
Pythia: Compositional meaning construction
for ontology-based question answering

on the Semantic Web

Christina Unger and Philipp Cimiano

CITEC, Bielefeld University, Germany

Abstract. In this paper we present the ontology-based question an-
swering system Pythia. It compositionally constructs meaning represen-
tations using a vocabulary aligned to the vocabulary of a given ontology.
In doing so it relies on a deep linguistic analysis, which allows to con-
struct formal queries even for complex natural language questions (e.g.
involving quantification and superlatives).

Keywords: ontology-based question answering, compositionality

1 Introduction

The growing Semantic Web provides a large amount of ontology-based semantic
markup that question answering systems can exploit in order to interpret and
answer natural language questions. This means that user questions can be in-
terpreted with respect to a particular ontology which provides natural language
expressions with a well-defined meaning, thereby allowing to retrieve precise
answers.

In this paper we present the ontology-based question answering system Pythia.
It is based on the following two main ideas. First, it uses principled linguistic
representations in order to compositionally construct general meaning represen-
tations that can subsequently be translated into formal queries. Such a deep
linguistic analysis allows Pythia to construct formal queries even for complex
natural language questions, e.g. involving quantification and superlatives. And
second, it relies on a specification of the lexicon-ontology interface that explicates
possible linguistic realizations of ontology concepts. This allows to build mean-
ing representations that use a vocabulary aligned to the vocabulary of a given
ontology, thereby ensuring a precise and correct mapping of natural language
terms to corresponding ontology concepts.

In the following sections we present the system, its architecture, and report
on evaluation results with respect to a subset of DBPedia and compare our
system with related work.

2 Approach

The architecture of our question answering system Pythia can be depicted very
roughly as follows:



2 Christina Unger and Philipp Cimiano

natural language input

Pythia

formal query

ontology-based grammar

Natural language input is tranformed into a formal query by means of a linguistic
analysis that is driven by an ontology-based grammar. Before explicating this
transformation, we will briefly describe the grammar and its generation. A more
detailed account of grammar generation and of the motivation to use ontology-
specific grammars is given in [4].

In Pythia, natural language expressions are parsed and interpreted with re-
spect to a grammar which we assume to be composed of two parts: an ontology-
specific part and an ontology-independent part. The ontology-specific part con-
tains lexical entries that refer to individuals, concepts, and properties of the un-
derlying ontology. It is generated automatically from an ontology-lexicon model,
as will be described below. The ontology-independent part comprises functional
expressions like auxiliary verbs, determiners, wh-words and so on. The overall
picture can be sketched as follows:

natural language input

Pythia

ontology-independent grammar entries

ontology-specific grammar entriesLexInfo model

ontology
formal query

Both parts of the grammar use principled linguistic representations. More
specifically, we assume grammar entries to be pairs of a syntactic and a seman-
tic representation. As syntactic representation we take trees from Lexicalized
Tree Adjoining Grammar (LTAG [5]). LTAG is very well-suited for ontology-
based grammar generation because it allows for flexible basic units; we can,
for example, assume complex grammar entries for examples like population of
or has. . . inhabitants. As semantic representations we take DUDEs [2], a kind of
Underspecified Discourse Representation Structures (UDRS [6]) augmented with
information that allows for a flexible semantic composition.

The first step in generating a grammar from a given ontology is to enrich the
ontology with information about its verbalization. The framework we use for this
is LexInfo1 [3], which offers a general frame for creating a declarative specifica-
tion of the lexicon-ontology interface by connecting concepts of the ontology to
information about their linguistic realization, i.e. word forms, morphology, sub-
categoriziation frames and how syntactic and semantic arguments correspond to

1 http://lexinfo.net



Pythia: Ontology-based question answering on the Semantic Web 3

each other. The lexical entries specified by LexInfo are then input to a general
mechanism for generating grammar entries, i.e. pairs of syntactic and semantic
representations.

For example, the object property borders in the ontology is first specified to
be verbalized as the transitive verb to border together with the relevant linguis-
tic information (inflection, subcategorization, and so on). The resulting lexical
entry is then input to a grammar generation mechanism, which specifies general
templates for mapping LexInfo entries to grammar entries. Applied to the entry
for to border it gives rise to a family of elementary LTAG trees, two of them –
one for active and one for passive use – are given in 1a. They are both paired
with the UDRT-like semantic representation in 1b.

