
To appear in the Proceedings of the 2007 International Conference on
Parallel and Distributed Processing Techniques and Applications
June 25-28, 2007, Las Vegas, Nevada, USA

Python-based Distributed Programming with Trickle

Gregory D. Benson and Alexey S. Fedosov
Department of Computer Science

University of San Francisco
San Francisco, CA, USA

{benson, fedosov}@cs.usfca.edu

Abstract Trickle is a an extension to the Python program-
ming language that provides explicit but simple mechanisms
to write distributed scripts and programs. Trickle links to-
gether remote Python interpreters running on heterogeneous
machines so that work can be deployed and results collected.
A Trickle program interacts with remote interpreters by inject-
ing functions or classes. Remote objects can be instantiated
and invoked synchronously or asynchronously. Also, the in-
jected code need not reside on the remote interpreters; code
is dynamically transferred as needed. Trickle leverages off
of Python’s list comprehensions and generators to simplify
parallel invocation, result gathering, and dynamic schedul-
ing. The Trickle run-time system uses a broadcast mechanism
to find eligible Trickle virtual machines. Python programmers
can immediately use Trickle to dispatch work to idle machines
with minimal setup and easy to learn mechanisms. This paper
describes the Trickle extension interface, its implementation,
and presents an example application and its performance.

Keywords:Distributed programming, Python

1 Introduction

The Python programming language [15] has proven to
be effective in a variety of domains including script-
ing, web services, data analysis, simulation, and pro-
totyping. Python’s compact yet expressive syntax and
dynamic typing combined with powerful built-in data
types and a comprehensive standard library allow for
rapid program development. Python programs tend to
be shorter and easier to read than similar programs writ-
ten in general-purpose, statically-typed languages such
as C++, Java, and C#.

Trickle is a Python extension that allows program-
mers to easily execute code on remote Python inter-
preters, or, as we call them, Trickle virtual machines
(VMs). The Trickle interface is explicit, but simple;
a programmer can easily express parallel execution of
coarse-grained work. Programmers can Trickle-enable

existing Python code or write new parallel Python code.
Furthermore, enabling a computer to accept Trickle re-
quests is as simple as starting a single executable. The
only software requirement is a modern Python instal-
lation, which comes standard on Mac OS X and most
Linux distributions.

The Trickle programming model incorporates three
basic concepts: injection, remote access, and asyn-
chronous invocation. An initiating Trickle program can
inject local functions and classes into remote Trickle
VMs. Once injected, remote objects can be accessed
and invoked transparently with local VM handles. Us-
ing fork/join parallelism, remote code can be invoked
asynchronously on remote VMs for true parallel exe-
cution. Finally, Trickle provides a simple mechanism
for dynamically scheduling work to remote VMs. This
mechanism simplifies the use of networked machines of
varying performance.

The standard Python distribution comes with several
library modules for network communication and Inter-
net protocols. By themselves, these modules do not
readily allow a programmer to easily design and de-
velop parallel Python programs. As such, there ex-
ist several Python extensions designed to allow pro-
grams to cooperate in a distributed environment. The
IPython [13, 14] project is most similar to Trickle. It
allows interactive coordination of distributed Python
interpreters. However, its feature set is rather large
and is aimed at coordination and development of high-
performance parallel programs. PYRO [5] brings to
Python a more traditional form of distributed objects
based on a client/server model. However, PYRO does
not have direct support for asynchronous invocation and
dynamic scheduling. Finally, there exist several projects
that provide Python wrappers for the standard MPI in-
terface [12]. Trickle is much simpler than the full MPI
implementation and provides a MPMD (multiple pro-
gram, multiple data) model rather than a SPMD (single
program, multiple data) model.



The rest of this paper is organized as follows. Sec-
tion 2 describes the Trickle programming model and ba-
sic Trickle mechanisms. Section 3 presents a complete
Trickle program and its performance. Section 4 pro-
vides some details of our Trickle implementation. Sec-
tion 5 reviews related work. Section 6 makes some con-
cluding remarks and gives directions for future work.

