be no disaster to forget changing their masses.

Most particles have separately defined decay channels. However, there are so many
heavy-flavour hadrons with common decay desciptions, that a few ‘pseudoparticles’ have
been introduced for generic decays. The most frequently used ones are 84 for charm
decays, 85 for bottom decays and 86 for top decays. Instead of a long list of decay channels,
several bottom and charm baryons and all top hadrons therefore only have one ‘decay
channel’, which is the instruction to make use of the decay data for particle 84/85/86.
The spectator quark of the generic decay channels is found as the light quark/diquark of
the hadron considered. All the mesons in the bottom and charm sectors are individually
defined, as are the Λc and Λb states. For top and heavier hadrons, the decay is likely to
be so fast that no hadrons at all are produced, but if they are, the generic pseudoparticle
approach is a good approximation.

The program contains space so that additional new particles may be introduced. Al-

283



though not completely trivial, this should not be beyond the ability of an ordinary user.
Basically, three steps are involved. First, a mechanism of production has to be intro-
duced. This production may well take place in another program, like Pythia or some
user-written correspondence, where matrix elements are used to select the hard process.
In this case the new particle already exists in the LUJETS common block when Jetset is
called. A new particle, meson, baryon or glueball, may also be a part of the fragmentation
process, in which case LUKFDI would have to be suitably modified. The particle might
also appear as a decay product from some already existing particle, and then the decay
data in /LUDAT3/ would have to be expanded; conceivably also LUDECY would be affected.

The second step is to teach to program to recognize the new particle. If a KF code in
the range 41 to 80 is used, this is automatically taken care of, and in particular the com-
pressed code KC coincides with KF. If a whole sequence of particles is to be introduced,
with KF codes paralleling that of ordinary mesons/baryons (a supersymmetric ‘meson’
multiplet, made of a squark plus an antiquark, say), then LUCOMP must be modified to
include a mapping from these KF values to currently unused KC ones, like the range 401
- 500. It is the presence of such a mapping that the program uses to accept a given KF
code as bona fide.

The third and final step is to define the properties of this new particle. Thus particle
charge information must be given in KCHG, mass, width and lifetime in PMAS, particle
name in CHAF, and decay data in the MDCY, MDME, BRAT and KFDP arrays. This process
is most conveniently carried out by using LUUPDA(1) to produce a table of particle data,
which can then be modified, and afterwards read back in with LUUPDA(2). Note that the
particle data is to be introduced for the compressed code KC, not for KF proper.

14.8 Examples

A 10 GeV u quark jet going out along the +z axis is generated with

CALL LU1ENT(0,2,10.,0.,0.)

Note that such a single jet is not required to conserve energy, momentum or flavour. In
the generation scheme, particles with negative pz are produced as well, but these are
automatically rejected unless MSTJ(3)=-1. While frequently used in former days, the
one-jet generation option is not of much current interest.

In e.g. a leptoproduction event a typical situation could be a u quark going out in
the +z direction and a ud0 target remnant essentially at rest. (Such a process can be
simulated by Pythia, but here we illustrate how to do part of it yourself.) The simplest
procedure is probably to treat the process in the c.m. frame and boost it to the lab frame
afterwards. Hence, if the c.m. energy is 20 GeV and the boost βz = 0.996 (corresponding
to xB = 0.045), then

CALL LU2ENT(0,2,2101,20.)
CALL LUROBO(0.,0.,0.,0.,0.996)

The jets could of course also be defined and allowed to fragment in the lab frame with

CALL LU1ENT(-1,2,223.15,0.,0.)
CALL LU1ENT(2,12,0.6837,3.1416,0.)
CALL LUEXEC

Note here that the target diquark is required to move in the backwards direction with
E−pz = mp(1−xB) to obtain the correct invariant mass for the system. This is, however,
only an artefact of using a fixed diquark mass to represent a varying target remnant mass,
and is of no importance for the fragmentation. If one wants a nicer-looking event record,
it is possible to use the following

284



CALL LU1ENT(-1,2,223.15,0.,0.)
MSTU(10)=1
P(2,5)=0.938*(1.-0.045)
CALL LU1ENT(2,2101,0.,0.,0.)
MSTU(10)=2
CALL LUEXEC

A 30 GeV uug event with Eu = 8 GeV and Eu = 14 GeV is simulated with

CALL LU3ENT(0,2,21,-2,30.,2.*8./30.,2.*14./30.)

The event will be given in a standard orientation with the u quark along the +z axis and
the u in the −z,+x quadrant. Note that the flavours of the three partons have to be given
in the order they are found along a string, if string fragmentation options are to work.
Also note that, for 3-jet events, and particularly 4-jet ones, not all setups of kinematical
variables x lie within the kinematically allowed regions of phase space.

All common block variables can obviously be changed by including the corresponding
common block in the user-written main program. Alternatively, the routine LUGIVE can
be used to feed in values, with some additional checks on array bounds then performed.
A call

CALL LUGIVE(’MSTJ(21)=3;PMAS(C663,1)=210.;CHAF(401)=funnyino;’//
&’PMAS(21,4)=’)

will thus change the value of MSTJ(21) to 3, the value of PMAS(LUCOMP(663),1) =
PMAS(136,1) to 210., the value of CHAF(401) to ’funnyino’, and print the current value
of PMAS(21,4). Since old and new values of parameters changed are written to output,
this may offer a convenient way of documenting non-default values used in a given run.
On the other hand, if a variable is changed back and forth frequently, the resulting volu-
minous output may be undesirable, and a direct usage of the common blocks is then to
be recommended (the output can also be switched off, see MSTU(13)).

A general rule of thumb is that none of the physics routines (LUSTRF, LUINDF, LUDECY,
etc.) should ever be called directly, but only via LUEXEC. This routine may be called
repeatedly for one single event. At each call only those entries that are allowed to fragment
or decay, and have not yet done so, are treated. Thus

CALL LU2ENT(1,1,-1,20.) ! fill 2 jets without fragmenting
MSTJ(1)=0 ! inhibit jet fragmentation
MSTJ(21)=0 ! inhibit particle decay
MDCY(LUCOMP(111),1)=0 ! inhibit pi0 decay
CALL LUEXEC ! will not do anything
MSTJ(1)=1 !
CALL LUEXEC ! jets will fragment, but no decays
MSTJ(21)=2 !
CALL LUEXEC ! particles decay, except pi0
CALL LUEXEC ! nothing new can happen
MDCY(LUCOMP(111),1)=1 !
CALL LUEXEC ! pi0:s decay

A partial exception to the rule above is LUSHOW. Its main application is for internal
use by LUEEVT, LUDECY, and PYEVNT, but it can also be directly called by you. Note that
a special format for storing colour-flow information in K(I,4) and K(I,5) must then be
used. For simple cases, the LU2ENT can be made to take care of that automatically, by
calling with the first argument negative.

285



CALL LU2ENT(-1,1,-2,80.) ! store d ubar with colour flow
CALL LUSHOW(1,2,80.) ! shower partons
CALL LUEXEC ! subsequent fragmentation/decay

For more complicated configurations, LUJOIN should be used.
It is always good practice to list one or a few events during a run to check that the

program is working as intended. With

CALL LULIST(1)

all particles will be listed and in addition total charge, momentum and energy of sta-
ble entries will be given. For string fragmentation these quantities should be conserved
exactly (up to machine precision errors), and the same goes when running independent
fragmentation with one of the momentum conservation options. LULIST(1) gives a for-
mat that comfortably fits on an 80 column screen, at the price of not giving the complete
story. With LULIST(2) a more extensive listing is obtained, and LULIST(3) also gives
vertex information. Further options are available, like LULIST(12), which gives a list of
particle data.

An event, as stored in the LUJETS common block, will contain the original jets and
the whole decay chain, i.e. also particles which subsequently decayed. If parton showers
are used, the amount of parton information is also considerable: first the on-shell partons
before showers have been considered, then a K(I,1)=22 line with total energy of the
showering subsystem, after that the complete shower history tree-like structure, starting
off with the same initial partons (now off-shell), and finally the end products of the shower
rearranged along the string directions. This detailed record is useful in many connections,
but if one only wants to retain the final particles, superfluous information may be removed
with LUEDIT. Thus e.g.

CALL LUEDIT(2)

will leave you with the final charged and neutral particles, except for neutrinos.
The information in LUJETS may be used directly to study an event. Some useful

additional quantities derived from these, such as charge and rapidity, may easily be found
via the KLU and PLU functions. Thus electric charge =PLU(I,6) (as integer, three times
charge =KLU(I,6)) and true rapidity y with respect to the z axis = PLU(I,17).

A number of utility (MSTU, PARU) and physics (MSTJ, PARJ) switches and parameters
are available in common block LUDAT1. All of these have sensible default values. Particle
data is stored in common blocks LUDAT2, LUDAT3 and LUDAT4. Note that the data in
the arrays KCHG, PMAS, MDCY and CHAF is not stored by KF code, but by the compressed
code KC. This code is not to be learnt by heart, but instead accessed via the conversion
function LUCOMP, KC = LUCOMP(KF).

In the particle tables, the following particles are considered stable: the photon, e±,
µ±, π±, K±, K0

L, p, p, n, n and all the neutrinos. It is, however, always possible to inhibit
the decay of any given particle by putting the corresponding MDCY value zero or negative,
e.g. MDCY(LUCOMP(310),1)=0 makes K0

S and MDCY(LUCOMP(3122),1)=0 Λ stable. It is
also possible to select stability based on the average lifetime (see MSTJ(22)), or based on
whether the decay takes place within a given spherical or cylindrical volume around the
origin.

The Field-Feynman jet model [Fie78] is available in the program by changing the
following values: MSTJ(1)=2 (independent fragmentation), MSTJ(3)=-1 (retain parti-
cles with pz < 0; is not mandatory), MSTJ(11)=2 (choice of longitudinal fragmenta-
tion function, with the a parameter stored in PARJ(51) - PARJ(53)), MSTJ(12)=0 (no
baryon production), MSTJ(13)=1 (give endpoint quarks p⊥ as quarks created in the field),
MSTJ(24)=0 (no mass broadening of resonances), PARJ(2)=0.5 (s/u ratio for the produc-
tion of new qq pairs), PARJ(11)=PARJ(12)=0.5 (probability for mesons to have spin 1)

286



and PARJ(21)=0.35 (width of Gaussian transverse momentum distribution). In addition
only d, u and s single quark jets may be generated following the FF recipe. Today the FF
‘standard jet’ concept is probably dead and buried, so the numbers above should more
be taken as an example of the flexibility of the program, than as something to apply in
practice.

A wide range of independent fragmentation options are implemented, to be accessed
with the master switch MSTJ(1)=2. In particular, with MSTJ(2)=1 a gluon jet is assumed
to fragment like a random d, d, u, u, s or s jet, while with MSTJ(2)=3 the gluon is split
into a dd, uu or ss pair of jets sharing the energy according to the Altarelli-Parisi splitting
function. Whereas energy, momentum and flavour is not explicitly conserved in indepen-
dent fragmentation, a number of options are available in MSTJ(3) to ensure this ‘post
facto’, e.g. MSTJ(3)=1 will boost the event to ensure momentum conservation and then
(in the c.m. frame) rescale momenta by a common factor to obtain energy conservation,
whereas MSTJ(3)=4 rather uses a method of stretching the jets in longitudinal momentum
along the respective jet axis to keep angles between jets fixed.

287



15 Event Analysis Routines

To describe the complicated geometries encountered in multihadronic events, a number
of event measures have been introduced. These measures are intended to provide a global
view of the properties of a given event, wherein the full information content of the event
is condensed into one or a few numbers. A steady stream of such measures are proposed
for different purposes. Many are rather specialized or never catch on, but a few become
standards, and are useful to have easy access to. Jetset therefore contains a number of
routines that can be called for any event, and that will directly access the event record
to extract the required information.

In the presentation below, measures have been grouped in three kinds. The first con-
tains simple event shape quantities, such as sphericity and thrust. The second is jet finding
algorithms. The third is a mixed bag of particle multiplicities and compositions, factorial
moments and energy–energy correlations, put together in a small statistics package.

None of the measures presented here are Lorentz invariant. The analysis will be
performed in whatever frame the event happens to be given in. It it therefore up to you
to decide whether the frame in which events were generated is the right one, or whether
events beforehand should be boosted, e.g. to the c.m. frame. You can also decide which
particles you want to have affected by the analysis.

15.1 Event Shapes

In this section we study general event shape variables: sphericity, thrust, Fox-Wolfram
moments, and jet masses. These measures are implemented in the routines LUSPHE,
LUTHRU, LUFOWO and LUJMAS, respectively.

Each event is assumed characterized by the particle four-momentum vectors pi =
(pi, Ei), with i = 1, 2, · · · , n an index running over the particles of the event.

15.1.1 Sphericity

The sphericity tensor is defined as [Bjo70]

Sαβ =

∑

i

pαi p
β
i

∑

i

|pi|2
, (215)

where α, β = 1, 2, 3 corresponds to the x, y and z components. By standard diagonaliza-
tion of Sαβ one may find three eigenvalues λ1 ≥ λ2 ≥ λ3, with λ1 + λ2 + λ3 = 1. The
sphericity of the event is then defined as

S =
3

2
(λ2 + λ3) , (216)

so that 0 ≤ S ≤ 1. Sphericity is essentially a measure of the summed p2⊥ with respect to
the event axis; a 2-jet event corresponds to S ≈ 0 and an isotropic event to S ≈ 1.

The aplanarity A, with definition A = 3
2
λ3, is constrained to the range 0 ≤ A ≤ 1

2
.

It measures the transverse momentum component out of the event plane: a planar event
has A ≈ 0 and an isotropic one A ≈ 1

2
.