1. (a) S

DP1 ↓ VP

V
borders

DP2 ↓

S

DP2 ↓ VP

AUX
is

VP

V
bordered

PP

P
by

DP1 ↓

(b)
e l1

l1 :
e

e : geo#borders (x, y)

〈DP1, x, l1〉, 〈DP2, y, l1〉

The syntactic structure encoded in the elementary trees captures the lexical
material that is needed for verbalizing the property borders. The semantic repre-
sentation contains a DRS labelded l1, which provides the predicate geo#borders
corresponding to the intended concept in the ontology (the prefix geo# abbrevi-
ates the namespace of the ontology), as well as information about the semantic
arguments (x and y) and about which substitution node in the syntactic struc-
ture will provide them.

These linguistic representations are then used for parsing and interpreting
natural language questions. The process of mapping natural language input to
formal queries can be depicted as follows:

natural language input

parserontology-based grammar

LTAG derivation tree

syntactic construction

LTAG derived tree

semantic construction

scope resolution

DRS

formal query



4 Christina Unger and Philipp Cimiano

It involves three main steps. First, the input is handed to a parser, which works
along the lines of the Earley-type parser devised by Schabes & Joshi [7]. It
constructs an LTAG derivation tree, considering only the syntactic part of the
grammar entries involved. Next, syntactic and semantic composition rules ap-
ply in tandem in order to construct a derived tree together with an according
DUDE. The syntactic composition rules are LTAG’s standard substitution and
adjoin operations, and the semantic composition rules are parallel operations
on DUDEs: an argument saturating operation (much like function application)
that interprets substitution, and a union operation that interprets adjoin. Once
all argument slots are filled, the constructed DUDE corresponds to an equiv-
alent UDRS, which is then subject to scope resolution, resulting in a set of
disambiguated Discourse Representation Structures (DRS [8]). Those are sub-
sequently translated into a formal query. In the presented version of the system
we use queries formulated in FLogic [9], but any other query language, e.g.
SPARQL, could be used as well.

As an example, consider the input question Which states border Hawaii?. The
parser produces a derivation tree that yields the derived tree in 2a. Parallel to
this, a UDRT-like semantic representation is built which resolves to the DRS in
2b (the question mark serves to point out those variables whose values should
be provided as an answer).

2. (a) S

DP

DET
which

NP
states

VP

V
border

DP
Hawaii

(b)
?x y
geo#state(x)
y = geo#hawaii

geo#borders(x, y)

Subsequently, the DRS is translated into the following FLogic query:

FORALL X,Y <- X:geo#state AND equal(Y,geo#hawaii) AND

X[geo#border -> Y]. orderedby X

It reads similarly to a first-order formula: for all bindings of X and Y such that
X is a state and Y equals Hawaii and X borders Y, return all X. The query can
then be evaluated with respect to the ontology, e.g. by means of the OntoBroker
Engine [10]. Since there are no states bordering Hawaii, the returned result is
empty.

3 Evaluation

3.1 Dataset and grammar generation

There is no established evaluation standard for question answering systems, but
an often-used gold standard is Raymond Mooney’s ontology comprising geo-
graphical information about the U.S. together with a set of 880 annotated user



Pythia: Ontology-based question answering on the Semantic Web 5

questions2. In order to use these questions for evaluation, we extracted from
DBpedia a subset containing all U.S. states, cities, mountains, lakes, rivers and
roads. Furthermore, we annotated 865 of the 880 questions with corresponding
FLogic query results. (The remaining 15 questions are questions which are out
of scope of the ontology, such as Which rivers do not run through USA?).

In order to customize our question answering system to the domain of U.S.
geography, we first constructed a LexInfo model for the extracted subset of
DBpedia, which specifies how the concepts and relations of this ontology are
verbalized. The constructed LexInfo model contains 678 lexical entries, of which
600 correspond to common nouns representing individuals and could be con-
structed automatically. The remaining 78 entries were built manually, using
LexInfo’s API. The effort to do so amounted to less than two minutes per en-
try, leading to a total amount of approximately two and a half hours. Next,
those LexInfo entries were input to automatic grammar generation, yielding
2785 grammar entries (pairs of syntactic and semantic representations). Ad-
ditionally, we manually specified 149 grammar entries for domain-independent
elements such as determiners, wh-words, auxiliary words, and so on. The com-
plete set of grammar entries are then used by Pythia for processing user ques-
tions. All mentioned resources – the dataset, the questions annotated with
FLogic queries, the lexicon model, and the grammar files – are available at
http://www.sc.cit-ec.uni-bielefeld.de/pythia.

