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Abstract

Many model potential energy surfaces (PESs) have been reported for water; how-

ever, none are strictly from “first principles”. Here we report such a potential, based

on a many-body representation at the CCSD(T) level of theory up to the ultimate 4-

body interaction. The new PES is benchmarked for the isomers of the water hexamer

for dissociation energies, harmonic frequencies, and unrestricted diffusion Monte Carlo

(DMC) calculations of the zero-point energies of the Prism, Book and Cage isomers.

Dissociation energies of several isomers of the 20-mer agree well with recent benchmark

energies. Exploratory DMC calculations on this cluster verify the robustness of the

new PES for quantum simulations. The accuracy and speed of the new PES is demon-

strated for standard condensed phase properties, i.e., the radial distribution function

and the self-diffusion constant. Quantum effects are shown to be substantial for these

observables and also needed to bring theory into excellent agreement with experiment.
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Potential energy surfaces (PESs) are critical to our understanding of molecular interac-

tions, their dynamics, and their structures. Among these surfaces, perhaps the most impor-

tant are those that predict the behavior of life’s signature molecule, water. Ideally such a

PES would employ the highest level of electronic structure theory and be developed for a

complete many-body interaction. A major step in this direction was the CC-pol potential

published in 2007.1 This potential was based on fits to CCSD(T) interaction energies for rigid

monomers at the 2-body(b) level of interaction and sophisticated treatments of long-range

many-body induction effects. Since then numerous studies have examined the importance

of 3-b, 4-b, and 5-b interactions, and the latest work2 shows definitively that truncating

at the 4-body level accounts for virtually all of the many-body interactions. So, it is clear

now that an ideal approach for a water PES would include 2-b, 3-b and 4-b interactions for

flexible monomers and using CCSD(T) level of theory. In addition, studies of structural and

transport properties of water, ranging from clusters to condensed phase, should ideally be

based on quantum simulations, which require a robust PES reaching to energies well beyond

the zero-point energy. Finally, the PES should be invariant with respect to permutation of

monomers, and each monomer should also be invariant with respect to interchange of the

two H atoms.

We report such a PES here and apply it to a variety of important “stress tests” for clusters

and the condensed phase. The form of this PES is based on the well-known, many-body

expression for the total energy of N water monomers:

V (1, · · · , N) =
N∑

i=1

V1−b(i)+
N∑

i>j

V2−b(i, j)+
N∑

i>j>k

V3−b(i, j, k)+
N∑

i>j>k>l

V4−b(i, j, k, l)+· · · , (1)

We indicate terms up to 4-b interactions explicitly because the potential in the present paper

is truncated at this term. Each of these terms is obtained using a machine-learned fit to

corresponding datasets of CCSD(T) interaction energies. Specifically, the fits are done using

a basis of permutationally invariant polynomials (PIPs).3,4 This particular ML method has



been used by us previously in developing a water potential, denoted WHBB,5 and by Paesani

and co-workers for the MB-pol water potential.6,7 These potentials are truncated at the ab

initio level of 3-b interactions. Also, both use semi-empirical TTMn-F water potentials for

higher-body interactions, however, in different ways. The WHBB PES uses TTM3-F8 while

the MB-pol PES uses TTM4-F.9 There are significant differences in how these potentials are

used in WHBB and MB-pol and these are described in detail in the Supporting Information

(SI). Finally we note that there are numerous empirical water potentials, and we refer the

reader to a recent review10 of these along with the WHBB and MB-pol potentials.

The new fits reported here make use of new 2-b and 3-b datasets, which are at the

CCSD(T) level and more extensive both in energy and range than the CCSD(T) 2- and 3-b

datasets used for the MB-pol potential. In addition, a 4-b dataset, employed by us in a

preliminary CCSD(T) PIP 4-b PES,11 is extended and a new 4-b PIP fit is reported. Here

we note the numbers of CCSD(T) energies in the datasets are 71,892, 45,332 and 3692 for

the 2-, 3- and 4-b interactions, respectively. Additional details are given in the last section

and in the SI. These new 2-, 3-, and 4-b PIP PESs together with the spectroscopically

accurate Partridge and Schwenke12 water monomer (1-b) PES constitute the new PES. The

new potential is denoted “q-AQUA”.