2 Programming Model

The Trickle programming model extends the standard
Python execution environment by allowing multiple
Python interpreters to interact in a coordinated man-
ner. A Trickleinitiator process can connect with one or
more remote Tricklevirtual machines(VMs). A Trickle
VM is simply a Python interpreter running Trickle run-
time code that waits to be discovered for use by an ini-
tiator. A user will start Trickle VMs on each machine
that can be involved in a distributed computation. This
is a matter of invoking a single executable, which re-
quires no configuration. Trickle VMs can be added to
startup scripts or as a startup item; they can also be de-
ployed onto the nodes of a dedicated cluster.

The Trickle initiator can issue a command toconnect
to remote Trickle VMs. Once connected, the initiator
can inject data, functions, or classes into remote VMs.
Access to remote data or code is achieved through a re-
mote access mechanism. This mechanism is a gener-
alization of remote procedure call and remote method
invocation. Remote access is seamless, so a remote re-
quest appears as a local request. Consider the simple
Trickle program presented in Example 1:

Example 1 A Simple Trickle Program

1 def foo(x):
2 return x + 10
3
4 vmlist = connect()
5 inject(vmlist, foo)
6 results = [vm.foo(10) for vm in vmlist]
7 print results

$ trickle exsimple.py
[trickle: discovered 4 VMs]
[20, 20, 20, 20]

This code connects to the available Trickle VMs us-
ing theconnect() function. In a standard Ethernet-
based network a multicast send is used to discover re-
mote VMs. A list of VM handles is returned from
connect(); in this case 4 handles are returned. The
handles are used for invoking remote operations. Ini-
tially, each connected VM is idle and contains a default
Python run-time environment. In order to use a VM,

the initiator must use theinject() function on a VM
handle or a list of VM handles to transfer local Python
objects from the initiator’s environment to the remote
VM environments. In addition to VM handles, a Python
object must be passed as a parameter toinject(). Pos-
sible Python objects include data objects, functions, and
classes. Usinginject(), the initiator can fill each VM
with any data and code necessary to carry out a remote
computation. In this example, we inject the function
foo() into each discovered VM.

Once objects have been injected into remote VMs,
they can be accessed using the VM handles. We
can invoke remote operations synchronously or asyn-
chronously. In this example,foo() is invoked syn-
chronously on each remote VM using Trickle remote
access (Example 1, line 6). Note that remote access
looks similar to local access except for the VM handle
prefix. Also, this example uses a list comprehension to
collect the results of each remote invocation. Since we
are using synchronous invocation, each remote call to
foo() must complete before the next call is issued.

Notice that this simple program is completely self-
contained. It is not necessary to have any code on the
remote VMs prior to execution. Theinject() method
takes care of transferring objects and code from the ini-
tiator to the VMs. This approach makes it is easy to or-
ganize small parallel Trickle programs. Also, compared
to an SPMD programming model, the Trickle model
is very explicit: a programmer only injects necessary
code into remote VMs. While subtle, we believe many
programmers will find this model more natural than a
model like MPI, in which distributed process differenti-
ate themselves via a rank value. Also, unlike distributed
object systems, Trickle does not require separate client
and server code.

The rest of this section describes the main Trickle
concepts and interfaces in detail. First, we explain
connecting and injecting. Second, we cover syn-
chronous remote access. Third, we present different
forms of asynchronous invocation. Fourth, we explain
the Trickle dynamic scheduling mechanism. Finally,
we describe some practical considerations for starting
Trickle VMs and accessing file systems.

2.1 Connecting and Injecting

As described previously, a Trickle initiator uses
connect() to discover remote Trickle VMs. The return
value ofconnect() is a list of VM handles (vmlist).
Therefore, the number of available remote servers is
computed bylen(vmlist). It is possible to specify a
maximum number of VMs needed for a particular com-



putation by passing amax argument toconnect(). For
example,connect(4) requests a maximum of 4 VMs.
If 4 VMs are not located, an exception is raised. Re-
stricting the number of required VMs also allows a user
to run multiple Trickle programs simultaneously as a
single initiator may not need all available VMs.