Eigenvectors vj can be found that correspond to the three eigenvalues λj of the spheric-
ity tensor. The v1 one is called the sphericity axis (or event axis, if it is clear from the
context that sphericity has been used), while the sphericity event plane is spanned by v1

and v2.
The sphericity tensor is quadratic in particle momenta. This means that the sphericity

value is changed if one particle is split up into two collinear ones which share the original

288



momentum. Thus sphericity is not an infrared safe quantity in QCD perturbation theory.
A useful generalization of the sphericity tensor is

S(r)αβ =

∑

i

|pi|r−2 pαi p
β
i

∑

i

|pi|r
, (217)

where r is the power of the momentum dependence. While r = 2 thus corresponds to
sphericity, r = 1 corresponds to linear measures calculable in perturbation theory [Par78]:

S(1)αβ =

∑

i

pαi p
β
i

|pi|
∑

i

|pi|
. (218)

Eigenvalues and eigenvectors may be defined exactly as before, and therefore also
equivalents of S and A. These have no standard names; I tend to call them linearized
sphericity Slin and linearized aplanarity Alin. Quantities that are standard in the literature
are instead the combinations [Ell81]

C = 3(λ1λ2 + λ1λ3 + λ2λ3) , (219)

D = 27λ1λ2λ3 . (220)

Each of these is constrained to be in the range between 0 and 1. Typically, C is used to
measure the 3-jet structure and D the 4-jet one, since C is vanishing for a perfect 2-jet
event and D is vanishing for a planar event. The C measure is related to the second
Fow-Wolfram moment (see below), C = 1 −H2.

Noninteger r values may also be used, and corresponding generalized sphericity and
aplanarity measures calculated. While perturbative arguments favour r = 1, we know that
the fragmentation ‘noise’, e.g. from transverse momentum fluctuations, is proportionately
larger for low momentum particles, and so r > 1 should be better for experimental event
axis determinations. The use of too large an r value, on the other hand, puts all the
emphasis on a few high-momentum particles, and therefore involves a loss of information.
It should then come as no surprise that intermediate r values, of around 1.5, gives the best
performance for event axis determinations in 2-jet events, where the theoretical meaning of
the event axis is well-defined. The gain in accuracy compared with the more conventional
choices r = 2 or r = 1 is rather modest, however.

15.1.2 Thrust

The quantity thrust T is defined by [Bra64]

T = max
|n|=1

∑

i

|n · pi|
∑

i

|pi|
, (221)

and the thrust axis v1 is given by the n vector for which maximum is attained. The
allowed range is 1/2 ≤ T ≤ 1, with a 2-jet event corresponding to T ≈ 1 and an isotropic
event to T ≈ 1/2.

In passing, we note that this is not the only definition found in the literature. The
definitions agree for events studied in the c.m. frame and where all particles are detected.

289



However, a definition like

T = 2 max
|n|=1

∣

∣

∣

∣

∣

∑

i

θ(n · pi)pi
∣

∣

∣

∣

∣

∑

i

|pi|
= 2 max

θi=0,1

∣

∣

∣

∣

∣

∑

i

θi pi

∣

∣

∣

∣

∣

∑

i

|pi|
(222)

(where θ(x) is the step function, θ(x) = 1 if x > 0, else θ(x) = 0) gives different results
than the one above if e.g. only charged particles are detected. It would even be possible
to have T > 1; to avoid such problems, often an extra fictitious particle is introduced to
balance the total momentum [Bra79].

Eq. (221) may be rewritten as

T = max
ǫi=±1

∣

∣

∣

∣

∣

∑

i

ǫi pi

∣

∣

∣

∣

∣

∑

i

|pi|
. (223)

(This may also be viewed as applying eq. (222) to an event with 2n particles, n carrying
the momenta pi and n the momenta −pi, thus automatically balancing the momentum.)
To find the thrust value and axis this way, 2n−1 different possibilities would have to be
tested. The reduction by a factor of 2 comes from T being unchanged when all ǫi → −ǫi.
Therefore this approach rapidly becomes prohibitive. Other exact methods exist, which
‘only’ require about 4n2 combinations to be tried.

In the implementation in Jetset, a faster alternative method is used, in which the
thrust axis is iterated from a starting direction n(0) according to

n(j+1) =

∑

i

ǫ(n(j) · pi)pi
∣

∣

∣

∣

∣

∑

i

ǫ(n(j) · pi)pi
∣

∣

∣

∣

∣

(224)

(where ǫ(x) = 1 for x > 0 and ǫ(x) = −1 for x < 0). It is easy to show that the related
thrust value will never decrease, T (j+1) ≥ T (j). In fact, the method normally converges
in 2–4 iterations. Unfortunately, this convergence need not be towards the correct thrust
axis but is occasionally only towards a local maximum of the thrust function [Bra79]. We
know of no foolproof way around this complication, but the danger of an error may be
lowered if several different starting axes n(0) are tried and found to agree. These n(0) are
suitably constructed from the n′ (by default 4) particles with the largest momenta in the
event, and the 2n

′−1 starting directions
∑

i ǫi pi constructed from these are tried in falling
order of the corresponding absolute momentum values. When a predetermined number
of the starting axes have given convergence towards the same (best) thrust axis this one
is accepted.

In the plane perpendicular to the thrust axis, a major [MAR79] axis and value may
be defined in just the same fashion as thrust, i.e.

Ma = max
|n|=1,n·v1=0

∑

i

|n · pi|
∑

i

|pi|
. (225)

In a plane more efficient methods can be used to find an axis than in three dimensions
[Wu79], but for simplicity we use the same method as above. Finally, a third axis, the

290



minor axis, is defined perpendicular to the thrust and major ones, and a minor value Mi

is calculated just as thrust and major. The difference between major and minor is called
oblateness, O = Ma −Mi. The upper limit on oblateness depends on the thrust value in
a not so simple way. In general O ≈ 0 corresponds to an event symmetrical around the
thrust axis and high O to a planar event.

As in the case of sphericity, a generalization to arbitrary momentum dependence may
easily be obtained, here by replacing the pi in the formulae above by |pi|r−1 pi. This
possibility is included, although so far it has not found any experimental use.

15.1.3 Fox-Wolfram moments

The Fox-Wolfram moments Hl, l = 0, 1, 2, . . ., are defined by [Fox79]

Hl =
∑

i,j

|pi| |pj|
E2

vis

Pl(cos θij) , (226)

where θij is the opening angle between hadrons i and j and Evis the total visible energy
of the event. Note that also autocorrelations, i = j, are included. The Pl(x) are the
Legendre polynomials,

P0(x) = 1 ,

P1(x) = x ,

P2(x) =
1

2
(3x2 − 1) ,

P3(x) =
1

2
(5x3 − 3x) ,

P4(x) =
1

8
(35x4 − 30x2 + 3) . (227)

To the extent that particle masses may be neglected, H0 ≡ 1. It is customary to normalize
the results to H0, i.e. to give Hl0 = Hl/H0. If momentum is balanced then H1 ≡ 0. 2-jet
events tend to give Hl ≈ 1 for l even and ≈ 0 for l odd.

15.1.4 Jet masses

The particles of an event may be divided into two classes. For each class a squared invari-
ant mass may be calculated, M2

1 and M2
2 . If the assignment of particles is adjusted such

that the sum M2
1 +M2

2 is minimized, the two masses thus obtained are called heavy and
light jet mass, MH and ML. It has been shown that these quantities are well behaved in
perturbation theory [Cla79]. In e+e− annihilation, the heavy jet mass obtains a contribu-
tion from qqg 3-jet events, whereas the light mass is non-vanishing only when 4-jet events
also are included. In the c.m. frame of an event one has the limits 0 ≤M2

H ≤ E2
cm/3.

In general, the subdivision of particles tends to be into two hemispheres, separated by
a plane perpendicular to an event axis. As with thrust, it is time-consuming to find the
exact solution. Different approximate strategies may therefore be used. In the program,
the sphericity axis is used to perform a fast subdivision into two hemispheres, and thus
into two preliminary jets. Thereafter one particle at a time is tested to determine whether
the sum M2

1 + M2
2 would be decreased if that particle were to be assigned to the other

jet. The precedure is stopped when no further significant change is obtained. Often the
original assignment is retained as it is, i.e. the sphericity axis gives a good separation.
This is not a full guarantee, since the program might get stuck in a local mimimum which
is not the global one.

291



15.2 Cluster Finding

Global event measures, like sphericity or thrust, can only be used to determine the jet axes
for back-to-back 2-jet events. To determine the individual jet axes in events with three
or more jets, or with two (main) jets which are not back-to-back, cluster algorithms are
customarily used. In these, nearby particles are grouped together into a variable number
of clusters. Each cluster has a well-defined direction, given by a suitably weighted average
of the constituent particle directions.

The cluster algorithms traditionally used in e+e− and in pp physics differ in several
respects. The former tend to be spherically symmetric, i.e. have no preferred axis in
space, and normally all particles have to be assigned to some jet. The latter pick the
beam axis as preferred direction, and make use of variables related to this choice, such
as rapidity and transverse momentum; additionally only a fraction of all particles are
assigned to jets.

This reflects a difference in the underlying physics: in pp collisions, the beam remnants
found at low transverse momenta are not related to any hard processes, and therefore only
provide an unwanted noise to many studies. (Of course, also hard processes may produce
particles at low transverse momenta, but at a rate much less than that from soft or semi-
hard processes.) Further, the kinematics of hard processes is, to a good approximation,
factorized into the hard subprocess itself, which is boost invariant in rapidity, and parton-
distribution effects, which determine the overall position of a hard scattering in rapidity.
Hence rapidity, azimuthal angle and transverse momentum is a suitable coordinate frame
to describe hard processes in.

In standard e+e− annihilation events, on the other hand, the hard process c.m. frame
tends to be almost at rest, and the event axis is just about randomly distributed in space,
i.e. with no preferred rôle for the axis defined by the incoming e±. All particle production
is initiated by and related to the hard subprocess. Some of the particles may be less easy
to associate to a specific jet, but there is no compelling reason to remove any of them
from consideration.

This does not mean that the separation above is always required. 2γ events in e+e−

may have a structure with ‘beam jets’ and ‘hard scattering’ jets, for which the pp type
algorithms might be well suited. Conversely, a heavy particle produced in pp collisions
could profitably be studied, in its own rest frame, with e+e− techniques.

In the following, particles are only characterized by their three-momenta or, alter-
natively, their energy and direction of motion. No knowledge is therefore assumed of
particle types, or even of mass and charge. Clearly, the more is known, the more so-
phisticated clustering algorithms can be used. The procedure then also becomes more
detector-dependent, and therefore less suitable for general usage.

Jetset contains two cluster finding routines. LUCLUS is of the e+e− type and LUCELL
of the pp one. Each of them allows some variations of the basic scheme.

15.2.1 Cluster finding in an e+e− type of environment

The usage of cluster algorithms for e+e− applications started in the late 1970’s. A number
of different approaches were proposed [Dor81]. Of these, we will here only discuss those
based on binary joining. In this kind of approach, initially each final-state particle is
considered to be a cluster. Using some distance measure, the two nearest clusters are
found. If their distance is smaller than some cut-off value, the two clusters are joined
into one. In this new configuration, the two clusters that are now nearest are found and
joined, and so on until all clusters are separated by a distance larger than the cut-off.
The clusters remaining at the end are often also called jets. Note that, in this approach,
each single particle belongs to exactly one cluster. Also note that the resulting jet picture
explicitly depends on the cut-off value used. Normally the number of clusters is allowed to

292



vary from event to event, but occasionally it is more useful to have the cluster algorithm
find a predetermined number of jets (like 3).

The obvious choice for a distance measure is to use squared invariant mass, i.e. for
two clusters i and j to define the distance to be

m2
ij = (Ei + Ej)

2 − (pi + pj)
2 . (228)

(Equivalently, one could have used the invariant mass as measure rather than its square;
this is just a matter of convenience.) In fact, a number of people (including the author)
tried this measure long ago and gave up on it, since it turns out to have severe instability
problems. The reason is well understood: in general, particles tend to cluster closer in
invariant mass in the region of small momenta. The clustering process therefore tends to
start in the center of the event, and only subsequently spread outwards to encompass also
the fast particles. Rather than clustering slow particles around the fast ones (where the
latter näıvely should best represent the jet directions), the invariant mass measure will
tend to cluster fast particles around the slow ones.

Another instability may be seen by considering the clustering in a simple 2-jet event.
By the time that clustering has reached the level of three clusters, the ‘best’ the clustering
algorithm can possibly have achieved, in terms of finding three low-mass clusters, is to
have one fast cluster around each jet, plus a third slow cluster in the middle. In the
last step this third cluster would be joined with one of the fast ones, to produce two
final asymmetric clusters: one cluster would contain all the slow particles, also those that
visually look like belonging to the opposite jet. A simple binary joining process, with no
possiblity to reassign particles between clusters, is therefore not likely to be optimal.

The solution adopted by the author [Sjö83] is to reject invariant mass as distance
measure. Instead a jet is defined as a collection of particles which have a limited transverse
momentum with respect to a common jet axis, and hence also with respect to each other.
This picture is clearly inspired by the standard fragmentation picture, e.g. in string
fragmentation. A distance measure dij between two particles (or clusters) with momenta
pi and pj should thus not depend critically on the longitudinal momenta but only on
the relative transverse momentum. A number of such measures were tried, and the one
eventually selected is

d2ij =
1

2
(|pi| |pj| − pi · pj)

4 |pi| |pj|
(|pi| + |pj|)2

=
4 |pi|2 |pj|2 sin2(θij/2)

(|pi| + |pj|)2
. (229)

For small relative angle θij, where 2 sin(θij/2) ≈ sin θij and cos θij ≈ 1, this measure
reduces to

dij ≈
|pi × pj|
|pi + pj|

, (230)

where ‘×’ represents the cross product. We therefore see that dij in this limit has the
simple physical interpretation as the transverse momentum of either particle with respect
to the direction given by the sum of the two particle momenta. Unlike the approximate
expression, however, dij does not vanish for two back-to-back particles, but is here more
related to the invariant mass between them.

