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ABSTRACT
Graph embedding methods produce unsupervised node features from graphs that can then be used for a variety
of machine learning tasks. Modern graphs, particularly in industrial applications, contain billions of nodes and
trillions of edges, which exceeds the capability of existing embedding systems. We present PyTorch-BigGraph
(PBG), an embedding system that incorporates several modifications to traditional multi-relation embedding
systems that allow it to scale to graphs with billions of nodes and trillions of edges. PBG uses graph partitioning
to train arbitrarily large embeddings on either a single machine or in a distributed environment. We demonstrate
comparable performance with existing embedding systems on common benchmarks, while allowing for scaling to
arbitrarily large graphs and parallelization on multiple machines. We train and evaluate embeddings on several
large social network graphs as well as the full Freebase dataset, which contains over 100 million nodes and 2
billion edges.

1 INTRODUCTION

Graph structured data is a common input to a variety of
machine learning tasks (Wu et al., 2017; Cook & Holder,
2006; Nickel et al., 2016a; Hamilton et al., 2017b). Working
with graph data directly is difficult, so a common technique
is to use graph embedding methods to create vector repre-
sentations for each node so that distances between these
vectors predict the occurrence of edges in the graph. Graph
embeddings have been have been shown to serve as useful
features for downstream tasks such as recommender sys-
tems in e-commerce (Wang et al., 2018), link prediction in
social media (Perozzi et al., 2014), predicting drug interac-
tions and characterizing protein-protein networks (Zitnik &
Leskovec, 2017).

Graph data is common at modern web companies and poses
an extra challenge to standard embedding methods: scale.
For example, the Facebook graph includes over two billion
user nodes and over a trillion edges representing friendships,
likes, posts and other connections (Ching et al., 2015). The
graph of users and products at Alibaba also consists of more
than one billion users and two billion items (Wang et al.,
2018). At Pinterest, the user to item graph includes over 2
billion entities and over 17 billion edges (Ying et al., 2018).

There are two main challenges for embedding graphs of
this size. First, an embedding system must be fast enough
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to embed graphs with 1011 − 1012 edges in a reasonable
time. Second, a model with two billion nodes and even 32
embedding parameters per node (expressed as floats) would
require 800GB of memory just to store its parameters, thus
many standard methods exceed the memory capacity of
typical commodity servers.

We present PyTorch-BigGraph (PBG), an embedding sys-
tem that incorporates several modifications to standard mod-
els. The contribution of PBG is to scale to graphs with
billions of nodes and trillions of edges. Important compo-
nents of PBG are:

• A block decomposition of the adjacency matrix into
N buckets, training on the edges from one bucket at a
time. PBG then either swaps embeddings from each
partition to disk to reduce memory usage, or performs
distributed execution across multiple machines.

• A distributed execution model that leverages the block
decomposition for the large parameter matrices, as well
as a parameter server architecture for global parameters
and feature embeddings for featurized nodes.

• Efficient negative sampling for nodes that samples neg-
ative nodes both uniformly and from the data, and
reuses negatives within a batch to reduce memory band-
width.

• Support for multi-entity, multi-relation graphs with per-
relation configuration options such as edge weight and
choice of relation operator.
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We evaluate PBG on the Freebase, LiveJournal and YouTube
graphs and show that it matches the performance of existing
embedding systems.

We also report results on larger graphs. We construct an
embedding of the full Freebase knowledge graph (121 mil-
lion entities, 2.4 billion edges), which we release publicly
with this paper. Partitioning of the Freebase graph reduces
memory consumption by 88% with only a small degrada-
tion in the embedding quality, and distributed execution on
8 machines decreases training time by a factor of 4. We
also perform experiments on a large Twitter graph showing
similar results with near-linear scaling.

PBG has been released as an open source project at
https://github.com/facebookresearch/
PyTorch-BigGraph. It is written entirely in Pytorch
(Paszke et al., 2017) with no external dependencies or
custom operators.

2 RELATED WORK

Many types of models have been developed for multi-
relation graphs (Bordes et al., 2011; 2013; Nickel et al.,
2011; Trouillon et al., 2016). Typically these models have
been used in the context of entity representations in knowl-
edge bases (e.g. Freebase or WordNet). Entities are given
a base vector, these vectors are transformed by a learned
function for each transformation, and existence of edges is
predicted by some distance measure in the new space. More
recent work by Wu et al. proposes modeling some entities
as bags of other entities (rather than giving them explicit
embeddings). PBG borrows many insights on loss functions
and transformations from this literature.

