
EDITORIAL
published: 14 April 2015

doi: 10.3389/fninf.2015.00011

Frontiers in Neuroinformatics | www.frontiersin.org 1 April 2015 | Volume 9 | Article 11

Edited and reviewed by:

Sean L. Hill,

International Neuroinformatics

Coordinating Facility, Sweden

*Correspondence:

Andrew P. Davison,

andrew.davison@unic.cnrs-gif.fr

Received: 20 March 2015

Accepted: 28 March 2015

Published: 14 April 2015

Citation:

Muller E, Bednar JA, Diesmann M,

Gewaltig M-O, Hines M and Davison

AP (2015) Python in neuroscience.

Front. Neuroinform. 9:11.

doi: 10.3389/fninf.2015.00011

Python in neuroscience

Eilif Muller 1, James A. Bednar 2, Markus Diesmann 3, 4, 5, Marc-Oliver Gewaltig 1,

Michael Hines 6 and Andrew P. Davison 7*

1Center for Brain Simulation, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland, 2 Institute for Adaptive and

Neural Computation, University of Edinburgh, Edinburgh, UK, 3 Jülich Research Center and Jülich Aachen Research Alliance,

Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jülich, Germany, 4Department

of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany,
5Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany, 6Department of Neurobiology, Yale

University, New Haven, CT, USA, 7Neuroinformatics group Unité de Neurosciences, Information et Complexité, Centre

National de la Recherche Scientifique, Gif sur Yvette, France

Keywords: python language, software development, scientific computing, interoperability, collaboration

This Research Topic of Frontiers in Neuroinformatics is dedicated to the memory of Rolf Kötter
(1961–2010), who was the Frontiers Associate Editor responsible for this Research Topic, and who
gave us considerable support and encouragement during the process of conceiving and launching
the Topic, and throughout the reviewing process.

Computation is becoming essential across all sciences, for data acquisition and analysis, automa-
tion, and hypothesis testing via modeling and simulation. As a consequence, software development
is becoming a critical scientific activity. Training of scientists in programming, software devel-
opment, and computational thinking (Wilson, 2006), choice of tools, community-building and
interoperability are all issues that should be addressed, if we wish to accelerate scientific progress
while maintaining standards of correctness and reproducibility.

The Python programming language in particular has seen a surge in popularity across the sci-
ences, for reasons which include its readability, modularity, and large standard library. The use of
Python as a scientific programming language began to increase with the development of numer-
ical libraries for optimized operations on large arrays in the late 1990s, in which an important
development was the merging of the competing Numeric and Numarray packages in 2006 to form
NumPy (Oliphant, 2007). As Python and NumPy have gained traction in a given scientific domain,
we have seen the emergence of domain-specific ecosystems of open-source Python software devel-
oped by scientists. It became clear to us in 2007 that we were on the cusp of an emerging Python in
neuroscience ecosystem, particularly in computational neuroscience and neuroimaging, but also in
electrophysiological data analysis and in psychophysics.

Two major strengths of Python are its modularity and ability to easily “glue” together different
programming languages, which together facilitate the interaction of modular components and their
composition into larger systems. This focus on reusable components, which has proven its value in
commercial and open-source software development (Brooks, 1987), is, we contend, essential for
scientific computing in neuroscience, if we are to cope with the increasingly large amounts of data
being produced in experimental labs, and if we wish to understand and model the brain in all its
complexity.

We therefore felt that it was timely and important to raise awareness of the emerging Python in
Neuroscience software ecosystem amongst researchers developing Python-based tools, but also in
the larger neuroscience community.

Our goals were several-fold:

- establish a critical mass for Python use and development in the eyes of the community;
- encourage interoperability and collaboration between developers;
- expose neuroscientists to the new Python-based tools now available.

