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Abstract: A timely analysis for carbon emission reduction in buildings is an effective global response
to the crisis of climate change. The logarithmic mean Divisia index (LMDI) decomposition analysis
approach has been extensively used to assess the carbon emission reduction potential of the buildings
sector. In order to simplify the calculation process and to expand its application scope, a new
open-source Python tool (PyLMDI) developed in this article is used to compute the results of LMDI
decomposition analysis, including multiplicative and additive decomposition. Users can quickly
obtain the decomposition result by initializing the input data through a simple class data structure.
In addition, the carbon emissions from commercial buildings are used as a numerical example to
demonstrate the function of PyLMDI. In summary, PyLMDI is a potential calculation tool for index
decomposition analysis that can provide calculation guidance for carbon emission reduction in the
buildings sector. The data and codes for the numerical example are also included.

Keywords: carbon reduction; building operations; index decomposition analysis; Python-LMDI

1. Introduction

Buildings as major carbon emitters have attracted growing attention in recent decades [1].
According to the latest global status report for buildings and construction, carbon emissions
from buildings were 11.7 gigatons in 2020, accounting for 36% of total global carbon
emissions [2,3]. In addition, there is considerable evidence that as the demand for building
terminal equipment and energy consumption continues to grow, the buildings sector will
continue to be the source of a significant increase in carbon emissions in the future [4,5].
Therefore, a timely tapping of the emission reduction potential of the buildings is an
important measure to achieve the goal of controlling the global temperature rise below
2 degrees. At the same time, to formulate realistic emission reduction targets as well as to
track and evaluate performance, it is particularly important to accurately identify changes
in the driving forces behind carbon emissions from buildings [6,7].

Index decomposition analysis (IDA) is an important technical method for quantita-
tively analyzing the impact of interest on aggregate indicators, especially the intensity or
total amount of carbon emissions [8]. In 2004, Ang [9] compared various decomposition
analysis methods and concluded that the logarithmic mean Divisia index (LMDI) was the
ideal decomposition analysis approach. Subsequently, a study by [10] further introduced
the theory of LMDI and provided practical guidance. Later, Xu and Ang [11] comprehen-
sively reviewed the index decomposition analysis methods applied to carbon emissions in
2013 and found that LMDI was the most studied and widely applied method. Recently,
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Ang [12] again reviewed the history of LMDI and found that the LMDI approach was still
dominant in many areas, and this situation was expected to become more evident over
time. Motivated by this fact, Ma and his collaborators [13,14] focused on the energy and
emission systems in the buildings sector, and their results confirmed that LMDI was an
excellent decomposition analysis method. However, the existing literature on LMDI is too
technical and professional and includes intricate calculation methods. Therefore, potential
users face significant challenges, such as complex and time-consuming calculations, when
analyzing specified problems using LMDI [15].

To bridge the above gap, in this study, we aim to solve the following two problems:

• How to develop a simple and convenient tool for LMDI decomposition analysis;
• How to use this tool to analyze carbon emissions from commercial buildings, using

China and the US as examples.

To address these two issues, this is the first study to develop an open-source tool
for calculating LMDI decomposition analysis based on Python, abbreviated as PyLMDI,
available at https://github.com/xiwang2718/PyLMDI (accessed on 10 December 2021).
PyLMDI can easily and quickly calculate the multiplicative and additive decomposition
results of LMDI. On the basis of this, the carbon emissions from commercial buildings in
China and the US are utilized as a numerical example to demonstrate how to perform an
LMDI decomposition analysis with the developed PyLMDI.

The most advanced contribution of this study is the tool for LMDI decomposition
analysis that has been developed. The decomposition results can be calculated by the
tool once the decomposition model and data are given. To the best of our knowledge,
although researchers have studied LMDI extensively, presently, there is no effective tool for
calculating the decomposition result of LMDI. The developed PyLMDI tool in this study
bridges this gap and is expected to extend the LMDI decomposition analysis method to
other fields.

The remainder of this paper consists of the following four parts: In Section 2, we
review the index decomposition analysis methods; in Section 3, we introduce the theory of
LMDI and the development of PyLMDI; in Section 4, we present a numerical example; and
finally, in Section 5, we summarize the contributions of this study.

