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Q- and A-Learning Methods for
Estimating Optimal Dynamic
Treatment Regimes
Phillip J. Schulte, Anastasios A. Tsiatis, Eric B. Laber and Marie Davidian

Abstract. In clinical practice, physicians make a series of treatment deci-
sions over the course of a patient’s disease based on his/her baseline and
evolving characteristics. A dynamic treatment regime is a set of sequential
decision rules that operationalizes this process. Each rule corresponds to a
decision point and dictates the next treatment action based on the accrued in-
formation. Using existing data, a key goal is estimating the optimal regime,
that, if followed by the patient population, would yield the most favorable
outcome on average. Q- and A-learning are two main approaches for this
purpose. We provide a detailed account of these methods, study their perfor-
mance, and illustrate them using data from a depression study.
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1. INTRODUCTION

An area of current interest is personalized medicine,
which involves making treatment decisions for an in-
dividual patient using all information available on the
patient, including genetic, physiologic, demographic
and other clinical variables, to achieve the “best” out-
come for the patient given this information. In treating
a patient with an ongoing disease or disorder, a clini-
cian makes a series of decisions based on the patient’s
evolving status. A dynamic treatment regime is a list
of sequential decision rules formalizing this process.
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Each rule corresponds to a key decision point in the dis-
ease/disorder progression and takes as input the infor-
mation on the patient to that point and outputs the treat-
ment that s/he should receive from among the avail-
able options. A key step toward personalized medicine
is thus finding the optimal dynamic treatment regime,
that which, if followed by the entire patient population,
would yield the most favorable outcome on average.

The statistical problem is to estimate the optimal
regime based on data from a clinical trial or ob-
servational study. Q-learning (Q denoting “quality,”
Watkins, 1989, Watkins and Dayan, 1992, Nahum-
Shani et al., 2010) and advantage learning (A-learning,
Murphy, 2003, Robins, 2004, Blatt, Murphy and Zhu,
2004) are two main approaches for this purpose and are
related to reinforcement learning methods for sequen-
tial decision-making in computer science. Q-learning
is based roughly on posited regression models for the
outcome of interest given patient information at each
decision point and is implemented through a backward
recursive fitting procedure that is related to the dy-
namic programming algorithm (Bather, 2000), a stan-
dard approach for deducing optimal sequential deci-
sions. A-learning involves the same recursive strategy,
but requires only posited models for the part of the out-
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come regression representing contrasts among treat-
ments and for the probability of observed treatment
assignment given patient information at each decision
point. As discussed later, this may make A-learning
more robust to model misspecification than Q-learning
for consistent estimation of the optimal treatment
regime.

Examples of the use of Q- and A-learning and alter-
native methods to deduce optimal strategies for treat-
ment of substance abuse, psychiatric disorders, can-
cer and HIV infection and for dose adjustment in re-
sponse to evolving patient status have been presented
(Rosthøj et al., 2006, Murphy et al., 2007a, 2007b,
Zhao, Kosorok and Zeng, 2009, Henderson, Ansell and
Alshibani, 2010). Relevant work includes Thall, Mil-
likan and Sung (2000), Thall, Sung and Estey (2002),
Robins (2004), Moodie, Richardson and Stephens
(2007), Thall et al. (2007), van der Laan and Pe-
tersen (2007), Robins, Orellana and Rotnitzky (2008),
Almirall, Ten Have and Murphy (2010), Orellana, Rot-
nitzky and Robins (2010), Zhang et al. (2012a, 2012b,
2013) and Zhao et al. (2012, 2013).

The objective of this article is to provide readers
interested in an introduction to estimation of optimal
dynamic treatment regimes with a self-contained, de-
tailed description of an appropriate statistical frame-
work in which to define formally an optimal regime, of
some of the operational and philosophical considera-
tions involved, and of Q- and A-learning methods. Sec-
tion 2 introduces the statistical framework, and Sec-
tions 3 and 4 discuss the form of the optimal regime.
We describe and contrast Q- and A-learning in Sec-
tion 5 and present systematic empirical studies of their
relative performance and the effects of misspecifica-
tion of the postulated models involved in Section 6.
The methods are demonstrated using data from the Se-
quenced Treatment Alternatives to Relieve Depression
(STAR*D, Rush et al., 2004) study in Section 7.

2. FRAMEWORK AND ASSUMPTIONS

Consider the setting of K prespecified, ordered de-
cision points, indexed by k = 1, . . . ,K , which may
be times or events in the disease or disorder process
that necessitate a treatment decision, where, at each
point, a set of treatment options is available. Assume
that there is a final outcome Y of interest for which
large values are preferred. The outcome may be ascer-
tained following the K th decision, as with CD4 T-cell
count at a prespecified follow-up time in HIV infection
(Moodie, Richardson and Stephens, 2007), or may be

a function of information accrued over the entire se-
quence of decisions, as in Henderson, Ansell and Al-
shibani (2010), where the outcome is the overall pro-
portion of time a measure of blood clotting speed is
kept within a target range in dosing of anticoagulant
agents.

In order to define an optimal treatment regime and
discuss its estimation based on data from an observa-
tional study or clinical trial, we define a suitable con-
ceptual framework. For simplicity, our presentation is
heuristic. Imagine that there is a superpopulation of pa-
tients, denoted by �, where one may view an element
ω ∈ � as a patient from this population. We assume
that patients in the population have been treated ac-
cording to routine clinical practice for the disease or
disorder prior to the first treatment decision. Conse-
quently, immediately prior to this first decision, patient
ω would present to the decision-maker with a set of
baseline information (covariates) denoted by the ran-
dom variable S1, discussed further below. Thus, S1(ω)

is the value of his/her information immediately prior to
decision 1, taking values s1, say, in a set S1. Assume
that, at each decision point k = 1, . . . ,K , there is a fi-
nite set of all possible treatment options Ak , with el-
ements ak . We do not consider the case of continuous
treatment and henceforth restrict attention to a finite
set of options. Denote by āk = (a1, . . . , ak) a possible
treatment history that could be administered through
decision k, taking values in Āk =A1 ×· · ·×Ak , where
ĀK is the set of all possible treatment histories āK

through all K decisions.
We then define the potential outcomes (Robins,

1986)

W ∗ = {
S∗

2 (a1), S
∗
3 (ā2), . . . , S

∗
k (āk−1), . . . ,

(1)
S∗

K(āK−1), Y
∗(āK) for all āK ∈ ĀK

}
.

In (1), S∗
k (āk−1)(ω) denotes the value of covariate in-

formation that would arise between decisions k−1 and
k for a patient ω ∈ � in the hypothetical situation that
s/he were to have previously received treatment his-
tory āk−1, taking values sk in a set Sk , k = 2, . . . ,K .
Similarly, Y ∗(āK)(ω) is the hypothetical outcome that
would result for ω were s/he to have been administered
the full set of K treatments in āK . This notation im-
plies that, for random variables such as S∗

k (āk−1), āk−1
is an index representing prior treatment history. Write
S̄∗

k (āk−1) = {S1, S
∗
2 (a1), . . . , S

∗
k (āk−1)}, k = 1, . . . ,K ,

where S̄∗
k (āk−1)(ω) takes values s̄k in S̄k = S1 × · · · ×

Sk ; this definition includes the baseline covariate S1
and is taken equal to S1 when k = 1. The elements of



642 SCHULTE, TSIATIS, LABER AND DAVIDIAN

the S̄∗
k (āk−1) and Y ∗(āK) may be discrete or continu-

ous; in what follows, for simplicity, we take these ran-
dom variables to be discrete, but the results hold more
generally.

A dynamic treatment regime d = (d1, . . . , dK) is a
set of rules that forms an algorithm for treating a pa-
tient over time; it is “dynamic” because treatment is
determined based on a patient’s previous history. At
the kth decision point, the kth rule dk(s̄k, āk−1), say,
takes as input the patient’s realized covariate and treat-
ment history prior to the kth treatment decision and
outputs a value ak ∈ �k(s̄k, āk−1) ⊆ Ak ; for k = 1,
there is no prior treatment (a0 is null), and we write
d1(s1) and �1(s1). Here, �k(s̄k, āk−1) is a specified
set of possible treatment options for a patient with re-
alized history (s̄k, āk−1), discussed further below. Ac-
cordingly, although we suppress this in the notation for
brevity, the definition of a dynamic treatment regime
we now present depends on the specified �k(s̄k, āk−1),
k = 1, . . . ,K . Because dk(s̄k, āk−1) ∈ �k(s̄k, āk−1) ⊆
Ak , dk need only map a subset of S̄k × Āk−1 to Ak .
We define these subsets recursively as

�k = {
(s̄k, āk−1) ∈ S̄k × Āk−1 satisfying

(i) aj ∈ �j(s̄j , āj−1), j = 1, . . . , k − 1 and(2)

(ii) pr
{
S̄∗

k (āk−1) = s̄k
}
> 0

}
, k = 1, . . . ,K,

determined by � = (�1, . . . ,�K). The �k contain all
realizations of covariate and treatment history consis-
tent with having followed such �-specific regimes to
decision k. Define the class D of (�-specific) dynamic
treatment regimes to be the set of all d for which dk ,
k = 1, . . . ,K , is a mapping from �k into Ak satisfying
dk(s̄k, āk−1) ∈ �k(s̄k, āk−1) for every (s̄k, āk−1) ∈ �k .

Specification of the �k(s̄k, āk−1), k = 1, . . . ,K , is
dictated by the scientific setting and objectives. Some
treatment options may be unethical or impossible for
patients with certain histories, making it natural to re-
strict the set of possible options for such patients. In
the context of public health policy, the focus may be
on regimes involving only treatment options that are
less costly or widely available unless a patient’s con-
dition is especially serious, as reflected in his/her co-
variate information. In what follows, we assume that a
particular fixed set � is specified, and by an optimal
regime we mean an optimal regime within the class of
corresponding �-specific regimes.

An optimal regime should represent the “best” way
to intervene to treat patients in �. To formalize, for any
d ∈ D, writing d̄k = (d1, . . . , dk), k = 1, . . . ,K , d̄K =
d , define the potential outcomes associated with d

as {S∗
2 (d1), . . . , S

∗
k (d̄k−1), . . . , S

∗
K(d̄K−1), Y

∗(d)} such
that, for any ω ∈ �, with S1(ω) = s1,

d1(s1) = u1,

S∗
2 (d1)(ω) = S∗

2 (u1)(ω) = s2,

d2(s̄2, u1) = u2, . . . ,

dK−1(s̄K−1, ūK−2) = uK−1,(3)

S∗
K(d̄K−1)(ω) = S∗

K(ūK−1)(ω) = sK,

dK(s̄K, ūK−1) = uK,

Y ∗(d)(ω) = Y ∗(ūK)(ω) = y.

The index d̄k−1 emphasizes that S∗
k (d̄k−1)(ω) repre-

sents the covariate information that would arise be-
tween decisions k − 1 and k were patient ω to receive
the treatments sequentially dictated by the first k − 1
rules in d . Similarly, Y ∗(d)(ω) is the final outcome that
ω would experience if s/he were to receive the K treat-
ments dictated by d .

With these definitions, the expected outcome in the
population if all patients with initial state S1 = s1 were
to follow regime d is E{Y ∗(d)|S1 = s1}. An optimal
regime, dopt ∈ D, say, satisfies

E
{
Y ∗(d)|S1 = s1

} ≤ E
{
Y ∗(

dopt)|S1 = s1
}

(4)
for all d ∈ D and all s1 ∈ S1.