The valid forms of Trickleinject() are:

inject(vm, obj0 [, obj1] ...)
inject(vmlist, obj0 [, obj1] ...)

Example 2 Trickle Injection

1 table = { 1 : ’a’, 2 : ’b’}
2
3 def find(name, namelist):
4 for i, n in enumerate(namelist):
5 if n == name:
6 return i
7
8 class foo(object):
9 def update(x, y):

10 self.x = x
11 self.y = y
12
13 vmlist = connect()
14 inject(vmlist, table, find, foo)

Trickle injection explicitly places Python objects into
remote VMs. It is possible to inject data, functions, and
classes. Theinject() function can take a single VM
handle or a VM handle list as the first argument. The re-
maining arguments are objects to be injected. If a VM
handle list is provided, then the object arguments are in-
jected into each VM in the VM handle list. The injected
objects are copies of the original initiator objects and
they can be accessed transparently using a VM handle.
The access is similar to a local access. When an initiator
completes execution, injected objects are removed from
the remote Trickle VMs. See Example 2 for different
forms of injection.

2.2 Synchronous Remote Access

Once code and data have been injected into remote
VMs, these objects can be accessed transparently using
synchronous remote access via VM handles. Each re-
mote access invocation is blocking; an invocation must
complete before the program can continue execution. In
addition to injected objects, all Python built-in functions
are available for remote invocation.

Example 3 shows how to access remotely injected
data. In this case, we have injected a list into the re-
mote VMs. We can transparently perform updates on
the remote lists (line 5). This also works on remote
dictionaries and any remote object that supports the
__setitem__/__getitem__ interface.

Example 3 Synchronous Data Access

1 vmlist = connect()
2 names = [’Alex’, ’Sami’, ’Greg’, ’Peter’]
3 inject(vmlist, names)
4 for i, vm in enumerate(vmlist):
5 vm.names[i] = ’*NONE*’
6 print vm.names

$ trickle exsynchdata.py
[trickle: discovered 4 VMs]
[’*NONE*’, ’Sami’, ’Greg’, ’Peter’]
[’Alex’, ’*NONE*’, ’Greg’, ’Peter’]
[’Alex’, ’Sami’, ’*NONE*’, ’Peter’]
[’Alex’, ’Sami’, ’Greg’, ’*NONE*’]

Example 4 Synchronous Function Invocation

1 def factorial(x):
2 if x == 0: return 1
3 else: return x * factorial(x-1)
4
5 vmlist = connect()
6 inject(vmlist, factorial)
7 for i, vm in enumerate(vmlist):
8 print vm.range(i+1), vm.factorial(i)

$ trickle exsyncfunc.py
[trickle: discovered 4 VMs]
[0] 1
[0, 1] 1
[0, 1, 2] 2
[0, 1, 2, 3] 6

Both injected functions and Python built-in functions
can be invoked remotely using VM handles. Possible
parameter values for remote invocation are only limited
to Python data types that can be pickled (serialized).
Example 4 shows how to call an injectedfactorial()
function and therange() built-in function.

Remote object creation and invocation is demon-
strated in Example 5. In this case, we are only creating
a remote object on a single Trickle VM (see line 13).
We invoke the remote object just as we would a local
object (see lines 14-16). A remote object will exist on
a remote VM as long as there is a local reference to the
proxy object.

2.3 Asynchronous Remote Invocation

Parallel execution is achieved in Trickle with asyn-
chronous remote invocation. Trickle uses a fork/join
paradigm to invoke remote functions or methods asyn-
chronously. A Tricklefork() function begins the ex-
ecution of a remote function and returns immediately
with a handle. The handle is later used by ajoin()
call to synchronize with the remote invocation. The ba-
sic fork() and join() functions have the following
forms:



Example 5 Synchronous Object Invocation

1 class Stack(object):
2 def __init__(self):
3 self.stack = []
4 def push(self, x):
5 self.stack.append(x)
6 def pop(self):
7 return self.stack.pop()
8 def __str__(self):
9 return self.stack.__str__()

10
11 vmlist = connect()
12 inject(vmlist, Stack)
13 s = vmlist[0].Stack()
14 s.push(’A’) ; s.push(’B’); s.push(’C’)
15 s.pop()
16 print s