3.2 Evaluation results and discussion

Running Pythia on the above mentioned 865 user questions and comparing the
results of the constructed queries with the results given by the gold standard
queries, we reach a recall of 67 % and precision of 82 %, leading to an F-measure
of 73,7%.

Cases in which the system fails to construct an appropriate query can be
pinned down to reasons that can roughly be categorized as Pythia-internal and
Pythia-external failures. Pythia-external failures mean failures for which Pythia
is not to blame. On the one hand side, these comprise questions that are ill-
formed:

– syntactically ill-formed questions:
questions that are incomplete or ungrammatical and therefore are not parsed
(e.g. What is capital of Iowa?, What are the capital city in Texas?)

– semantically ill-formed questions:
questions that violate sortal restrictions (e.g. Which states border the Missouri
river?)

On the other hand side, they comprise questions that fail due to data incomplete-
ness. For example, the ontology concept highest point should be extensionally
equivalent to locations with maximal height, which however is not always the
case. Thus, if the gold standard uses the concept highest point, while Pythia

2 Available at ftp://ftp.cs.utexas.edu/pub/mooney/nl-ilp-data/geosystem/.



6 Christina Unger and Philipp Cimiano

constructs a query asking for the location with maximal height, the results of
both sometimes do not match, although the meaning of both queries are intu-
itively equivalent.

By Pythia-internal failures we mean questions that could in principle be
parsed and answered, but for one reason or the other the system fails to do so.
There are mainly two reasons for such failure. One reason is incomplete coverage,
i.e. there is lexical material (e.g. the verb washed by) or syntactic constructions
(e.g. topicalizations and NP disjunctions) missing in our grammar. Examples of
questions that cannot be parsed for these reasons are Of the states washed by the
Mississippi river, which has the lowest point? and How many states have cities or
towns named Springfield?. The other reason for failure is non-compositionality, i.e.
cases where the logical form of the whole question is not exactly the composition
of the meaning of the parts of the question. This involves components that do
not contribute anything to the overall meaning (e.g. american, in the US, give
me) and some specific cases of counting with respect to a restriction (e.g. in
Which river flows through the most states?, where the number of states has to be
counted for each river). However, we skip a deeper discussion of these cases.

The table in Fig. 1 gives an overview of the qualitative coverage of our ap-
proach. The categories are taken from Cimiano & Minock [16]). Full treatment
is expressed by +, missing treatment by −, (+) denotes partial or ad hoc cov-
erage, and (−) means something is not captured yet but could in principle be
incorporated.

Question types wh-questions +
how ADJ/many +
requests (+)
topicalized questions (−)
nominals +

Ambiguities lexical, syntactic, scope +

Other phenomena spatial propositions +
adjectival modifiers and superlatives +
aggregation and comparisions +
negation +
coordination (−)
non-compositionality (+)
variability (+)
handling out-of-scope questions −
temporal aspects −

Fig. 1. Covered question types and phenomena

Finally, let us briefly compare Pythia’s results (67% precision and 82% recall)
with other systems that were evaluated on the Geobase dataset. C-Phrase3 by

3 http://code.google.com/p/c-phrase/



Pythia: Ontology-based question answering on the Semantic Web 7

Minock [11] reaches 80-90% precision and recall after 120 minutes of authoring
(cf. [12]). Mooney’s learned semantic parsers (cf. Mooney [13]), on the other
hand, reach a precision between 70 and nearly 100%, and a recall between 60
and 80%. They require no manual effort but rely on a large enough training
corpus (queries annotated with semantic representations). PRECISE [14], on
the other hand, requires no customization as the needed lexicon is extracted
automatically from the input database. Only semantically tractable questions
are answered, thereby reaching 100% precision, while for semantically intractable
questions the system requests a paraphrase. Of the 880 questions, about 80% of
the questions turn out to be tractable.

So, in general Pythia’s results are competetive, albeit slightly excelled by
other systems. This is because Pythia comes with a trade-off between coverage
and the manual effort that is required with respect to the LexInfo model. A
majority of the yet uncovered cases could in principle be covered by manually
extending the LexInfo model and by including new domain-independent con-
structions like coordination. The real benefit of Pythia, however, is that it is
able to handle linguistically complex queries involving quantification, superla-
tives and comparisons, aggregation functions, and the like – that is, phenomena
that most other (and especially shallow) systems cannot cope with and would
be difficult to extend with.