Because (4) is true for any fixed s1, in fact, E{Y ∗(d)} ≤
E{Y ∗(dopt)} for any d ∈ D. In Section 3, we give the
form of dopt satisfying (4).

Alternative specifications of � may lead to differ-
ent classes of regimes across which the optimal regime
may differ. We emphasize that the definition (4) is
predicated on the particular set � , and hence class D,
of interest. In principle, the class D of interest is con-
ceived based on scientific or policy objectives without
reference to data available from a particular study.

Of course, potential outcomes for a given patient for
all d ∈ D are not observed. Thus, the goal is to esti-
mate dopt in (4) using data from a study carried out
on a random sample of n patients from � that record
baseline and evolving covariate information and treat-
ments actually received. Denote these available data
as independent and identically distributed (i.i.d.) time-
ordered random variables (S1i ,A1i , . . . , SKi,AKi, Yi),
i = 1, . . . , n, on �. Here, S1 is as before; Sk , k =
2, . . . ,K , is covariate information recorded between
decisions k − 1 and k, taking values sk ∈ Sk ; Ak ,
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k = 1, . . . ,K , is the recorded, observed treatment as-
signment, taking values ak ∈ Ak ; and Y is the ob-
served outcome, taking values y ∈ Y . As above, de-
fine S̄k = (S1, . . . , Sk) and Āk = (A1, . . . ,Ak), k =
1, . . . ,K , taking values s̄k ∈ S̄k and āk ∈ Āk .

The available data may arise from an observational
study involving n participants randomly sampled from
the population; here, treatment assignment takes place
according to routine clinical practice in the popula-
tion. Alternatively, the data may arise from an inter-
vention study. A clinical trial design that has been ad-
vocated for collecting data suitable for estimating opti-
mal treatment regimes is that of a so-called sequential
multiple-assignment randomized trial (SMART, Lavori
and Dawson, 2000, Murphy, 2005). In a SMART in-
volving K pre-specified decision points, each partici-
pant is randomized at each decision point to one of a
set of treatment options, where, at the kth decision, the
randomization probabilities may depend on past real-
ized information s̄k, āk−1.

In order to use the observed data from either type of
study to estimate an optimal regime, several assump-
tions are required. As is standard, we make the con-
sistency assumption (e.g., Robins, 1994) that the co-
variates and outcomes observed in the study are those
that potentially would be seen under the treatments ac-
tually received, that is, Sk = S∗

k (Āk−1), k = 2, . . . ,K ,
and Y = Y ∗(ĀK). We also make the stable unit treat-
ment value assumption (Rubin, 1978), which ensures
that a patient’s covariates and outcome are unaffected
by how treatments are allocated to her/him and other
patients. The critical assumption of no unmeasured
confounders, also referred to as the sequential ran-
domization assumption (Robins, 1994), must be sat-
isfied. A strong version of this assumption states that
Ak is conditionally independent of W ∗ in (1) given
{S̄k, Āk−1}, k = 1, . . . ,K , where A0 is null, written
Ak⊥⊥W ∗|S̄k, Āk−1. In a SMART, this assumption is
satisfied by design; in an observational study, it is
unverifiable from the observed data. The strong ver-
sion is sufficient for identification of the distribution
of not only Y ∗(āK) but of the joint distribution of
Y ∗(āK) and S̄∗

K(āK−1) and allows the results of Sec-
tion 4 to hold. Although in the population patients and
their providers may make decisions based only on past
covariate information available to them, the issue is
whether or not all of the information that is related
to treatment assignment and future covariates and out-
come is recorded in the Sk ; see Robins [(2004), Sec-
tions 2–3] for discussion and a relaxation of the ver-
sion of the sequential randomization assumption given

here. We assume henceforth that these assumptions
hold.

Whether or not it is possible to estimate dopt from
the available data is predicated on the treatment op-
tions in �k(s̄k, āk−1), k = 1, . . . ,K , being represented
in the data. For a prospectively-designed SMART, or-
dinarily, � defining the class D of interest would dic-
tate the design. At decision k, subjects would be ran-
domized to the options in �k(s̄k, āk−1), satisfying this
condition. If the data are from an observational study,
all treatment options in �k(s̄k, āk−1) at each decision
k must have been assigned to some patients. That
is, if we define recursively �max

1 = {s1 ∈ S1 : pr(S1 =
s1) > 0}, �max

1 (s1) = {a1 ∈ A1 : pr(A1 = a1|S1 =
s1) > 0 for all s1 ∈ �max

1 }, �max
k = [(s̄k, āk−1) ∈ S̄k ×

Āk−1 satisfying (i) aj ∈ �max
j (s̄j , āj−1), j = 1, . . . ,

k − 1, and (ii) pr{S̄∗
k (āk−1) = s̄k} > 0], �max

k (s̄k,

āk−1) = {ak ∈ Ak : pr(Ak = ak|S̄k = s̄k, Āk−1 =
āk−1) > 0 for all (s̄k, āk−1) ∈ �max

k }, k = 2, . . . ,K ,
we must have �k(s̄k, āk−1) ⊆ �max

k (s̄k, āk−1), k =
1, . . . ,K . The class of regimes dictated by �max =
(�max

1 , . . . ,�max
K ) is the largest that can be consid-

ered based on the data, sometimes referred to as the
class of “feasible regimes” (Robins, 2004). If this in-
clusion condition does not hold for all k = 1, . . . ,K ,
dopt cannot be estimated from the data, and the class of
regimes D of interest must be reevaluated or another
data source found.

3. OPTIMAL TREATMENT REGIMES

Q- and A-learning are two approaches to estimat-
ing dopt satisfying (4) under the foregoing framework.
Both involve recursive fitting algorithms; the main dis-
tinguishing feature is the form of the underlying mod-
els. To appreciate the rationale, one must understand
how dopt is determined via dynamic programming, also
known as backward induction. We demonstrate the for-
mulation of dopt in terms of the potential outcomes
and then show how dopt may be expressed in terms of
the observed data under assumptions including those
in Section 2. We sometimes highlight dependence on
specific elements of quantities such as āk , writing, for
example, āk as (āk−1, ak).

At the K th decision point, for any s̄K ∈ S̄K , āK−1 ∈
ĀK−1 for which (s̄K, āK−1) ∈ �K , define

d
(1)opt
K (s̄K, āK−1)

= arg max
aK∈�K(s̄K,āK−1)

E
{
Y ∗(āK−1, aK)|(5)

S̄∗
K(āK−1) = s̄K

}
,
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V
(1)
K (s̄K, āK−1)

= max
aK∈�K(s̄K,āK−1)

E
{
Y ∗(āK−1, aK)|(6)

S̄∗
K(āK−1) = s̄K

}
.

For k = K − 1, . . . ,1 and any s̄k ∈ S̄k , āk−1 ∈ Āk−1
for which (s̄k, āk−1) ∈ �k , which clearly holds if
(s̄K, āK−1) ∈ �K , let

d
(1)opt
k (s̄k, āk−1)

= arg max
ak∈�k(s̄k,āk−1)

E
[
V

(1)
k+1

{
s̄k, S

∗
k+1(āk−1, ak),(7)

āk−1, ak

}|S̄∗
k (āk−1) = s̄k

]
,

V
(1)
k (s̄k, āk−1)

= max
ak∈�k(s̄k,āk−1)

E
[
V

(1)
k+1

{
s̄k, S

∗
k+1(āk−1, ak),(8)

āk−1, ak

}|S̄∗
k (āk−1) = s̄k

];
thus, for s1 ∈ S1,

d
(1)opt
1 (s1)

= arg max
a1∈�1(s1)

E
[
V

(1)
2

{
s1, S

∗
2 (a1), a1

}|S1 = s1
]
,

V
(1)
1 (s1)

= max
a1∈�1(s1)

E
[
V

(1)
2

{
s1, S

∗
2 (a1), a1

}|S1 = s1
]
.

Conditional expectations are well defined by (2)(ii).
Clearly, d(1)opt = (d

(1)opt
1 , . . . , d

(1)opt
K ) is a treatment

regime, as it comprises a set of rules that uses patient
information to assign treatment from among the op-
tions in � . The superscript (1) indicates that d(1)opt

provides K rules for a patient presenting prior to de-
cision 1 with baseline information S1 = s1; Section 4
considers optimal treatment of patients presenting at
subsequent decisions after receiving possibly subop-
timal treatment at prior decisions. Note that d(1)opt is
defined in a backward iterative fashion. At decision K ,
(5) gives the treatment that maximizes the expected po-
tential final outcome given the prior potential informa-
tion, and (6) is the maximum achieved. At decisions
k = K − 1, . . . ,1, (7) gives the treatment that maxi-
mizes the expected outcome that would be achieved
if subsequent optimal rules already defined were fol-
lowed henceforth. In Section A.1 of the supplemental
article [Schulte et al. (2014)], we show that d(1)opt de-
fined in (5)–(8) is an optimal treatment regime in the
sense of satisfying (4).

The foregoing developments express optimal
regimes in terms of the distribution of potential out-
comes. If an optimal regime is to be identifiable, it
must be possible under the assumptions in Section 2
to express d(1)opt in terms of the distribution of the ob-
served data. To this end, define

QK(s̄K, āK) = E(Y |S̄K = s̄K, ĀK = āK),(9)

d
opt
K (s̄K, āK−1)

(10)
= arg max

aK∈�K(s̄K,āK−1)
QK(s̄K, āK−1, aK),

VK(s̄K, āK−1)
(11)

= max
aK∈�K(s̄K,āK−1)

QK(s̄K, āK−1, aK),

and for k = K − 1, . . . ,1, define

Qk(s̄k, āk)
(12)

= E
{
Vk+1(s̄k, Sk+1, āk)|S̄k = s̄k, Āk = āk

}
,

d
opt
k (s̄k, āk−1)

(13)
= arg max

ak∈�k(s̄k,āk−1)
Qk(s̄k, āk−1, ak),

Vk(s̄k, āk−1) = max
ak∈�k(s̄k,āk−1)

Qk(s̄k, āk−1, ak).(14)

The expressions in (9)–(14) are well defined under as-
sumptions we discuss next. In (9) and (12), Qk(s̄k, āk)

are referred to as “Q-functions,” viewed as measuring
the “quality” associated with using treatment ak at de-
cision k given the history up to that decision and then
following the optimal regime thereafter. The “value
functions” Vk(s̄k, āk−1) in (11) and (14) reflect the
“value” of a patient’s history s̄k, āk−1 assuming that op-
timal decisions are made in the future. We emphasize
that the d

opt
k , k = 1, . . . ,K , defined in (9)–(14) may not

be optimal unless the sequential randomization, consis-
tency and positivity assumptions hold.