$ trickle exsynchclass.py
[trickle: discovered 4 VMs]
[’A’, ’B’]

h = fork(vm, func, arg0 [, arg1 ] ...])
hlist = fork(vmlist, func, arg0 [, arg1 ] ...])
hlist = fork(vmlist, funclist, arg0 [, arg1 ] ...])
hlist = fork(vmlist, funclist, arglist)

r = join(h)
rlist = join(hlist)
h, r = joinany(hlist)

These functions are quite flexible; they can be used to
fork a single function on a single VM or invoke a func-
tion on multiple VMs. In addition, it is possible to map
a list of functions to a list of VMs. In this case, each
VM is invoked with a different function in the function
list. The same arguments can be passed to the func-
tion(s) or an argument list can be used to map different
arguments to different functions in a function list. The
join() function waits for all handles provided. How-
ever,joinany() waits for the completion of a single
invocation from list of two or more handles; it returns
a value and the associated handle. Example 6 presents
different uses offork() andjoin().

Basic usage offork() andjoin() is shown on lines
10 and 11. A single function is forked on a single VM
with a single argument. The returned handles are used
by join() on line 11 to wait for the invocation to finish
execution. Lines 14 and 15 show how to map a list of
functions and a list of arguments to a list of VMs to fork
multiple computations in a single call. Finally, lines 18
and 19 show how to map a single function to multiple
VMs and an argument list so that the function is invoked
with different parameter values on different VMs.

As will be explained in greater detail in Section 4,
fork() does not use local threads to achieve asyn-
chronous invocation, rather, a non-blocking send issues
the remote invocation request. So, each Trickle VM
needs only one computation thread.

Example 6 Asynchronous Invocation

1 def foo(x):
2 return x + 10
3
4 def bar(x):
5 return x + 20
6
7 vmlist = connect()
8 inject(vmlist, foo, bar)
9
10 h0 = fork(vmlist[0], foo, 1); h1 = fork(vmlist[1], bar, 2)
11 r0 = join(h0); r1 = join(h1)
12 print r0, r1
13
14 hlist = fork(vmlist[0:2], [foo, bar], [1, 2])
15 rlist = join(hlist)
16 print rlist
17
18 hlist = fork(vmlist, foo, range(len(vmlist)))
19 print join(hlist)

$ trickle exasynch.py
[trickle: discovered 4 VMs]
11 22
[11, 22]
[10, 11, 12, 13]

2.4 Dynamic Scheduling

The Trickle fork() and join() functions are gen-
eral enough to implement a variety of approaches for
scheduling work on remote VMs. However, a common
idiom is to construct a list of work and repeatedly as-
sign portions of work to be consumed by code on re-
mote VMs. Trickle provides theforkwork() function
to accomplish this task:

rlist = forkwork(vmlist, func, worklist [, chunksize=n])

The programmer provides a list of VMs, a worker
function, and a list of work. Each work element can be
any Python object. The worker function must be im-
plemented to correctly process the work element object
type or a list of such objects. Theforkwork() function
will issue work to remote VMs in a dynamic fashion
until all the work is complete. This idiom can be used
to take advantage of remote VMs running on machines
of different speeds. The optionalchunksize parameter
is used to send work elements in chunks to remote VMs
to reduce network overhead. See Section 3 for a larger
example that usesforkwork().

Trickle also provides a Python generator called
forkgen() for scheduling work dynamically. Using
the generator, partial results can be processed as they
become available.

2.5 Execution Environment

A Trickle program can connect to any number of Trickle
VMs that exist on machines in a local area network. A



broadcast mechanism is used to dynamically discover
Trickle VMs at the time theconnect() function is in-
voked. As such, a user will need to start Trickle VMs
on machines in the local network. If a small number of
VMs is required, then doing this manually is straight-
forward. It is also possible to enable the Trickle VM as
a startup item. Trickle can also be started automatically
in a cluster environment similar to how MPI is started.

Each Trickle VM has access to all resources available
to the owner of the Trickle VM process. This means that
a Trickle VM can access the local file system or any
network-mounted file systems available to the user.