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://dx.doi.org/10.3389/fninf.2015.00011
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:andrew.davison@unic.cnrs-gif.fr
http://dx.doi.org/10.3389/fninf.2015.00011
http://www.frontiersin.org/journal/10.3389/fninf.2015.00011/full
http://community.frontiersin.org/people/u/1458
http://community.frontiersin.org/people/u/2481
http://community.frontiersin.org/people/u/630
http://community.frontiersin.org/people/u/393
http://community.frontiersin.org/people/u/396
http://community.frontiersin.org/people/u/937

Muller et al. Python in Neuroscience

From this was born the idea for a Research Topic in Frontiers
in Neuroinformatics on “Python in Neuroscience” to showcase
those projects we were aware of, and to give exposure to projects
of which we were not aware. Although it may seem strange at
first glance to center a Research Topic around a tool, rather than
around a scientific problem, we feel it is justified by the increas-
ingly critical role of scientific programming in neuroscience
research, and by the particular strengths of the Python language
and the broader Python scientific computing ecosystem.

Collected in this Research Topic are 24 articles describing
some ways in which neuroscience researchers around the world
are turning to the Python programming language to get their job
done faster and more efficiently.

Overview of the Research Topic

We will now briefly summarize the 24 articles in the Research
Topic, drawing out common themes.

Both Southey et al. (2008) and Yanashima et al. (2009) use
Python for bioinformatics applications, but in very different
areas. Yanashima et al. have developed a Python package for
graph-theoretical analysis of biomolecular networks, BioNetpy,
and employed it to investigate protein networks associated with
Alzheimer’s disease. Southey et al.’s study demonstrates the wide
breadth of application of Python, and the large number of high
quality scientific libraries available, combining existing tools for
bioinformatics, machine learning and web development to build
an integrated pipeline for identification of prohormone precur-
sors and prediction of prohormone cleavage sites.

Jurica and van Leeuwen (2009) address the needs of sci-
entists who already have significant amounts of code written
in MATLAB R© and who wish to transfer this to Python. They
present OMPC, which uses syntax adaptation and emulation to
allow transparent import of existing MATLAB R© functions into
Python programs.

Three articles reported on new tools in the domain of neu-
roimaging. Hanke et al. (2009) report on PyMVPA, a Python
framework for machine learning-based data analysis, and its
application to analysis of fMRI, EEG, MEG, and extracellu-
lar electrophysiology recordings. Gouws et al. (2009) describe
DataViewer3D, a Python application for displaying and inte-
grating data frommultiple neuroimaging modalities, showcasing
Python’s abilities to easily interface with libraries written in other
languages, such as C++, and to integrate them into user-friendly
systems. Strangman et al. (2009) emphasize the advantages of
Python for “swift prototyping followed by efficient transition to sta-
ble production systems” in their description of NinPy, a toolkit for
near-infrared neuroimaging.

Zito et al. (2009) and Ince et al. (2009) both report on the
use of Python for general purpose data analysis, with a focus
on machine learning and information theory respectively. Zito
et al. have developed MDP, the Modular toolkit for Data Pro-
cessing, a collection of computationally efficient data analysis
modules that can be combined into complex pipelines. MDP
was originally developed for theoretical research in neuroscience,
but has broad application in general scientific data analysis and
in teaching. Ince et al. (2009) describe the use of Python for

information-theoretic analysis of neuroscience data, outlining
algorithmic, statistical and numerical challenges in the appli-
cation of information theory in neuroscience, and explaining
how the use of Python has significantly improved the speed and
domain of applicability of the algorithms, allowing more ambi-
tious analyses of more complex data sets. Their code is available
as an open-source package, pyEntropy.