There are significant engineering challenges to scaling graph
embedding models. Proposed approaches in the literature
include multi-level methods (Liang et al., 2018), distributed
embedding systems (Ordentlich et al., 2016; Shazeer et al.,
2016), as well as specialized methods for standard algo-
rithms such as SVD and k-means on large graphs (Ching
et al., 2015). Gains from large embedding systems have
been documented in e-commerce (Wang et al., 2018) and
other applications.

There is an extensive literature on distributional semantics
in natural language processing. A key breakthrough in
this literature are algorithms such as word2vec which al-
lowed word embedding methods to scale to larger corpora
(Mikolov et al., 2013). Recent work has shown that there is
economic value from ingesting even larger data sets using
distributed word2vec systems (Ordentlich et al., 2016).

There is substantial prior work on scalable parallel algo-
rithms for training machine learning models (Dean et al.,
2012). Highly related to PBG is work on scaling various

forms of matrix factorization (Gupta et al., 1997; Gemulla
et al., 2011). Matrix factorization is closely related to em-
beddings, and has had widespread success in recommender
systems (Koren et al., 2009).

Recent work proposes to construct embeddings by us-
ing graph convolutional neural networks (GCNs, Kipf &
Welling 2016). These methods have shown success when
applied to problems at large-scale web companies (Hamil-
ton et al., 2017a; Ying et al., 2018). The problem studied by
the GCN is different than the one solved by PBG (mostly in
that GCNs are typically applied to graphs where the nodes
are already featurized). Combining ideas from graph em-
bedding and GCN models is an interesting future direction
both for theory and applications.

3 MULTI-RELATION EMBEDDINGS

3.1 Model

A multi-relation graph is a directed graph G = (V,R,E)
where V are the nodes (aka entities), R is a set of relations,
and E is a set of edges where a generic element e = (s, r, d)
(source, relation, destination) where s, d ∈ V and r ∈ R.
We also discuss graphs that have multiple entity types. Such
graphs have a set of entity types and a mapping from nodes
to entity types, and each relation specifies a single entity
type for source and destination nodes for all edges of that
relation.

We will represent each entity and relation type with a vector
of parameters. We will denote this vector as θ. A multi-
relation graph embedding uses a score function f(θs, θr, θd)
that produces a score for each edge that attempts to max-
imize the score of f(θs, θr, θd) for any (s, r, d) ∈ E and
minimizes it for (s, r, d) 6∈ E.

PBG considers scoring functions between a transformed
version of an edge’s source and destination entities’ vectors
(θs, θd):

f(θs, θr, θd) = sim
(
g(s)(θs, θr), g(d)(θd, θr)

)
where θr corresponds to parameters of the relation-specific
transformation operator. Using a factorized scoring function
produces a embeddings where the (transformed) similarity
between node embeddings has semantic meaning.

PBG uses dot product or cosine similarity scoring func-
tions, and a choice of relation operator g which include
linear transformation, translation, and complex multiplica-
tion. This combination of scoring functions and relation
operators allows PBG to train RESCAL, DistMult, TransE,
and ComplEx models (Nickel et al., 2011; Yang et al., 2014;
Bordes et al., 2013; Trouillon et al., 2016). 1 A subset
of relation types may use the identity relation, so that the

1For knowledge base datasets, state-of-the-art performance is
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Figure 1. The PBG partitioning scheme for large graphs. Left: nodes are divided into P partitions that are sized to fit in memory.
Edges are divided into buckets based on the partition of their source and destination nodes. In distributed mode, multiple buckets with
non-overlapping partitions can be executed in parallel (red squares). Center: Entity types with small cardinality do not have to be
partitioned; if all entity types used for tail nodes are unpartitioned, then edges can be divided into P buckets based only on source
node partitions. Right: the ‘inside-out’ bucket order guarantees that buckets have at least one previously-trained embedding partition.
Empirically, this ordering produces better embeddings than other alternatives (or random)

untransformed entity embeddings predict edges of this rela-
tion.

Model g(x, θr) sim(a,b)
RESCAL Arx < a, b >
TransE x+ θr cos(a, b)
DistMult x� θr < a, b >

ComplEx x� θr Re{< a, b >}

We consider sparse graphs, so the input to PBG is a list
of positive-labeled (existing) edges. Negative edges are
constructed by sampling. In PBG negative samples are
generated by corrupting positive edges by sampling either a
new source or a destination for each existing edge (Bordes
et al., 2013).