3 Example

In this section we present a complete working Trickle
program and its performance on a varying number of
machines. Example 7 is a distributed word frequency
counter calledwfreq. Given a list of file names,wfreq
computes the total count of each unique word found in
all the given files. This is a common operation used in
document indexing and document analysis. If the data
files exist on all the remote machines, then the counting
phase runs in parallel. Only the work distribution and
merging phases are sequential.

Thewfreq program consists of three parts: a worker
function, a merge function, and the Trickle code to dis-
tribute the work. The worker functionmergecounts()
accepts a list of file names and computes a single dictio-
nary that maps words to their corresponding frequencies
in all the files provided as input. Themergecounts()
function simply combines all of the remotely computed
word frequency dictionaries. Finally, the main Trickle
code connects to the available Trickle VMs, injects the
wordcount() function, then issuesforkwork() to dy-
namically schedule provided file names to the worker
function.

We ran thewfreq Trickle program on a small clus-
ter to see what kind of speedup is possible. The cluster
consists of 8 machines with dual Opteron 270 proces-
sors and 4 GB of RAM, connected to an isolated Giga-
bit Ethernet network. We used a data set with 63,362
files for a total of 285 MB of data. Each node was given
a complete copy of the data set. We ranwfreq with a
chunk size of 100. Thus, each Trickle VM works on
100 files at a time. Table 1 shows the results of running
on 1, 2, 4, and 8 processors. As can be seen in the re-
sults, the serial portions of the code limit the speedup.
However, these results show that it is relatively easy to
leverage multiple machines with Trickle.

Example 7 Document Word Frequency Counter

import sys, time, glob

def wordcount(files):
m = {}
for filename in files:

f = open(filename)
for l in f:

for t in l.split():
m[t] = m.get(t,0) + 1

f.close()
return m

def mergecounts(dlist):
m = {}
for d in dlist:

for w in d:
m[w] = m.get(w,0) + d[w]

return m

if len(sys.argv) != 4:
print ’usage: %s <vmcount> <chunksize> <pattern>’ \

% sys.argv[0]
sys.exit(1)

n = int(sys.argv[1]); cs = int(sys.argv[2])
files = glob.glob(sys.argv[3] + ’*’)

stime = time.time()
vmlist = connect(n)
inject(vmlist, wordcount)
rlist = forkwork(vmlist, wordcount, files, chunksize=cs)
final = mergecounts(rlist)
ftime = time.time()
print ’%s seconds’ % (ftime - stime)

VMs 1 2 4 8
Time (sec) 72.3 43.5 25.8 19.3

Table 1: Tricklewfreq results on 63,362 files (285 MB)

4 Implementation

Trickle is implemented on top of the River framework
for distributed computing [16]. Both Trickle and River
are implemented entirely in Python. The River core in-
terface is based on a few fundamental abstractions that
enable the execution of code on multiple virtual ma-
chines and provides a flexible mechanism for communi-
cation among them. Communication is achieved with a
mechanism called Super Flexible Messaging (SFM) [6].
SFM provides a simple message-passing mechanism
for transferring dynamically-typed messages between
named processes. These abstractions are supported
by the River execution engine, which manages auto-
matic virtual machine discovery, connection manage-
ment, and naming. While River can be used directly
by application programmers, it also serves as a founda-
tion on which higher-level programming models can be
developed. We have developed Trickle as a River exten-
sion.



The main components of the Trickle implementa-
tion include a new remote access and invocation (RAI)
mechanism, support for code injection, support for
asynchronous invocation, and dynamic scheduling. All
of these components are implemented in 768 lines of
Python source code (the River core is approximately
3000 lines of Python source).

Support for remote object access is accomplished
with the RAI mechanism. RAI is a generalization of re-
mote data access, remote procedure call, remote object
creation, and remote method invocation. Each Trickle
VM instantiates a RAI server. In Trickle, the RAI server
is configured to expose the standard Python environ-
ment. In this way, once a connection is established, a
remote VM can access anything in the exported Python
environment. The RAI server simply waits for incom-
ing requests:

• inject Request contains source to be injected into
VM.