The basic scheme is of the binary joining type, i.e. initially each particle is assumed to
be a cluster by itself. Then the two clusters with smallest relative distance dij are found
and, if dij < djoin, with djoin some predetermined distance, the two clusters are joined to
one, i.e. their momenta are added vectorially to give the momentum of the new cluster.
This is repeated until the distance between any two clusters is > djoin. The number
and momenta of these final clusters then represent our reconstruction of the initial jet
configuration, and each particle is assigned to one of the clusters.

To make this scheme workable, two further ingredients are necessary, however. Firstly,
after two clusters have been joined, some particles belonging to the new cluster may

293



actually be closer to another cluster. Hence, after each joining, all particles in the event
are reassigned to the closest of the clusters. For particle i, this means that the distance
dij to all clusters j in the event has to be evaluated and compared. After all particles have
been considered, and only then, are cluster momenta recalculated to take into account
any reassignments. To save time, the assignment procedure is not iterated until a stable
configuration is reached, but, since all particles are reassigned at each step, such an
iteration is effectively taking place in parallel with the cluster joining. Only at the very
end, when all dij > djoin, is the reassignment procedure iterated to convergence — still
with the possibility to continue the cluster joining if some dij should drop below djoin due
to the reassignment.

Occasionally, it may occur that the reassignment step leads to an empty cluster, i.e.
one to which no particles are assigned. Since such a cluster has a distance dij = 0 to
any other cluster, it is automatically removed in the next cluster joining. However, it
is possible to run the program in a mode where a minimum number of jets is to be
reconstructed. If this minimum is reached with one cluster empty, the particle is found
which has largest distance to the cluster it belongs to. That cluster is then split into
two, namely the large-distance particle and a remainder. Thereafter the reassignment
procedure is continued as before.

Secondly, the large multiplicities normally encountered means that, if each particle
initially is to be treated as a separate cluster, the program will become very slow. There-
fore a smaller number of clusters, for a normal e+e− event typically 8–12, is constructed
as a starting point for the iteration above, as follows. The particle with the highest mo-
mentum is found, and thereafter all particles within a distance dij < dinit from it, where
dinit ≪ djoin. Together these are allowed to form a single cluster. For the remaining
particles, not assigned to this cluster, the procedure is iterated, until all particles have
been used up. Particles in the central momentum region, |p| < 2dinit are treated sep-
arately; if their vectorial momentum sum is above 2dinit they are allowed to form one
cluster, otherwise they are left unassigned in the initial configuration. The value of dinit,
as long as reasonably small, has no physical importance, in that the same final cluster
configuration will be found as if each particle initially is assumed to be a cluster by itself:
the particles clustered at this step are so nearby anyway that they almost inevitably must
enter the same jet; additionally the reassignment procedure allows any possible ‘mistake’
to be corrected in later steps of the iteration.

Thus the jet reconstruction depends on one single parameter, djoin, with a clearcut
physical meaning of a transverse momentum ‘jet-resolution power’. Neglecting smearing
from fragmentation, dij between two clusters of equal energy corresponds to half the
invariant mass of the two original partons. If one only wishes to reconstruct well separated
jets, a large djoin should be chosen, while a small djoin would allow the separation of close
jets, at the cost of sometimes artificially dividing a single jet into two. In particular, b
quark jets may here be a nuisance. The value of djoin to use for a fixed jet-resolution power
in principle should be independent of the c.m. energy of events, although fragmentation
effects may give a contamination of spurious extra jets that increases slowly with Ecm for
fixed djoin. Therefore a djoin = 2.5 GeV was acceptable at PETRA/PEP, while 3–4 GeV
may be better for applications at LEP and beyond.

This completes the description of the main option of the LUCLUS routine. Variations
are possible. One such is to skip the reassignment step, i.e. to make use only of the simple
binary joining procedure, without any possibility to reassign particles between jets. (This
option is included mainly as a reference, to check how important reassignment really is.)
The other main alternative is to replace the distance measure used above with the one
used in the JADE algorithm [JAD86].

The JADE cluster algorithm is an attempt to save the invariant mass measure. The

294



distance measure is defined to be

yij =
2EiEj(1 − cos θij)

E2
vis

. (231)

Here Evis is the total visible energy of the event. The usage of E2
vis in the denominator

rather than E2
cm tends to make the measure less sensitive to detector acceptance correc-

tions; in addition the dimensionless nature of yij makes it well suited for a comparison of
results at different c.m. energies. For the subsequent discussions, this normalization will
be irrelevant, however.

The yij measure is very closely related to the squared mass distance measure: the two
coincide (up to the difference in normalization) if mi = mj = 0. However, consider a pair
of particles or clusters with non-vanishing individual masses and a fixed pair mass. Then,
the larger the net momentum of the pair, the smaller the yij measure. This somewhat
tends to favour clustering of fast particles, and makes the algorithm less unstable than
the one based on true invariant mass.

The successes of the JADE algorithm are well known: one obtains a very good agree-
ment between the number of partons generated on the matrix-element (or parton-shower)
level and the number of clusters reconstructed from the hadrons, such that QCD aspects
like the running of αs can be studied with a minimal dependence on fragmentation effects.
Of course, the insensitivity to fragmentation effects depends on the choice of fragmenta-
tion model. Fragmentation effects are small in the string model, but not in independent
fragmentation scenarios. Although independent fragmentation in itself is not credible,
this may be seen as a signal for caution.

One should note that the JADE measure still suffers from some of the diseases of the
simple mass measure (without reassignments), namely that particles which go in opposite
directions may well be joined into the same cluster. Therefore, while the JADE algorithm
is a good way to find the number of jets, it is inferior to the standard dij measure for a
determination of jet directions and energies [Bet92]. The dij measure also gives narrower
jets, which agree better with the visual impression of jet structure.

Recently, the ‘Durham algorithm’ has been introduced [Cat91], which works as the
JADE one but with a distance measure

ỹij =
2 min(E2

i , E
2
j )(1 − cos θij)

E2
cm

. (232)

Like the dij measure, this is a transverse momentum, but ỹij has the geometrical inter-
pretation as the transverse momentum of the softer particle with respect to the direction
of the harder one, while dij is the transverse momentum of either particle with respect
to the common direction given by the momentum vector sum. The two definitions agree
when one cluster is much softer than the other, so the soft gluon exponentiation proven
for the Durham measure also holds for the dij one.

The main difference therefore is that the standard LUCLUS option allows reassignments,
while the Durham algorithm does not. The latter is therefore more easily calculable
on the perturbative parton level. This point is sometimes overstressed, and one could
give counterexamples why reassignments in fact may bring better agreement with the
underlying perturbative level. In particular, without reassignments, one will make the
recombination that seems the ‘best’ in the current step, even when that forces you to
make ‘worse’ choices in subsequent steps. With reassignments, it is possible to correct for
mistakes due to the too local sensitivity of a simple binary joining scheme.

15.2.2 Cluster finding in a pp type of environment

The LUCELL cluster finding routines is of the kind pioneered by UA1 [UA183], and com-
monly used in pp physics. It is based on a choice of pseudorapidity η, azimuthal angle ϕ

295



and transverse momentum p⊥ as the fundamental coordinates. This choice is discussed in
the introduction to cluster finding above, with the proviso that the theoretically preferred
true rapidity has to be replaced by pseudorapidity, to make contact with the real-life
detector coordinate system.

A fix detector grid is assumed, with the pseudorapidity range |η| < ηmax and the full
azimuthal range each divided into a number of equally large bins, giving a rectangular
grid. The particles of an event impinge on this detector grid. For each cell in (η,ϕ) space,
the transverse momentum which enters that cell is summed up to give a total cell E⊥

flow.
Clearly the model remains very primitive in a number of respects, compared with a

real detector. There is no magnetic field allowed for, i.e. also charged particles move
in straight tracks. The dimensions of the detector are not specified; hence the positions
of the primary vertex and any secondary vertices are neglected when determining which
cell a particle belongs to. The rest mass of particles is not taken into account, i.e. what

is used is really p⊥ =
√

p2x + p2y, while in a real detector some particles would decay or

annihilate, and then deposit additional amounts of energy.
To take into account the energy resolution of the detector, it is possible to smear the

E⊥ contents, bin by bin. This is done according to a Gaussian, with a width assumed
proportional to the

√
E⊥ of the bin. The Gaussian is cut off at zero and at some prede-

termined multiple of the unsmeared E⊥, by default twice it. Alternatively, the smearing
may be performed in E rather than in E⊥. To find the E, it is assumed that the full
energy of a cell is situated at its center, so that one can translate back and forth with
E = E⊥ cosh ηcenter.

The cell with largest E⊥ is taken as a jet initiator if its E⊥ is above some threshold.
A candidate jet is defined to consist of all cells which are within some given radius R
in the (η,ϕ) plane, i.e. which have (η − ηinitiator)

2 + (ϕ − ϕinitiator)
2 < R2. Coordinates

are always given with respect to the center of the cell. If the summed E⊥ of the jet is
above the required minimum jet energy, the candidate jet is accepted, and all its cells are
removed from further consideration. If not, the candidate is rejected. The sequence is
now repeated with the remaining cell of highest E⊥, and so on until no single cell fulfills
the jet initiator condition.

The number of jets reconstruced can thus vary from none to a maximum given by
purely geometrical considerations, i.e. how many circles of radius R are needed to cover
the allowed (η,ϕ) plane. Normally only a fraction of the particles are assigned to jets.

One could consider to iterate the jet assignment process, using the E⊥-weighted center
of a jet to draw a new cirle of radius R. In the current algorithm there is no such iteration
step. For an ideal jet assignment it would also be necessary to improve the treatment
when two jet circles partially overlap.

A final technical note. A natural implementation of a cell finding algorithm is based
on having a two-dimensional array of E⊥ values, with dimensions to match the detector
grid. Very often most of the cells would then be empty, in particular for low-multiplicity
events in fine-grained calorimeters. Our implementation is somewhat atypical, since cells
are only reserved space (contents and position) when they are shown to be non-empty.
This means that all non-empty cells have to be looped over to find which are within the
required distance R of a potential jet initiator. The algorithm is therefore faster than the
ordinary kind if the average cell occupancy is low, but slower if it is high.

15.3 Event Statistics

All the event-analysis routines above are defined on an event-by-event basis. Once found,
the quantities are about equally often used to define inclusive distributions as to select
specific classes of events for continued study. For instance, the thrust routine might be
used either to find the inclusive T distribution or to select events with T < 0.9. Other

296



measures, although still defined for the individual event, only make sense to discuss in
terms of averages over many events. A small set of such measures is found in LUTABU.
This routine has to be called once after each event to accumulate statistics, and once in
the end to print the final tables. Of course, among the wealth of possibilities imaginable,
the ones collected here are only a small sample, selected because the author at some point
has found a use for them himself.

15.3.1 Multiplicities

Three options are available to collect information on multiplicities in events. One gives the
flavour content of the final state in hard interaction processes, e.g. the relative composition
of dd/uu/ss/cc/bb in e+e− annihilation events. Additionally it gives the total parton
multiplicity distribution at the end of parton showering. Another gives the inclusive rate
of all the different particles produced in events, either as intermediate resonances or as
final-state particles. The number is subdivided into particles produced from fragmentation
(primary particles) and those produced in decays (secondary particles).

The third option tabulates the rate of exclusive final states, after all allowed decays
have occurred. Since only events with up to 8 final-state particles are analyzed, this is
clearly not intended for the study of complete high-energy events. Rather the main ap-
plication is for an analysis of the decay modes of a single particle. For instance, the decay
data for D mesons is given in terms of channels that also contain unstable particles, such
as ρ and η, which decay further. Therefore a given final state may receive contributions
from several tabulated decay channels; e.g. Kππ from K∗π and Kρ, and so on.

15.3.2 Energy-Energy Correlation

The Energy-Energy Correlation is defined by [Bas78]

EEC(θ) =
∑

i<j

2EiEj
E2

vis

δ(θ − θij) , (233)

and its Asymmetry by

EECA(θ) = EEC(π − θ) − EEC(θ) . (234)

Here θij is the opening angle between the two particles i and j, with energies Ei and
Ej. In principle, normalization should be to Ecm, but if not all particles are detected
it is convenient to normalize to the total visible energy Evis. Taking into account the
autocorrelation term i = j, the total EEC in an event then is unity. The δ function
peak is smeared out by the finite bin width ∆θ in the histogram, i.e., it is replaced by a
contribution 1/∆θ to the bin which contains θij.

The formulae above refer to an individual event, and are to be averaged over all events
to suppress statistical fluctuations, and obtain smooth functions of θ.

15.3.3 Factorial moments

Factorial moments may be used to search for intermittency in events [Bia86]. The whole
field has been much studied in recent years, and a host of different measures have been
proposed. We only implement one of the original prescriptions.

To calculate the factorial moments, the full rapidity (or pseudorapidity) and azimuthal
ranges are subdivided into bins of successively smaller size, and the multiplicity distri-
butions in bins is studied. The program calculates pseudorapidity with respect to the z
axis; if desired, one could first find an event axis, e.g. the sphericity or thrust axis, and
subsequently rotate the event to align this axis with the z direction.