As in Section 2, the treatment options in � must
be represented in the data, that is, �k(s̄k, āk−1) ⊆
�max

k (s̄k, āk−1), k = 1, . . . ,K , in order to estimate an
optimal regime. Formally, this implies that

pr(Ak = ak|S̄k = s̄k, Āk−1 = āk−1) > 0
(15)

if (s̄k, āk−1) ∈ �k and ak ∈ �k(s̄k, āk−1)

for all k = 1, . . . ,K . In Section A.2 of the supple-
mental article [Schulte et al. (2014)], under the consis-
tency and sequential randomization assumptions and
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the positivity assumption (15), we show that, for any
(s̄k, āk−1) ∈ �k and ak ∈ �k(s̄k, āk−1), k = 1, . . . ,K ,

pr(S̄k = s̄k, Āk = āk) > 0,(16)

pr(Sk+1 = sk+1|S̄k = s̄k, Āk = āk)
(17)

= pr
{
S∗

k+1(āk) = sk+1|S̄k = s̄k, Āk−1 = āk−1
}

= pr
{
S∗

k+1(āk) = sk+1|S̄j = s̄j , Āj−1 = āj−1,
(18)

S∗
j+1(āj ) = sj+1, . . . , S

∗
k (āk−1) = sk

}
,

for j = 1, . . . , k, where (18) with j = k is the same as
the right-hand side of (17), SK+1 = Y and S∗

K+1(āK) =
Y ∗(āK), and when j = 1 the conditioning events do
not involve treatment. By (16), the quantities in (9)–
(14) are well defined. Under (17)–(18), the conditional
distributions of the observed data involved in (9)–(14)
are the same as the conditional distributions of the po-
tential outcomes involved in (5)–(8). It follows that

d
(1)opt
k (s̄k, āk−1) = d

opt
k (s̄k, āk−1),

(19)
V

(1)
k (s̄k, āk−1) = Vk(s̄k, āk−1),

for (s̄k, āk−1) ∈ �k , k = 1, . . . ,K . The equivalence
in (19) shows that, under the consistency, sequential
randomization and positivity assumptions, an optimal
treatment regime in the (�-specific) class of interest D
may be obtained using the distribution of the observed
data.

There may not be a unique dopt. At any decision k, if
there is more than one possible option ak maximizing
the Q-function, then any rule d

opt
k yielding one of these

ak defines an optimal regime.

4. OPTIMAL “MIDSTREAM” TREATMENT REGIME

In Section 3 we define an (�-specific) optimal treat-
ment regime starting at decision point 1 and elucidate
conditions under which it may be estimated using data
from a clinical or observational study collected through
all K decisions on a sample from the patient popula-
tion. The goal is to estimate the optimal regime and
implement it in new such patients presenting at the first
decision.

In routine clinical practice, however, a new patient
may be encountered subsequent to decision point 1.
For definiteness, suppose a new patient presents “mid-
stream,” immediately prior to the �th decision point,
� = 2, . . . ,K . A natural question is how to treat this
patient optimally henceforth. For such a patient, the
first � − 1 treatment decisions presumably have been

made according to routine practice, and s/he has a real-
ized past history that may be viewed as realizations of
random variables (S

(P )
1 ,A

(P )
1 , . . . , S

(P )
�−1,A

(P )
�−1, S

(P )
� ).

Here, A
(P)
k , k = 1, . . . , � − 1, represent the treat-

ments received by such a patient according to the
treatment assignment mechanism governing routine
practice; and S

(P )
k , k = 1, . . . , � − 1, denote covari-

ate information collected up to the �th decision. Write
Ā

(P )
k = (A

(P )
1 , . . . ,A

(P )
k ), k = 1, . . . , �− 1, and S̄

(P )
k =

(S
(P )
1 , . . . , S

(P )
k ), k = 1, . . . , �.

As Ak denotes the set of all possible treatment op-
tions at decision k, Ā

(P )
�−1 takes on values ā�−1 ∈ Ā�−1.

To define �-specific regimes starting at decision �,
at the least, S

(P )
k must contain the same information

as Sk in the data, k = 1, . . . , �. Because the avail-
able data dictate the covariate information incorpo-
rated in the class of regimes D, if S

(P )
k contains ad-

ditional information, it cannot be used in the context
of such regimes. We thus take S

(P )
k and Sk to con-

tain the same information, stated formally as the con-
sistency assumption S

(P )
k = S∗

k (Ā
(P )
k−1), k = 1, . . . , �.

Moreover, we can only consider treating new patients
with realized histories (s̄�, ā�−1) that are contained
in ��, that is, that could have resulted from follow-
ing a �-specific regime through decision � − 1. If
the data arise from a SMART including only a subset
of the treatments employed in practice, this may not
hold.

We thus desire rules d
(�)
k (s̄k, āk−1), k = �, � +

1, . . . ,K , say, that dictate how to treat such mid-
stream patients presenting with realized past history
(S̄

(P )
� , Ā

(P )
�−1) = (s̄�, ā�−1). In the following, we re-

gard (s̄�, ā�−1) as fixed, corresponding to the partic-
ular new patient. Let �

(�)
k be all elements of �k with

(s̄�, ā�−1) fixed at the values for the given new patient.
Write d(�) = (d

(�)
� , d

(�)
�+1, . . . , d

(�)
K ) to denote regimes

starting at the �th decision point, and define the class
D(�) of all such regimes to be the set of all d(�) for
which d

(�)
k (s̄k, āk−1) = ak for (s̄k, āk−1) ∈ �

(�)
k and

ak ∈ �k(s̄k, āk−1) for k = �, . . . ,K . Then, by analogy
to (4), we seek d(�)opt satisfying

E
{
Y ∗(

ā�−1, d
(�))|S̄(P )

� = s̄�, Ā
(P )
�−1 = ā�−1

}
(20)

≤ E
{
Y ∗(

ā�−1, d
(�)opt)|S̄(P )

� = s̄�, Ā
(P )
�−1 = ā�−1

}

for all d(�) ∈ D(�) and s̄� ∈ S̄�, ā�−1 ∈ Ā�−1 for which
pr(S̄(P )

� = s̄�, Ā
(P )
�−1 = ā�−1) > 0. Viewing this as a

problem of making K − � + 1 decisions at deci-
sion points �, � + 1, . . . ,K , with initial state S̄

(P )
� =
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s̄�, Ā
(P )
�−1 = ā�−1, by an argument analogous to that

in Section A.1 of the supplemental article [Schulte
et al. (2014)] for � = 1 and initial state S1 = s1,
letting V�,k = {S̄(P )

� = s̄�, Ā
(P )
�−1 = ā�−1, S

∗
�+1(ā�) =

s�+1, . . . , S
∗
k (āk−1) = sk}, it may be shown that d(�)opt

satisfying (20) is given by

d
(�)opt
K (s̄K, āK−1)

(21)
= arg max

aK∈�K(s̄K,āK−1)
E

{
Y ∗(āK−1, aK)|V�,K

}
,

V
(�)
K (s̄K, āK−1)

(22)
= max

aK∈�K(s̄K,āK−1)
E

{
Y ∗(āK−1, aK)|V�,K

}

for any s̄K ∈ S̄K , āK−1 ∈ ĀK−1 for which (s̄K,

āK−1) ∈ �
(�)
K ; and, for k = K − 1, . . . , �,

d
(�)opt
k (s̄k, āk−1)

= arg max
ak∈�k(s̄k,āk−1)

E
[
V

(�)
k+1

{
s̄k,(23)

S∗
k+1(āk−1, ak), āk−1, ak

}|V�,k

]
,

V
(�)
k (s̄k, āk−1)

= max
ak∈�k(s̄k,āk−1)

E
[
V

(�)
k+1

{
s̄k,(24)

S∗
k+1(āk−1, ak), āk−1, ak

}|V�,k

]

for any s̄k ∈ S̄k , āk−1 ∈ Āk−1 for which (s̄k, āk−1) ∈
�

(�)
k , so that

d
(�)opt
� (s̄�, ā�−1)

= arg max
a�∈��(s̄�,ā�−1)

E
[
V

(�)
�+1

{
s̄�, S

∗
�+1(ā�−1, a�),

ā�−1, a�

}|S̄(P )
� = s̄�, Ā

(P )
�−1 = ā�−1

]
.

Comparison of (5)–(8) to (21)–(24) shows that the
�th to K th rules of the optimal regime d(1)opt that
would be followed by a patient presenting at the first
decision are not necessarily the same as those of the
optimal regime d(�)opt that would be followed by a pa-
tient presenting at the �th decision. In particular, noting
that the conditioning sets in (5)–(8) are V1,K and V1,k ,
the rules are �-dependent through dependence of the
conditioning sets V�,k , � = 1, . . . ,K , k = �, . . . ,K , on
�. However, we now demonstrate that these rules coin-
cide under certain conditions.

Make the consistency, sequential randomization and
positivity (15) assumptions on the available data re-
quired to show (19) in Section 3, along with the con-

sistency assumption on the S
(P )
k above and the sequen-

tial randomization assumption A
(P)
k ⊥⊥W ∗|S̄(P )

k , Ā
(P )
k−1,

k = 1, . . . , � − 1, which ensures that the S̄
(P )
k in-

clude all information related to treatment assignment
and future covariates and outcome up to decision �.
Note that (21)–(24) are expressed in terms of the
conditional distributions pr{S∗

k+1(āk) = sk+1|S̄(P )
� =

s̄�, Ā
(P )
�−1 = ā�−1, S

∗
�+1(ā�) = s�, . . . , S

∗
k (āk−1) = sk},

k = �, . . . ,K . We can then use (18) with j = � to de-
duce that these conditional distributions can be written
equivalently as pr{S∗

k+1(āk) = sk+1|S̄∗
k (āk−1) = s̄k},

k = �, . . . ,K , so solely in terms of the distribution of
the potential outcomes. By (17) and (18) with j = 1,
this can be written as pr(Sk+1 = sk+1|S̄k = s̄k, Āk =
āk). This shows that (21)–(24) can be reexpressed in
terms of the observed data, so that, for (s̄k, āk−1) ∈ �k

for � = 1, . . . ,K and k = �, . . . ,K ,

d
(�)opt
k (s̄k, āk−1) = d

opt
k (s̄k, āk−1),

(25)
V

(�)
k (s̄k, āk−1) = Vk(s̄k, āk−1).

Note that (25) subsumes (19) when � = 1. The equiv-
alence in (25) demonstrates not only that an optimal
treatment regime can be obtained using the distribu-
tion of the observed data but also that the correspond-
ing rules dictating treatment do not depend on � un-
der these assumptions. Thus, the single set of rules
dopt = (d

opt
1 , . . . , d

opt
K ) defined in (10) and (13) is rel-

evant regardless of when a patient presents. That is,
treatment at the �th decision point for a patient who
presents at decision 1 and has followed the rules in dopt

to that point would be determined by d
opt
� evaluated at

his/her history up to that point, as would treatment for
a subject presenting for the first time immediately prior
to decision �. See Robins [(2004), pages 305–306] for
more discussion.

5. Q- AND A-LEARNING

5.1 Q-Learning

From (10), (13) and (19), an optimal (�-specific)
regime dopt may be represented in terms of the Q-
functions (9), (12). Thus, estimation of dopt based
on i.i.d. data (S1i ,A1i , . . . , SKi,AKi, Yi), i = 1, . . . , n,
may be accomplished via direct modeling and fit-
ting of the Q-functions. This is the approach under-
lying Q-learning. Specifically, one may posit mod-
els Qk(s̄k, āk; ξk), say, for k = K,K − 1, . . . ,1, each
depending on a finite-dimensional parameter ξk . The
models may be linear or nonlinear in ξk and include
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main effects and interactions in the elements of s̄k
and āk .