2. Literature Review

Decomposition analysis is an accounting or description technique, including IDA(Index
decomposition analysis) and SDA(Structure decomposition analysis)which has been ex-
tensively utilized to better analyze and understand energy and emission systems [16,17].
Figure 1 summarizes the development process of decomposition analysis theory. It can
be observed that the Divisia index and the Laspeyres index are the two main ideas in
IDA, which can work well in both multiplication and addition decomposition [18–20].
Since 1990, researchers have focused on Divisia decomposition and proposed the arith-
metic mean decomposition analysis method (AMDI) [21,22]. Later, Ang et al. further
proposed the well-known logarithmic mean Divisia index (LMDI) decomposition analysis
method [23]. In recent years, in order to improve the emission reduction contribution of
the construction sector, LMDI has attracted the interest of researchers with its outstanding
performance [24,25]. Table 1 lists the research results of LMDI on carbon emissions from
buildings in China over the last five years, which includes the scope of the study and
key drivers. These research trends suggest that LMDI is expected to continue to play an
important role in the future of carbon emissions in the buildings sector.

https://github.com/xiwang2718/PyLMDI
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Figure 1. (a) The difference and connection between SDA and IDA and (b) The classical index
decomposition analysis method.

Table 1. The application of LMDI decomposition analysis on building carbon emissions in China
over the past five years.

Source Year Location Scope Major Driver Forces

Gong et al. [26] 2015 Wuhan City in China Life cycle building carbon
emissions Increasing building area

Lin et al. [27] 2015 China Commercial and residential
buildings Residents’ income

Lin et al. [28] 2015 China Building construction industry Energy intensity decline

Liu et al. [29] 2015 China’s urban areas Civil buildings Urban population and per capita
floor space

Yuan et al. [30] 2015 China Residential building operation
Population, energy intensity,
consumption factors,
urbanization effect

Lu et al. [31] 2016 China Material consumption and
on-site construction activities

Emission factor, energy structure,
energy intensity

Jiang et al. [32] 2017 China Life-cycle carbon emissions in
China’s building sector

Indirect emission intensity effect
and economic output effects

Wu et al. [33] 2018 30 provinces in China Construction industry Economic growth in most
provinces of China

Wang et al. [34] 2018 China
Direct and indirect CO2
emissions in construction
industry

Industrial activity

Lai et al. [35] 2019 China Construction industry Energy consumption

Wu et al. [36] 2019 China

construction stage unit cost constructed floor area

Building operation
Urban development, floor space
effect, and energy demand from
appliance effect

Wang et al. [37] 2019 Guangzhou, China Residential sector Affluence effect of urban
development

Du et al. [38] 2020 30 provinces in China Construction industry Different in different provinces
Ma et al. [13] 2020 China Residential building Per capita income

He et al. [39] 2020 China
Rural residential buildings,
urban residential buildings and
public buildings

Economic output effect and per
capita iron and steel
accumulation effect

Lin et al. [40] 2020 China Direct carbon emissions of
buildings

Energy intensity, energy structure,
economic output

Chen et al. [41] 2020 China Building sector Economic output

Li et al. [42] 2020 Jiangsu province
in China Construction industry Area factor and the output value

intensity factor
Yang et al. [43] 2021 China Civil buildings Per capita building area effect

Zhao et al. [44] 2021 620 county-level cities
in 30 Chinese provinces Residential sector Energy consumption per capita,

urban sprawl, and land demand
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Python, as one of the most promising programming languages, has inherited good
features from other programming languages, such as C, Fortran, and Haskell, with simpler
and more elegant syntax [45,46]. Therefore, it is recognized as a leader in open-source
project development. At present, a large number of open-source tools, which are often used
to analyze energy and emission systems, such as data processing [47], dynamic simula-
tion [48–50], and system optimization [51,52], have been developed based on the Python
language. These tools have greatly improved the productivity of scientists and engineers
and are widely recognized and accepted in academia and industry [53,54]. However, to the
best of our knowledge, no tools or frameworks for decomposition analysis are currently
being designed and developed.

The above analysis shows that LMDI is the preferred decomposition analysis approach
in terms of theoretical technology and application scope and has been widely recognized
and cited in the field of carbon emissions from buildings. Nevertheless, to date, efforts
have mainly focused on the application of LMDI but lacked discussion of its calculation
method. Consequently, the computational cost and application difficulty of the LMDI
decomposition technology have increased. Therefore, there is an urgent need to calculate
the decomposition results of LMDI in a simpler way. In this study, we provide the following
contributions: A tool for calculating LMDI decomposition results is designed and developed
based on Python, which can significantly reduce the computational cost of LMDI. The
developed PyLMDI can be easily applied to carbon emission reduction in many other fields.