297



The full rapidity range |y| < ymax (or pseudorapidity range |η| < ηmax) and azimuthal
range 0 < ϕ < 2π are subdivided into my and mϕ equally large bins. In fact, the
whole analysis is performed thrice: once with mϕ = 1 and the y (or η) range gradually
divided into 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512 bins, once with my = 1 and the ϕ
range subdivided as above, and finally once with my = mϕ according to the same binary
sequence. Given the multiplicity nj in bin j, the i:th factorial moment is defined by

Fi = (mymϕ)i−1
∑

j

nj(nj − 1) · · · (nj − i+ 1)

n(n− 1) · · · (n− i+ 1)
. (235)

Here n =
∑

j nj is the total multiplicity of the event within the allowed y (or η) limits.
The calculation is performed for the second through the fifth moments, i.e. F2 through
F5.

The Fi as given here are defined for the individual event, and have to be averaged over
many events to give a reasonably smooth behaviour. If particle production is uniform
and uncorrelated according to Poissonian statistics, one expects 〈Fi〉 ≡ 1 for all moments
and all bin sizes. If, on the other hand, particles are locally clustered, factorial moments
should increase when bins are made smaller, down to the characteristic dimensions of the
clustering.

15.4 Routines and Common Block Variables

The six routines LUSPHE, LUTHRU, LUCLUS, LUCELL, LUJMAS and LUFOWO give you the possi-
bility to find some global event shape properties. The routine LUTABU performs a statistical
analysis of a number of different quantities like particle content, factorial moments and
the energy–energy correlation.

Note that, by default, all remaining partons/particles except neutrinos are used in the
analysis. Neutrinos may be included with MSTU(41)=1. Also note that axes determined
are stored in LUJETS, but are not proper four-vectors and, as a general rule (with some
exceptions), should therefore not be rotated or boosted.

CALL LUSPHE(SPH,APL)

Purpose: to diagonalize the momentum tensor, i.e. find the eigenvalues λ1 > λ2 > λ3,
with sum unity, and the corresponding eigenvectors.
Momentum power dependence is given by PARU(41); default corresponds to
sphericity, PARU(41)=1. gives measures linear in momenta. Which particles
(or partons) are used in the analysis is determined by the MSTU(41) value.

SPH : 3
2
(λ2 + λ3), i.e. sphericity (for PARU(41)=2.).

= -1. : analysis not performed because event contained less than two particles
(or two exactly back-to-back particles, in which case the two transverse
directions would be undefined).

APL : 3
2
λ3, i.e. aplanarity (for PARU(41)=2.).

= -1. : as SPH=-1..
Remark: the lines N+1 through N+3 (N-2 through N for MSTU(43)=2) in LUJETS will,

after a call, contain the following information:
K(N+i,1) = 31;
K(N+i,2) = 95;
K(N+i,3) : i, the axis number, i = 1, 2, 3;
K(N+i,4), K(N+i,5) = 0;
P(N+i,1) - P(N+i,3) : the i’th eigenvector, x, y and z components;
P(N+i,4) : λi, the i’th eigenvalue;

298



P(N+i,5) = 0;
V(N+i,1) - V(N+i,5) = 0.
Also, the number of particles used in the analysis is given in MSTU(62).

CALL LUTHRU(THR,OBL)

Purpose: to find the thrust, major and minor axes and corresponding projected mo-
mentum quantities, in particular thrust and oblateness. The performance of
the program is affected by MSTU(44), MSTU(45), PARU(42) and PARU(48). In
particular, PARU(42) gives the momentum dependence, with the default value
=1. corresponding to linear dependence. Which particles (or partons) are used
in the analysis is determined by the MSTU(41) value.

THR : thrust (for PARU(42)=1.).
= -1. : analysis not performed because event contained less than two particles.
= -2. : remaining space in LUJETS (partly used as working area) not large enough

to allow analysis.
OBL : oblateness (for PARU(42)=1.).

= -1., -2. : as for THR.
Remark: the lines N+1 through N+3 (N-2 through N for MSTU(43)=2) in LUJETS will,

after a call, contain the following information:
K(N+i,1) = 31;
K(N+i,2) = 96;
K(N+i,3) : i, the axis number, i = 1, 2, 3;
K(N+i,4), K(N+i,5) = 0;
P(N+i,1) - P(N+i,3) : the thrust, major and minor axis, respectively, for
i = 1, 2 and 3;
P(N+i,4) : corresponding thrust, major and minor value;
P(N+i,5) = 0;
V(N+i,1) - V(N+i,5) = 0.
Also, the number of particles used in the analysis is given in MSTU(62).

CALL LUCLUS(NJET)

Purpose: to reconstruct an arbitrary number of jets using a cluster analysis method
based on particle momenta.
Two different distance measures are available, see section 15.2. The choice
is controlled by MSTU(46). The distance scale djoin, above which two clusters
may not be joined, is normally given by PARU(44). In general, djoin may be
varied to describe different ‘jet-resolution powers’; the default value, 2.5 GeV,
is fairly well suited for e+e− physics at 30–40 GeV. With the alternative mass
distance measure, PARU(44) can be used to set the absolute maximum cluster
mass, or PARU(45) to set the scaled one, i.e. in y = m2/E2

cm, where Ecm is the
total invariant mass of the particles being considered.
It is possible to continue the cluster search from the configuration already
found, with a new higher djoin scale, by selecting MSTU(48) properly. In
MSTU(47) one can also require a minimum number of jets to be reconstructed;
combined with an artificially large djoin this can be used to reconstruct a pre-
determined number of jets.
Which particles (or partons) are used in the analysis is determined by the
MSTU(41) value, whereas assumptions about particle masses is given by
MSTU(42). The parameters PARU(43) and PARU(48) regulate more technical
details (for events at high energies and large multiplicities, however, the choice

299



of a larger PARU(43) may be necessary to obtain reasonable reconstruction
times).

NJET : the number of clusters reconstructed.
= -1 : analysis not performed because event contained less than MSTU(47) (nor-

mally 1) particles, or analysis failed to reconstruct the requested number
of jets.

= -2 : remaining space in LUJETS (partly used as working area) not large enough
to allow analysis.

Remark: if the analysis does not fail, further information is found in MSTU(61) -
MSTU(63) and PARU(61) - PARU(63). In particular, PARU(61) contains the
invariant mass for the system analyzed, i.e. the number used in determining
the denominator of y = m2/E2

cm. PARU(62) gives the generalized thrust, i.e.
the sum of (absolute values of) cluster momenta divided by the sum of parti-
cle momenta (roughly the same as multicity). PARU(63) gives the minimum
distance d (in p⊥ or m) between two clusters in the final cluster configuration,
0 in case of only one cluster.
Further, the lines N+1 through N+NJET (N-NJET+1 through N for MSTU(43)=2)
in LUJETS will, after a call, contain the following information:
K(N+i,1) = 31;
K(N+i,2) = 97;
K(N+i,3) : i, the jet number, with the jets arranged in falling order of abso-
lute momentum;
K(N+i,4) : the number of particles assigned to jet i;
K(N+i,5) = 0;
P(N+i,1) - P(N+i,5) : momentum, energy and invariant mass of jet i;
V(N+i,1) - V(N+i,5) = 0.
Also, for a particle which was used in the analysis, K(I,4)= i, where I is the
particle number and i the number of the jet it has ben assigned to. Unde-
cayed particles not used then have K(I,4)=0. An exception is made for lines
with K(I,1)=3 (which anyhow are not normally interesting for cluster search),
where the colour-flow information stored in K(I,4) is left intact.

CALL LUCELL(NJET)

Purpose: to provide a simpler cluster routine more in line with what is currently used
in the study of high-p⊥ collider events.
A detector is assumed to stretch in pseudorapidity between -PARU(51) and
+PARU(51) and be segmented in MSTU(51) equally large η (pseudorapidity)
bins and MSTU(52) ϕ (azimuthal) bins. Transverse energy E⊥ for undecayed
entries are summed up in each bin. For MSTU(53) non-zero, the energy is
smeared by calorimetric resolution effects, cell by cell. This is done accord-
ing to a Gaussian distribution; if MSTU(53)=1 the standard deviation for the
E⊥ is PARU(55)×√

E⊥, if MSTU(53)=2 the standard deviation for the E is
PARU(55)×

√
E, E⊥ and E expressed in GeV. The Gaussian is cut off at 0 and

at a factor PARU(56) times the correct E⊥ or E. Cells with an E⊥ below a
given threshold PARU(58) are removed from further consideration; by default
PARU(58)=0. and thus all cells are kept.
All bins with E⊥ >PARU(52) are taken to be possible initiators of jets, and
are tried in falling E⊥ sequence to check whether the total E⊥ summed over

cells no more distant than PARU(54) in
√

(∆η)2 + (∆ϕ)2 exceeds PARU(53).
If so, these cells define one jet, and are removed from further consideration.
Contrary to LUCLUS, not all particles need be assigned to jets. Which particles

300



(or partons) are used in the analysis is determined by the MSTU(41) value.
NJET : the number of jets reconstructed (may be 0).

= -2 : remaining space in LUJETS (partly used as working area) not large enough
to allow analysis.

Remark: the lines N+1 through N+NJET (N-NJET+1 through N for MSTU(43)=2) in LUJETS
will, after a call, contain the following information:
K(N+i,1) = 31;
K(N+i,2) = 98;
K(N+i,3) : i, the jet number, with the jets arranged in falling order in E⊥;
K(N+i,4) : the number of particles assigned to jet i;
K(N+i,5) = 0;
V(N+i,1) - V(N+i,5) = 0.
Further, for MSTU(54)=1
P(N+i,1), P(N+i,2) = position in η and ϕ of the center of the jet initiator
cell, i.e. geometrical center of jet;
P(N+i,3), P(N+i,4) = position in η and ϕ of the E⊥-weighted center of the
jet, i.e. the center of gravity of the jet;
P(N+i,5) = sum E⊥ of the jet;
while for MSTU(54)=2
P(N+i,1) - P(N+i,5) : the jet momentum vector, constructed from the
summed E⊥ and the η and ϕ of the E⊥-weighted center of the jet as
(px, py, pz, E,m) = E⊥(cosϕ, sinϕ, sinh η, cosh η, 0);
and for MSTU(54)=3
P(N+i,1) - P(N+i,5) : the jet momentum vector, constructed by adding
vectorially the momentum of each cell assigned to the jet, assuming that all the
E⊥ was deposited at the center of the cell, and with the jet mass in P(N+i,5)
calculated from the summed E and p as m2 = E2 − p2x − p2y − p2z.
Also, the number of particles used in the analysis is given in MSTU(62), and
the number of cells hit in MSTU(63).

CALL LUJMAS(PMH,PML)

Purpose: to reconstruct high and low jet mass of an event. A simplified algorithm
is used, wherein a preliminary division of the event into two hemispheres is
done transversely to the sphericity axis. Then one particle at a time is reas-
signed to the other hemisphere if that reduces the sum of squares of the two
jet masses, m2

H + m2
L. The procedure is stopped when no further significant

change (see PARU(48)) is obtained. Often, the original assignment is retained
as it is. Which particles (or partons) used in the analysis is determined by
the MSTU(41) value, whereas assumptions about particle masses is given by
MSTU(42).

PMH : heavy jet mass (in GeV).
= -2. : remaining space in LUJETS (partly used as working area) not large enough

to allow analysis.
PML : light jet mass (in GeV).

= -2. : as for PMH=-2..
Remark: After a successful call, MSTU(62) contains the number of particles used in the

analysis, and PARU(61) the invariant mass of the system analyzed. The latter
number is helpful in constructing scaled jet masses.

CALL LUFOWO(H10,H20,H30,H40)

301



Purpose: to do an event analysis in terms of the Fox-Wolfram moments. The moments
Hi are normalized to the lowest one, H0. Which particles (or partons) are used
in the analysis is determined by the MSTU(41) value.

H10 : H1/H0. Is = 0 if momentum is balanced.
H20 : H2/H0.
H30 : H3/H0.
H40 : H4/H0.
Remark: the number of particles used in the analysis is given in MSTU(62).

CALL LUTABU(MTABU)

Purpose: to provide a number of event-analysis options which can be be used on each
new event, with accumulated statistics to be written out on request. When
errors are quoted, these refer to the uncertainty in the average value for the
event sample as a whole, rather than to the spread of the individual events,
i.e. errors decrease like one over the square root of the number of events
analyzed. For a correct use of LUTABU, it is not permissible to freely mix
generation and analysis of different classes of events, since only one set of
statistics counters exists. A single run may still contain sequential ‘subruns’,
between which statistics is reset. Whenever an event is analyzed, the number
of particles/partons used is given in MSTU(62).

MTABU : determines which action is to be taken. Generally, a last digit equal to 0
indicates that the statistics counters for this option is to be reset; since the
counters are reset (by DATA statements) at the beginning of a run, this is not
used normally. Last digit 1 leads to an analysis of current event with respect
to the desired properties. Note that the resulting action may depend on how
the event generated has been rotated, boosted or edited before this call. The
statistics accumulated is output in tabular form with last digit 2, while it is
dumped in the LUJETS common block for last digit 3. The latter option may
be useful for interfacing to graphics output.

= 10 : statistics on parton multiplicity is reset.
= 11 : the parton content of the current event is analyzed, classified according

to the flavour content of the hard interaction and the total number of par-
tons. The flavour content is assumed given in MSTU(161) and MSTU(162);
these are automatically set e.g. in LUEEVT and PYEVNT calls.