Estimators ξ̂k may be obtained in a backward itera-
tive fashion for k = K,K −1, . . . ,1 by solving suitable
estimating equations [e.g., ordinary (OLS) or weighted
(WLS) least squares]. Assuming the latter, for k = K ,
letting Ṽ(K+1)i = Yi , one would first solve

n∑
i=1

∂QK(S̄Ki, ĀKi; ξK)

∂ξK

	−1
K (S̄Ki, ĀKi)

(26)
× {

Ṽ(K+1)i − QK(S̄Ki, ĀKi; ξK)
} = 0

in ξK to obtain ξ̂K , where 	K(s̄K, āK) is a working
variance model. Substituting the model QK(s̄K, āK;
ξK) in (10) and accordingly writing d

opt
K (s̄K, āK−1;

ξK), substituting ξ̂K for ξK , yields an estimator for the
optimal treatment choice at decision K for a patient
with past history S̄K = s̄K, ĀK−1 = āK−1. With ξ̂K in
hand, one would form for each i, based on (11), ṼKi =
maxaK∈�K(S̄Ki,Ā(K−1)i )

QK(S̄Ki, Ā(K−1)i , aK; ξ̂K). To

obtain ξ̂K−1, setting k = K − 1, based on (12) and
letting 	k(s̄k, āk) be a working variance model, one
would then solve for ξk ,

n∑
i=1

∂Qk(S̄ki, Āki; ξk)

∂ξk

	−1
k (S̄ki, Āki)

(27)
× {

Ṽ(k+1)i − Qk(S̄ki, Āki; ξk)
} = 0.

The corresponding d
opt
K−1(s̄K−1, āK−2; ξ̂K−1) yields an

estimator for the optimal treatment choice at deci-
sion K − 1 for a patient with past history S̄K−1 =
s̄K−1, ĀK−2 = āK−2, assuming s/he will take the opti-
mal treatment at decision K . One would continue this
process in the obvious fashion for k = K − 2, . . . ,1,
forming Ṽki = maxak∈�k(S̄ki ,Ā(k−1)i )

Qk(S̄ki, Ā(k−1)i ,

ak; ξ̂k), and solving equations of form (27) to obtain
ξ̂k and corresponding d

opt
k (s̄k, āk−1; ξ̂k).

We may now summarize the estimated optimal
regime as d̂

opt
Q = (d̂

opt
Q,1, . . . , d̂

opt
Q,K), where

d̂
opt
Q,1(s1) = d

opt
1 (s1; ξ̂1),

d̂
opt
Q,k(s̄k, āk−1) = d

opt
k (s̄k, āk−1; ξ̂k),(28)

k = 2, . . . ,K.

It is important to recognize that, even under the
sequential randomization assumption, the estimated
regime (28) may not be a consistent estimator for the
true optimal regime unless all the models for the Q-
functions are correctly specified.

We illustrate the approach for K = 2, where at each
decision there are two possible treatment options coded
as 0 and 1, that is, �1(s1) = A1 = {0,1} for all s1 and
�2(s̄2, a1) = A2 = {0,1} for all s̄2 and a1 ∈ {0,1}. Let
H1 = (1, sT

1 )T and H2 = (1, sT
1 , a1, s

T
2 )T . As in many

modeling contexts, it is standard to adopt linear models
for the Q-functions; accordingly, consider the models

Q1(s1, a1; ξ1) = HT
1 β1 + a1

(
HT

1 ψ1
)
,

(29)
Q2(s̄2, ā2; ξ2) = HT

2 β2 + a2
(
HT

2 ψ2
)
,

where ξk = (βT
k ,ψT

k )T , k = 1,2. In (29), Q2(s̄2, ā2;
ξ2) is a model for E(Y |S̄2 = s̄2, Ā2 = ā2), a standard
regression problem involving observable data, whereas
Q1(s1, a1; ξ1) is a model for the conditional expec-
tation of V2(s̄2, a1) = maxa2∈{0,1} E(Y |S̄2 = s2,A1 =
a1,A2 = a2) given S1 = s1 and A1 = a1, which is
an approximation to a complex true relationship; see
Section 5.3. Under (29), V2(s̄2, a1; ξ2) =
maxa2∈{0,1} Q2(s̄2, a1, a2; ξ2) = HT

2 β2 + (HT
2 ψ2) ×

I (HT
2 ψ2 > 0) and V1(s1; ξ1) = maxa1∈{0,1} Q1(s1, a1;

ξ1) = HT
1 β1 + (HT

1 ψ1)I (HT
1 ψ1 > 0). Substituting

the Q-functions in (29) in (10) and (13) then yields
d

opt
1 (s1; ξ1) = I (HT

1 ψ1 > 0) and d
opt
2 (s̄2, a1; ξ2) =

I (HT
2 ψ2 > 0).

We have presented (26) and (27) in the conven-
tional WLS form, with leading term in the summand
∂/∂ξkQk(S̄ki, Āki; ξk)	

−1
k (S̄ki, Āki); taking 	k to be

a constant yields OLS. At the K th decision, with re-
sponses Yi , standard theory implies that this is the op-
timal leading term when var(Y |S̄K = sK, ĀK = aK) =
	K(s̄K, āK), yielding the (asymptotically) efficient es-
timator for ξK . For k < K , with “responses” Ṽ(k+1)i ,
this theory may no longer apply, however, deriving the
optimal leading term involves considerable complica-
tion. Accordingly, it is standard to fit the posited mod-
els Qk(s̄k, āk; ξk) via OLS or WLS; some authors de-
fine Q-learning as using OLS (Chakraborty, Murphy
and Strecher, 2010). The choice may be dictated by ap-
parent relevance of the homoscedasticity assumption
on the Ṽ(k+1)i , k = K,K − 1, . . . ,1, and whether or
not linear models are sufficient to approximate the re-
lationships may also be evaluated; see Section 5.3.

5.2 A-Learning

Advantage learning (A-learning, Blatt, Murphy and
Zhu, 2004) is a term used to describe a class of alterna-
tive methods to Q-learning predicated on the fact that
the entire Q-function need not be specified to estimate
the optimal regime. For simplicity, we consider here
only the case of two treatment options coded as 0 and
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1 at each decision, that is, �k(s̄k, āk−1) = Ak = {0,1},
k = 1, . . . ,K .

To fix ideas, consider (29). Note that d
opt
1 (s1; ξ1) im-

plied by (29) depends only on HT
1 ψ1 = Q1(s1,1; ξ1)−

Q1(s1,0; ξ1); likewise, d
opt
2 (s̄2, a1; ξ2) depends only

on HT
2 ψ2 = Q2(s̄2, a1,1; ξ2) − Q2(s̄2, a1,0; ξ2). This

reflects the general result that, for purposes of de-
ducing the optimal regime, for each k = 1, . . . ,K , it
suffices to know the contrast function Ck(s̄k, āk−1) =
Qk(s̄k, āk−1,1) − Qk(s̄k, āk−1,0). This can be appre-
ciated by noting that any arbitrary Qk(s̄k, āk) may
be written as hk(s̄k, āk−1) + akCk(s̄k, āk−1), where
hk(s̄k, āk−1) = Qk(s̄k, āk−1,0), so that Qk(s̄k, āk−1,

ak) is maximized by taking ak = I {Ck(s̄k, āk−1) >

0}; and the maximum itself is the expression hk(s̄k,

āk−1) + Ck(s̄k, āk−1)I {Ck(s̄k, āk−1) > 0}. In the case
of two treatment options we consider here, the con-
trast function is also referred to as the optimal-blip-
to-zero function (Robins, 2004, Moodie, Richardson
and Stephens, 2007). Murphy (2003) considers the ex-
pression Ck(S̄k, Āk−1)[I {Ck(S̄k, Āk−1) > 0}−Ak], re-
ferred to as the advantage or regret function, as it repre-
sents the “advantage” in response incurred if the opti-
mal treatment at the kth decision were given relative to
that actually received (or, equivalently, the “regret” in-
curred by not using the optimal treatment). See Robins
(2004) and Moodie, Richardson and Stephens (2007)
for discussion of the relationship between regrets and
optimal blip functions in this and settings other than
binary treatment options.

We discuss here an A-learning method based on
explicit modeling of the contrast functions, which
we refer to as contrast-based A-learning. This ap-
proach is implemented via recursive solution of cer-
tain estimating equations given below developed by
Robins (2004), often referred to as g-estimation. See
Moodie, Richardson and Stephens (2007) and the sup-
plementary material to Zhang et al. (2013) for de-
tails. Contrast-based A-learning is distinguished from
the regret-based A-learning methods of Murphy (2003)
and Blatt, Murphy and Zhu (2004), which rely on di-
rect modeling of the regret functions and are imple-
mented using a different estimating equation formula-
tion called Iterative Minimization for Optimal Regimes
by Moodie, Richardson and Stephens (2007).

All of these methods are alternatives to Q-learning,
which involves modeling the full Q-functions. For
k = K − 1, . . . ,1, the Q-functions involve possibly
complex relationships, raising concern over the con-
sequences of model misspecification for estimation of

the optimal regime. As identifying the optimal regime
depends only on correct specification of the contrast or
regret functions, A-learning methods may be less sen-
sitive to mismodeling; see Sections 5.3 and 6.

Although we consider these methods only in the case
of binary treatment options here, they may be extended
to more than two treatments at the expense of compli-
cating the formulation; see Robins (2004) and Moodie,
Richardson and Stephens (2007).

Contrast-based A-learning proceeds as follows. Posit
models Ck(s̄k, āk−1;ψk), k = 1, . . . ,K , for the con-
trast functions, depending on parameters ψk . Consider
decision K . Let πK(s̄K, āK−1) = pr(AK = 1|S̄K =
s̄K, ĀK−1 = āK−1) be the propensity of receiving
treatment 1 in the observed data as a function of past
history and Ṽ(K+1)i = Yi . Robins (2004) showed that
all consistent and asymptotically normal estimators
for ψK are solutions to estimating equations of the
form

n∑
i=1

λK(S̄Ki, Ā(K−1)i)
{
AKi − πK(S̄Ki, Ā(K−1)i)

}

× {
Ṽ(K+1)i − AKiCK(S̄Ki, Ā(K−1)i;ψK)(30)

− θK(S̄Ki, Ā(K−1)i)
} = 0

for arbitrary functions λK(s̄K, āK−1) of the same di-
mension as ψK and arbitrary functions θK(s̄K, āK−1).
Assuming that the model CK(s̄K, āK−1;ψK) is cor-
rect, if var(Y |S̄K = sk, ĀK−1 = ak−1) is constant,
the optimal choices of these functions are given by
λK(s̄K, āK−1;ψK) = ∂/∂ψKCK(s̄K, āK−1;ψK) and
θK(s̄Ki, ā(K−1)i) = hK(s̄K, āK−1); otherwise, if the
variance is not constant, the optimal λK is complex
(Robins, 2004).

To implement estimation of ψK via (30), one may
adopt parametric models for these functions. Although
A-learning obviates the need to specify fully the Q-
functions, one may posit models for the optimal θK ,
hK(s̄K, āK−1;βK), say. Moreover, unless the data are
from a SMART study, in which case the propensi-
ties πK(s̄K, āK−1) are known, these may be mod-
eled as πK(s̄K, āK−1;φK) (e.g., by a logistic regres-
sion). These models are only adjuncts to estimating
ψK ; as long as at least one of these models is cor-
rectly specified, (30) will yield a consistent estimator
for ψK , the so-called double robustness property. In
contrast, Q-learning requires correct specification of
all Q-functions; see Section 5.3 and Section A.5 of the
supplemental article [Schulte et al. (2014)].
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Substituting these models in (30), one solves (30)
jointly in (ψT

K,βT
K,φT

K)T with

n∑
i=1

∂hK(S̄K, ĀK−1;βK)

∂βK

× {
Ṽ(K+1)i − AKiCK(S̄Ki, Ā(K−1)i;ψK)

− hK(S̄Ki, Ā(K−1)i;βK)
} = 0

and the usual binary regression likelihood score equa-
tions in φK . We then have d

opt
K (s̄K, āK−1;ψK) =

I {CK(s̄K, āK−1;ψK) > 0}; as in Q-learning, substi-
tuting ψ̂K yields an estimator for the optimal treatment
choice at decision K for a patient with past history
S̄K = sK, ĀK−1 = āK−1.