Because edge distributions in real world graphs are heavy
tailed, the choice of how to sample nodes to construct neg-
ative examples can affect model quality (Mikolov et al.,
2013). On one hand, if we sample negatives strictly accord-
ing to the data distribution, there is no penalty for the model
predicting high scores for edges with rare nodes. On the
other hand, if we sample negatives uniformly, the model
can perform very well (especially in large graphs) by simply
scoring edges proportional to their source and destination
node frequency in the dataset. Both of these results are
undesirable, so in PBG we sample a fraction α of negatives
according to their prevalence in the training data and (1−α)

achieved with ComplEx embeddings, but this may not generalize
to all graphs. On small knowledge graphs, a general linear trans-
form (RESCAL) does not perform as well as transformations with
fewer parameters such as translation (as well as transformations
that can be represented in the RESCAL model) because the re-
lation operators overfit (Nickel et al., 2016b). However, we are
interested in web interaction graphs which have a very small num-
ber of relations relative to entities, so the relation parameters do
not contribute substantially to model size, nor are they prone to
overfitting.

of them uniformly at random. By default PBG uses α = .5.

In multi-entity graphs, negatives are only sampled from
the correct entity type for an edge’s relation. Thus, in our
model, the score for an ‘invalid’ edge (wrong entity types)
is undefined. The approach of using entity types has been
studied before in the context of knowledge graphs (Krompaß
et al., 2015), but we found it to be particularly important
in graphs that have entity types with highly unbalanced
numbers of nodes, e.g. 1 billion users vs. 1 million products.
With uniform negative sampling over all nodes, the loss
would be dominated by user negative nodes and would not
optimize for ranking between user-product edges.

PBG optimizes a margin-based ranking objective between
each edge e in the training data and a set of edges e′ con-
structed by corrupting e with either a sampled source or
destination node (but not both).

L =
∑
e∈G

∑
e′∈S′

e

max(f(e)− f(e′) + λ, 0))

where λ is a margin hyperparameter and

S′
e = {(s′, r, d)|s′ ∈ V } ∪ {(s, r, d′|d′ ∈ V } .

Logistic and softmax loss functions may also be used instead
of a ranking objective in order to reproduce certain graph
embedding models (e.g. Trouillon et al. 2016).

Model updates to the embeddings and relation parameters
are performed via minibatch stochastic gradient descent
(SGD). We use the Adagrad optimizer, and sum the accu-
mulated gradient G over each embedding vector to reduce
memory usage on large graphs (Duchi et al., 2011).
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4 TRAINING AT SCALE

PBG is designed to operate on arbitrarily large graphs run-
ning on either a single machine or can be distributed across
multiple machines. In either case, training occurs on a num-
ber of CPU threads equal to the number of machine cores,
with no explicit synchronization between cores as described
in (Recht et al., 2011).

4.1 Partitioning of Entities and Edges

PBG uses a partitioning scheme to support models that
are too large to fit in memory on a single machine. This
partitioning also allows for distributed training of the model.

Each entity type in G can be either partitioned or remain
unpartitioned. Partitioned entities are split into P parts. P
is chosen such that each part fits into memory or to support
the desired level of parallelism for execution.

After entities are partitioned, edges are divided into buckets
based on their source and destination entities’ partitions. For
example, if an edge has a source in partition p1 and desti-
nation in partition p2 then it is placed into bucket (p1, p2).
This creates P 2 buckets when both source and destination
entity types are partitioned and P buckets if only source (or
destination) entities are partitioned.

Each epoch of training iterates through each of the edge
buckets. For edge bucket (pi, pj), source and destination
partitions i and j respectively are swapped from disk, and
then the edges (or a subset of edges) are loaded and subdi-
vided among the threads for training.

This graph partitioning introduces two functional changes
to the base algorithm described in the last section. First,
each candidate edge (s, r, d) is only compared to negatives
(s, r, d′) in the ranking loss where d′ is drawn from the same
partition (same for source nodes)2.

Second, edges are no longer sampled i.i.d. but are grouped
by partition. Convergence under SGD to a stationary or
chain-recurrent point, is still guaranteed under this modifi-
cation (see (Gemulla et al., 2011), Sec. 4.2), but may suffer
from slower convergence34.

We observe that the order of iterating through edge buck-
ets may affect the final model. Specifically, for each edge
bucket (p1, p2) except the first, it is important that an edge
bucket (p1, ∗) or (∗, p2) was trained in a previous iteration.