= 12 : gives a table on parton multiplicity distribution.
= 13 : stores the parton multiplicity distribution of events in /LUJETS/, using

the following format:
N = total number of different channels found;
K(I,1) = 32;
K(I,2) = 99;
K(I,3), K(I,4) = the two flavours of the flavour content;
K(I,5) = total number of events found with flavour content of K(I,3)
and K(I,4);
P(I,1) - P(I,5) = relative probability to find given flavour content and
a total of 1, 2, 3, 4 or 5 partons, respectively;
V(I,1) - V(I,5) = relative probability to find given flavour content and
a total of 6–7, 8–10, 11–15, 16–25 or above 25 partons, respectively.
In addition, MSTU(3)=1 and
K(N+1,1) = 32;
K(N+1,2) = 99;
K(N+1,5) = number of events analyzed.

302



= 20 : statistics on particle content is reset.
= 21 : the particle/parton content of the current event is analyzed, also for

particles which have subsequently decayed and partons which have frag-
mented (unless this has been made impossible by a preceding LUEDIT
call). Particles are subdivided into primary and secondary ones, the
main principle being that primary particles are those produced in the
fragmentation of a string, while secondary come from decay of other par-
ticles. Since particles (top, say), may decay into partons, the distinction
is not always unique.

= 22 : gives a table of particle content in events.
= 23 : stores particle content in events in /LUJETS/, using the following format:

N = number of different particle species found;
K(I,1) = 32;
K(I,2) = 99;
K(I,3) = particle KF code;
K(I,5) = total number of particles and antiparticles of this species;
P(I,1) = average number of primary particles per event;
P(I,2) = average number of secondary particles per event;
P(I,3) = average number of primary antiparticles per event;
P(I,4) = average number of secondary antiparticles per event;
P(I,5) = average total number of particles or antiparticles per event.
In addition, MSTU(3)=1 and
K(N+1,1) = 32;
K(N+1,2) = 99;
K(N+1,5) = number of events analyzed;
P(N+1,1) = average primary multiplicity per event;
P(N+1,2) = average final multiplicity per event;
P(N+1,3) = average charged multiplicity per event.

= 30 : statistics on factorial moments is reset.
= 31 : analyzes the factorial moments of the multiplicity distribution in different

bins of rapidity and azimuth. Which particles (or partons) are used in
the analysis is determined by the MSTU(41) value. The selection between
usage of true rapidity, pion rapidity or pseudorapidity is regulated by
MSTU(42). The z axis is assumed to be event axis; if this is not desirable
find an event axis e.g. with LUSPHE or LUTHRU and use LUEDIT(31).
Maximum (pion-, pseudo-) rapidity, which sets the limit for the rapidity
plateau or the experimental acceptance, is given by PARU(57).

= 32 : prints a table of the first four factorial moments for various bins of pseu-
dorapidity and azimuth. The moments are properly normalized so that
they would be unity (up to statistical fluctuations) for uniform and un-
correlated particle production according to Poissonian statistics, but in-
creasing for decreasing bin size in case of ‘intermittent’ behaviour. The
error on the average value is based on the actual statistical sample (i.e.
does not use any assumptions on the distribution to relate errors to the
average values of higher moments). Note that for small bin sizes, where
the average multiplicity is small and the factorial moment therefore only
very rarely is non-vanishing, moment values may fluctuate wildly and the
errors given may be too low.

= 33 : stores the factorial moments in /LUJETS/, using the format:
N = 30, with I = i = 1–10 corresponding to results for slicing the rapidity
range in 2i−1 bins, I = i = 11–20 to slicing the azimuth in 2i−11 bins,
and I = i = 21–30 to slicing both rapidity and azimuth, each in 2i−21

bins;

303



K(I,1) = 32;
K(I,2) = 99;
K(I,3) = number of bins in rapidity;
K(I,4) = number of bins in azimuth;
P(I,1) = rapidity bin size;
P(I,2) - P(I,5) = 〈F2〉–〈F5〉, i.e. mean of second, third, fourth and
fifth factorial moment;
V(I,1) = azimuthal bin size;
V(I,2) - V(I,5) = statistical errors on 〈F2〉–〈F5〉.
In addition, MSTU(3) = 1 and
K(31,1) = 32;
K(31,2) = 99;
K(31,5) = number of events analyzed.

= 40 : statistics on energy–energy correlation is reset.
= 41 : the energy–energy correlation EEC of the current event is analyzed.

Which particles (or partons) are used in the analysis is determined by
the MSTU(41) value. Events are assumed given in their c.m. frame. The
weight assigned to a pair i and j is 2EiEj/E

2
vis, where Evis is the sum

of energies of all analyzed particles in the event. Energies are deter-
mined from the momenta of particles, with mass determined according
to the MSTU(42) value. Statistics is accumulated for the relative angle
θij, ranging between 0 and 180 degrees, subdivided into 50 bins.

= 42 : prints a table of the energy–energy correlation EEC and its asymmetry
EECA, with errors. The definition of errors is not unique. In our ap-
proach each event is viewed as one observation, i.e. an EEC and EECA
distribution is obtained by summing over all particle pairs of an event,
and then the average and spread of this event-distribution is calculated in
the standard fashion. The quoted error is therefore inversely proportional
to the square root of the number of events. It could have been possible
to view each single particle pair as one observation, which would have
given somewhat lower errors, but then one would also be forced to do a
complicated correction procedure to account for the pairs in an event not
being uncorrelated (two hard jets separated by a given angle typically
corresponds to several pairs at about that angle). Note, however, that
in our approach the squared error on an EECA bin is smaller than the
sum of the squares of the errors on the corresponding EEC bins (as it
should be). Also note that it is not possible to combine the errors of two
nearby bins by hand from the information given, since nearby bins are
correlated (again a trivial consequence of the presence of jets).

= 43 : stores the EEC and EECA in /LUJETS/, using the format:
N = 25;
K(I,1) = 32;
K(I,2) = 99;
P(I,1) = EEC for angles between I-1 and I, in units of 3.6◦;
P(I,2) = EEC for angles between 50-I and 51-I, in units of 3.6◦;
P(I,3) = EECA for angles between I-1 and I, in units of 3.6◦;
P(I,4), P(I,5) : lower and upper edge of angular range of bin I, ex-
pressed in radians;
V(I,1) - V(I,3) : errors on the EEC and EECA values stored in
P(I,1) - P(I,3) (see =42 for comments);
V(I,4), V(I,5) : lower and upper edge of angular range of bin I, ex-
pressed in degrees.
In addition, MSTU(3)=1 and

304



K(26,1) = 32;
K(26,2) = 99;
K(26,5) = number of events analyzed.

= 50 : statistics on complete final states is reset.
= 51 : analyzes the particle content of the final state of the current event record.

During the course of the run, statistics is thus accumulated on how often
different final states appear. Only final states with up to 8 particles are
analyzed, and there is only reserved space for up to 200 different final
states. Most high energy events have multiplicities far above 8, so the
main use for this tool is to study the effective branching ratios obtained
with a given decay model for e.g. charm or bottom hadrons. Then
LU1ENT may be used to generate one decaying particle at a time, with a
subsequent analysis by LUTABU. Depending on at what level this studied
is to be carried out, some particle decays may be switched off, like π0.

= 52 : gives a list of the (at most 200) channels with up to 8 particles in the
final state, with their relative branching ratio. The ordering is according
to multiplicity, and within each multiplicity according to an ascending
order of KF codes. The KF codes of the particles belonging to a given
channel are given in descending order.

= 53 : stores the final states and branching ratios found in /LUJETS/, using the
format:
N = number of different explicit final states found (at most 200);
K(I,1) = 32;
K(I,2) = 99;
K(I,5) = multiplicity of given final state, a number between 1 and 8;
P(I,1) - P(I,5), V(I,1) - V(I,3) : the KF codes of the up to 8
particles of the given final state, converted to real numbers, with trailing
zeroes for positions not used;
V(I,5) : effective branching ratio for the given final state.
In addition, MSTU(3)=1 and
K(N+1,1) = 32;
K(N+1,2) = 99;
K(N+1,5) = number of events analyzed;
V(N+1,5) = summed branching ratio for finals states not given above,
either because they contained more than 8 particles or because all 200
channels have been used up.

COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the
performance of Jetset. Most parameters are described in section 14.4; here
only those related to the event-analysis routines are described.

MSTU(41) : (D=2) partons/particles used in the event-analysis routines LUSPHE, LUTHRU,
LUCLUS, LUCELL, LUJMAS, LUFOWO and LUTABU (LUTABU(11) excepted).

= 1 : all partons/particles that have not fragmented/decayed.
= 2 : ditto, with the exception of neutrinos and unknown particles.
= 3 : only charged, stable particles, plus any partons still not fragmented.

MSTU(42) : (D=2) assumed particle masses, used in calculating energies E2 = p2 +m2,
as subsequently used in LUCLUS, LUJMAS and LUTABU (in the latter also for
pseudorapidity, pion rapidity or true rapidity selection).

= 0 : all particles are assumed massless.
= 1 : all particles, except the photon, are assumed to have the charged pion

305



mass.
= 2 : the true masses are used.

MSTU(43) : (D=1) storing of event-analysis information (mainly jet axes), in LUSPHE,
LUTHRU, LUCLUS and LUCELL.

= 1 : stored after the event proper, in positions N+1 through N+MSTU(3). If sev-
eral of the routines are used in succession, all but the latest information
is overwritten.

= 2 : stored with the event proper, i.e. at the end of the event listing, with N
updated accordingly. If several of the routines are used in succession, all
the axes determined are available.

MSTU(44) : (D=4) is the number of the fastest (i.e. with largest momentum) particles
used to construct the (at most) 10 most promising starting configurations for
the thrust axis determination.

MSTU(45) : (D=2) is the number of different starting configurations above, which have
to converge to the same (best) value before this is accepted as the correct
thrust axis.

MSTU(46) : (D=1) distance measure used for the joining of clusters in LUCLUS.
= 1 : dij, i.e. approximately relative transverse momentum. Anytime two

clusters have been joined, particles are reassigned to the cluster they
now are closest to. The distance cut-off djoin is stored in PARU(44).

= 2 : distance measure as in =1, but particles are never reassigned to new jets.
= 3 : JADE distance measyre yij, but with dimensions to correspond approx-

imately to total invariant mass. Particles may never be reassigned be-
tween clusters. The distance cut-off mmin is stored in PARU(44).

= 4 : as =3, but a scaled JADE distance yij is used instead of mij. The distance
cut-off ymin is stored in PARU(45).

MSTU(47) : (D=1) the minimum number of clusters to be reconstructed by LUCLUS.
MSTU(48) : (D=0) mode of operation of the LUCLUS routine.

= 0 : the cluster search is started from scratch.
= 1 : the clusters obtained in a previous cluster search on the same event (with

MSTU(48)=0) are to be taken as the starting point for subsequent cluster
joining. For this call to have any effect, the joining scale in PARU(44) or
PARU(45) must have been changed. If the event record has been modified
after the last LUCLUS call, or if any other cluster search parameter setting
has been changed, the subsequent result is unpredictable.

MSTU(51) : (D=25) number of pseudorapidity bins that the range between -PARU(51)
and +PARU(51) is divided into to define cell size for LUCELL.

MSTU(52) : (D=24) number of azimuthal bins, used to define the cell size for LUCELL.
MSTU(53) : (D=0) smearing of correct energy, imposed cell-by-cell in LUCELL, to simulate

calorimeter resolution effects.
= 0 : no smearing.
= 1 : the transverse energy in a cell, E⊥, is smeared according to a Gaussian

distribution with standard deviation PARU(55)×√
E⊥, where E⊥ is given

in GeV. The Gaussian is cut off so that 0 < E⊥smeared <PARU(56)×E⊥true.
= 2 : as =1, but it is the energy E rather than the transverse energy E⊥ that

is smeared.
MSTU(54) : (D=1) form for presentation of information about reconstructed clusters in

LUCELL, as stored in LUJETS according to the MSTU(43) value.
= 1 : the P vector in each line contains η and ϕ for the geometric origin of the

jet, η and ϕ for the weighted center of the jet, and jet E⊥, respectively.
= 2 : the P vector in each line contains a massless four-vector giving the direc-

tion of the jet, obtained as
(px, py, pz, E,m) = E⊥(cosϕ, sinϕ, sinh η, cosh η, 0),

306



where η and ϕ give the weighted center of a jet and E⊥ its transverse
energy.

= 3 : the P vector in each line contains a massive four-vector, obtained by
adding the massless four-vectors of all cells that form part of the jet, and
calculating the jet mass from m2 = E2 − p2x − p2y − p2z. For each cell, the
total E⊥ is summed up, and then translated into a massless four-vector
assuming that all the E⊥ was deposited in the center of the cell.

MSTU(61) : (I) first entry for storage of event-analysis information in last event analyzed
with LUSPHE, LUTHRU, LUCLUS or LUCELL.

MSTU(62) : (R) number of particles/partons used in the last event analysis with LUSPHE,
LUTHRU, LUCLUS, LUCELL, LUJMAS, LUFOWO or LUTABU.

MSTU(63) : (R) in a LUCLUS call, the number of preclusters constructed in order to speed
up analysis (should be equal to MSTU(62) if PARU(43)=0.). In a LUCELL call,
the number of cells hit.

MSTU(161), MSTU(162) : hard flavours involved in current event, as used in an analysis
with LUTABU(11). Either or both may be set 0, to indicate the presence of
one or none hard flavours in event. Is normally set by high-level routines, like
LUEEVT or PYEVNT, but can also be set by you.

PARU(41) : (D=2.) power of momentum-dependence in LUSPHE, default corresponds to
sphericity, =1. to linear event measures.

PARU(42) : (D=1.) power of momentum-dependence in LUTHRU, default corresponds to
thrust.