We now demonstrate the accuracy and robustness of q-AQUA for standard “stress” tests,

namely the dissociation energies, harmonic frequencies, and diffusion Monte Carlo (DMC)

calculations of zero-point energies of isomers of the water hexamer and the dissociation

energies of several isomers of the 20-mer, for which benchmark values have recently been

reported.13 We also report molecular dynamics (MD) and path integral molecular dynamics

(PIMD) calculations for the radial distribution function (RDF) and MD and semi-quantum

Ring Polymer MD (RPMD) calculations of the diffusion constant over a range of tempera-

tures. Significant 4-b and quantum effects are found for these properties.

MB-pol is a highly successful water potential and so we present selected results using

that potential as part of the assessment of q-AQUA. The first comparisons are for the 2-b
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interaction with CCSD(T) benchmark calculations. For the 2-b interaction, attractive and

repulsive cuts are presented in the SI where both q-AQUA and MB-pol are shown to be in

excellent agreement with the CCSD(T) calculations.

Panels A and B of Fig. 1 show attractive and repulsive cuts, respectively, for the 3-b

potential as one monomer is moved relative to the remaining dimer. The q-AQUA potential

provides excellent agreement with CCSD(T) calculations throughout the 2–10 Å region. MB-

pol is almost as accurate as q-AQUA for the attractive cut, but underestimates the repulsive

3-b potential in the 4–5.5 Å range and overestimates it considerably when the OO distance

is less than 4 Å.

Panel C of Fig. 1 shows a 4-b potential cut as one monomer is moved with respect

to the remaining trimer. The 4-b potential labeled “MB-pol” is the TTM4-F 4-b potential

embedded in MB-pol. As seen, it is low compared to the CCSD(T) calculations in the range

of about 3–5 Å, and is in strong disagreement with them below about 2.5 Å. The q-AQUA

potential is in good agreement with CCSD(T) energies throughout the range shown. For

moving one water dimer with respect to the other, panel D of Fig. 1 shows that, while the

MB-pol has strong deviations from the CCSD(T) results below 2.5 Å, the q-AQUA potential

is in good agreement with the CCSD(T) results throughout the range. One might expect

that the TTM4-F 4-body potential embedded in MB-pol would be uniformly accurate in the

long range, but this is not the case. This is shown in Fig. S9 of the SI, which plots the

difference between CCSD(T)-F12 4-body energy and the MB-pol/TTM4-F 4-body energy

against the maximum OO distance in the tetramer for all the configurations in our 4-body

data set. The TTM4-F potential has large errors even when the OO distance is around 7

Å. The RMSE for TTM4-F, as compared to the CCSD(T)-F12 benchmark is 21.2 cm−1,

whereas the RMSE for the q-AQUA 4-b potential against the same benchmark is 7.2 cm−1.

Note that the average absolute value of the 4-b energy in the data set is 31.9 cm−1, so an

RMSE of 21.2 cm−1 from TTM4-F is large. A correlation plot between the q-AQUA 4-b

energies and the CCSD(T)-F12 ones is provided in Fig. S10 of the SI, where additional
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Figure 1: Comparison of the new 3-b fit and MB-pol with direct CCSD(T) energies for
an attractive cut (A) and an repulsive cut (B). Comparison of the new 4-b fit and direct
CCSD(T) energies for a monomer-trimer cut (C) and a dimer-dimer cut (D).
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precision metrics and properties of the present 2-, 3-, and 4-b PIP potentials can be found.

Next, we present tests of the accuracy of q-AQUA against benchmark results for the

water hexamer and the 20-mer. Table S1 in the SI provides results for each of the 8 hexamer

isomers, comparing the dissociation energies and the 2-b, 3-b, and 4-b energies for the q-

AQUA potential, the MB-pol potential and the CCSD(T)/CBS calculations.14,15 The mean

absolute errors (MAEs) are lower in general for the q-AQUA potential, although both appear

to be fairly accurate. These results are shown graphically in Fig. 2, where different levels

of agreement with the CCSD(T) results are seen. The De results, particularly for the Ring,

Boat1, and Boat2 isomers are more accurately predicted by q-AQUA than MB-pol, mostly

because of differences in the 4-b contribution. Comparisons of the harmonic vibrational

frequencies for four of the hexamer isomers are provided in Table S2 of the SI. As compared

to the CCSD(T) benchmark calculation, q-AQUA and MB-pol are about equally good in

predicting the frequencies of the Prism and Cage isomers, whereas q-AQUA does somewhat

better than MB-pol on Book and Ring isomers.