With ψ̂K in hand, the contrast-based A-learning
algorithm proceeds in a backward iterative fashion
to yield ψ̂k , k = K − 1, . . . ,1. At the kth decision,
given models hk(s̄k, āk−1;βk) and πk(s̄k, āk−1;φk),
one solves jointly in (ψT

k ,βT
k ,φT

k )T a system of esti-
mating equations analogous to those above. The kth set
of equations is based on “optimal responses” Ṽ(k+1)i ,
where, for each i, Ṽki estimates Vk(S̄ki, Ā(k−1),i). It
may be shown (see Section A.3 of the supplemental ar-
ticle [Schulte et al. (2014)]) that E(Vk+1(S̄k+1, Āk) +
Ck(S̄k, Āk−1)[I {Ck(S̄k, Āk−1) > 0}−Ak]|S̄k, Āk−1) =
Vk(S̄k, Āk−1). Accordingly, define recursively Ṽki =
Ṽ(k+1)i + Ck(S̄ki, Ā(k−1)i; ψ̂k)[I {Ck(S̄ki, Ā(k−1)i;
ψ̂k) > 0} − Aki], k = K,K − 1, . . . ,1, Ṽ(K+1)i = Yi .
The equations at the kth decision are then

n∑
i=1

λk(S̄ki, Ā(k−1)i;ψk)
{
Aki − πk(S̄ki, Ā(k−1)i;φk)

}

× {
Ṽ(k+1)i − AkiCk(S̄ki, Ā(k−1)i;ψk)

− hk(S̄ki, Ā(k−1)i;βk)
} = 0,

(31)
n∑

i=1

∂hk(S̄K, ĀK−1;βk)

∂βk

× {
Ṽ(k+1)i − AkiCk(S̄ki, Ā(k−1)i;ψk)

− hk(S̄ki, Ā(k−1)i;βk)
} = 0

for a given specification λk(s̄k, āk−1;ψk), solved
jointly with the maximum likelihood score equa-
tions for binary regression in φk . It follows that
d

opt
k (s̄k, āk−1; ψ̂k) = I {Ck(s̄k, āk−1; ψ̂k) > 0}. As

above, the optimal λk is complex (Robins, 2004); tak-
ing λk(s̄k, āk−1;ψk) = ∂/∂ψkCk(s̄k, āk−1;ψk) is rea-
sonable for practical implementation.

Summarizing, the estimated optimal regime d̂
opt
A =

(d̂
opt
A,1, . . . , d̂

opt
A,K) is

d̂
opt
A,1(s1) = d

opt
1 (s1; ψ̂1),

d̂
opt
A,k(s̄k, āk−1) = d

opt
k (s̄k, ak−1; ψ̂k),(32)

k = 2, . . . ,K.

How well d̂
opt
A estimates dopt and hence d(1)opt depends

on how close the posited Ck(s̄k, āk−1;ψk) are to the
true contrast functions as well as correct specification
of the functions hk or πk .

Henceforth, for brevity, we suppress the descriptor
“contrast-based” and refer to the foregoing approach
simply as A-learning.

5.3 Comparison and Practical Considerations

When K = 1, the Q-function is a model for E(Y |
S1 = s1,A1 = a1). If in Q-learning this model and
the variance model 	1 in (26) are correctly specified,
then, as above, the form of (26) is optimal for estimat-
ing ξ1. Accordingly, even if C1(s1;ψ1) and h1(s1;β1)

are correctly modeled, (31) with K = 1 is generally
not of this optimal form for any choice λ1(s1;ψ1),
and, hence, A-learning will yield relatively inefficient
inference on ψ1 and the optimal regime. However, if
in Q-learning the Q-function is mismodeled, but in A-
learning C1(s1;ψ1) and π1(s1;φ1) are both correctly
specified, then A-learning will still yield consistent in-
ference on ψ1 and hence the optimal regime, whereas
inference on ξ1 and the optimal regime via Q-learning
may be inconsistent. We assess the trade-off between
consistency and efficiency in this case in Section 6. For
K > 1, owing to the complications involved in specify-
ing optimal estimating equations for Q- and A-learning,
relative performance is not readily apparent; we inves-
tigate empirically in Section 6.

In special cases, Q- and A-learning lead to identi-
cal estimators for the Q-function (Chakraborty, Mur-
phy and Strecher, 2010). For example, this holds if
the propensities for treatment are constant, as would
be the case under pure randomization at each decision
point, and certain linear models are used for C1(s1;ψ1)

and h1(s1;β1); Section A.4 of the supplemental article
[Schulte et al. (2014)] demonstrates when K = 1 and
pr(A1 = 1|S1 = s1) does not depend on s1. See Robins
[(2004), page 1999] and Rosenblum and van der Laan
(2009) for further discussion.

As we have emphasized, for Q-learning, while mod-
eling the Q-function at decision K is a standard re-
gression problem with response Y , for decisions k =
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K − 1, . . . ,1, this involves modeling the estimated
value function, which at decision k depends on rela-
tionships for future decisions k + 1, . . . ,K . Ideally, the
sequence of posited models Qk(s̄k, āk; ξk) should re-
spect this constraint. However, this may be difficult to
achieve with standard regression models. To illustrate,
consider (29), and assume S1, S2 are scalar, where the
conditional distribution of S2 given S1 = s1,A1 = a1 is
Normal(KT

1 γ,σ 2), say, K1 = (1, s1, a1)
T . Recall that

V2(s̄2, a1; ξ2) =HT
2 β2 + (HT

2 ψ2)I (HT
2 ψ2 > 0), where

HT
2 β2 = KT

1 β21 + s2β22 and HT
2 ψ2 = KT

1 ψ21 + s2ψ22.
Then, if model Q2 in (29) were correct, from (12), ide-
ally, Q1(s1, a1) = E{V2(s1, S2, a1; ξ2)|S1 = s1,A1 =
a1}. Letting ϕ(·) and �(·) be the standard normal den-
sity and cumulative distribution function, respectively,
it may be shown (see Section A.5 of the supplemental
article [Schulte et al. (2014)]) that

Q1(s1, a1) = E
{
V2(s1, S2, a1; ξ2)|S1 = s1,A1 = a1

}

= KT
1 (β21 + γβ22)

+ (
KT

1 ψ21
){

1 − �(η)
}

(33)

+ ψ22
{
σϕ(η) + (

KT
1 γ

){
1 − �(η)

}}
,

η = −KT
1 (ψ21/ψ22 + γ )/σ,

taking ψ22 > 0. The true Q1(s1, a1) in (33) is clearly
highly nonlinear and likely poorly approximated by
the posited linear model Q1(s1, a1; ξ1) in (29). For
larger K , this incompatibility between true and as-
sumed models would propagate from K − 1, . . . ,1.
Thus, while using linear models for the Q-functions is
popular in practice, the potential for such mismodeling
should be recognized.

An approach that may mitigate the risk of mismod-
eling is to employ flexible models for the Q-functions;
Zhao, Kosorok and Zeng (2009) use support vector re-
gression models. Developments in statistical learning
suggest a large collection of powerful regression meth-
ods that might be used. Many of these methods must be
tuned in order to balance bias and variance, a natural
approach to which is to minimize the cross-validated
mean squared error of the Q-functions at each deci-
sion point. An obvious downside is that the final model
may be difficult to interpret, and clinicians may not be
willing to use “black box” rules. One compromise is
to fit a simple, interpretable model, such as a decision
tree, to the fitted values of the complex model in order
to explore the factors driving the recommended treat-
ment decisions. This simple model can then be checked
against scientific theory. If it appears sensible, then

clinicians may be willing to use predictions from the
complex model. For discussion, see Craven and Shav-
lik (1996).

A-learning represents a middle ground between Q-
learning and these approaches in that it allows for flexi-
ble modeling of the functions hk(s̄k, āk−1) while main-
taining simple parametric models for the contrast func-
tions Ck(s̄k, āk−1). Thus, the resulting decision rule,
which depends only on the contrast function, remains
interpretable, while the model for the response is al-
lowed to be nonlinear. This is also appealing in that
it may be reasonable to expect, based on the underly-
ing science, that the relationship between patient his-
tory and outcome is complex while the optimal rule for
treatment assignment is dependent, in a simple fash-
ion, on a small number of variables. The flexibility al-
lowed by a semiparametric model also has its draw-
backs. Techniques for formal model building, critique
and diagnosis are well understood for linear models
but much less so for semiparametric models. Conse-
quently, Q-learning based on building a series of linear
models may be more appealing to an analyst interested
in formal diagnostics.

A-learning may have certain advantages for mak-
ing inference under the null hypothesis of no effect
of any treatment regime in D on outcome. For ex-
ample, in a SMART, the propensities are specified by
design, and, under the null, the contrast functions are
identically zero and hence correctly specified. Thus,
A-learning will yield consistent estimators for the pa-
rameters defining the contrast function. See Robins
(2004) and the references in Section 8.

6. SIMULATION STUDIES

We examine the finite sample performance of Q-
and A-learning on a suite of simple test examples via
Monte Carlo simulation. We emphasize that the meth-
ods are straightforward to implement in more com-
plex settings than those here. To illustrate trade-offs be-
tween the methods, we begin with correctly specified
models and systematically introduce misspecification
of the Q-function, the propensity model and both. We
focus here on situations where the contrast function is
correctly specified to gain insight into impact of other
model components. Scenarios with a misspecified con-
trast model can be constructed to include or exclude the
target dopt, precluding generalizable conclusions. See
Section A.9 of the supplemental article [Schulte et al.
(2014)] and Zhang et al. (2012a, 2012b, 2013) for sim-
ulations involving misspecified contrast functions and
Robins (2004), Section 9, for discussion.
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In all scenarios, 10,000 Monte Carlo replications
were used, and, for each generated data set, d̂

opt
Q and

d̂
opt
A in (28) and (32) were obtained using the Q-

and A-learning procedures in Sections 5.1 and 5.2.
For simplicity, we consider one (K = 1) and two
(K = 2) decision problems, where, at each deci-
sion point, there are two treatment options coded as
0 and 1. In all cases, we used Q-functions of the
form Q1(s1, a1; ξ1) = h1(s1;β1) + a1C1(s1;ψ1) and
Q2(s̄2, ā2; ξ2) = h2(s̄2;a1;β2) + a2C2(s̄2, a1;ψ2) to
represent both true and assumed working models. With
the contrast functions correctly specified, ψk , k = 1,2,
dictate the optimal regime. Thus, as one measure of
performance, we focus on relative efficiency of the es-
timators of components of ψk as reflected by the ratio
of Monte Carlo mean squared errors (MSEs) given by
MSE of A-learning/MSE of Q-learning, so that val-
ues greater than 1 favor Q-learning. Recognizing that
E{Y ∗(dopt)} is the benchmark achievable outcome on
average, as a second measure, we consider the extent
to which the estimated regimes d̂

opt
Q and d̂

opt
A achieve

E{Y ∗(dopt)} if followed by the population. Specifically,
for regime d indexed by ψ1 (K = 1) or (ψT

1 ,ψT
2 )T

(K = 2), let H(d) = E{Y ∗(d)}, a function of these pa-
rameters. Then H(dopt) = E{Y ∗(dopt)} is this function
evaluated at the true parameter values, and H(d̂opt) is
this function evaluated at the estimated parameter val-
ues for a given data set, where d̂opt is d̂

opt
Q or d̂

opt
A .