PARU(43) : (D=0.25 GeV) maximum distance dinit allowed in LUCLUS when forming
starting clusters used to speed up reconstruction. The meaning of the pa-
rameter is in p⊥ for MSTU(46)≤ 2 and in m for MSTU(46)≥ 3. If =0., no
preclustering is obtained. If chosen too large, more joining may be generated
at this stage than is desirable. The main application is at high energies, where
some speedup is imperative, and the small details are not so important anyway.

PARU(44) : (D=2.5 GeV) maximum distance djoin, below which it is allowed to join two
clusters into one in LUCLUS. Is used for MSTU(46)≤ 3, i.e. both for p⊥ and
mass distance measure.

PARU(45) : (D=0.05) maximum distance yjoin = m2/E2
vis, below which it is allowed to

join two clusters into one in LUCLUS for MSTU(46)=4.
PARU(48) : (D=0.0001) convergence criterion for thrust (in LUTHRU) or generalized thrust

(in LUCLUS), or relative change of m2
H + m2

L (in LUJMAS), i.e. when the value
changes by less than this amount between two iterations the process is stopped.

PARU(51) : (D=2.5) defines maximum absolute pseudorapidity used for detector as-
sumed in LUCELL.

PARU(52) : (D=1.5 GeV) gives minimum E⊥ for a cell to be considered as a potential
jet initiator by LUCELL.

PARU(53) : (D=7.0 GeV) gives minimum summed E⊥ for a collection of cells to be
accepted as a jet.

PARU(54) : (D=1.) gives the maximum distance in R =
√

(∆η)2 + (∆ϕ)2 from cell
initiator when grouping cells to check whether they qualify as a jet.

PARU(55) : (D=0.5) when smearing the transverse energy (or energy, see MSTU(53))
in LUCELL, the calorimeter cell resolution is taken to be PARU(55)×√

E⊥ (or

PARU(55)×
√
E) for E⊥ (or E) in GeV.

PARU(56) : (D=2.) maximum factor of upward fluctuation in transverse energy or en-
ergy in a given cell when calorimeter resolution is included in LUCELL (see
MSTU(53)).

PARU(57) : (D=3.2) maximum rapidity (or pseudorapidity or pion rapidity, depending
on MSTU(42)) used in the factorial moments analysis in LUTABU.

307



PARU(58) : (D=0. GeV) in a LUCELL call, cells with a transverse energy E⊥ below
PARP(58) are removed from further consideration. This may be used to rep-
resent a threshold in an actual calorimeter, or may be chosen just to speed up
the algorithm in a high-multiplicity environment..

PARU(61) : (I) invariant mass W of a system analyzed with LUCLUS or LUJMAS, with
energies calculated according to the MSTU(42) value.

PARU(62) : (R) the generalized thrust obtained after a successful LUCLUS call, i.e. ratio
of summed cluster momenta and summed particle momenta.

PARU(63) : (R) the minimum distance d between two clusters in the final cluster config-
uration after a successful LUCLUS call; is 0 if only one cluster left.

308



16 Summary and Outlook

A complete description of the Pythia/Jetset programs would have to cover four aspects:
1. the basic philosophy and principles underlying the programs;
2. the detailed physics scenarios implemented, with all the necessary compromises and

approximations;
3. the structure of the implementation, including program flow, internal variable names

and programming tricks; and
4. the manual, which describes how to use the programs.

Of these aspects, the first has been dealt with in reasonable detail. The second is unevenly
covered: in depth for aspects which are not discussed anywhere else, more summarily for
areas where separate up-to-date papers already exist. The third is not included at all, but
‘left as an exercise’ for the reader, to figure out from the code itself. The fourth, finally,
should be largely covered, although many further comments could have been made, in
particular about the interplay between different parts of the programs. Still, in the end,
no manual, however complete, can substitute for ‘hands on’ experience.

The Pythia/Jetset programs are continuously being developed. We are aware of
many shortcomings, which hopefully will be addressed in the future, such as:

• polarization effects should be included in more places, in particular for τ production
and decay;

• the photoproduction and γγ-physics scenarios should be expanded;
• many processes of interest are missing; and
• mass relations and couplings need to be included beyond the Born level in the MSSM

two Higgs doublet scenario.
This list could have been made much longer (I almost certainly missed your top priority).
One other aspect would be to provide more and longer examples of working main programs
for a number of standard applications.

Apart from these physics aspects, one may also worry about the programming ones.
For instance, for historical reasons, single precision real is used almost everywhere. With
the push to higher energies, this is becoming more and more of a problem, so it would be
logical to move to double precision throughout.

One should also note that the Jetset and Pythia programs these days are becoming
so intertwined, that it would make sense to join them into one single program. This
would e.g. mean that the current e+e− generation routines of Jetset are made part of
the generic Pythia process generation machinery — this is particular affects the matrix-
element options, since e+e− events with parton showers already are available in Pythia.
A joint product would likely adopt the name Pythia: although Jetset is the older of
the two programs, it has a less well developed identity of its own. (It is also often referred
to as ‘Lund’, which today is more confusing than it was in the early days.) In the process
of joining the programs, one would probably also remove a number of options that are no
longer used.

Another possible change on longer time scales would be an introduction of Fortran
90 programming elements. In particular, derived data types could be used to define the
event record as a one-dimensional array, where each element represents a particle, with
integer and real components to give flavour, history, momentum and production vertex.

No timetable is set up for future changes. After all, this is not a professionally main-
tained software product, but part of a one-man physics research project. Very often,
developments of the programs have come about as a direct response to the evolution of
the physics stage, i.e. experimental results and studies for future accelerators. Hopefully,
the program will keep on evolving in step with the new challenges opening up.

309



References

[Abb87] A. Abbasabadi and W. Repko, Phys. Lett. B199 (1987) 286; Phys. Rev. D37
(1988) 2668;
W. Repko and G.L. Kane, private communication

[AFS87] AFS Collaboration, T. Åkesson et al., Z. Phys. C34 (1987) 163;
UA2 Collaboration, J. Alitti et al., Phys. Lett. B268 (1991) 145;
L. Keeble (CDF Collaboration), FERMILAB-CONF-92-161-E (1992)

[ALE92] ALEPH Collaboration, D. Buskulic et al., Phys. Lett. B292 (1992) 210

[Ali80] A. Ali, J.G. Körner, G. Kramer and J. Willrodt, Nucl. Phys. B168 (1980)
409;
A. Ali, E. Pietarinen, G. Kramer and J. Willrodt, Phys. Lett. B93 (1980)
155

[Ali80a] A. Ali, J.G. Körner, Z. Kunszt, E. Pietarinen, G. Kramer, G. Schierholz and
J. Willrodt, Nucl. Phys. B167 (1980) 454

[Ali82] A. Ali, Phys. Lett. B110 (1982) 67;
A. Ali and F. Barreiro, Phys. Lett. B118 (1982) 155; Nucl. Phys. B236
(1984) 269

[Ali88] A. Ali et al., in ‘Proceedings of the HERA Workshop’, ed. R.D. Peccei (DESY,
Hamburg, 1988), Vol. 1, p. 395;
M. Bilenky and G. d’Agostini, private communication (1991)

[Alt77] G. Altarelli and G. Parisi, Nucl. Phys. B126 (1977) 298

[Alt78] G. Altarelli and G. Martinelli, Phys. Lett. 76B (1978) 89

[Alt89] G. Altarelli, B. Mele and M. Ruiz-Altaba, Z. Phys. C45 (1989) 109

[Ama80] D. Amati, A. Bassetto, M. Ciafaloni, G. Marchesini and G. Veneziano, Nucl.
Phys. B173 (1980) 429;
G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B175 (1980) 27

[And79] B. Andersson, G. Gustafson and C. Peterson, Z. Phys. C1 (1979) 105;
B. Andersson and G. Gustafson, Z. Phys. C3 (1980) 22;
B. Andersson, G. Gustafson and T. Sjöstrand, Z. Phys. C6 (1980) 235; Z.
Phys. C12 (1982) 49

[And80] B. Andersson, G. Gustafson and T. Sjöstrand, Phys. Lett. B94 (1980) 211

[And81] B. Andersson, G. Gustafson, I. Holgersson and O. Månsson, Nucl. Phys.
B178 (1981) 242

[And81a] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Z. Phys. C9
(1981) 233

[And82] B. Andersson, G. Gustafson and T. Sjöstrand, Nucl. Phys. B197 (1982) 45

[And82a] B. Andersson and G. Gustafson, LU TP 82-5 (1982)

[And83] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Phys. Rep. 97
(1983) 31

310



[And83a] B. Andersson, G. Gustafson and B. Söderberg, Z. Phys. C20 (1983) 317

[And85] B. Andersson, G. Gustafson and T. Sjöstrand, Physica Scripta 32 (1985) 574

[Ans90] F. Anselmo et al., in ‘Large Hadron Collider Workshop’, eds. G. Jarlskog and
D. Rein, CERN 90-10 (Geneva,1990), Vol. II, p. 130

[App92] T. Appelquist and G. Triantaphyllou, Phys. Pev. Lett. 69 (1992) 2750

[Art74] X. Artru and G. Mennessier, Nucl. Phys. B70 (1974) 93

[Art83] X. Artru, Phys. Rep. 97 (1983) 147

[Bag82] J.A. Bagger and J.F. Gunion, Phys. Rev. D25 (1982) 2287

[Bai83] R. Baier and R. Rückl, Z. Phys. C19 (1983) 251

[Bar88] R.M. Barnett, H.E. Haber and D.E. Soper, Nucl. Phys. B306 (1988) 697

[Bar90] T.L. Barklow, SLAC-PUB-5364 (1990)

[Bar90a] V.Barger, K. Cheung, T. Han and R.J.N. Phillips, Phys. Rev. D42 (1990)
3052

[Bar94] D. Bardin, M. Bilenky, D. Lehner, A. Olchevski and T. Riemann, Nucl. Phys
B, Proc. Suppl. 37B (1994) 148;
D. Bardin, private communication

[Bas78] C. Basham, L. Brown, S. Ellis and S. Love, Phys. Rev. Lett. 41 (1978) 1585

[Bas83] A. Bassetto, M. Ciafaloni and G, Marchesini, Phys. Rep. 100 (1983) 202

[Bau90] U. Baur, M. Spira and P. M. Zerwas, Phys. Rev. D42 (1990) 815

[Ben84] H.-U. Bengtsson, Computer Physics Commun. 31 (1984) 323

[Ben84a] H.-U. Bengtsson and G. Ingelman, LU TP 84-3, Ref.TH.3820-CERN (1984)

[Ben85] H.-U. Bengtsson and G. Ingelman, Computer Physics Commun. 34 (1985)
251

[Ben85a] H.-U. Bengtsson, W.-S. Hou, A. Soni and D.H. Stork, Phys. Rev. Lett. 55
(1985) 2762

[Ben87] H.-U. Bengtsson and T. Sjöstrand, Computer Physics Commun. 46 (1987)
43

[Ben87a] M. Bengtsson and T. Sjöstrand, Phys. Lett. B185 (1987) 435; Nucl. Phys.
B289 (1987) 810

[Ben87b] M. C. Bento and C. H. Llewellyn Smith, Nucl. Phys. B289 (1987) 36

[Ben88] M. Bengtsson and T. Sjöstrand, Z. Phys. C37 (1988) 465

[Ber82] F.A. Berends, R. Kleiss and S. Jadach, Nucl. Phys. B202 (1982) 63; Com-
puter Physics Commun. 29 (1983) 185

[Ber84] E. L. Berger, E. Braaten and R. D. Field, Nucl. Phys. B239 (1984) 52

311



[Ber85] F.A. Berends and R. Kleiss, Nucl. Phys. B260 (1985) 32

[Ber85a] L. Bergström and G. Hulth, Nucl. Phys. B259 (1985) 137

[Ber89] F.A. Berends et al., in ‘Z Physics at LEP 1’, eds. G. Altarelli, R. Kleiss and
C. Verzegnassi, CERN 89-08 (Geneva, 1989), Vol. 1, p. 89

[Bet89] S. Bethke, Z. Phys. C43 (1989) 331

[Bet92] S. Bethke, Z. Kunszt, D.E. Soper and W.J. Stirling, Nucl. Phys. B370 (1992)
310

[Bia86] A. Bia las and R. Peschanski, Nucl. Phys. B273 (1986) 703

[Bjo70] J.D. Bjorken and S.J. Brodsky, Phys. Rev. D1 (1970) 1416

[Bot93] J. Botts et al., Phys. Lett. B304 (1993) 159

[Bow81] M.G. Bowler, Z. Phys. C11 (1981) 169

[Bra64] S. Brandt, Ch. Peyrou, R. Sosnowski and A. Wroblewski, Phys. Lett. 12
(1964) 57;
E. Fahri, Phys. Rev. Lett. 39 (1977) 1587

[Bra79] S. Brandt and H.D. Dahmen, Z. Phys. C1 (1979) 61

[Bru89] R. Brun et al., GEANT 3, CERN report DD/EE/84-1 (1989)

[Bru93] P. Bruni and G. Ingelman, in preparation

[Cah84] R.N. Cahn and S. Dawson, Phys. Lett. 136B (1984) 196;
R.N. Cahn, Nucl. Phys. B255 (1985) 341;
G. Altarelli, B. Mele and F. Pitolli, Nucl. Phys. B287 (1987) 205

[Cat91] S. Catani, Yu. L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, Phys.
Lett. B269 (1991) 432

[Chi90] P. Chiappetta and M. Perrottet, in ‘Large Hadron Collider Workshop’, eds.
G. Jarlskog and D. Rein, CERN 90-10 (Geneva, 1990), Vol. II, p. 806