The zero-point energies (ZPEs) of three hexamer isomers, Prism, Cage, and Book1,

are calculated using the unrestricted diffusion Monte Carlo method.16–18 Details of these

calculations are provided in the SI. The ZPEs of the three isomers (all referenced to the

electronic energy of the Prism equilibrium structure) using the full q-AQUA potential and

without the 4-b contribution are listed in Table 1, along with the statistical uncertainties.

Note that due to a finite number of walkers and a finite step size, systematic errors on

the absolute ZPE values exist, but early studies19,20 have shown that the energy differences

between isomers are relatively insensitive to the number of walkers. The walker numbers

used in this work are sufficient for a good estimate of the energy differences. As seen, the

ZPE of the Cage is the lowest among the three isomers, by about 100 cm−1 and thus the Cage

is predicted to be the lowest energy isomer at 0 K. This is in agreement with experiment21,22

and also the tentative conclusion of earlier DMC calculations using the WHBB PES.20 and

even earlier calculations using rigid-body DMC.21 Further analysis of these DMC results and
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Figure 2: Binding energies (A), 2-body energies (B), 3-body energies (C) and 4-body en-
ergies (D) for water hexamer isomers from present fits, MB-pol and benchmark CCSD(T)
calculations (taken from refs. 14 and 15 . (E) Structures of water hexamer isomers.
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also those for larger clusters will be the subject of a future paper.

As noted, the DMC calculations are unconstrained, unlike studies using MB-pol, where

geometric constraints are applied.19,23 We have run unconstrained DMC calculations using

MB-pol potential, and found many “holes”, i.e., configurations with unphysical very negative

energies. By contrast, q-AQUA is “hole-free” when running unconstrained DMC, and this

finding was further corroborated by DMC runs on the 20-mer which we discuss briefly next.

Table 1: Zero-point energies (in cm−1) of three isomers of water hexamer from
diffusion Monte Carlo calculations.

With 4-b Without 4-b
Prism 32647± 9 32598± 12
Cage 32553± 19 32465± 9
Book 1 32652± 12 32740± 16

Table 2: Binding energies (in kcal/mol) of three (H2O)20 isomers of.

Isomer MP2/aV5Z MP2/CBS q-AQUA MB-pol
A3 -202.1 199.2± 0.5a (−200.8± 2.1b) -199.8 -195.2
A2d -202.1 n.a. -201.7 -195.3
9 -201.5 n.a. -200.5 -194.9

a Ref. 13
b CCSD(T)/CBS binding energy from Ref. 13

Table 2 shows the binding energies for three isomers of (H2O)20 and compares the bench-

mark MP2/aV5Z and MP2/CBS calculations13 with the predictions of q-AQUA and MB-pol.

The q-AQUA prediction for the A3 isomer is in good agreement with the MP2/CBS value,

whereas the MB-pol value is more than 4 kcal/mol too low. Similarly, for the A2d and 9 iso-

mers, the q-AQUA results are within one kcal/mol as compared to the available MP2/aV5Z

results, while the MB-pol prediction is again to low by about 6–7 kcal/mol. It is interest-

ing to note that without the 4-b interaction the binding energies from q-AQUA are close

to those from MB-pol and so the present 4-b interaction is needed to close the gap with

the benchmark results. Preliminary DMC calculations for the 20-mer have been performed

successfully and this validates the robustness of the q-AQUA potential for a large cluster.
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Finally we examine the q-AQUA potential for simulations of bulk water properties.

Specifically, classical molecular dynamics (MD), path integral molecular dynamics (PIMD),

and ring polymer molecular dynamics (RPMD)24,24,25 were used to calculate both static and

dynamic properties of liquid water. All the MD simulations were performed with the i-PI

software,26 and more computational details about calculations are provided in the SI.
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Figure 3: OO radial distribution function from classical MD simulations at 298 K using
reduced q-AQUA potential up to and including the 2-b interaction. The experimental data
are from Ref. 27

Fig. 3 shows the OO radial distribution function obtained from classical molecular dy-

namics simulations at 298 K with only 1-b and 2-b interactions included. As seen, the

simulated OO radial distribution deviates significantly from the experimental measurement.