2This would not matter if we were using an independent loss
for positives and negatives, e.g. a binary cross-entropy loss

3The slower convergence may be ameliorated by switching
between the buckets (‘stratum losses’ (Gemulla et al., 2011)) more
frequently, i.e. in each epoch divide the edges from each bucket
into N parts and iterate over the buckets N times, operating on
one edge part each time.

4In practice, we use Adagrad rather than SGD.

This constraint ensures that embeddings in all partitions are
aligned in the same space. For single-machine embeddings,
we found that an ‘inside-out‘ ordering, illustrated in Fig-
ure 1, achieved the best performance while minimizing the
number of swaps to disk.

4.2 Distributed Execution

Existing distributed embedding systems typically use a pa-
rameter server architecture. In this architecture, a (possibly
sharded) parameter server contains a key-value store of em-
beddings. At each SGD iteration, the embedding parameters
required by a minibatch of data are requested from the pa-
rameter server, and gradients are (asynchronously) sent to
the server to update the parameters.

The parameter server paradigm has been effective for train-
ing large sparse models (Li et al., 2014), but it has a number
of drawbacks. One issue is that parameter-server based em-
bedding frameworks require too much network bandwidth
to run efficiently, since all embeddings for each minibatch
of edges and their associated negative samples must be
transferred at each SGD step (Ordentlich et al., 2016) 5.
Furthermore, we found it necessary for effective research
use that the same models could be run in a single-machine
or distributed context, but the parameter server architecture
limits the size of models that can be run on a single machine.
Finally, we would like to avoid the potential convergence
problems from asynchronous model updates since our em-
beddings are already partitioned into independent sets.

Given partitioned entities and edges PBG employs a par-
allelization scheme that combines a locking scheme over
the model partitions described in Section 4.1, with an asyn-
chronous parameter server architecture for shared parame-
ters i.e. the relation operators as well as unpartitioned or
featurized entity types.

In this parallelization scheme, illustrated in Figure 2, par-
titioned embeddings are locked by machines for training.
Multiple edge buckets can be trained in parallel as long
as they operate on disjoint sets of partitions, as shown in
Figure 1 (left). Training can proceed in parallel on up to
P/2 machines. The locking of partitions is handled by a
centralized lock server on one machine, which parcels out
buckets to the workers in order to minimize communication
(i.e. favors re-using a partition) The lock server also main-
tains the invariant described in Section 4.1, that only the
first bucket should operate on two uninitialized partitions.

The partitioned embeddings themselves are stored in a par-
tition server sharded across the N training machines. A

5In fact, our approach to batched negative sampling, described
in Section 4.3 reduces the number of negatives that must be re-
trieved so would require less bandwidth than (Ordentlich et al.,
2016) if a parameter server was used.
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Figure 2. A block diagram of the modules used for PBG’s distributed mode. Arrows illustrate the communications that the Rank 2 Trainer
performs for the training of one bucket. First, the trainer requests a bucket from the lock server on Rank 1, which locks that bucket’s
partitions. The trainer then saves any partitions that it is no longer using and loads new partitions that it needs to and from the sharded
partition servers, at which point it can release its old partitions on the lock server. Edges are then loaded from a shared filesystem, and
training occurs on multiple threads without inter-thread synchronization(Recht et al., 2011). In a separate thread, a small number of shared
parameters are continuously synchronized with a sharded parameter server. Model checkpoints are occasionally written to the shared
filesystem from the trainers.

machine fetches the source and destination partitions, which
are often multiple GB in size, from the partition server, and
trains on a bucket of edges loaded from shared disk. Check-
points of the partitioned entities are intermittently saved to
shared disk.

Some model parameters are global and thus cannot be parti-
tioned. This most importantly includes relation parameters,
as well as entity types that have very small cardinality or use
featurized embeddings. There are a relatively small number
of such parameters (< 106), and they are handled via asyn-
chronous updates with a sharded parameter server. Specifi-
cally, each trainer maintains a background thread that has
access to all unpartitioned model parameters. This thread
asynchronously fetches the parameters from the server and
updates the local model, and pushes accumulated gradients
from the local model to the parameter server. This thread
performs continuous synchronization with some throttling
to avoid saturating network bandwidth.

4.3 Batched Negative Sampling

The negative sampling approach used by most graph embed-
ding methods is highly memory (or network) bound because
it requires B · Bn · d floats of memory access to perform
O(B ·Bn ·d) floating-point operations (B ·Bn dot products).
Indeed, Wu et al.. report that training speed “is close to an
inverse linear function of [number of negatives]”.