Three articles report on tools for visual stimulus gener-
ation, for use in visual neurophysiology and psychophysics
experiments. Straw (2008) describes VisionEgg, while Peirce
(2009) presents PsychoPy, both of which are easy-to-use and
easy-to-install applications that make use of OpenGL to gener-
ate temporally and spatially precise, arbitrarily complex visual
stimulation protocols. Python is used to provide a simple, intu-
itive interface to the underlying graphics libraries, to provide
a graphical user interface, and to interface with external hard-
ware. PsychoPy can also generate and deliver auditory stimuli.
Spacek et al. (2009) also report on a Python library for visual
stimulus generation, as part of a toolkit for the acquisition and
analysis of highly parallel electrophysiological recordings from
cat and rat visual cortex. The other two components in the
toolkit are for electrophysiological waveform visualization and
spike sorting; and for spike train and stimulus analysis. The
authors note “The requirements and solutions for these projects
differed greatly, yet we found Python to be well suited for all
three.”

Also in the domain of electrophysiology, Garcia and
Fourcaud-Trocmé (2009) describe OpenElectrophy, an applica-
tion for efficient storage and analysis of large electrophysiology
datasets, which includes a graphical user interface for interactive
visualization and exploration and a library of analysis routines,
including several spike-sorting methods.

By far the largest contribution to the Research Topic came
from the field of modeling and simulation, with 12 articles on
the topic. Nine of these articles present neuroscience simulation
environments with Python scripting interfaces. In most cases, the
Python interface was added to an existing simulator written in
a compiled language such as C++. This was the case for NEU-
RON (Hines et al., 2009), NEST (Eppler et al., 2009), PCSIM
(Pecevski et al., 2009), Nengo (Stewart et al., 2009), MOOSE
(Ray and Bhalla, 2008), STEPS (Wils and De Schutter, 2009) and
NCS (Drewes et al., 2009). However, as the articles by Goodman
and Brette (2008) on the Brian simulator and Bednar (2009) on
the Topographica simulator demonstrate, it is also possible to
develop new simulation environments purely in Python, making
use of the vectorization techniques available in the underlying
NumPy package to obtain computational efficiency. The range
of modeling domains of these simulators is wide, from stochas-
tic simulation of coupled reaction-diffusion systems (STEPS),
through simulation of morphologically detailed neurons and
networks (NEURON, MOOSE), highly-efficient large-scale net-
works of spiking point neurons (NEST, PCSIM, NCS, Brian) to
population coding or point-neuron models of large brain regions
(Nengo, Topographica). Note that although we have catego-
rized each simulator by its main area of application, most of
these tools support modeling at a range of scales and levels of
detail: Bednar (2009), for example, describes the integration of a

Frontiers in Neuroinformatics | www.frontiersin.org 2 April 2015 | Volume 9 | Article 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Muller et al. Python in Neuroscience

spiking NEST simulation as one component in a Topographica
simulation.

The addition of Python interfaces to such a large number of
widely used simulation environments suggested a huge oppor-
tunity to enhance interoperability between different simulators,
making use of the common scripting language, which in turn has
the potential to enhance the transfer of technology, knowledge
and models between users of the different simulators, and to pro-
mote model reuse. Davison et al. (2009a) describe PyNN, a com-
mon Python interface to multiple simulators, which enables the
same modeling and simulation script to be run on any supported
simulator without modification. At the time of writing, PyNN
supports NEURON, NEST, PCSIM and Brian, with MOOSE sup-
port under development. The existence of such a common “meta-
simulator” then makes it much easier for scientists developing
new, hardware-based approaches to neural simulation to engage
with the computational neuroscience community, as evidenced
by the article by Brüderle et al. (2009) on interfacing a novel
neuromorphic hardware system with PyNN.

Finally, Fox et al. (2009) describe the possibilities when one is
not limited to a single simulator, but can use Python to integrate
multiple models into a brain-wide system. In their development
of an integrated basal ganglia-hippocampal formation model for
spatial navigation and its embodiment in a simulated robotic
environment, Fox et al. found that Python offers “a significant
reduction in development time, without a corresponding significant
increase in execution time.”

It is important to note that most or all of the Python tools
and libraries described in the Research Topic are open source and
hence free to download, use and extend.