The inclusion of 1-b and 2-b interactions cannot sufficiently describe the water interactions

in the condensed phase. Panels A and B of Fig. 4 show the q-AQUA results for MD and

PIMD simulations of the OO radial distribution function over a range of temperatures for

1-, 2-, 3-b and 1–4-body interactions compared to experiment (data taken from Refs. 27,28).

Although the classical MD prediction agrees substantially with the position of the peaks in

the distribution, it is noteworthy that the amplitudes of the peaks do not agree well. For
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the quantum calculations, the agreement is substantially better. These plots do lead to the

conclusion that for this property the 4-b interaction is not needed to obtain the graphical

level of agreement seen. Fig. S14 in the SI shows this RDF using q-AQUA truncated at

the 2-b, 3-b and 4-b levels. As seen there, truncating at the 2-b level does not give an

accurate result. Interestingly the peaks move to shorter OO distances in going from the 2-b,

to 3-b and finally 4-b level of truncation. This implies the presence of an effective additional

attraction in going to the higher level of n-body interaction.

Next consider the self-diffusion constant as a function of temperature obtained with q-

AQUA using MD and RPMD calculations. The results are given in Table 3. As seen, MD

gets the trend correctly but is low compared to the experiment, whereas RPMD succeeds in

coming close to the experiment. The increase in the self-diffusion constant obtained using

RPMD is consistent with previous quantum mechanical calculations using the empirical q-

TIP4/F water potential.24,25 The orientational relaxation time at 298 K is also given and, as

seen, is in much better agreement when quantum RPMD as compared to the classical MD.

Thus, for both the radial distribution function and especially the diffusion constant,

quantum effects are significant for liquid water. And it is clear that q-AQUA provides

accurate results when coupled with quantum dynamics. Space does not permit a detailed

discussion of these studies, but we simply note that the present calculations find significant

quantum effects in both, and especially for the diffusion constant the magnitude seen here

is consistent with recent results using an empirical water potential.29 For the first time the

effect of the 4-b has been shown to decrease the diffusion constant somewhat. This implies

that overall the 4-b is an added attraction which retards the diffusion, a result that seems

quite reasonable to us.

Finally, we present some timing results for q-AQUA. For the dynamics of 256 water

molecules, Table S5 in the SI provides information for the time required for each of the n-

body steps and for the total, with and without periodic boundary conditions (PBC), for one

2.4 GHz Intel Xeon core or eight using OpenMP, and for both the energy alone and for the
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Figure 4: OO radial distribution function from classical (A) and path integral (B) molecular
dynamics simulations at different temperatures. The blue dashed lines are from reduced
q-AQUA potential up to and including the 3-b interaction. The red dashed lines are from
the full q-AQUA potential up to and including the 4-b interaction. The experimental data
are taken from Ref. 27,28

Table 3: Dynamical properties of liquid water from classical and quantum sim-
ulations with q-AQUA potential

Self-diffusion coefficient,D,(Å2/ps)
Temperature (K) Classical RPMD Expt.a

278 0.080 ± 0.016 0.130 ± 0.015 0.131
288 0.102 ± 0.017 0.177 ± 0.015 0.177
298 0.145 ± 0.012 0.226 ± 0.020 0.230
320 0.248 ± 0.011 0.331 ± 0.016 0.360

Orientational relaxation time,τ2, (ps)
Temperature (K) Classical RPMD Expt.b

298 3.2 ± 0.1 2.4 ± 0.2 2.5
a from Ref. 30 and 31
b from Ref. 32
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energy and gradients. The number of calculations required for each n-body component is

also shown. The energy cost for the combined n-body components is about 2 s without PBC

and about 4.5 s with PBC. The cost to get all gradients is about 2.3–2.4 times the cost of the

energy due to the efficiency provided by the implementation of reverse derivatives.33 Using

8 cores rather than one speeds up the process by a factor of 6.2–6.6. The most expensive

part of the process is the calculation of the 4-body interactions, of which 268,304 or 115,922

are evaluated with or without PBC, respectively. For a single 200000-step MD trajectory

with 256 water molecules under PBC, it takes around 40 hours when 15 CPU cores are used.

For some calculations, it may be possible to truncate the MBE after the 3-b interactions, in

which case the times are cut by more than a factor of two.

In summary, q-AQUA is a new water potential that is fully ab initio-based and robust

for quantum simulations. An interesting aspect of this potential is that it can be used very

efficiently at lower-levels of the many-body expansion and higher-body interactions can be

investigated via approximate methods such as perturbation theory. This opens up a new

line of investigation that can be studied in the future.