3. PyLMDI: A Python Tool for LMDI Decomposition Analysis

In this section, first, an overview of LMDI theory, which includes multiplicative
decomposition and addition factorization groups, is presented. Then, the calculation
process of LMDI is further explained. Finally, based on the calculation process, a new tool
for LMDI decomposition analysis is developed.

3.1. The LMDI Decomposition Analysis

In general, we assume that V is the aggregate of m sectors and can be represented

by V =
m
∑

i=1
Vi, where Vi represents the target variable from the i-th department. In n-

dimensional space, Vi can be further defined as

Vi = x1,ix2,i · · · xn,i (1)

which is used to describe the influence of n driving forces xj,i(j = 1, 2, . . . , n) over time on
the target variable Vi.

In the time period [0, T], the change of the target variable from V0 =
m
∑

i=1
x0

1,ix
0
2,i · · · x

0
n,i

to VT =
m
∑

i=1
xT

1,ix
T
2,i · · · xT

n,i can be described in different modes, which include multiplicative

decomposition:

Dtot|0→T =
VT

V0 = Dx1 Dx2 · · ·Dxn (2)

and additive decomposition:

∆Vtot|0→T = VT −V0 = ∆Vx1 + ∆Vx2 + · · ·+ ∆Vxn (3)

The Dtot and ∆Vtot on the left side of Equations (2) and (3) represent the change of
the target variable, and the terms on the right side of Equations (2) and (3) represent the
influence of various related driving factors.

As mentioned above, the Divisia index decomposition analysis is the most commonly
used decomposition method, which was proposed by the French mathematician Divisia in
1924 [55]. In the Divisia index decomposition analysis theory, all factors to be decomposed
are treated as continuous differentiable functions related to time t. Then, by perform-
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ing the differential operation on time, the influence of the change of each factor on the
decomposition target variable is obtained.

According to the definition of Divisia index decomposition analysis, take the derivative
of target variable with respect to time T, one obtains:

dVt

dt
=

n

∑
k=1

m

∑
i=1

xt
1,ix

t
2,i · · · xt

k−1,ix
t
k+1,i · · · x

t
n,i

dxt
k,i

dt
=

n

∑
k=1

m

∑
i=1

Vt
i

d
(

ln xt
k,i

)
dt

(4)

Integrate both sides with respect to time, we have:

∫ T

0

dVt

dt
= VT −V0 =

n

∑
k=1

∫ T

0

m

∑
i=1

Vt
i

d
(

ln xt
k,i

)
dt

(5)

Consider simultaneously Equation (3) and Equation (5), the additive decomposition
Equation (3) can be written as

∆Vxk |0→T =
∫ T

0

m

∑
i=1

Vt
i

d
(

ln xt
k,i

)
dt

(6)

In addition, divide both sides of Equation (5) by VT , and integrate again with respect
to time, one obtains:

∫ T

0

1
Vt

dVt

dt
= ln

VT

V0 =
n

∑
k=1

∫ T

0

m

∑
i=1

ωt
i

d
(

ln xt
k,i

)
dt

(7)

where ωi is the weight function and is represented by ωi =
Vi
V [10]. Taking both sides

of Equation (7) to the exponent, the multiplicative decomposition Equation (2) can be
written as

Dxk |0→T = exp


∫ T

0

m

∑
i=1

ωt
i

d
(

ln xt
k,i

)
dt

 (8)

It is difficult to directly calculate the additive decomposition (Equation (6)) and mul-
tiplicative decomposition (Equation (8)), resulting in a large number of approximation
methods being studied in order to obtain a reasonable decomposition result. Then, Ang
et al. [23] proposed a new logarithmic mean Divisia index decomposition analysis approach,
which was abbreviated as LMDI for simplicity. The additive decomposition Equation (6)
can be further expressed as

∆Vxk |0→T =
m

∑
i=1

L
(

VT
i , V0

i

)
ln

xT
k,i

x0
k,i

(9)

Similarly, the multiplicative decomposition Equation (8) can also be further transformed into

Dxk |0→T = exp

{
m

∑
i=1

L
(
VT

i , V0
i
)

L(VT , V0)
ln

xT
k,i

x0
k,i

}
(10)

where L(·) is the logarithmic mean function. Suppose p and q represent the target variables
at different periods, L(·) is defined as follows:

L(p, q) =
p− q

ln(p/q)
(11)
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3.2. The PyLMDI Open-Source Tool

A reasonable model framework and algorithm design flow are important prerequisites
for improving computational efficiency and broadening the scope of application [56,57].
Rearranging the LMDI theory introduced in the previous subsection, the calculation process
of LMDI can be summarized by the following five steps:

Step 1: Input the original data of the target variable and related driving force factors
and establish the LMDI decomposition identity.