To increase memory efficiency on large graphs, we observe
that a single batch of Bn sampled source or destination
nodes can be reused to construct multiple negative examples.
In a typical setup, PBG takes a batch of B = 1000 positive
edges from the training set, and breaks it into chunks of 50
edges. The destination (equivalently, source) embeddings
from each chunk is concatenated with 50 embeddings sam-
pled uniformly from the tail entity type. The outer product
of the 50 positives with the 200 sampled nodes equates to
9900 negative examples (excluding the induced positives).
The training computation is summarized in Figure 3.

This approach is much cheaper than sampling negatives
for each batch. For each batch of B positive edges, only
3B embeddings are fetched from memory and 3BBn edge
scores (dot products) are computed. The edge scores for
a batch can be computed as a batched Bn × Bn matrix
multiply, which can be executed with high efficiency. Figure
4 shows the performance of PBG with different numbers of
negative samples, with and without batched negatives.

In multi-relation graphs with a small number of relations, we
construct batches of edges that all share the same relation
type r. This improves training speed specifically for the
linear relation operator fr(t) = Art, because it can be
formulated as a matrix-multiply fr(T ) = ArT.
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Figure 3. Memory-efficient batched negative sampling. Embeddings are fetched for the B source and destination entities in a batch
of edges, as well as B uniformly-sampled source and destination entities. Each chunk of Bn/2 edges is corrupted with all source or
destination entities in its chunk, as well as the corresponding chunk of the uniform embeddings, resulting in Bn negative examples per
positive edge. The negative scores are computed via a batch matrix multiply.

Figure 4. Effect of number of negative samples per edge on training
speed (d = 100). With unbatched negatives, training speed is
inversely proportional to number of negatives, but with batched
negatives, speed is nearly constant for Bn ≤ 100.

5 EXPERIMENTS

We evaluate PBG on two types of graphs common in both
the academic literature and practical applications.

In one set of experiments we focus on embedding real on-
line social networks. We evaluate PBG constructed embed-
dings of the user-user interaction graph from LiveJournal
(Backstrom et al., 2006) (Leskovec et al., 2009), a user-user
follow graph from Twitter (Kwak et al., 2010) (Boldi &
Vigna, 2004) (Boldi et al., 2011), and a user-user interaction
graph from YouTube (Tang & Liu, 2009). The LiveJournal
and Twitter data set we used are from SNAP (Leskovec &

Krevl, 2014).

We consider two types of tasks: link prediction in the graph
and the use of the graph embedding vectors to predict other
attributes of the nodes. We find that PBG is much faster and
more scalable than existing methods while achieving com-
parable performance. Second, the distributed partitioning
does not impact the quality of the learned embeddings on
large graphs. Third, PBG allows for parallel execution and
thus can decrease wallclock training time proportional the
number of partitions.

We also consider using PBG to embed the Freebase knowl-
edge graph. Knowledge graphs have a very different struc-
ture from social networks and the presence of many relation
types allows us to study the effect of using various relation
operators from the literature.

Here we find that PBG can again match (or exceed) state of
the art performance but that some types of relation operators
(e.g. ComplEx) require care when using distributed training.

5.1 Experimental Setup

For each dataset, we report the best results from a grid
search of learning rates from 0.001 − 0.1, margins from
0.05−0.2 and negative batch sizes of 100−500, and choose
the parameter settings based on the validation split. Results
for FB15k are reported on the separate test split.

All experiments are performed on machines with 24 Intel®

Xeon® cores (two sockets) and two hyperthreads per core,
for a total of 48 virtual cores, and 256 GB of RAM.
We use 40 HOGWILD threads for training. For dis-
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LiveJournal
Metric MRR MR Hits@10 Memory
DeepWalk* 0.691 234.6 0.842 61.23 GB
MILE (1 level)* 0.629 174.4 0.785 60.88 GB
MILE (5 levels)* 0.505 462.8 0.632 22.78 GB
PBG (1 partition) 0.749 245.9 0.857 20.88 GB

YouTube
Metric Micro-F1 Macro-F1
DeepWalk† 45.2% 34.7%
MILE (6 level)† 46.1% 38.5%
MILE (8 levels)† 44.3% 35.3%
PBG (1 partition) 48.0% 40.9%

Table 1. Performance of PBG, DeepWalk, and MILE on the LiveJournal dataset and the YouTube dataset. Left: Link prediction evaluation
and peak memory usage for the trained embeddings of the LiveJournal dataset and YouTube dataset. The ranking metrics on the test set
are obtained by ranking positive edges among randomly sampled corrupted edges. Right: Micro-f1 and Macro-f1 on the user categories
prediction task of the YouTube dataset when using learned embeddings as features. * Results obtained running software provided by the
original authors. † Results reported in (Liang et al., 2018).