Discussion

This editorial is being written 6 years after the first articles in
the Research Topic were published. It is with the benefit of con-
siderable hindsight, therefore, that we can confidently say that
our goals in launching this Research Topic—to establish a critical
mass for Python use and development in the eyes of the commu-
nity and to encourage interoperability and collaboration between
developers—have been met or exceeded.

The average number of citations per article for the Research
Topic as a whole is 54, or approximately 9 per year, using figures
from Google Scholar. Although citation counts from Google
Scholar tend to be higher than those from Journal Citation
Reports so the numbers are not directly comparable, this com-
pares favorably with the impact factors of well respected journals
such as Journal of Neuroscience or PLoS Computational Biology.
Some of the articles were much more highly cited, with three
of them being cited more than 20 times per year, on average,
over the period. Four of the articles were chosen to “climb the
tier” in the Frontiers system, and were followed up by Focused
Review articles in Frontiers in Neuroscience (Davison et al.,
2009b; Goodman and Brette, 2009; Hanke et al., 2010; Ince et al.,
2010), another was the subject of a commentary (Einevoll, 2009).

Concerning the goals of interoperability and collaboration,
several articles in a follow-up volume Python in Neuroscience II
attest to the degree to which the developers of different tools

have worked together, and prioritized interoperability in recent
years. For example, the developers of OpenElectrophy (Gar-
cia and Fourcaud-Trocmé, 2009) and the community around
PyNN (Davison et al., 2009a) formed the nucleus of an effort to
develop a baseline Python representation for electrophysiology
data, which resulted in the Neo project, reported in the Python
in Neuroscience II Research Topic (Garcia et al., 2014) together
with two of the several projects which build on Neo (Pröpper and
Obermayer, 2013; Sobolev et al., 2014). A new workflow system
for computational neuroscience, Mozaik (Antolík and Davison,
2013) builds on both PyNN and Topographica (Bednar, 2009).
PyNEST (Eppler et al., 2009) and PyNN developers collaborated
with the INCF to improve the interoperability between these tools
(Djurfeldt et al., 2014) when using the Connection Set Algebra
(Djurfeldt, 2012). Finally, a number of tools have been built on
the Python interface to NEURON (Hines et al., 2009), including
morphforge (Hull and Willshaw, 2014) and LFPy (Lindén et al.,
2014).

Observing the rapid growth in adoption of Python in neuro-
science over the last 6 years, which appears to continue to accel-
erate, it is clear that Python is here to stay, which augurs well for
the growth, productivity, and rigor of computational methods in
neuroscience.

References

Antolík, J., and Davison, A. P. (2013). Integrated workflows for spiking neuronal

network simulations. Front. Neuroinform. 7:34. doi: 10.3389/fninf.2013.00034

Bednar, J. A. (2009). Topographica: building and analyzing map-level simula-

tions from Python, C/C++, MATLAB, NEST, or NEURON components. Front.

Neuroinform. 3:8. doi: 10.3389/neuro.11.008.2009

Brooks, F. P. Jr. (1987). No silver bullet: essence and accidents of software

engineering. Computer 20, 10–19. doi: 10.1109/MC.1987.1663532

Brüderle, D., Müller, E., Davison, A. P., Muller, E., Schemmel, J., and Meier,

K. (2009). Establishing a novel modeling tool: a Python-based inter-

face for a neuromorphic hardware system. Front. Neuroinform. 3:17 doi:

10.3389/neuro.11.017.2009

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,

et al. (2009a). PyNN: a common interface for neuronal network simulators.

Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Davison, A. P., Hines, M., and Muller, E. (2009b). Trends in programming

languages for neuroscience simulations. Front. Neurosci. 3, 374–380. doi:

10.3389/neuro.01.036.2009

Djurfeldt, M. (2012). The connection-set algebra—a novel formalism for the rep-

resentation of connectivity structure in neuronal network models. Neuroinfor-

matics 10, 287–304. doi: 10.1007/s12021-012-9146-1

Djurfeldt, M., Davison, A. P., and Eppler, J. M. (2014). Efficient genera-

tion of connectivity in neuronal networks from simulator-independent

descriptions. Front. Neuroinform. 8:43. doi: 10.3389/fninf.2014.