Step 2: Determine the decomposition mode used for analysis.
Step 3: Calculate the change of target variable according to Equations (2) and (3).
Step 4: Calculate the influence of driving forces according to Equations (9) and (10).
Step 5: Output the decomposition results of the LMDI decomposition analysis.
Python is a popular programming language with advanced features such as open

source, interpretive and object-oriented programming [58,59]. Python has been widely
applied in scientific research [60–62], and more importantly, it can be run on all available
operating systems. Combined with the above calculation steps, a new tool for calculating
LMDI decomposition results was developed based on Python and abbreviated as PyLMDI.

In our research work, PyLMDI was developed to rely on a class data structure, with
target variables (V0 and VT) and driver variables (X0 =

(
x0

1,i, x0
2,i, · · · , x0

n,i

)
and XT =(

xT
1,i, xT

2,i, · · · , xT
n,i

)
) being input as the class parameters. The additive decomposition and

multiplicative decomposition are also encapsulated as class methods and output their
decomposition results. Figure 2 further illustrates the design principle of PyLMDI and
provides an overview of the research flow of this study. Moreover, a demo file was produced
to test the function of PyLMDI, using data from studies by Ang et al. [9,12]. In addition,
a detailed instruction manual is attached to the PyLMDI project library, which guides
all users to quickly start PyLMDI and run the code. All Python scripts and related files
mentioned in our study are freely available from the GitHub repository (https://gith
ub.com/xiwang2718/PyLMDI, accessed on 10 December 2021), where anyone can view,
download, and edit the source code.
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4. The Numerical Example and Discussion
4.1. Historical Carbon Abatement in the Commercial Building Operation: China versus the US

Commercial buildings, an important component of the buildings sector, are also
regarded as having more potential for carbon emission reduction than other sectors [63,64].
On the other hand, as the world’s top two carbon emitters, the efforts of China and the

https://github.com/xiwang2718/PyLMDI
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US to reduce carbon emissions can effectively contribute to the global response to climate
change [65,66]. In this section, carbon emission models for China and the US can be
established based on carbon emissions from commercial buildings (C), energy consumption
(E), population size (P), public floor area (F), tertiary industry added value (Gs), and GDP
(G). The developed PyLMDI was applied to calculate the degree of influence driving forces
exerted on the carbon emissions from commercial buildings in different time periods. The
raw data related to China’s commercial buildings were collected from IBED(International
Building Emission Dataset) datasets, which have been extensively accepted by existing
efforts [67–69], and the raw data related to China’s economy and population were collected
from the China Statistical Yearbook. The raw data for the US were derived from the Energy
Information Administration. Figure 3 illustrates the dynamic of carbon emissions in China
and the US from 2000 to 2018.
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According to the classic IPAT(Impact, population, affluence, technology) model [70,71],
the carbon emission models for commercial buildings can be extended as follows:.

C = P · g · s · i · e · K (12)

where g = G
P represents the Gross Domestic Product (GDP) per capita, s = Gs

G represents
the industrial structure,e = E

F represents the Energy intensity, i = F
Gs

represents the
economic efficiency, and K = C

E represents the total emissions factor. By performing LMDI
multiplication decomposition analysis on Equation (12), the contribution of each driving
force to carbon emissions at different time periods can be obtained as shown below:

∆C|0→T = CT − C0 = ∆P + ∆g + ∆s + ∆i + ∆e + ∆K (13)

In addition, according to the time span of the collected research data, in this study
we adopt the analysis strategy of decomposition every six years. The developed PyLMDI
was utilized to calculate the decomposition analysis results of the carbon emissions from
commercial buildings. First, according to Equation (12), the observed data of carbon
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emissions and the driving forces at different moments are input. Then, we instantiate the
corresponding PyLMDI classes for China and the US. Next, the additive decomposition
class method is used to compute the results of all the items in Equation (13). Finally, the
results of the LMDI decomposition analysis are output and visualized in Figure 4. The
source code for the calculations is also available at https://github.com/xiwang2718/Py
LMDI (accessed on 10 December 2021). The code is run through Spyder IDE (Python 3.8)
on a Windows operating system.
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Figure 4. The contribution level of various influencing factors to the changes in carbon emissions
from commercial buildings in (a) China and (b) the US.