Figure 5. Learning curve for PBG and competing embedding meth-
ods on the LiveJournal dataset. For each approach, we evaluate
the MRR after each epoch. DeepWalk takes more than 20 hours
to train for one epoch. Therefore, we limit the number of walks
during training and show the embedding performance (marked as
‘x’) to further reduce the computation time.|

tributed execution, we use a cluster of machines con-
nected via 50Gb/s ethernet. We use the TCP backend
for torch.distributed which in practice achieves ap-
proximately 1 GB/s send/receive bandwidth. For memory
usage measurements we report peak resident set size sam-
pled at 0.1 second intervals.

5.2 LiveJournal

We evaluate PBG performance on the LiveJournal dataset
(Backstrom et al., 2006; Leskovec et al., 2009) collected
from the blogging site LiveJournal6, where users can fol-
low others to form a social network. The dataset contains
4,847,571 nodes and 68,993,773 edges. We construct train
and test splits of the dataset that contains 75% and 25% of
the total edges.

We compare the PBG embedding performance with MILE,
which can also scale to large graphs. MILE repeatedly
coarsens the graphs into smaller ones and applies traditional
embedding methods on coarsened graph at each level as
well as a final refinement step to get the embeddings of the
original graph. We also show the performance of DeepWalk,

6https://www.livejournal.com

which is used as the base embedding method for MILE.

We evaluate the embeddings using the same methodology
described in Section 5.4.2. To compare the computation
time across different approaches, we report the learning
curve of test MRR obtained by different approaches during
training with respect to time (see Figure 5).

5.3 YouTube

To show that PBG embeddings are useful for downstream
supervised tasks, we apply PBG to the Youtube dataset
(Tang & Liu, 2009). The dataset contains a social network
between users on YouTube7, as well as the labels of these
users that represent categories of groups they subscribed.
This social network dataset contains 1,138,499 nodes and
2,990,443 edges.

We compare the performance of PBG embeddings with
MILE embeddings and DeepWalk embeddings by applying
those embeddings as features to perform a multi-label clas-
sification of users. We follow the typical methods (Perozzi
et al., 2014; Liang et al., 2018) to evaluate the embedding
performance, where we run a 10-fold cross validation by
randomly selecting 90% of the labeled data as training data
and the rest as testing data. We use the learned embedding
as features and train a one-vs-rest logistic regression model
to solve the multi-label node classfication problem.

We find that PBG embeddings perform comparably (slightly
better) than competing methods (see Table 1).

5.4 Freebase Knowledge Graph

Freebase (FB) is a large knowledge graph that contains
general facts extracted from Wikipedia, etc. The FB15k
dataset consists of a subset of Freebase consisting of 14,951
entities, 1345 relations and 592,213 edges.

7www.youtube.com
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MRR
Method Raw Filtered Hit@10
RESCAL (Nickel et al., 2011) 0.189 0.354 0.587
TransE (Bordes et al., 2013) 0.222 0.463 0.749
HolE (Nickel et al., 2016b) 0.232 0.524 0.739
ComplEx (Trouillon et al., 2016) 0.242 0.692 0.840
R-GCN+ (Schlichtkrull et al., 2018) 0.262 0.696 0.842
StarSpace (Wu et al., 2017) - - 0.838
IRN (Shen et al., 2016) - - 0.927
Reciprocal ComplEx-N3 (Lacroix et al., 2018) - 0.860 0.910
PBG (TransE) 0.265 0.594 0.785
PBG (ComplEx) 0.242 0.790 0.872

Table 2. Comparison of PBG with other embedding methods on the FB15k dataset. PBG embeddings are trained with both a TransE and
ComplEx model, and in both cases perform similarly to the reported results for that model. The best reported results on FB15k (Lacroix
et al., 2018) use extremely large embedding dimension, which we do not reproduce here.

5.4.1 FB15K

We compare the performance of PBG embeddings on a
link prediction task with existing embedding methods for
knowledge graphs. We compare mean reciprocal rank and
Hits@10 with existing methods for knowledge graph em-
beddings reported in (Trouillon et al., 2016).8 Results are
shown in Table 2.