4 Conclusion and future work

We presented an ontology-based question answering system that parses user
questions with respect to a domain-specific lexicon built automatically from a
specification of linguistic realizations of ontology concepts. It compositionally
constructs meaning representations that are aligned to the vocabulary of the
underlying ontology and can easily be translated into a formal query.

This approach has several advantages. Due to the use of principled lin-
guistic representations, Pythia is able to handle a wide range of linguistically
complex queries, involving quantifiers, numerals, comparisons and superlatives,
negation, and so on. Furthermore, due to the explicit specification of the lexicon-
ontology interface, it is able to correctly map natural language terms to corre-
sponding ontology concepts, even if they are superficially different (e.g. mapping
has. . . inhabitants to the property population).

The major challenge for such an approach concerns portability. Adapting
Pythia to a new domain requires the creation of a new LexInfo model for that
domain, from which domain-specific grammar entries can be generated. This
means that in a linguistically rich approach like ours, ontological support comes
with a price: scalability. Pythia works very well for a relatively small domain, but
requires non-negligible effort for larger domains. Part of our research therefore
focuses on replacing the manual construction of LexInfo models by a largely
automatic mapping of natural language expression to entities and relations. This
will become especially important when applying the approach to larger domains
on the Semantic Web, e.g. the whole of DBpedia.



8 Christina Unger and Philipp Cimiano

References

1. Bunt, H.: Semantic Underspecification: Which Technique For What Purpose? In:
Computing Meaning, vol. 83, pp. 55–85. Springer Netherlands (2007)

2. Cimiano, P.: Flexible semantic composition with DUDES. In: Proceedings of the
8th International Conference on Computational Semantics (IWCS). Tilburg (2009)

3. Cimiano, P., Buitelaar, P., McCrae, J., Sintek, M.: Lexinfo: A declarative model
for the lexicon-ontology interface. Journal of Web Semantics: Science, Services and
Agents on the World Wide Web 9(1), pp. 29–51.

4. Unger, C., Hieber, F., Cimiano, P.: Generating LTAG grammars from a lexicon-
ontology interface. In: S. Bangalore, R. Frank, and M. Romero (eds.): 10th Interna-
tional Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+10),
Yale University (2010)

5. Schabes, Y.: Mathematical and Computational Aspects of Lexicalized Grammars.
Ph. D. thesis, University of Pennsylvania (1990)

6. Reyle, U.: Dealing with ambiguities by underspecification: Construction, represen-
tation and deduction. Journal of Semantics 10, 123–179 (1993)

7. Schabes, Y., Joshi, A.K.: An Earley-type parsing algorithm for Tree Adjoining
Grammars. In: Proceedings of the 26th annual meeting of ACL, Buffalo, New
York, pp. 258–269 (1988)

8. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer, Dordrecht (1993)
9. Kifer, M., Lausen, G.: F-logic: A higher-order language for reasoning about objects,

inheritance, and scheme. Technical report, SIGMOD Record 18(2) (1989)
10. Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology based access

to distributed and semi-structured information. In: Database Semantics: Semantic
Issues in Multimedia Systems, pp. 351–369. Kluwer (1999)

11. Minock, M.: C-Phrase: A system for building robust natural language interfaces to
databases. Data Knowl. Eng. 69(3), 290–302 (2010)

12. Minock, M., Olofsson, P., Näslund, A.: Towards building robust natural language
interfaces to databases. In: Proceedings of the International Conference on Appli-
cations of Natural Language to Information Systems (NLDB), pp. 187-198 (2008)

13. Mooney, R.: Learning for semantic parsing. In: Gelbukh, A. (ed.) Computational
Linguistics and Intelligent Text Processing: Proceedings of the 8th International
Conference, CICLing 2007, Mexico City, pp. 311–324. Springer (2007)

14. Popescu, A.-M., Etzioni, O., Kautz, H.: Towards a theory of natural language
interfaces to databases. In: IUI’03: Proceedings of the 8th international conference
on Intelligent user interfaces, New York, USA, pp. 149–157. ACM (2003)

15. Schiehlen, M.: Semantic Construction from Parse Forests. In: Proceedings of the
16th International Conference on Computational Linguistics, Copenhagen (1996)

16. Cimiano, P., Minock, M.: Natural Language Interfaces: What’s the Problem? – A
Data-driven Quantitative Analysis. In: Proceedings of the International Conference
on Applications of Natural Language to Information Systems (NLDB), pp. 192–206
(2009)