Figure 4 shows the staged changes of different driving forces on the carbon emissions
from commercial buildings in the past 20 years. As shown in Figure 4a, the most prominent
positive driving force for changes in China’s carbon emissions is the GDP per capita. Addi-
tionally, the greatest negative contribution to carbon emissions from China’s commercial
buildings is energy intensity, which also means energy intensity is the key driving force to
promote carbon reduction from China’s commercial buildings. Regarding the US, Figure 4b
shows that the per capita GDP also plays a significant, positive role in carbon emissions
of commercial buildings in the US, and it should be pointed out that this influence is very
different from that in China. In addition, industrial structure and economic efficiency are
the major factors in reducing carbon emissions from the US’s commercial buildings.

After determining the contribution level of each influencing factor on carbon emissions
in three different time periods, PyLMDI was again applied to calculate the year-by-year
decomposition results over nearly 20 years, and then to assess their respective historical
carbon emission reduction levels (Figure 5). To boost the interpretability of the results, two
error bands are attached in Figure 5. (The error ranges for China and the US are 20.45 MtCO2
and 31.55 MtCO2, respectively). As illustrated in Figure 5a, the total carbon emission
reduction in China’s commercial buildings has shown an increasing trend. The curve in
Figure 5b shows a significant downward trend in the total amount of carbon reduction in the
US. By comparing the carbon emission reduction levels of commercial buildings in China
and the US, it is easy to find that there has been little difference between the total carbon

https://github.com/xiwang2718/PyLMDI
https://github.com/xiwang2718/PyLMDI
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emission reduction over the past nearly two decades. Specifically, China’s annual carbon
emission reduction is 50.44 ± 20.45 MtCO2, while that in the US is 65.36 ± 31.55 MtCO2.
Nonetheless, China and the US show considerable differences in their carbon emission
reduction trends. Overall, China shows more carbon emission reduction potential than the
US, and similar conclusions can be drawn from recent research efforts [69].
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4.2. Discussion

In the previous subsection, LMDI was used to analyze the carbon emission reduction
potential of commercial buildings in China and the U.S. All decomposition results were
calculated via PyLMDI. In this subsection we further illustrate the reliability of the results
by discussing the residual value of the decomposition results.

Theoretically, we assume that there is a residual term in the decomposition Equation (13),
and it is expressed as ∆Cres; then, the residual term ∆Cres can be defined as follows:

∆Cres = ∆C|0→T − (∆P + ∆g + ∆s + ∆i + ∆e + ∆K) (14)

Substituting Equation (8) into Equation (14), one obtains:

∆Cres = ∆C|0→T − (∆P + ∆g + ∆s + ∆i + ∆e + ∆K)

= ∆C|0→T − L
(
CT , C0)(ln PT

P0 + ln gT

g0 + ln sT

s0 + ln iT

i0 + ln eT

e0 + ln KT

K0

)
= ∆C|0→T − L

(
CT , C0) ln

(
PT

P0 ×
gT

g0 × sT

s0 × iT

i0 ×
eT

e0 × KT
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)
= ∆C|0→T − L

(
CT , C0) CT−C0

L(CT ,C0)

= ∆C|0→T−∆C|0→T

= 0

(15)

Therefore, Equation (13) is proven to be a constant equation, i.e., there is no decom-
position residual term. In addition, the calculation results from PyLMDI also verify this
conclusion numerically.

5. Conclusions

The logarithmic mean Divisia index (LMDI) is a mature decomposition analysis
method. Recently, LMDI has been extensively recognized by researchers and applied
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in many fields. The trends suggest that it will continue to play an important role in
energy consumption and emission decomposition analysis in the future, particularly in the
buildings sector.

In this study, the theory and application of LMDI were introduced in detail. A
new open-source tool, called PyLMDI, for calculating LMDI decomposition results was
developed based on the Python programming language (available on https://github.com/x
iwang2718/PyLMDI, accessed on 10 December 2021), which provided enough information
for interested users to use the LMDI decomposition approach in the “black box” mode.
In addition, the numerical example shows that PyLMDI is an efficient tool for analyzing
carbon emission reductions from commercial buildings in China and the United States [72].
Overall, the PyLMDI tool developed in this study provides calculation guidance for carbon
emission decomposition analysis in the buildings sector and other fields. Future studies
should aim to update the tool based on other programming languages and software (such
as R language), and also to develop tools for other new decomposition analysis methods
such as the generalized Divisia index method [73,74].
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