We embed FB15k with a complex multiplication relation
operator as in (Trouillon et al., 2016). We evaluate PBG
using two different configurations: one that is similar to the
TransE model, and one similar to the ComplEx model. As in
that work, we also find it beneficial to use separate relation
embeddings for source negatives and destination negatives
(described as ‘reciprocal predicates’ in Lacroix et al. 2018).
For ComplEx, we train a 400-dimensional embedding for 50
epochs with a softmax loss over negatives using dot product
similarity.

PBG performs comparably to the reported results for TransE
and ComplEx models. In addition, recent papers have re-
ported even stronger results for FB15k (and other small
knowledge graphs like WordNet) using ComplEx with very
large embeddings of thousands of dimensions (Lacroix et al.,
2018). We managed to reproduce these architectures and
results in the PBG framework but do not report the details
here due to space constraints.

5.4.2 Full Freebase

Next, we compare different numbers of partitions and dis-
tributed training using the full Freebase dataset 9 (Google,
2018). We use all entities and relations that appeared at least
5 times in the full dataset, resulting in a total of 121,216,723
nodes, 25,291 relations and 2,725,070,599 edges. We con-
struct train, validation and test splits of the dataset, which
contain 90%, 5%, 5% of the total edges, respectively. The
data format we use for the full freebase dataset is the same
as in the freebase 15k dataset described in Section 5.4.1.

To investigate the effect of number of partitions, we par-
tition Freebase nodes uniformly into different numbers of
partitions and measure model performance, training time,
and peak memory usage. We then consider parallel train-
ing on different numbers of machines. For each number of
machines M , we use 2M partitions (which is the minimum
number of partitions that allows this level of parallelism.
Note that the full model size (d = 100) is 48.5 GB.

We train each model for 10 epochs, using the same grid
search over hyperparameters for each number of partitions
chosen from the same set grid search as FB15k. For the
multi-machine evaluation, we use a consistent hyperparam-
eters that had the best performance on single-machine train-
ing.

We evaluate the models with a link prediction task similar
to that described in Section 5.4.1. However due to the large
number of candidate nodes, for each edge in the eval set we

8We report both raw and filtered ranking metrics for FB15k
as described in (Bordes et al., 2013). For the filtered metrics, all
edges that exist in the training, validation or test sets are removed
from the set of candidate corrupted edges for ranking. This avoids
artificially poor results due to true edges from the data being ranked
above a test edge.

9Google, Freebase Data Dumps,
https://developers.google.com/freebase, Sept. 10, 2018.
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# Parts MRR Hits@10 Time (h) Mem (GB)
1 0.170 0.285 30 59.6
4 0.174 0.286 31 30.4
8 0.172 0.288 33 15.5
16 0.174 0.290 40 6.8

# Machines # Parts MRR Hits@10 Time (h) Mem (GB)
1 1 0.170 0.285 30 59.6
2 4 0.170 0.280 23 64.4
4 8 0.171 0.285 13 30.5
8 16 0.163 0.276 7.7 15.0

Table 3. Model evaluation, training time (10 epochs) and peak memory usage for embeddings of the full Freebase knowledge graph. MRR
and Hits@10 are evaluated in the raw setting. Left: Training with different numbers of partitions on a single machine. Right: Distributed
training on different numbers of machines.

Figure 6. Learning curve for PBG models on the Freebase dataset with different number of machines used in training. MRR of learned
embeddings is plotted as a function of epoch (top) and wallclock time (bottom).

select 10, 000 candidate negative nodes sampled from the set
of entities according to their prevalence in the training data
to produce negative edges which we use to compute mean
reciprocal rank and hits@1010. We report these results raw
(unfiltered), following prior work on large graphs(Bordes
et al., 2013).

Results are reported in Table 3, along with training time and
memory usage.

We observe that on a single machine, peak memory usage
decreases almost linearly with number of partitions, but
training time increases somewhat due to extra time spent
on I/O11. On multiple machines, the full model is sharded
across the machines rather than on disk, so memory usage is
higher with 2 machines, but decreases linearly as the number
of machines increases. Training time also decreases almost
linearly with increasing number of machines, although there
is again some overhead for training on multiple machines.
This consists of a combination of I/O overhead and incom-
plete occupancy. The occupancy issue arises because there
may not always be an available bucket with non-locked par-
titions for a machine to work on. Increasing the number
of partitions relative to the number of machines will thus

10We sample candidate negative nodes according to their preva-
lence in the data because the full Freebase dataset has such
a long-tailed degree distribution that we find that models can
achieve > 50% hit@1 against 10, 000 uniformly-sampled neg-
atives, which suggests that it is just performing ranking based on
the degree distribution.