COMPUTATIONAL DETAILS

The q-AQUA potential is composed of separate PIP fits for each of the n-body interactions

with n=1–4. The 1-b fit is the spectroscopically accurate water monomer PES calculated

by Partridge and Schwenke.12 The 2-b through 4-b fits are purified, compacted fits (2b is

not purified) to new, expanded datasets containing CCSD(T) energies for 71892, 45332, and

3692 geometries, respectively. The processes for purification and compaction as well as for

the addition of reverse derivatives to provide gradients are described in the SI, along with

additional details for each of the fits.

Briefly, the 2-b fit used a basis set of PIPs with 7th-order, 42 symmetry; it has an RMS

error of 25 cm−1. The data set was limited to OO distances in the range from 2 to 8 Å,
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whereas the long-range 2-b interaction was accounted for by a dipole-dipole interaction using

a high-level dipole moment surface34 and a smooth switching function.

The new PIP 3-b PES that is a significant advance over the earlier one used in the

WHBB PES. First, 45332 electronic energies are calculated at the CCSD(T)-F12a/aVTZ

level of theory with BSSE correction included. This new 3-b data set extends over a broader

energy range and covers a larger maximum OO distance range from 2.1 to 10.0 Å. We then

divided the new 3-b data set into two separate sets: one with maximum OO distance in the

range from 2.0 to 7.0 Å with 42145 structures, and another with maximum OO distance

in the range from 5.0 to 9.5 Å, with 15282 structures. The short-range data set was fit

using 4th-order 222111-symmetry PIPs of Morse variables, while the long-range data set is

fit using 3rd-order 222111-symmetry PIPs of inverse internuclear distances. The fitting RMS

errors for the short-range and long-range data sets are 9 cm−1 and 11 cm−1, respectively. A

smooth switching function is used to join the two fits.

We recently reported the first CCSD(T)-based PES for the twelve-atom 4-b interaction,11

and the 4-b used in q-AQUA is an improved version of that PES. Here we just briefly describe

the improvement. First, the size of the data set is expanded to 3692 from the original 2119 in

order to cover more tetramer configurations. Second, we grouped the polynomials with the

same coefficient into one polynomial, so that the data set does not have to be replicated 24

times for the fit, and the number of polynomials is greatly reduced. Lastly, the polynomial

basis is augmented with a selection of 4th-order PIPs. The final basis set consists of 200

(grouped) polynomials and the RMS fitting error is 7.2 cm−1. (For comparison, the RMS is

10.2 cm−1 if the original basis is used to fit the expanded data set.)

Details of the hexamer results, the Diffusion Monte Carlo calculations and the MD and

PIMD simulations are found in the SI.
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Summary

This supplemental information first contains discussion of differences between the q-AQUA,

MB-pol, and WHBB potentials. Next we provide a description of three methods to optimize

the basis set of polynomials used in calculating n-body potential energy surfaces: Purifica-

tion, Pruning, and Analytic Gradients. Details are then provided for each of the 2-body,

3-body, and 4-body potential energy surfaces. The next section provides further details on

the hexamer results, including comparison of the predictions of the q-AQUA and MB-pol

potentials to the CCSD(T)/CBS calculations for the harmonic frequencies for four of the

water hexamers. This is followed by sections providing details on the Diffusion Monte Carlo

(DMC) calculations and on the Molecular Dynamics (MD) simulations.

Differences between q-AQUA, MB-pol, and WHBB po-

tentials

It is important to distinguish the new PES based on Eq. (1) of the main text from the

MB-pol one, and the WHBB one. First, we note that MB-pol is not strictly a many-body

PES in the sense of Eq. (1) of the main text. To see that, we give the explicit expression for

the MB-pol potential for N monomers. It is

VMB-pol(1, · · · , N) = VTTM4-F(1, · · · , N) +
N∑

i>j

∆V2b(i, j)S2b +
N∑

i>j>k

∆V3b(i, j, k)S3b, (1)

where VTTM4-F(1, · · · , N) is the TTM4-F PES1 and ∆V2b(i, j) and ∆V3b(i, j, k) are correction

PESs. These are PIP fits to the difference of CCSD(T) and TTM4-F energies for 2-b and

3-b interactions, respectively. These corrections are relatively short range and they are

switched to zero at long range using switching functions, denoted generically by S2b and S3b.