00043

Drewes, R. P., Zou, Q., and Goodman, P. H. (2009). Brainlab: a Python

toolkit to aid in the design, simulation, and analysis of spiking neural

networks with the NeoCortical Simulator. Front. Neuroinform. 3:16. doi:

10.3389/neuro.11.016.2009

Einevoll, G. T. (2009). Sharing with Python. Front. Neurosci. 3, 334–335. doi:

10.3389/neuro.01.037.2009

Frontiers in Neuroinformatics | www.frontiersin.org 3 April 2015 | Volume 9 | Article 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Muller et al. Python in Neuroscience

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M. O. (2009).

PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.

2:12. doi: 10.3389/neuro.11.012.2008

Fox, C. W., Humphries, M. D., Mitchinson, B., Kiss, T., Somogyva, Z., and

Prescott, T. J. (2009). Technical integration of hippocampus, basal ganglia

and physical models for spatial navigation. Front. Neuroinform. 3:6. doi:

10.3389/neuro.11.006.2009

Garcia, S., and Fourcaud-Trocmé, N. (2009). OpenElectrophy: an electrophysio-

logical data- and analysis-sharing framework. Front. Neuroinform. 3:14. doi:

10.3389/neuro.11.014.2009

Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P. L., et al.

(2014). Neo: an object model for handling electrophysiology data in multiple

formats. Front. Neuroinform. 8:10. doi: 10.3389/fninf.2014.00010

Goodman, D. F., and Brette, R. (2009). The Brian simulator. Front. Neurosci. 3,

192–197. doi: 10.3389/neuro.01.026.2009

Goodman, D. F. M., and Brette, R. (2008). Brian: a simulator for spiking neural

networks in Python. Front. Neuroinform. 2:5 doi: 10.3389/neuro.11.005.2008

Gouws, A. D., Woods, W., Millman, R. E., Morland, A. B., and Green,

G. G. R. (2009). Dataviewer3D: an open-source, cross-platform multi-

modal neuroimaging data visualization tool. Front. Neuroinform. 2:9. doi:

10.3389/neuro.11.009.2009

Hanke, M., Halchenko, Y. O., Haxby, J. V., and Pollmann, S. (2010). Statistical

learning analysis in neuroscience: aiming for transparency. Front. Neurosci. 4,

38–43. doi: 10.3389/neuro.01.007.2010

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J. W.,

et al. (2009). PyMVPA: a unifying approach to the analysis of neuroscientific

data. Front. Neuroinform. 3:3. doi: 10.3389/neuro.11.003.2009

Hines, M., Davison, A. P., and Muller, E. (2009). NEURON and Python. Front.

Neuroinform. 3:1. doi: 10.3389/neuro.11.001.2009

Hull, M. J., and Willshaw, D. J. (2014). Morphforge: a toolbox for simulating small

networks of biologically detailed neurons in Python. Front. Neuroinform. 7:47.

doi: 10.3389/fninf.2013.00047

Ince, R. A. A., Mazzoni, A., Petersen, R. S., and Panzeri, S. (2010). Open source

tools for the information theoretic analysis of neural data. Front. Neurosci. 4,

62–70. doi: 10.3389/neuro,0.01.011.2010

Ince, R. A. A., Petersen, R. S., Swan, D. C., and Panzeri, S. (2009). Python for

information theoretic analysis of neural data. Front. Neuroinform. 3:4. doi:

10.3389/neuro.11.004.2009

Jurica, P., and van Leeuwen, C. (2009). OMPC: an open-source MATLAB R©-to-

Python compiler. Front. Neuroinform. 3:5. doi: 10.3389/neuro.11.005.2009

Lindén, H., Hagen, E., Łęski, S., Norheim, E. S., Pettersen, K. H., and Einevoll,