11This I/O overhead is higher on sparser graphs and lower on
denser graphs.

increase occupancy, but we don’t examine this tradeoff in
detail.

Freebase embeddings have nearly identical link prediction
accuracy after 10 epochs of training with and without node
partitioning and parallelization up to four machines. For
the highest parallelization condition (8 machines), a small
degradation in MRR from 0.171 to 0.163 is observed. Fig-
ure 6 shows that training speed does not scale linearly with
number of machines on Freebase; however, we do see linear
scaling for web interaction graph datasets (see Figure 7).

PBG embeddings trained with the ComplEx model perform
better than TransE on the link prediction task, achieving
MRR of 0.24 and Hits@10 of 0.32 with d = 200 and a sin-
gle partition. However, our experiments show that training
ComplEx models with multiple partitions and machines is
unstable, and MRR varies from 0.15 to 0.22 across repli-
cates. Further investigation of the performance of ComplEx
models via PBG partitioning is left for future work.

5.5 Twitter

Finally, we consider the scaling of PBG on a social net-
work graph in comparison to the Freebase knowledge graph
studied in Section 5.4.2. We embed a publicly available
Twitter 12 subgraph (Kwak et al., 2010) (Boldi & Vigna,
2004) (Boldi et al., 2011) containing a social network be-
tween 41,652,230 nodes and 1,468,365,182 edges with a
single relation called “follow”. We construct train, valida-

12www.twitter.com
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# Parts MRR Hits@10 Time (h) Mem (GB)
1 0.136 0.233 18.0 95.1
4 0.137 0.235 16.8 43.4
8 0.137 0.237 19.1 20.7
16 0.136 0.235 23.8 10.2

# Machines # Parts MRR Hits@10 Time (h) Mem (GB)
1 1 0.136 0.233 18.0 95.1
2 4 0.137 0.235
4 8 0.137 0.235 6.5 40.5
8 16 0.137 0.235 3.4 20.4

Table 4. Model evaluation, training time (10 epochs) and peak memory usage for embeddings of the Twitter graph. Left: Training with
different numbers of partitions on a single machine. Right: Distributed training on different numbers of machines.

Figure 7. Learning curve for PBG models on the Twitter dataset with different number of machines used in training. MRR of learned
embeddings is plotted as a function of epoch (top) and wallclock time (bottom).

tion and test splits of the dataset, which contain 90%, 5%,
5% of the total edges, respectively.

In Table 4 we report MRR and Hits@10 after 10 training
epochs as well as training time and peak memory usage
for different partitioning and parallelization schemes. The
results are consistent with Table 3: we observe an almost
linear decrease in training time with multiple machines,
without a loss in link prediction accuracy up to 8 machines.

In Figure 7 we report the learning curve of test MRR ob-
tained by different number of machines used during training
with respect to epoch and time. Compared to the Freebase
knowledge base learning curves in Figure 6, the Twitter
graph shows more linear scaling of training time as the
graph is partitioned and trained in parallel.

6 CONCLUSION

In this paper, we present PyTorch-BigGraph, an embedding
system that scales to graphs with billions of nodes and tril-
lions of edges. PBG supports multi-entity, multi-relation
graphs with per-relation configuration such as edge weight
and choice of relation operator. To save on memory usage
and to allow parallelization PBG performs a block decom-
position of the adjacency matrix into N buckets, training on
the edges from one bucket at a time.

We show that the quality of embeddings trained with PBG
are comparable with existing embedding systems, and re-
quire less time to train. We show that partitioning of the
Freebase graph reduces memory consumption by 88% with-
out degrading embedding quality, and distributed execution

on 8 machines speeds up training by a factor of 4. Our
experiments have shown that embedding quality is quite
robust to partitioning and parallelization in social network
datasets, but may be more sensitive to parallelization when
the number of relations is large, the degree distribution is
highly skewed, or relation operators such as ComplEx are
used. Thus improving the scaling for these more compli-
cated graphs is an important area for future research.

We have presented PBG’s performance on the largest pub-
licly available graph datasets that we are aware of. How-
ever, the largest benefits of the PBG architecture come from
graphs that are 1− 2 orders of magnitude larger than these,
where more fine-grained partitioning is necessary and ex-
poses more parallelism. We hope that this work and the
open source release of PBG helps to motivate the release
of larger graph datasets and an increase in research and
reported results on larger graphs.
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