[Cha85] M. Chanowitz and M.K. Gaillard, Nucl. Phys. B261 (1985) 379

[Che75] M.-S. Chen and P. Zerwas, Phys. Rev. D12 (1975) 187;
P. Zerwas, private communication (1991)

[Chu55] A.E. Chudakov, Izv. Akad. Nauk SSSR, Ser. Fiz. 19 (1955) 650

[Cia87] M. Ciafaloni, Nucl. Phys. B296 (1987) 249;
S. Catani, F. Fiorani and G. Marchesini, Nucl. Phys. B336 (1990) 18;
G. Marchesini and B.R. Webber, Nucl. Phys. B349 (1991) 617

[Cla79] L. Clavelli, Phys. Lett. B85 (1979) 111;
A.V. Smilga, Nucl. Phys. B161 (1979) 449;
L. Clavelli and D. Wyler, Phys. Lett. 103B (1981) 383

[Coc91] D. Cocolicchio, F. Feruglio, G.L. Fogli and J. Terron, Phys. Lett. B255 (1991)
599;
F. Feruglio, private communication (1990)

312



[Com77] B.L. Combridge, J. Kripfganz and J. Ranft, Phys. Lett. 70B (1977) 234;
R. Cutler and D. Sivers, Phys. Rev. D17 (1978) 196

[Com79] B.L. Combridge, Nucl. Phys. B151 (1979) 429

[Con71] V. Constantini, B. de Tollis and G. Pistoni, Nuovo Cim. 2A (1971) 733

[Dan82] D. Danckaert, P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu,
Phys. Lett. B114 (1982) 203

[DeR75] A. De Rújula, H. Georgi and S.L Glashow, Phys. Rev. D12 (1975) 147

[Dic86] D.A. Dicus and S.S.D. Willenbrock, Phys. Rev. D34 (1986) 155

[Dic88] D.A. Dicus and S.S.D. Willenbrock, Phys. Rev. D37 (1988) 1801

[Din79] M. Dine and J. Sapirstein, Phys. Rev. Lett. 43 (1979) 668;
K.G. Chetyrkin et al., Phys. Lett. B85 (1979) 277;
W. Celmaster and R.J. Gonsalves, Phys. Rev. Lett. 44 (1980) 560

[Dob91] A. Dobado, M.J. Herrero and J. Terron, Z. Phys. C50 (1991) 205, ibid. 465

[Dok89] Yu.L. Dokshitzer, V.A. Khoze and S.I. Troyan, in ‘Perturbative QCD’, ed.
A.H. Mueller (World Scientific, Singapore, 1989), p. 241

[Dok92] Yu.L. Dokshitzer, V.A. Khoze and T. Sjöstrand, Phys. Lett. B274 (1992)
116

[Don92] A. Donnachie and P.V. Landshoff, Phys. Lett. B296 (1992) 227

[Dor81] J. Dorfan, Z. Phys. C7 (1981) 349;
H.J. Daum, H. Meyer and J. Bürger, Z. Phys. C8 (1981) 167;
K. Lanius, H.E. Roloff and H. Schiller, Z. Phys. C8 (1981) 251;
M.C. Goddard, Rutherford preprint RL-81-069 (1981);
A. Bäcker, Z. Phys. C12 (1982) 161

[Dre85] M. Drees and K. Grassie, Z. Phys. C28 (1985) 451

[Dre89] M. Drees, J. Ellis and D. Zeppenfeld, Phys. Lett. B223 (1989) 454

[Duk82] D.W. Duke and J.F. Owens, Phys. Rev. D26 (1982) 1600

[Dun86] M.J. Duncan, G.L. Kane and W.W. Repko, Nucl. Phys. B272 (1986) 517

[Eic84] E. Eichten, I. Hinchliffe, K. Lane and C. Quigg, Rev. Mod. Phys. 56 (1984)
579; Rev. Mod. Phys. 58 (1985) 1065

[Eij90] B. van Eijk and R. Kleiss, in ‘Large Hadron Collider Workshop’, eds. G.
Jarlskog and D. Rein, CERN 90-10 (Geneva, 1990), Vol. II, p. 183

[Ell76] J. Ellis, M.K. Gaillard and G.G. Ross, Nucl. Phys. B111 (1976) 253

[Ell79] J. Ellis and I. Karliner, Nucl. Phys. B148 (1979) 141

[Ell81] R.K. Ellis, D.A. Ross and A.E. Terrano, Nucl. Phys. B178 (1981) 421

[Ell86] R.K. Ellis and J.C. Sexton, Nucl. Phys. B269 (1986) 445

313



[Ell88] R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Nucl. Phys. B297
(1988) 221

[Fab82] K. Fabricius, G. Kramer, G. Schierholz and I. Schmitt, Z. Phys. C11 (1982)
315

[Fad90] V. Fadin, V. Khoze and T. Sjöstrand, Z. Phys. C48 (1990) 613

[Fie78] R.D. Field and R.P. Feynman, Nucl. Phys. B136 (1978) 1

[Fon81] M. Fontannaz, B. Pire and D. Schiff, Z. Phys. C11 (1981) 211

[Fox79] G.C. Fox and S. Wolfram, Nucl. Phys. B149 (1979) 413

[Gab86] E. Gabrielli, Mod. Phys. Lett. A1 (1986) 465

[Gae80] K.J.F. Gaemers and J.A.M. Vermaseren, Z. Phys. C7 (1980) 81

[Gas87] R. Gastmans, W. Troost and T.T. Wu, Phys. Lett. B184 (1987) 257

[Glo88] E.W.N. Glover, A.D. Martin and W.J. Stirling, Z. Phys. C38 (1988) 473

[Glu92] M. Glück, E. Reya and A. Vogt, Z. Phys. C53 (1992) 127

[Glu92a] M. Glück, E. Reya and A. Vogt, Z. Phys. C53 (1992) 651

[Got82] T.D. Gottschalk, Phys. Lett. B109 (1982) 331;
T.D. Gottschalk and M.P. Shatz, Phys. Lett. B150 (1985) 451, CALT-68-
1172 (1984)

[Got86] T.D. Gottschalk, Nucl. Phys. B277 (1986) 700

[Gri72] V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438, ibid. 75;
Yu. L. Dokshitzer, Sov. J. Phys. JETP 46 (1977) 641

[Gri83] L.V. Gribov, E.M. Levin and M.G. Ryskin, Phys. Rep. 100 (1983) 1

[Gro81] T.R. Grose and K.O. Mikaelian, Phys. Rev. D23 (1981) 123

[Gül93] St. Güllenstern, P. Górnicki, L. Mankiewicz and A. Schäfer, Nucl. Phys. A560
(1993) 494

[Gun86] J.F. Gunion and Z. Kunszt, Phys. Rev. D33 (1986) 665;
errata as private communication from the authors

[Gun87] J.F. Gunion, H.E. Haber, F.E. Paige, W.-K. Tung and S.S.D. Willenbrock,
Nucl. Phys. B294 (1987) 621

[Gun90] J.F. Gunion, H.E. Haber, G. Kane and S. Dawson, The Higgs Hunter’s Guide
(Addison-Wesley, 1990);
A. Djouadi, private communication (1991)

[Gus82] G. Gustafson, Z. Phys. C15 (1982) 155

[Gut84] F. Gutbrod, G. Kramer and G. Schierholz, Z. Phys. C21 (1984) 235

[Gut87] F. Gutbrod, G. Kramer, G. Rudolph and G. Schierholz, Z. Phys. C35 (1987)
543

314



[Hag91] K. Hagiwara, H. Iwasaki, A. Miyamoto, H. Murayama and D. Zeppenfeld,
Nucl. Phys. B365 (1991) 544

[Hal78] F. Halzen and D. M. Scott, Phys. Rev. D18 (1978) 3378

[Herbc] Herodotus of Halicarnassus, ‘The Histories’ (circa 430 bc),
translation to English e.g. by A. de Sélincourt (1954), available in Penguin
Classics

[HER92] ‘Physics at HERA’, eds. W Buchmüller and G. Ingelman (DESY, Hamburg,
1992), Vol. 3

[Hew88] J.L. Hewett and S. Pakvasa, Phys. Rev. D37 (1988) 3165, and private com-
munication from the authors

[Hoy79] P. Hoyer, P. Osland, H.G. Sander, T.F. Walsh and P.M. Zerwas, Nucl. Phys.
B161 (1979) 349

[Ing80] G. Ingelman and T. Sjöstrand, LUTP 80-12 (1980);
G. Ingelman, in ‘Physics at HERA’, eds. W. Buchmüller and G. Ingelman
(DESY, Hamburg, 1992), Vol. 3, p. 1366

[Ing85] G. Ingelman and P.E. Schlein, Phys. Lett. 152B (1985) 256

[Ing87] G. Ingelman, Computer Physics Commun. 46 (1987) 217

[Ing87a] G. Ingelman and A. Weigend, Computer Physics Commun. 46 (1987) 241

[Ing87b] G. Ingelman et al., in ‘Proceedings of the HERA Workshop’, ed. R.D. Peccei
(DESY, Hamburg, 1988), Vol. 1, p. 3

[Ing88] G. Ingelman and G.A. Schuler, Z. Phys. C40 (1988) 299;
G. Ingelman and G.A. Schuler, in ‘Physics at HERA’, eds. W. Buchmüller
and G. Ingelman (DESY, Hamburg, 1992), Vol. 3, p. 1346

[Iof78] B.L. Ioffe, Phys. Lett. 78B (1978) 277

[JAD86] JADE Collaboration, W. Bartel et al., Z. Phys. C33 (1986) 23;
S. Bethke, Habilitation thesis, LBL 50-208 (1987)

[JAD88] JADE Collaboration, S. Bethke et al., Phys. Lett. B213 (1988) 235;
TASSO Collaboration, W. Braunschweig et al., Phys. Lett. 214B (1988) 286

[Jam80] F. James, Rep. Prog. Phys. 43 (1980) 1145

[Jam90] F. James, Computer Physics Commun. 60 (1990) 329

[Jer81] J. Jersák, E. Laermann and P.M. Zerwas, Phys. Rev. D25 (1982) 1218

[Kat83] M. Katuya, Phys. Lett. 124B (1983) 421

[Kle89] R. Kleiss et al., in ‘Z physics at LEP 1’, eds. G. Altarelli, R. Kleiss and
C. Verzegnassi, CERN 89-08 (Geneva, 1989), Vol. 3, p. 143

[Kni89] B.A. Kniehl and J.H. Kühn, Phys. Lett. B224 (1989) 229

[Kno93] I.G. Knowles and S.D. Protopopescu, in ‘Workshop on Physics at Current
Accelerators and Supercolliders’, eds. J.L. Hewett, A.R. White and D. Zep-
penfeld, ANL-HEP-CP-93-92 (Argonne, 1993), p. 651

315



[Kol78] K. Koller and T.F. Walsh, Nucl. Phys. B140 (1978) 449

[Kör85] J.G. Körner and G. Schuler, Z. Phys. C26 (1985) 559

[Kra88] G. Kramer and B. Lampe, Z. Phys. C39 (1988) 101; Fortschr. Phys. 37 (1989)
161

[Krz72] A. Krzywicki and B. Petersson, Phys. Rev. D6 (1972) 924;
J. Finkelstein and R.D. Peccei, Phys. Rev. D6 (1972) 2606;
F. Niedermayer, Nucl. Phys. B79 (1974) 355;
A. Casher, J. Kogut and L. Susskind, Phys. Rev. D10 (1974) 732

[Küh89] J.H. Kühn et al., in ‘Z Physics at LEP 1’, eds. G. Altarelli, R. Kleiss and C.
Verzegnassi, CERN 89-08 (Geneva, 1989), Vol. 1, p. 267

[Kun81] Z. Kunszt, Phys. Lett. B99 (1981) 429; Phys. Lett. B107 (1981) 123

[Kun84] Z. Kunszt, Nucl. Phys. B247 (1984) 339

[Kun87] Z. Kunszt et al., in ‘Proceedings of the Workshop on Physics at Future Ac-
celerators’, ed. J.H. Mulvey, CERN 87-08 (1987), Vol. I, p. 123, and private
communication

[Lae80] E. Laermann, K.H. Streng and P.M. Zerwas, Z. Phys. C3 (1980) 289; Erratum
Z. Phys. C52 (1991) 352

[Lan91] K. Lane, private communication (1991)

[LEP90] OPAL Collaboration, M.Z. Akrawy et al., Z. Phys C47 (1990) 505;
L3 Collaboration, B. Adeva et al., Z. Phys. C55 (1992) 39;
ALEPH Collaboration, D. Buskulic et al., Z. Phys. C55 (1992) 209

[Lev90] E.M. Levin and M.G. Ryskin, Phys. Rep. 189 (1990) 267

[Lör89] B. Lörstad, Int. J. of Mod. Phys. A4 (1989) 2861

[Lus91] M. Lusignoli and M. Masetti, Z. Physik C51 (1991) 549

[Mag89] N. Magnussen, Ph.D. Thesis, University of Wuppertal WUB-DI 88-4 and
DESY F22-89-01 (1989);
G. Kramer and N. Magnussen, Z. Phys. C49 (1991) 301

[MAR79] MARK J Collaboration, D.P. Barber et al., Phys. Rev. Lett. 43 (1979) 830

[Mar88] G. Marchesini and B.R. Webber, Nucl. Phys. B310 (1988) 571;
G. Marchesini, B.R. Webber, M.H. Seymour, G. Abbiendi, L. Stanco and I.G.
Knowles, Computer Physics Commun. 67 (1992) 465