G. T. (2014). LFPy: a tool for biophysical simulation of extracellular poten-

tials generated by detailed model neurons. Front. Neuroinform. 7:41. doi:

10.3389/fninf.2013.00041

Oliphant, T. E. (2007). Python for scientific computing. Comput. Sci. Eng. 9, 10–20.

doi: 10.1109/MCSE.2007.58

Pecevski, D., Natschläger, T., and Schuch, K. (2009). PCSIM: a parallel simu-

lation environment for neural circuits fully integrated with Python. Front.

Neuroinform. 3:11. doi: 10.3389/neuro.11.011.2009

Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Front.

Neuroinform. 2:10. doi: 10.3389/neuro.11.010.2008

Pröpper, R., and Obermayer, K. (2013). Spyke Viewer: a flexible and extensible

platform for electrophysiological data analysis. Front. Neuroinform. 7:26. doi:

10.3389/fninf.2013.00026

Ray, S., and Bhalla, U. S. (2008). PyMOOSE: interoperable scripting in Python for

MOOSE. Front. Neuroinform. 2:6. doi: 10.3389/neuro.11.006.2008

Sobolev, A., Stoewer, A., Pereira, M., Kellner, C. J., Garbers, C., Rautenberg

P. L., et al. (2014). Data management routines for reproducible research

using the G-Node Python Client library. Front. Neuroinform. 8:15. doi:

10.3389/fninf.2014.00015

Southey, B., Sweedler, J., and Rodriguez-Zas, S. (2008). A Python ana-

lytical pipeline to identify prohormone precursors and predict pro-

hormone cleavage sites. Front. Neuroinform. 2:7. doi: 10.3389/neuro.11.

007.2008

Spacek, M. A., Blanche, T., and Swindale, N. (2009). Python for large-

scale electrophysiology. Front. Neuroinform. 2:9. doi: 10.3389/neuro.11.

009.2008

Stewart, C., Tripp, B., and Eliasmith, C. (2009). Python scripting in the Nengo

simulator. Front. Neuroinform. 2:7. doi: 10.3389/neuro.11.007.2009

Strangman, G. E., Zhang, Q., and Zeffiro, T. (2009). Near-infrared neu-

roimaging with NinPy. Front. Neuroinform. 2:12. doi: 10.3389/neuro.11.

012.2009

Straw, A. D. (2008). Vision egg: an open-source library for realtime visual stimulus

generation. Front. Neuroinform. 2:4. doi: 10.3389/neuro.11.004.2008

Wilson, G. (2006). Software carpentry: getting scientists to write better code

by making them more productive. Comput. Sci. Eng. 8, 66–69. doi:

10.1109/MCSE.2006.122

Wils, S., and De Schutter, E. (2009). STEPS: modeling and simulating com-

plex reaction-diffusion systems with Python. Front. Neuroinform. 3:15. doi:

10.3389/neuro.11.015.2009

Yanashima, R., Kitagawa, N., Matsubara, Y., Weatheritt, R., Oka, K., Kikuchi, S.,

et al. (2009). Network features and pathway analyses of a signal transduction

cascade. Front. Neuroinform. 2:13. doi: 10.3389/neuro.11.013.2009

Zito, T., Wilbert, N., Wiskott, L., and Berkes, P. (2009). Modular toolkit for data

processing (MDP): a Python data processing framework. Front. Neuroinform.

2:8. doi: 10.3389/neuro.11.008.2008

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Copyright © 2015 Muller, Bednar, Diesmann, Gewaltig, Hines and Davison. This is

an open-access article distributed under the terms of the Creative Commons Attribu-

tion License (CC BY). The use, distribution or reproduction in other forums is per-

mitted, provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 4 April 2015 | Volume 9 | Article 11

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Python in neuroscience
	Overview of the Research Topic
	Discussion
	References