(Details of this switching are given in the MB-pol papers.2,3) Note that VTTM4-F(1, · · · , N)

contains the 1-b PS monomer potential4 and also the PS dipole moment surface as part of the



electrostatic interaction. Higher-body interactions are given by polarization and electrostatic

terms within the Thole formalism (some parameters in these used in MB-pol were optimized

by Paesani and co-workers). VTTM4-F(1, · · · , N) itself cannot be written simply as a many-

body expansion. The MB-pol approach is clearly very insightful; however, it does rely on

the accuracy of the TTM4-F potential for 4-b and higher-body interactions for which no

corrections are made.

By contrast the WHBB PES, which preceded the MB-pol one, is given by two variations.

One is simply the MB expansion of Eq. (1) truncated at the 3-b level, namely

VWHBB(1, · · · , N) =
N∑

i=1

V1b(i) +
N∑

i>j

[V
CCSD(T)
2b (i, j)S2b + (1− S2b)V

TTM3-F
2b (i, j)]+

N∑

i>j>k

V3b(i, j, k)S3b,

(2)

where the monomer potential is the PS one, the 2-b term is a PIP fit to thousands of

CCSD(T) energies, which is switched in the range 4.5–5.5 Å to the 2-b interaction from

TTM3-F.5,6 Details of this 2-b PES have been given previously.7 Finally, a pure ab initio

3-b interaction is a PIP fit to tens of thousands of MP2 energies. This fit is switched to

zero by an exponential damping function with a range of 8.0 bohr. Again details have been

given previously.5 An option in the WHBB PES is to add 4 and higher-body interactions

using those in TTM3-F. However, this adds considerably to the cpu effort and makes only

marginal improvement in benchmarks comparisons for the water hexamer.

Purification, Pruning, and Analytic Gradients

The Purification Scheme

Consider a group of identical particles whose potential energy surface we wish to describe

using a multi-body expansion (MBE) (see Eq. (1) of the main text). We wish to describe

3



this potential energy surface by using a basis set of permutationally invariant polynomials

(PIPs) whose coefficients will be determined by numerical regression so as to smoothly fit

a dataset of electronic energies and, perhaps, gradients for different geometries and whose

polynomials will be powers of, typically, Morse (exp(−ri,j/a)) or reciprocal variables of the

internuclear distances. Permutationally invariant polynomials have been discussed in detail

previously.8–10 It is convenient to generate them using the monomial symmetrization ap-

proach (MSA) software,11,12 which ensures that the polynomials have the correct symmetry

with respect to exchange of identical atoms. However, there are two potential issues for

application of MSA to the MBE problem. First, not all of these MSA PIPs will have the

correct limiting behavior for the many body expansion. Second, the MSA software is not

designed to consider the exchange of identical groups of atoms, so we need to ensure this

type of permutational symmetry by another method.

Consider first the issue of the limiting behavior. We use “purification” to refer to the

process of identifying and setting aside PIPs that do not have the correct limiting behavior

when individual monomers or groups of monomers are removed from the others to a great

distance. Because the fits are to the n-body contributions, when any of the group members

are separated by large distances, thus eliminating the n-body nature of the interaction, the

n-body contribution must go to zero. To ensure the correct limits for all polynomials, we

take an arbitrary geometry, then remove n-mers from one another to large distances, and

finally calculate the values of the PIPs to see whether they go to zero. In the case of the

4-body interactions, we remove each of the 4 water monomers from the other three and each

of the six pairs of water dimers from one another. In the case of the 3-body interactions,

we remove each water monomer from the remaining pair. In our calculations, the distances

are augmented by 100 Å, and we accept the polynomial as having the correct behavior if its

value is below 10−6.

Polynomials that do not have the correct limiting behavior cannot immediately be re-

moved from consideration because there may be other polynomials that, for example, are

4



composed of products of one with an incorrect limit and one with a correct limit. Instead,

the ones with an incorrect limit are simply given different names than those with the cor-

rect limit. When the process of evaluating the polynomials is finished, we then look at the

definitions of all those with the correct limits and determine which of the monomials and

which of the renamed polynomials (with incorrect limits) are required to calculate them.

We then remove those that are not required and renumber those that remain, keeping the

order of calculation so that no partial calculation that contributes to any polynomial needs

to be performed twice. The result is a set of polynomials that all have the correct limiting

behavior and that can be calculated efficiently.