• call Request contains function or method name
and arguments to be invoked.

• getattr Request contains a request to access a re-
mote object using dot (.) notation.

• delete Request to decrement reference count to a
remote object.

A call request invokes the specified function or
method. If an object is created by the invocation, it will
be returned by reference. This allows for remote object
creation. Agetattr request looks in the VM namespace
for an attribute reference. It allows for remote updates
and access to global variables and objects. Bothcall
andgetattr reply to the sender with appropriate return
values. If an exception is raised, it will be propagated
back to the sender. Thedelete request is used to indi-
cate that a remote proxy object is no longer accessible.
This allows for objects to be reclaimed by the remote
VM’s garbage collector.

On the initiator end (client end) a special proxy object
is used as a proxy for both the remote VM handles and
remote objects. The initiator acquires VM proxy han-
dles with theconnect() function. The proxy object
overrides many of the default object access methods,
including__getattr__, __setitem__, __getitem__,
and others. If an attribute does not exist in the local
proxy object, it is assumed to be a remote request. In
this way, Trickle can transparently propagate local in-
vocations to remote VMs.

Code injection from the initiator VM to remote VMs
is achieved with Python introspection. It is possible to

obtain the source code for any function or class given
a reference. Theinject() function uses the specified
reference to find the source code. The source is pack-
aged up and sent to the remote VM. The RAI server ac-
cepts theinject request and uses the Pythonexec state-
ment to introduce the source into the running VM.

Asynchronous invocation is supported by dividing a
remote request into two parts: the send half and the
receive half. A send half issues a request with a non-
blocking send and returns a fork handle. The proxy ob-
ject keeps track of outstanding send halves. Later, the
fork handle is used to join with an outstanding asyn-
chronous invocation. Note that each Trickle VM has a
receive queue, so a remote VM can issue a reply at any
time and it will be queued on the requesting VM.

The Trickle dynamic scheduling mechanism,
forkwork() is built using basic asynchronous invo-
cation and Python generators. Internally,forkwork()
calls a generator calledforkgen():

def forkwork(self, vmlist, fname, work, chunksize=chunksize):
results = []
for rv in forkgen(vmlist, fname, work, chunksize=cs):

results.append(rv)
return results

The internalforkgen() routine dispatches work to
available remote VMs and waits for invocations to fin-
ish. Each time a remote invocation completes, a new
piece of work, if available, is dispatched to an available
VM. Here is an abbreviated version, without the support
for chunksize:

def forkgen(self, vmlist, fname, work):
hlist = []
while True:

while len(work) > 0 and len(vmlist) > 0:
w = work.pop()
vm = vmlist.pop()
hlist.append(fork(vm, fname, w))

if len(hlist) > 0:
h, rv = joinany(hlist)
vmlist.append(h.vm)
yield(rv)

else:
break

By implementingforkgen() with a Python genera-
tor (indicated by using theyield() statement) we sim-
plify the implementation offorkwork() and also pro-
vide the programmer with a mechanism to process par-
tial results while work is executing on remote VMs.
This shows how Python generators can be used to ex-
tend the semantics of both thefor statement and list
comprehensions in a novel way.



5 Related Work

The design of Trickle leverages off past work on the
design of programming languages for parallel and dis-
tributed computing [3]. Numerous languages support
object-based distributed computing such as Emerald [7]
and Orca [2]. In particular, the VM handles and invoca-
tion handles are similar in function to VM capabilities
and operation capabilities found in the SR programming
language [1].

As mentioned in Section 1, there are Python ex-
tensions that support distributed programming includ-
ing IPython [13, 14] and PYRO [5]. In addition,
PyLinda [17] provides Python support for the Linda [4]
parallel programming model. A Python interface to
the standard MPI library is provided by PyMPI [10],
MYMPY [9, 8], and Pypar [11]. Trickle and the system
it is built on, River, are both written entirely in Python
and do not require additional libraries such as a C imple-
mentation of MPI. Also, unlike other Python extensions
for parallel and distributed programming, Trickle is a
relatively concise extension for farming tasks to remote
machines. We have deliberately constrained the Trickle
programming model to make it easy to learn and use.