Define R(d̂opt) = E{H(d̂opt)}/H(dopt), where the ex-
pectation in the numerator is with respect to the dis-
tribution of the estimated parameters in d̂opt. We refer
to R(d̂opt) as the v-efficiency of d̂opt, as it reflects the
extent to which d̂opt achieves the “value” of the true
optimal regime. In Section A.6 of the supplemental ar-
ticle [Schulte et al. (2014)] we discuss calculation of
R(d̂opt).

6.1 One Decision Point

In this and the next section, n = 200. Here, the
observed data are (S1i ,A1i , Yi), i = 1, . . . , n. With
expit(x) = ex/(1 + ex), we used the class of genera-
tive models

S1 ∼ Normal(0,1),

A1|S1 = s1 ∼ Bernoulli
{
expit

(
φ0

10 + φ0
11s1

+ φ0
12s

2
1
)}

,
(34)

Y |S1 = s1,

A1 = a1 ∼ Normal
{
β0

10 + β0
11s1 + β0

12s
2
1

+ a1
(
ψ0

10 + ψ0
11s1

)
,9

}
,

indexed by φ0 = (φ0
10, φ

0
11, φ

0
12)

T , β0 = (β0
10, β

0
11,

β0
12)

T , ψ0 = (ψ0
10,ψ

0
11)

T , so that dopt = d
opt
1 ,

d
opt
1 (s1) = I (ψ0

10 + ψ0
11s1 > 0). For A-learning, we as-

sumed models h1(s1;β1) = β10 + β11s1, C1(s1;ψ1) =
ψ10 + ψ11s1, and π1(s1;φ1) = expit(φ10 + φ11s1), and
for Q-learning we used Q1(s1, a1; ξ1) = h1(s1;β1) +
a1C1(s1;ψ1). These models involve correctly speci-
fied contrast functions and are nested within the true
models, with h1(s1;β1), and hence the Q-function, cor-
rectly specified when β0

12 = 0. The propensity model
π1(s1;φ1) is correctly specified when φ0

12 = 0. To
study the effects of misspecification, we varied β0

12
and φ0

12 while keeping the others fixed, considering
parameter settings of the form φ0 = (0,−2, φ0

12)
T ,

β0 = (1,1, β0
12)

T , ψ0 = (1,0.5)T .
Correctly specified models. As noted in Section 5.3,

when all working models are correctly specified, Q-
learning is more efficient than A-learning, which for
(34) occurs when β0

12 = φ0
12 = 0. Here, the efficiency

of Q-learning relative to A-learning is 1.06 for esti-
mating ψ0

10 and 2.74 for ψ0
11. Thus, Q-learning is a

modest 6% more efficient in estimating ψ0
10 but a dra-

matic 174% more efficient in estimating ψ0
11. Interest-

ingly, the v-efficiency of the decision rules produced
by the methods is similar, with R(d̂

opt
Q ) = 0.97 and

R(d̂
opt
A ) = 0.95, so that inefficiency in estimation of

ψ1 via A-learning does not translate into a regime of
poorer quality than that found by Q-learning.

Misspecified propensity model. Under (34), this sit-
uation corresponds to β0

12 = 0 and nonzero φ0
12. An

appeal of A-learning is the double robustness property
noted in Section 5.2, which implies that ψ1 is estimated
consistently when the propensity model is misspecified
provided that the Q-function is correct. In contrast, Q-
learning does not depend on the propensity model, so
its performance is unaffected. Figure 1 shows the rel-
ative efficiency in estimating ψ0

10 and ψ0
11 and the ef-

ficiency of d̂
opt
Q and d̂

opt
A as φ0

12 varies from −1 to 1.
The leftmost panel shows that there is minimal effi-
ciency gain by using Q-learning instead of A-learning
in estimation of ψ0

10. From the center panel, Q-learning
yields substantial gains over A-learning for estimat-
ing ψ0

11. Interestingly, the gain is largest when φ0
12 =

0, which corresponds to a correctly specified propen-
sity model. Letting π0(s1;φ0

1) be the true propensity,
φ0

1 = (φ0
10, φ

0
11, φ

0
12)

T , a possible explanation for this
seemingly contradictory result in this scenario is that,
as |φ0

12| gets larger, logit{π0(S1;φ0
1)} = φ0

10 + φ0
11s1 +

φ0
12s

2
1 becomes more profoundly quadratic. Conse-

quently, the estimator for φ11 in the posited model
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FIG. 1. Monte Carlo MSE ratios for estimators of components of ψ1 (left and center panels) and efficiencies R(d̂
opt
Q ) and R(d̂

opt
A ) for

estimating the true dopt (right panel) under misspecification of the propensity model. MSE ratios > 1 favor Q-learning.

π1(s1;φ1) = expit(φ10 + φ11s1) approaches zero, so
that the estimated posited propensity approaches a
constant. Because Q- and A-learning are algebraically
equivalent under constant propensity here, substituting
an estimated propensity that is nearly constant leads
to an estimator very similar to that from Q-learning.
Consequently, empirical efficiency gains decrease as
|φ0

12| → ∞. The right panel of Figure 1 shows a small
gain in v-efficiency of d̂

opt
Q over d̂

opt
A ; both achieve

good performance.
See Section A.9 of the supplemental article [Schulte

et al. (2014)] for evidence demonstrating this behavior
of the propensity score and for further summaries re-
flecting the relative efficiency of the estimated regimes
in all scenarios in this and the next section.

Misspecified Q-function. This scenario examines the
second aspect of A-learning’s double-robustness, char-
acterized in (34) by φ0

12 = 0 and nonzero β0
12. Here,

A-learning leads to consistent estimation while Q-
learning need not. The left panel of Figure 2 shows
that the gain in efficiency using A-learning is mini-
mal in estimating ψ0

10. The center panel illustrates the

bias-variance trade-off associated with Q- versus A-
learning. For β0

12 far from zero, bias in the misspecified
Q-function dominates the variance, and A-learning en-
joys smaller MSE while, for small values of β0

12, vari-
ance dominates bias, and Q-learning is more efficient.
The right panel shows that large bias in the Q-function
can lead to meaningful loss (∼10%) in v-efficiency of
d̂

opt
Q relative to d̂

opt
A .

Both propensity model and Q-function misspecified.
In our class of generative models (34), this corresponds
to nonzero values of both β0

12 and φ0
12. Rather than

vary both values, (e.g., over a grid), we varied one
and chose the other so that it is “equivalently misspec-
ified.” In particular, for a given value of φ0

12, we se-
lected β0

12 = β0
12(φ

0
12) so that the t-statistic associated

with testing φ0
12 = 0 in the logistic propensity model

and the t-statistic associated with testing β0
12 = 0 in

the linear Q-function would be approximately equal in
distribution. Consequently, across data sets, an analyst
would be equally likely to detect either form of mis-
specification. Details of this construction are given in

FIG. 2. Monte Carlo MSE ratios for estimators of components of ψ1 (left and center panels) and efficiencies R(d̂
opt
Q ) and R(d̂

opt
A ) for

estimating the true dopt (right panel) under misspecification of the Q-function. MSE ratios > 1 favor Q-learning.
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FIG. 3. Monte Carlo MSE ratios for estimators of components of ψ1 (left and center panels) and efficiencies R(d̂
opt
Q ) and R(d̂

opt
A ) for esti-

mating the true dopt (right panel) under misspecification of both the propensity model and the Q-function. MSE ratios > 1 favor Q-learning.

Section A.7 of the supplemental article [Schulte et al.
(2014)].

As in the preceding scenario, Figure 3 illustrates
the bias-variance trade-off associated with Q- and A-
learning. For large misspecification, A-learning pro-
vides a large enough reduction in bias to yield lower
MSE; for small misspecification, Q-learning incurs
some bias but reduces the variance enough to yield
lower MSE. From the right panel of the figure, bias
seems to translate into a larger loss in v-efficiency of
the estimators of dopt than variance.

6.2 Two Decision Points

For K = 2, the observed data available to esti-
mate dopt = (d

opt
1 , d

opt
2 ) are (S1i ,A1i , S2i ,A2i , Yi),

i = 1, . . . , n. For these scenarios, we used a class of
true generative data models that differs from those of
Chakraborty, Murphy and Strecher (2010), Song et al.
(2010) and Laber et al. (2010) only in that S2 is con-
tinuous instead of binary; as the model at the first stage
is saturated, this allows correct specification of the Q-
function at decision 1. The generative model is

S1 ∼ Bernoulli(0.5),

A1|S1 = s1 ∼ Bernoulli
{
expit

(
φ0

10 + φ0
11s1

)}
,

S2|S1 = s1,

A1 = a1 ∼ Normal
(
δ0

10 + δ0
11s1 + δ0

12a1 + δ0
13s1a1,2

)
,

A2|S1 = s1, S2 = s2,

A1 = a1 ∼ Bernoulli
{
expit

(
φ0

20 + φ0
21s1 + φ0

22a1

+ φ0
23s2 + φ0

24a1s2 + φ0
25s

2
2
)}

,

Y |S1 = s1, S2 = s2,

A1 = a1,

A2 = a2 ∼ Normal
{
m(s1, s2, a1, a2),10

}
,

m(s1, s2, a1, a2) = β0
20 + β0

21s1 + β0
22a1

+ β0
23s1a1 + β0

24s2 + β0
25s

2
2

+ a2
(
ψ0

20 + ψ0
21a1 + ψ0

22s2
)
.

The model is indexed by φ0
1 = (φ0

10, φ
0
11)

T , δ0
1 =

(δ0
10, δ

0
11, δ

0
12, δ

0
13)

T , φ0
2 = (φ0

20, φ
0
21, φ

0
22, φ

0
23, φ

0
24,

φ0
25)

T , β0
2 = (β0

20, β
0
21, β

0
22, β

0
23, β

0
24, β

0
25)

T , and ψ0
2 =

(ψ0
20,ψ

0
21,ψ

0
22)

T , with true h0
2(s1, s2, a1) = β0

20 +
β0

21s1 + β0
22a1 + β0

23s1a1 + β0
24s2 + β0

25s
2
2 and con-

trast function C0
2(s1, s2, a1) = ψ0

20 + ψ0
21a1 + ψ0

22s2,
say. Because A1 and S1 are binary, the true func-
tions h0

1(s1) = β0
10 + β0

11s1 and C0
1(s1) = ψ0

10 + ψ0
11s1

are linear in s1; β0
10, β

0
11,ψ

0
10 and ψ0

11 are derived in
terms of parameters indexing the generative model
in Section A.8 of the supplemental article [Schulte
et al. (2014)]. Thus, the true optimal regime has
d

opt
1 (s1) = I (ψ0

10 + ψ0
11s1 > 0) and d

opt
2 (s1, s2, a1) =

I (ψ0
20 + ψ0

21a1 + ψ0
22s2 > 0).