We now turn to the issue of permutational symmetry for exchange of the identical

monomers. As mentioned previously, when the monomers are groups of atoms, this ex-

change is not taken into account by the MSA software. Thus, the polynomials that we

create by purification will not, in general, have permutational symmetry with respect to

exchange of identical monomers. One method for dealing with this issue is to augment the

dataset by adding all relevant permutations of the Cartesian coordinates and assigning them

the same energy. If there are n monomers, this requires a set of n! geometries for each

energy. A better method is to identify those groups of polynomials that have permutational

symmetry with respect to monomer exchange and to then form “superpolynomials” that are

the sum of the polynomial members of each group. Each group will have n!, not necessarily

unique, members whose sum is independent of the monomer permutations and which can

then receive a single coefficient in the energy or gradient determination.

We identify the permutationally invariant groups of polynomials by taking a single set of

n! permutationally related geometries and calculating the value of each polynomial. Taken

together, the groups of polynomials for each permutation will have the same group of values,

but the values of individual polynomials will vary from permutation to permutation. For

each permutation, one can form pairs of the polynomial identities and their values, and then

sort the pairs by their values. Looking at all pairs that have the same value component in all

5



permutations gives the identities of the polynomials, some of which may be repeated, that

make up a permutationally invariant group. In general, there will be as many groups as there

were original polynomials. These groups, each with n! (not necessarily unique) polynomial

contributions, are then summed to form the “superpolynomials”.

Polynomial Pruning

The MSA software referred to above is generated from just two parameters, the permutational

symmetry of the atoms and the total order desired; i.e.,the maximum sum of the polynomial

powers of the transformed internuclear distances. The permutational symmetry need not be

the complete symmetry of the system, but must include the relevant exchange possibilities.

For example, in the case of the water trimer, each water would have the symmetry designation

of 21, meaning that the two hydrogens on the water can permute with one another and the

oxygen does not permute. The symmetry of the total system could be described as 63, but

that would imply that the hydrogens or oxygen on one water could exchange with those on

another. At high enough energy, this rearrangement can certainly happen, but for lower

energies, each water stays intact. The advantage of not using 63 symmetry is that there are

more relevant polynomials and coefficients, so the fit is generally more accurate for the energy

range in which the waters remain intact. Thus, one might consider, instead, the symmetry

222111, for which the hydrogens on any individual water can exchange with one another,

but atoms on one water do not exchange with those any other water. Entire water molecules

can exchange, but only if this symmetry is dealt with by one of the methods discussed in

the previous section.

For any given permutational symmetry, the maximum number of PIPs will be deter-

mined by the maximum polynomial order desired. Of course, the processes of purifying and

grouping to achieve symmetric exchange of the waters as a whole will reduce the numbers

of polynomials from that given by the MSA output. In general and up to a limit, the more

polynomials, the more accurate will be the fit, but the longer will be the time for calcu-
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lating the energy and/or gradients. The limit is determined by the need to have far fewer

coefficients than one has energy/gradient constraints so as to avoid “overfitting”, a situation

in which all the points are well-fit but the region between them has strong oscillations in

energy. In many cases, one would like to have a number of polynomials/coefficients that

is somewhere in between the numbers arrived at for two different choices of order. In such

cases, we “prune” the number of polynomials provided by the larger order to the number

desired for a reasonable compromise between accuracy and speed. We use the following

method to decide which of the polynomials derived from the larger order should be kept.

A decision on which polynomials are most important may be made on the basis of the

data set. The first step is to evaluate the maximum values of the each transformed inter-

nuclear distance compared to the range of values among the geometries of the data set.

Recall that the internuclear distances are transformed, usually as Morse or reciprocal val-

ues. Thus, long distances have small transformed values (and are less important) than short

distances, which have transformed values nearer to unity (for the Morse transformation).

Taking the maximal values of the transformed internuclear distances, we then evaluate all

the polynomials available from the MSA output for the larger order. We then eliminate those

polynomials with the smaller values until we arrive at the desired number of final polyno-

mials. The method works both for regular polynomials generated by the MSA software and

for “superpolynomials” generated as described in the previous section.