6 Conclusions

Trickle is a simple extension to the Python program-
ming language that enables heterogeneous distributed
programming. The Trickle mechanisms are simple and
can be learned quickly, which follows the Python phi-
losophy. Unlike other distributed object systems for
Python, Trickle provides a simple namespace that does
not require a dedicated name server or an object broker.
We have shown how Trickle can be used to distribute
work statically or dynamically. Trickle is ideal for ex-
tending an existing Python program to take advantage
of unused cycles in a network of machines. Finally, our
experience with Trickle has been extremely positive. It
is used locally to teach parallel programming, for movie
creation, and data analysis.

For future work we plan to refine the Trickle inter-
face to support dynamic discovery of VMs during pro-
gram execution. Such a mechanism will allow a Trickle
program to utilize additional computers as they become
available. Similarly, we plan to provide a way to grace-
fully remove a VM from a Trickle computation. In ad-
dition, we plan to add various forms of fault tolerance
to the Trickle run-time system. For example, if a VM
crashes, the Trickle run-time system should be able to
re-issue work on a different VM. We are also planning
support for program checkpointing and VM migration.

Acknowledgments

We thank members of the River research group for their
feedback and technical support: Brian Hardie, Tony
Ngo, Jennifer Reyes, Joseph Gutierrez, and Yiting Wu.
We also thank Terence Parr for reviewing an earlier
draft of this paper.

This work was partially supported by a University of
San Francisco faculty development research grant.

References
[1] G. R. Andrews, R. A. Olsson, M. Coffin, I. Elshoff, K. Nilsen,

T. Purdin, and G. Townsend. An overview of the SR language
and implementation.ACM Transactions on Programming Lan-
guages and Systems, 10(1):51–86, January 1988.

[2] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca:
A language for parallel programming of distributed systems.
IEEE Transactions on Software Engineering, SE-18(3):190–
205, March 1992.

[3] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming
languages for distributed computing systems.ACM Computing
Surveys, 21(3):261–322, September 1989.

[4] N. Carriero and D. Gelernter. How to write parallel programs:
A guide to the perplexed.ACM Computing Surveys, 21(3):323–
357, September 1989.

[5] Irmen de Jong. PYRO:python remote objects, 2007.
http://pyro.sourceforge.net.

[6] A. S. Fedosov and G. D. Benson. Communication with super
flexible messaging. InProceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques andAp-
plications, Las Vegas, Nevada, USA, June 2007. CSREA Press.

[7] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black.
Fine-grained mobility in the Emerald system.ACM Transac-
tions on Computer Systems, 6(1):109–133, February 1988.

[8] Timothy Kaiser, Leesa Brieger, and Sarah Healy. MYMPI -
mpi programming in python. InProceedings of the Interna-
tional Conference on Parallel and Distributed Processing Tech-
niques and Applications, pages 458–464, Las Vegas, Nevada,
USA, June 2006. CSREA Press.

[9] Timothy H. Kaiser. MYMPI, 2007.
http://peloton.sdsc.edu/ tkaiser/mympi/.

[10] Patrick Miller. Pympi: Putting the py in mpi, 2007.
http://pympi.sourceforge.net/.

[11] Ole Nielsen. Pypar: Parallel programming in the spiritof
python, 2007. http://datamining.anu.edu.au/ ole/pypar/.

[12] Peter S. Pacheco.Parallel programming with MPI. Morgan
Kaufmann Publishers, 1997.

[13] Fernando Pérez et al. IPython: An enhanced interactive python.
In Proceedings of SciPy’03 – Python for Scientific Computing
Workshop, CalTech, Pasadena, CA, September 2003.

[14] Fernando Pérez et al. Ipython: An enhanced interactive python
shell, 2007. http://ipython.scipy.org.

[15] The Python programming language. http://www.python.org.

[16] River. http://www.cs.usfca.edu/river.

[17] Andrew Wilkinson. Pylinda: Distributed computing made easy,
2007. http://www-users.cs.york.ac.uk/ aw/pylinda.