[Mar90] G. Marsaglia, A. Zaman and W.-W. Tsang, Stat. Prob. Lett. 9 (1990) 35

[Mon79] I. Montvay, Phys. Lett. B84 (1979) 331

[Mor89] D.A. Morris, Nucl. Phys. B313 (1989) 634

[Mue81] A.H. Mueller, Phys. Lett. 104B (1981) 161;
B.I. Ermolaev, V.S. Fadin, JETP Lett. 33 (1981) 269

316



[Nil87] B. Nilsson-Almqvist and E. Stenlund, Computer Physics Commun. 43 (1987)
387;
H. Pi, Computer Physics Commun. 71 (1992) 173

[Ols80] H.A. Olsen, P. Osland and I. Øverbø, Nucl. Phys. B171 (1980) 209

[OPA91] OPAL Collaboration, M.Z. Akrawy et al., Z. Phys. C49 (1991) 375

[OPA92] OPAL Collaboration, P.D. Acton et al., Phys. Lett. B276 (1992) 547

[Owe84] J.F. Owens, Phys. Rev. D30 (1984) 943

[Par78] G. Parisi, Phys. Lett. 74B (1978) 65;
J.F. Donoghue, F.E. Low and S.Y. Pi, Phys. Rev. D20 (1979) 2759

[PDG86] Particle Data Group, M. Aguilar-Benitez et al., Phys. Lett. B170 (1986) 1

[PDG88] Particle Data Group, G. P. Yost et al., Phys. Lett. B204 (1988) 1

[PDG92] Particle Data Group, K. Hikasa et al., Phys. Rev. D45 (1992) S1

[Pet83] C. Peterson, D. Schlatter, I. Schmitt and P. Zerwas, Phys. Rev. D27 (1983)
105

[Pet88] U. Pettersson, LU TP 88-5 (1988);
L. Lönnblad and U. Pettersson, LU TP 88-15 (1988);
L. Lönnblad, Computer Physics Commun. 71 (1992) 15

[Plo93] H. Plothow-Besch, Computer Physics Commun. 75 (1993) 396

[Sam91] M.A. Samuel, G. Li, N. Sinha, R. Sinha and M.K. Sundaresan, Phys. Rev.
Lett. 67 (1991) 9; ERRATUM ibid. 2920

[Sch80] G. Schierholz and D.H. Schiller, DESY 80/88 (1980);
J.G. Körner and D.H. Schiller, DESY 81-043 (1981);
K. Koller, D.H. Schiller and D. Wähner, Z. Phys. C12 (1982) 273

[Sch92] G.A. Schuler and J. Terron, in ‘Physics at HERA’, eds. W. Buchmüller and
G. Ingelman (DESY, Hamburg, 1992), Vol. 1, p. 599

[Sch93] G.A. Schuler and T. Sjöstrand, Phys. Lett. B300 (1993) 169

[Sch93a] G.A. Schuler and T. Sjöstrand, Nucl. Phys. B407 (1993) 539

[Sch94] G.A. Schuler and T. Sjöstrand, Phys. Rev. D49 (1994) 2257

[Sch94a] G.A. Schuler and T. Sjöstrand, in ‘Workshop on Two-Photon Physics from
DAPHNE to LEP200 and Beyond’, eds. F. Kapusta and J. Parisi (World
Scientific, Singapore, 1994), p. 163

[Sch95] G.A. Schuler and T. Sjöstrand, CERN–TH/95–62 and LU TP 95–6, to appear
in Z. Phys. C

[Sjö78] T. Sjöstrand, B. Söderberg, LU TP 78-18 (1978)

[Sjö79] T. Sjöstrand, LU TP 79-8 (1979)

[Sjö80] T. Sjöstrand, LU TP 80-3 (1980)

317



[Sjö82] T. Sjöstrand, Computer Physics Commun. 27 (1982) 243

[Sjö83] T. Sjöstrand, Computer Physics Commun. 28 (1983) 227

[Sjö84] T. Sjöstrand, Nucl. Phys. B248 (1984) 469

[Sjö84a] T. Sjöstrand, Z. Phys. C26 (1984) 93;
M. Bengtsson, T. Sjöstrand and M. van Zijl, Phys. Lett. B179 (1986) 164

[Sjö85] T. Sjöstrand, Phys. Lett. 157B (1985) 321;
M. Bengtsson, T. Sjöstrand and M. van Zijl, Z. Phys. C32 (1986) 67

[Sjö86] T. Sjöstrand, Computer Physics Commun. 39 (1986) 347

[Sjö87] T. Sjöstrand and M. Bengtsson, Computer Physics Commun. 43 (1987) 367

[Sjö87a] T. Sjöstrand and M. van Zijl, Phys. Rev. D36 (1987) 2019

[Sjö88] T. Sjöstrand, Int. J. Mod. Phys. A3 (1988) 751

[Sjö89] T. Sjöstrand et al., in ‘Z physics at LEP 1’, eds. G. Altarelli, R. Kleiss and
C. Verzegnassi, CERN 89-08 (Geneva, 1989), Vol. 3, p. 143

[Sjö92] T. Sjöstrand, in ‘1991 CERN School of Computing’, ed. C. Verkerk, CERN
92-02 (Geneva, 1992), p. 227

[Sjö92a] T. Sjöstrand and P.M. Zerwas, in ‘e+e− Collisions at 500 GeV: The Physics
Potential’, ed P.M. Zerwas, DESY 92-123 (Hamburg, 1992), Part A, p. 463;
T. Sjöstrand, in ‘Proceedings of the 1992 Workshops on High-Energy Physics
with Colliding Beams’, ed. J. Rogers, SLAC Report-428 (Stanford, 1993),
Vol. 2, p. 445;
V.A. Khoze and T. Sjöstrand, Phys. Lett. B328 (1994) 466

[Sjö92b] T. Sjöstrand, in ‘Physics at HERA’, eds. W Buchmüller and G. Ingelman
(DESY, Hamburg, 1992), Vol. 3, p. 1405

[Sjö92c] T. Sjöstrand, in ‘Workshop on Photon Radiation from Quarks’, ed. S.
Cartwright, CERN 92-04 (Geneva, 1992), p. 89 and p. 103

[Sjö92d] T. Sjöstrand, CERN-TH.6488/92 (1992)

[Sjö94] T. Sjöstrand, Computer Physics Commun. 82 (1994) 74

[Ste81] P.M. Stevenson, Phys. Rev. D23 (1981) 2916

[Sud56] V.V. Sudakov, Zh.E.T.F. 30 (1956) 87 (Sov. Phys. J.E.T.P. 30 (1956) 65)

[UA183] UA1 Collaboration, G. Arnison et al., Phys. Lett. 123B (1983) 115;
UA1 Collaboration, C. Albajar et al., Nucl. Phys. B309 (1988) 405

[Ver81] J.A.M. Vermaseren, K.J.F. Gaemers and S.J. Oldham, Nucl. Phys. B187
(1981) 301

[Web86] B.R. Webber, Ann. Rev. Nucl. Part. Sci. 36 (1986) 253

[Wu79] S.L. Wu and G. Zobernig, Z. Phys.. C2 (1979) 107

[Wud86] J. Wudka, Phys. Lett. 167B (1986) 337

318



[Zaj87] W.A. Zajc, Phys. Rev. D35 (1987) 3396

[Zhu83] R.-y. Zhu, Ph. D. Thesis (M.I.T.), MIT-LNS Report RX-1033 (1983); Caltech
Report CALT-68-1306; in Proceedings of the 1984 DPF conference, Santa Fe,
p. 229; in Proceedings of 1985 DPF conference, Oregon, p. 552

319



Index of Subprograms and Common Block Variables

This index is not intended to be complete, but gives the page where the main description
begins of a subroutine, function, block data, common block, variable or array. For common
block variables also the name of the common block is given. When some components of
an array are described in a separate place, a special reference (indented with respect to
the main one) is given for these components.

BRAT in LUDAT3 280
CHAF in LUDAT4 281
CKIN in PYSUBS 144
COEF in PYINT2 183
HEPEVT common block 63
ICOL in PYINT2 184
IFUP in PYUPPR 170
ISET in PYINT2 183
ISIG in PYINT3 184
K in LUJETS 58
KCHG in LUDAT2 275
KFDP in LUDAT3 281
KFIN in PYSUBS 144
KFPR in PYINT2 183
KLU function 260
KUP in PYUPPR 169
LU1ENT subroutine 251
LU2ENT subroutine 251
LU3ENT subroutine 252
LU4ENT subroutine 252
LUBOEI subroutine 254
LUCELL subroutine 300
LUCHGE function 254
LUCLUS subroutine 299
LUCOMP function 254
LUDAT1 common block 261
LUDAT2 common block 275
LUDAT3 common block 277
LUDAT4 common block 281
LUDATA block data 255
LUDATR common block 49
LUDBRB subroutine 256
LUDECY subroutine 254
LUEDIT subroutine 256
LUEEVT subroutine 78
LUERRM subroutine 255
LUEXEC subroutine 254
LUFOWO subroutine 301
LUGIVE subroutine 253
LUHEPC subroutine 65
LUINDF subroutine 254
LUJETS common block 58
LUJMAS subroutine 301
LUJOIN subroutine 252

LUKFDI subroutine 254
LULIST subroutine 258
LULOGO subroutine 255
LUNAME subroutine 254
LUONIA subroutine 79
LUPREP subroutine 254
LUPTDI subroutine 254
LURADK subroutine 78
LUROBO subroutine 256
LUSHOW subroutine 204
LUSPHE subroutine 298
LUSTRF subroutine 254
LUTABU subroutine 302
LUTAUD subroutine 255
LUTEST subroutine 32
LUTHRU subroutine 299
LUUPDA subroutine 259
LUX3JT subroutine 79
LUX4JT subroutine 79
LUXDIF subroutine 79
LUXJET subroutine 79
LUXKFL subroutine 78
LUXTOT subroutine 78
LUZDIS subroutine 254
MDCY in LUDAT3 277
MDME in LUDAT3 278
MINT in PYINT1 176
MRLU in LUDATR 49
MSEL in PYSUBS 143
MSTI in PYPARS 163
MSTJ in LUDAT1, main 265
MSTJ(40) - MSTJ(50) 205
MSTJ(101) - MSTJ(121) 79

MSTP in PYPARS, main 148
MSTP(22) 208
MSTP(61) - MSTP(71) 208
MSTP(81) - MSTP(94) 221
MSTP(131) - MSTP(134) 223

MSTU in LUDAT1, main 262
MSTU(41) - MSTU(63) 305
MSTU(101) - MSTU(118) 272
MSTU(161) - MSTU(162) 307

MSUB in PYSUBS 144
N in LUJETS 58

320



NFUP in PYUPPR 170
NGEN in PYINT5 185
NUP in PYUPPR 169
P in LUJETS 59
PARF in LUDAT2 276
PARI in PYPARS 164
PARJ in LUDAT1, main 268
PARJ(81) - PARJ(89) 207
PARJ(121) - PARJ(171) 82

PARP in PYPARS, main 160
PARP(61) - PARP(72) 209
PARP(81) - PARP(100) 224
PARP(131) 225

PARU in LUDAT1, main 264
PARU(41) - PARU(63) 307
PARU(101) - PARU(195) 272

PLU function 261
PMAS in LUDAT2 275
PROC in PYINT6 186
PUP in PYUPPR 169
PYCTQ2 function 176
PYDATA block data 176
PYDIFF subroutine 175
PYDOCU subroutine 175
PYEVNT subroutine 139
PYEVWT subroutine 141
PYFRAM subroutine 140
PYGANO function 176
PYGBEH function 176
PYGDIR function 176
PYGAMM function 176
PYGGAM function 176
PYGVMD function 176
PYHFTH function 176
PYI3AU subroutine 176
PYINBM subroutine 174
PYINIT subroutine 138
PYINKI subroutine 174
PYINPR subroutine 174
PYINRE subroutine 174
PYINT1 common block 176
PYINT2 common block 183
PYINT3 common block 184
PYINT4 common block 184
PYINT5 common block 185
PYINT6 common block 186
PYINT7 common block 186
PYINT8 common block 186
PYKCUT subroutine 140
PYKLIM subroutine 175
PYKMAP subroutine 175
PYMAXI subroutine 175
PYMULT subroutine 175

PYOFSH subroutine 175
PYPARS common block 147, 163
PYPILE subroutine 175
PYQQBH subroutine 176
PYRAND subroutine 175
PYREMN subroutine 175
PYRESD subroutine 175
PYSAVE subroutine 175
PYSCAT subroutine 175
PYSIGH subroutine 175
PYSPEN function 176
PYSPLI subroutine 176
PYSSPA subroutine 205
PYSTAT subroutine 140
PYSTEL subroutine 175
PYSTFL subroutine 175
PYSTFU subroutine 175
PYSTGA subroutine 175
PYSTPI subroutine 176
PYSTPR subroutine 176
PYSUBS common block 143
PYTEST subroutine 32
PYUPEV subroutine 168
PYUPIN subroutine 167
PYUPPR common block 169
PYWAUX subroutine 176
PYWIDT subroutine 175
PYXTOT subroutine 175
Q2UP in PYUPPR 170
RLU function 48
RLUGET subroutine 48
RLUSET subroutine 49
RRLU in LUDATR 50
SIGH in PYINT3 184
SIGT in PYINT7 186
ULALEM function 271
ULALPS function 272
ULANGL function 255
ULMASS function 254
V in LUJETS 59
VCKM in LUDAT2 277
VINT in PYINT1 179
WIDE in PYINT4 185
WIDP in PYINT4 184
WIDS in PYINT4 185
XPANH in PYINT8 186
XPANL in PYINT8 186
XPBEH in PYINT8 186
XPDIR in PYINT8 186
XPVMD in PYINT8 186
XSEC in PYINT5 185
XSFX in PYINT3 184

321