We assumed working models for A-learning of the
form h1(s1;β1) = β10 + β11s1, C1(s1;ψ1) = ψ10 +
ψ11s1, π1(s1;φ1) = expit(φ10 + φ11s1), h2(s1, s2, a1;
β2) = β20+β21s1+β22a1 +β23s1a1+β24s2, C2(s1, s2,

a1;ψ2) = ψ20 + ψ21a1 + ψ22s2, and π2(s1, s2, a1;
φ2) = expit(φ20 + φ21s1 + φ22a1 + φ23s2 + φ24a1s2);
and, similarly, Q-functions Q1(s1, a1; ξ1) = h1(s1;
β1) + a1C1(s1;ψ1) and Q2(s1, s2, a1, a2; ξ2) = h2(s1,

s2, a1;β2) + a2C2(s1, s2, a1;ψ2) for Q-learning, so
that the contrast functions are correctly specified in
each case. Comparison of the working and genera-
tive models shows that the former are correctly spec-
ified when φ0

25 and β0
25 are both zero and are mis-

specified otherwise. Thus, we systematically varied
these parameters to study the effects of misspecifica-
tion, leaving all other parameter values fixed, taking
φ0

1 = (0.3,−0.5)T , δ0
1 = (0,0.5,−0.75,0.25)T , φ0

2 =
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(0,0.5,0.1,−1,−0.1, φ0
25)

T , β0
2 = (3,0,0.1,−0.5,

−0.5, β0
25)

T , and ψ0
2 = (1,0.25,0.5)T .

Correctly specified models. This occurs when φ0
25 =

β0
25 = 0. As discussed previously, Q-learning is effi-

cient when the models are correctly specified. Effi-
ciencies of Q- learning relative to A-learning for es-
timating ψ0

10, ψ0
11, ψ0

20, ψ0
21 and ψ0

22 are 1.07, 1.03,
1.19, 1.44 and 1.98, respectively. Hence, Q-learning
is markedly more efficient in estimating the second
stage parameters but only modestly so for first stage
parameters. More efficient estimators of the parame-
ters do not translate into greater v-efficiency of the es-
timated regimes in this scenario, as R(d̂

opt
Q ) = 0.96 and

R(d̂
opt
A ) = 0.96.

Misspecified propensity model. The propensity
model at the second stage is misspecified when φ0

25 is
nonzero. To isolate the effects of such misspecification,
we set β0

25 = 0 and varied φ0
25 between −1 and 1. From

Figure 4, Q-learning is more efficient than A-learning
for estimation of all parameters in ψ1 and ψ2, and, as
in the one decision case, the efficiency gain is largest
when φ0

25 = 0, corresponding to a correctly specified

propensity model. From the lower right panel, there
appears to be little difference in v-efficiency of d̂

opt
Q

and d̂
opt
A .

Misspecified Q-function. Under our class of gener-
ative models, the Q-function is misspecified when β0

25
is nonzero. We set φ0

25 = 0 to focus on the effects of
such misspecification. Figure 5 shows that, for the first
stage parameters ψ0

10 and ψ0
11, there is little difference

in efficiency between Q- and A-learning. The upper
panels illustrate varying degrees of the bias-variance
trade-off between the methods. In particular, in esti-
mating ψ0

22, a small amount of misspecification leads
to significant bias, and, hence, A-learning produces a
much more accurate estimator, while, for ψ0

20, the bias-
variance trade-off is present but attenuated and there is
little difference between Q- and A-learning. In estima-
tion of ψ0

21, variance appears to dominate bias, and Q-
learning is preferred for the chosen range of β0

25 values.
From the lower right panel, relative efficiency for es-
timating ψ0

22 weakly tracks the relative efficiencies of
the estimated regimes d̂

opt
Q and d̂

opt
A , suggesting that the

FIG. 4. Monte Carlo MSE ratios for estimators of components of ψ2 and ψ1 (upper row and lower row left and center panels) and
efficiencies R(d̂

opt
Q ) and R(d̂

opt
A ) for estimating the true dopt (lower right panel) under misspecification of the propensity model. MSE ratios

> 1 favor Q-learning.
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FIG. 5. Monte Carlo MSE ratios for estimators of components of ψ2 and ψ1 (upper row and lower row left and center panels) and
efficiencies R(d̂

opt
Q ) and R(d̂

opt
A ) for estimating the true dopt (lower right panel) under misspecification of the Q-functions. MSE ratios > 1

favor Q-learning.

efficiency gain for A-learning in estimating ψ0
22 leads

to improved estimation of dopt.
Both the propensity model and Q-function misspec-

ified. This scenario corresponds to nonzero values of
β0

25 and φ0
25. Analogous to the one decision case, we

chose pairs (β0
25, φ

0
25) that are “equivalently misspec-

ified;” see Section A.7 of the supplemental article
[Schulte et al. (2014)]. From Figure 6, there is no gen-
eral trend in efficiency of estimation across parame-
ters that might recommend one method over the other.
Furthermore, from the lower right panel, there is lit-
tle difference in v-efficiency of the estimated regimes.
One should not expect to draw broad conclusions, as
neither Q- nor A-learning need be consistent here. In-
terestingly, despite misspecification of both models,
d̂

opt
Q and d̂

opt
A still enjoy high v-efficiency in this sce-

nario.

6.3 Moodie, Richardson and Stephens Scenario

The foregoing simulation scenarios deliberately in-
volve simple models for the Q-functions in order to
allow straightforward interpretation. To investigate the

relative performance of the methods in a more chal-
lenging setting, we generated data from a scenario sim-
ilar to that in Moodie, Richardson and Stephens (2007)
in which the true contrast functions are simple yet the
Q-functions are complex.

The data generating process used mimics a study in
which HIV-infected patients are randomized to receive
antiretroviral therapy (coded as 1) or not (coded as 0)
at baseline and again at six months, where the ran-
domization probabilities depend on baseline and six
month CD4 counts. Specifically, we generated base-
line CD4 count S1 ∼ Normal(450,1502), and baseline
treatment A1 was then assigned according to A1|S1 =
s1 ∼ Bernoulli{expit(φ0

10 + φ0
11s1)}. We generated six

month CD4 count S2, distributed conditional on S1 =
s1,A1 = a1 as Normal(1.25s1,602). Treatment A2 was
then generated according to A2|S1 = s1,A1 = a1, S2 =
s2 ∼ Bernoulli{expit(φ0

20 + φ0
21s2)}. In contrast to the

scenario in Moodie, Richardson and Stephens (2007),
this allows all possible treatment combinations. The
outcome Y is CD4 count at one year; following
Moodie, Richardson and Stephens (2007), Y was gen-
erated as Y = Y opt − μ0

1(S1,A1) − μ0
2(S1, S2,A1,A2),
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FIG. 6. Monte Carlo MSE ratios for estimators of components of ψ2 and ψ1 (upper row and lower row left and center panels) and
efficiencies R(d̂

opt
Q ) and R(d̂

opt
A ) for estimating the true dopt (lower right panel) under misspecification of both the propensity models and

Q-functions. MSE ratios > 1 favor Q-learning.

where Y opt|S1 = s1,A1 = a1, S2 = s2,A2 = a2 ∼
Normal(400 + 1.6s1,602). Here, μ0

1(S1,A1) and
μ0

2(S1, S2,A1,A2) are the true advantage (regret) func-
tions; we took C0

1(s1) = ψ0
10 + ψ0

11s1 and C0
2(s1, s2,

a1) = ψ0
20 + ψ0

21s2 to be the true contrast functions, so
that, from Section 5.2,

μ0
1(S1,A1)

(35)
= (

ψ0
10 + ψ0

11S1
){

I
(
ψ0

10 + ψ0
11S1 > 0

) − A1
}
,

μ0
2(S1, S2,A1,A2)

(36)
= (

ψ0
20 + ψ0

21S2
){

I
(
ψ0

20 + ψ0
21S2 > 0

) − A2
}
.

It follows that the optimal treatment regime dopt =
(d

opt
1 , d

opt
2 ) has d

opt
1 (s1) = I (ψ0

10 + ψ0
11s1 > 0) and

d
opt
2 (s̄2, a1) = I (ψ0

20 +ψ0
21s2 > 0). While the true con-

trast functions are linear in ψ0
k , k = 1,2, the true im-

plied h0
1(s1) and h0

2(s1, a1, s2) are nonsmooth and pos-
sibly complex.

Following Moodie, Richardson and Stephens (2007),
for A-learning, we assumed working models h1(s1;
β1) = β10 + β11s1, C1(s1;ψ1) = ψ10 + ψ11s1, h2(s1,

s2, a1;β2) = β20 + β21s1 + β22a1 + β23s1a1 + β24s2,
and C2(s1, s2, a1;ψ2) = ψ20 + ψ21s2 , and propensity
models π1(s1;φ1) = expit(φ10 + φ11s1) and π2(s1, s2,

a1;φ2) = expit(φ20 + φ21s2). For Q-learning, we anal-
ogously assumed Q-functions Q1(s1, a1; ξ1) = h1(s1;
β1) + a1C1(s1;ψ1) and Q2(s1, s2, a1, a2; ξ2) = h2(s1,

s1, a1;β2) + a2C2(s1, s2, a1;ψ2). Note that the con-
trast functions in each case are correctly specified, as
are the propensity models; however, the Q-functions
are misspecified, as the linear models h1(s1;β1) and
h2(s1, s1, a1;β2) are poor approximations to the com-
plex forms of the true h0

1(s1) and h0
2(s1, s2, a1).

We report results for n = 1000 with φ0
1 = (φ0

10,

φ0
11)

T = (2.0,−0.006)T , φ0
2 = (φ0

20, φ
0
21)

T = (0.8,

−0.004)T , ψ0
1 = (ψ0

10,ψ
0
11)

T = (250,−1.0)T , and
ψ0

2 = (ψ0
20,ψ

0
21)

T = (720,−2.0)T in Table 1. Because
the Q-functions are misspecified, the Q-learning esti-
mators for ψ0

1 and ψ0
2 are biased, while those obtained

via A-learning are consistent owing to the double ro-
bustness property. This leads to the dramatic relative
inefficiency of Q-learning reflected by the MSE ra-
tios. Under the assumed models, the estimated opti-
mal regime for Q-learning dictates that, at baseline,
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TABLE 1
Monte Carlo average (standard deviation) of estimates obtained

via Q- and A-learning and ratio of Monte Carlo MSE for the
Moodie and Richardson scenario; MSE ratios > 1 favor

Q-learning

Parameter
(true value) Q-learning A-learning MSE ratio

ψ0
10 = 250 154.8 (23.2) 249.1 (18.7) 0.036

ψ0
11 = −1.0 −0.775 (0.052) −0.998 (0.041) 0.032

ψ0
20 = 720 507.3 (49.2) 720.3 (48.4) 0.050

ψ0
21 = −2.0 −1.584 (0.092) −2.001 (0.085) 0.040

therapy be given to patients with baseline CD4 count
less than 199.7, while that estimated using A-learning
gives treatment to those with baseline CD4 count less
than 249.1, almost perfectly achieving the true opti-
mal CD4 threshold of 250. Under the data generative
process, using the baseline decision rule estimated via
Q-learning may result in as many as 4.4% of patients
who would receive therapy at baseline under the true
optimal regime being assigned no treatment. Similarly,
at the second decision, the estimated optimal regimes
obtained by Q- and A-learning dictate that therapy be
given to patients with six month CD4 count less than
320.2 and 360.1, respectively. Again, A-learning yields
an estimated threshold almost identical to the optimal
value of 360. Although that obtained via Q-learning is
lower, 4.3% of patients who should receive therapy at
six months would not if the estimated six month rule
from Q-learning were followed by the population.

By Section A.6 of the supplemental article [Schulte
et al. (2014)], H(dopt) = 1120, whereas E{H(d̂

opt
Q )} ≈

1117.1 (estimated standard error 1.3) and
E{H(d̂

opt
A )} ≈ 1119.9 (0.3), so that R(d̂

opt
Q ) and R(d̂

opt
A )

are virtually equal to one. Thus, although Q-learning
yields poor estimation of parameters in the contrast
functions, loss in v-efficiency of the estimated opti-
mal regime is negligible. A possible explanation is
as follows. For (35) and (36), some patients near
the true treatment decision boundary would have
C0

k (S̄k, Āk−1), k = 1,2, close to zero. Thus, even if a
regime improperly assigns treatment to these patients,
they would experience only a small loss in outcome
and hence have little effect on the overall average. For
other patients for whom the true contrast is not close to
zero, improper assignment could result in considerable
degradation of outcome. Because the proportion of pa-
tients receiving improper assignment is small in this

scenario, the effect of these latter patients on the over-
all expected outcome is not substantial, leading to the
relatively good expected outcome under the estimated
Q-learning regime.

7. APPLICATION TO STAR*D

Sequenced Treatment Alternatives to Relieve De-
pression (STAR*D) was a randomized clinical trial en-
rolling 4041 patients designed to compare treatment
options for patients with major depressive disorder.
The trial involved four levels, where each level con-
sisted of a 12 week period of treatment, with sched-
uled clinic visits at weeks 0, 2, 4, 6, 9, 12. Severity
of depression at any visit was assessed using clinician-
rated and self-reported versions of the Quick Inven-
tory of Depressive Symptomatology (QIDS) score
(Rush et al., 2003), for which higher values corre-
spond to higher severity. At the end of each level, pa-
tients deemed to have an adequate clinical response
to that level’s treatment did not move on to future
levels, where adequate response was defined by 12-
week clinician-rated QIDS score ≤ 5 (remission) or
showing a 50% or greater decrease from the baseline
score at the beginning of level 1 (successful reduction).
During level 1, all patients were treated with citalo-
pram. Patients continuing to level 2 due to inadequate
response, conferring with their physicians, expressed
preference to (i) switch or (ii) augment citalopram
and within that preference were randomized to one of
several options: (i) switch: sertraline, bupropion, ven-
lafaxine, or cognitive therapy, or (ii) augment: citalo-
pram plus one of either bupropion, buspirone, or cogni-
tive therapy. Patients randomized to cognitive therapy
(alone or augmented with citalopram) were eligible,
in the case of inadequate response, to move to a sup-
plementary level 2A and be randomized to switch to
bupropion or venlafaxine. All patients without ade-
quate response at level 2 (or 2A) continued to level 3
and, depending on preference to (i) switch or (ii) aug-
ment, were randomized within that preference to (i)
switch: mirtazepine or nortriptyline or (ii) augment
with either: lithium or triiodothyronine. Patients with-
out adequate response continued to level 4, requiring
a switch to tranylcypromine or mirtazepine combined
with venlafaxine (determined by preference). Thus, al-
though the study involved randomization, it is obser-
vational with respect to the treatment options switch
or augment. For a complete description see Rush et al.
(2004); see Section A.10 of the supplemental article
[Schulte et al. (2014)] for a schematic of the design.
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To demonstrate formulation of this problem within
the framework of Sections 2 and 3, we take level 2A to
be part of level 2 and consider only levels 2 and 3, call-
ing them stages (decision points) 1 and 2, respectively
(K = 2). Some patients in stage 1 without adequate re-
sponse dropped out of the study without continuing to
stage 2. Hence, we analyze complete case data, exclud-
ing dropouts, from 795 patients entering stage 1; 330
of these subsequently continued to stage 2. Let Ak ,
k = 1,2, be the treatment at stage k, taking values 0
(augment) or 1 (switch); both options are feasible for
all eligible subjects. Let S10 denote baseline (study en-
try) QIDS score and S11 denote the most recent QIDS
score at the beginning of stage 1, respectively, so that
S1 = (S10, S11)

T is information available immediately
prior to the first decision. Similarly, let S2 be the infor-
mation available immediately prior to stage 2; here, S2
is the most recent QIDS score at the end of stage 1/be-
ginning of stage 2. Finally, let T be the QIDS score
at the end of stage 2. Because some patients exhibited
adequate response at the end of stage 1 and did not
progress to stage 2, we define the outcome of interest
to be −S2 (negative QIDS score at the end of stage 1)
for patients not moving to stage 2 and −(S2 + T )/2
(average of negative QIDS scores at the end of stages 1
and 2) otherwise. Thus, writing L0 = max(5, S10/2),
Y = −S2I (S2 ≤ L0) − (S2 + T )I (S2 > L0)/2, the
cumulative average negative QIDS score. Thus, this
demonstrates the case where outcome is a function of
accrued information over the sequence of decisions.

From (9), Q2(s̄2, ā2) = E(Y |S̄2 = s̄2, Ā2 = ā2) =
−s2{I (s2 ≤ l0)+I (s2 > l0)/2}+E(−T |S̄2 = s̄2, Ā2 =
ā2, S2 > l0)I (s2 > l0)/2, so that V2(s̄2, a1) =
−s2I (s2 ≤ l0)+{−s2+U2(s̄2, a1)}I (s2 > l0)/2, where
U2(s̄2, a1) = maxa2 E(−T |S̄2 = s̄2,A1 = a1,A2 =
a2, S2 > l0). Thus, from (12),

Q1(s1, a1) = E
[−S2I (S2 ≤ l0)

+ {−S2 + U2(s̄2, a1)
}
I (S2 > l0)/2|

S1 = s1,A1 = a1
]
.

We describe implementation for Q-learning. At the
second decision point, we must posit a model for
Q2(s̄2, ā2). From the form of Q2(s̄2, ā2), we need only
specify a model for E(−T |S̄2 = s̄2, Ā2 = ā2, S2 > l0);
given the form of the conditioning set, this may be car-
ried out using only the data from patients moving to
stage 2. Based on exploratory analysis, defining s22
to be the slope of the QIDS score over stage 1 based
on s11 and s2, we took this model to be of the form

β20 + β21s2 + β22s22 + ψ20a2, so that the posited Q-
function is

Q2(s̄2, ā2; ξ2)

= −s2
{
I (s2 ≤ l0) + I (s2 > l0)/2

}
(37)

+ I (s2 > l0)

× (β20 + β21s2 + β22s22 + ψ20a2)/2,

ξ2 = (β20, β21, β22,ψ20)
T . Under (37), V2(s̄2, a1;

ξ2) = −s2{I (s2 ≤ l0) + I (s2 > l0)/2} + I (s2 > l0) ×
{β20 + β21s2 + β22s22 + ψ20I (ψ20 > 0)}/2, and the
“responses” Ṽ2,i for use in (27) may then be formed
by substituting the estimate for ξ2. Based on ex-
ploratory analysis, we took the posited Q-function at
the first stage to be Q1(s1, a1; ξ1) = β10 + β11s11 +
β12s12 + a1(ψ10 + ψ11s12), where s12 is the slope of
the QIDS score prior to stage 1 based on s10 and s11,
and ξ1 = (β10, β11, β12,ψ10,ψ11)

T . For A-learning,
we posited models for the functions hk(s̄k, āk−1) and
Ck(s̄k, āk−1), k = 1,2, in the obvious way analogous
to those above, and we took the propensity mod-
els to be of the form π2(s̄2, a1;φ2) = expit(φ20 +
φ21s2 + φ22s22 + φ23a1) and π1(s1;φ1) = expit(φ10 +
φ11s11 + φ12s12). Section A.11 of the supplemental ar-
ticle [Schulte et al. (2014)] presents model diagnostics.

The results are given in Table 2. To describe imple-
mentation, we consider interactions significant based
on a test at level α = 0.10. At the first stage, Q-learning
suggests a treatment switch for those with QIDS slope
prior to stage 1 greater than −1.09 (obtained by solv-
ing 1.11 + 1.02S12 = 0); A-learning assigns a treat-
ment switch for those with this QIDS slope greater
than −1.66. At stage 2, the results suggest that all
patients should switch and not augment their existing
treatments.

8. DISCUSSION

We have provided a self-contained account of Q-
and A-learning methods for estimating optimal dy-
namic treatment regimes, including a detailed discus-
sion of the underlying statistical framework in which
these methods may be formalized and of their relative
merits. Our discussion of A-learning is limited to the
case of two treatment options at each decision. Our
simulation studies suggest that, while A-learning may
be inefficient relative to Q-learning in estimating pa-
rameters that define the optimal regime when the Q-
functions required for the latter are correctly specified,
A-learning may offer robustness to such misspecifica-
tion. Nonetheless, Q-learning may have practical ad-
vantages in that it involves modeling tasks familiar to



Q- AND A-LEARNING METHODS FOR OPTIMAL REGIMES 659

TABLE 2
STAR*D data analysis results. Asterisks indicate evidence at level of significance 0.05 (0.10) that the main effect (treatment contrast)

parameter is nonzero

Q-learning A-learning

Parameter Estimate 95% CI p-value Estimate 95% CI p-value

Stage 2
β20 −1.46 (−3.47,0.55) −1.47 (−3.49,0.54)
β21 −0.75 (−0.88,−0.61) * −0.75 (−0.88,−0.61) *
β22 1.17 (0.52, 1.81) * 1.17 (0.52, 1.81) *
ψ20 1.10 (0.02, 2.19) * 1.12 (0.03, 2.22) *

Stage 1
β10 −0.62 (−1.94,0.70) −0.30 (−1.69,1.09)
β11 −0.54 (−0.62,−0.45) * −0.55 (−0.64,−0.46) *
β12 −0.08 (−0.60,0.45) 0.10 (−0.46,0.66)
ψ10 1.11 (0.28, 1.94) * 0.73 (−0.18,1.65)
ψ11 1.02 (−0.08,2.11) * 0.44 (−0.83,1.72)

most data analysts, allowing the use of standard diag-
nostic tools. On the other hand, A-learning may be pre-
ferred in settings where it is expected that the form
of the decision rules defining the optimal regime is
not overly complex. However, A-learning increases in
complexity with more than two treatment options at
each stage, which may limit its appeal. Interestingly, in
the simulation scenarios we consider, inefficiency and
bias in estimation of parameters defining the optimal
regime does not necessarily translate into large degra-
dation of average performance of the estimated regime
for either method.

Although our simple simulation studies provide
some insight into the relative merits of these meth-
ods, there remain many unresolved issues in estimation
of optimal treatment regimes. Approaches to address
the challenges of high-dimensional information and
large numbers of decision points are required. Existing
methods for model selection focusing on minimiza-
tion of prediction error may not be best for developing
models optimal for decision-making. When K is very
large, the number of parameters in the models required
for Q- and A-learning becomes unwieldy. The analyst
may wish to postulate models in which parameters
are shared across decision points; see Robins, 2004,
Robins, Orellana and Rotnitzky (2008), Orellana, Rot-
nitzky and Robins (2010) and Chakraborty and Moodie
(2012).

In our development, we have invoked a strong ver-
sion of the sequential randomization assumption to
simplify supporting arguments. Richardson and Robins

(2013) allow identification of potential outcomes un-
der possibly weaker assumptions via graphical repre-
sentations. These authors also extend the notion of a
dynamic treatment regime.

Formal inference procedures for evaluating the un-
certainty associated with estimation of the optimal
regime are challenging due to the nonsmooth nature
of decision rules, which in turn leads to nonregular-
ity of the parameter estimators; see Robins (2004),
Chakraborty, Murphy and Strecher (2010), Laber et al.
(2010), Moodie and Richardson (2010), Song et al.
(2010) and Laber and Murphy (2011).

We have discussed sequential decision-making in the
context of personalized medicine, but many other ap-
plications exist where, at one or more times in an evolv-
ing process, an action must be taken from among a set
of plausible actions. Indeed, Q-learning was originally
proposed in the computer science literature with these
more general problems in mind; see Shortreed et al.
(2011).
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