Analytical Gradients

It is often very desirable to have analytical gradients of the potential so that forces between

atoms can be calculated, either for use in the fitting process or, for example, in molecular

dynamics simulations. Unfortunately, many higher levels of electronic structure theory do

not automatically provide gradients without substantial execution cost. There are several

methods for accomplishing the goal of providing analytical gradients. One is simply to

differentiate all the terms in the energy expression with respect to each of the Cartesian
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coordinates.12 However, this requires a time cost on the order of 3Nte for calculation of the

gradients, where N is the number of atoms and te is the time for calculating the energy. A

better method is the reverse (or backward) derivative technique,13,14 which, for molecules up

to 15 atoms, we have recently shown to have a time cost of 3–4 te, independent of the number

of atoms.15 We use this method for evaluating the gradients for all the n-body potentials

described below.

Details concerning the Two-Body PES

As pointed out in the literature numerous times and using numerous metrics, the 2-b inter-

action accounts for a substantial amount (around 80-90 %) of the total interaction energy of

water clusters. Thus, it is important to obtain this interaction potential using the highest

available level of electronic structure. CCSD(T) electronic energies for the 2-b interaction

have been reported for flexible monomers previously by us,7 by Paesani and co-workers,2

and more recently by Metz and Szalewicz.16 The data sets span significantly different energy

ranges and configurations. For example our previous dataset of 30083 energies spans an

energy range predominantly from ± 7 kcal/mol with a significant number of configurations

with energies as high as 28 kcal/mol. The MB-pol data set of about 40000 configurations is

predominantly in the range ± 7 kcal/mol with a small number of configurations with energies

as high as 14 kcal/mol. Finally the one from ref. 16 consists of 4758 energies and spans the

range of -5 to 10 kcal/mol.

We generated a total of 71892 CCSD(T)/CBS 2-b energies with structures selected from

our previous HBB2 data set as well as from the MB-pol data set, using the criteria that the

OO distances be in the range from 2.0 to 8.0 Å. The 2-b energy is defined as:

V2b = V(H2O)2 − VH2O,1 − VH2O,2 (3)

For each water dimer structure, we first performed CCSD(T)/aug-cc-pVTZ calculations

8



with an additional 3s3p2d1f basis set, following the same procedure as MB-pol 2-b, namely,

exponents equal to (0.9, 0.3, 0.1) for sp, (0.6, 0.2) for d, and 0.3 for f. This additional basis

is placed at the center of mass (COM) of each dimer configuration. We also determined the

basis set superposition error (BSSE) correction with the counterpoise scheme. Second, we

performed CCSD(T)/aug-cc-pVQZ calculations with the same additional basis set and with

the BSSE correction. The final CCSD(T)/CBS energies were obtained by extrapolation over

the CCSD(T)/aug-cc-pVTZ and CCSD(T)/aug-cc-pVQZ 2-b energies. All of these ab initio

calculations were performed using Molpro package.17
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Figure S1: Distribution of 2-b energies.

Figure S1 shows the distribution of CCSD(T)/CBS 2-b energies in the range of -10 to 30

kcal/mol. Not shown are additional structures, numbering approximately 0.5% of the total,

that have a high energy beyond this range. The OO distance distribution for the data set

spans the range from 2 to 8 Å. We fit a basis set of permutationally invariant polynomials

to this new 2-b data set using 7th-order, 42 symmetry. The fitting RMS error for the

whole data set is 25 cm−1. Figure S2 shows the correlation plot between the 2-b fit and

the CCSD(T)/CBS reference energies and confirms the accuracy of the final fit. However,

this 2-b data set only involves dimer structures with OO distance between 2 and 8 Å, and

the long-range 2-body interaction is also important. To account for the long range 2-body

interaction, we applied a dipole-dipole interaction potential using a high-level dipole moment
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surface.18 This long-range 2-b interaction is expressed as:

V long-range
2b =

3∑

i=1

3∑

j=1

qiqj
rij

(4)

where qi, qj are the partial charges on ith atom of monomer 1 and jth atom of monomer 2,

and rij is the distance between two atoms. The partial charge on each atom of the water

monomer is obtained from the water monomer dipole moment surface by Lodi et al.18

Figure S2: Correlation plot between 2-b fit and CCSD(T)/CBS reference data.

Finally, a smooth switching function was employed to connect the short-range 2-b fit to

the long-range dipole-dipole interaction. The expression for the final 2-b potential energy

surface is:

V2b = s(rOO)V fit
2b + (1− s(rOO))V long-range

2b (5)
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where s is calculated as

s = 1.0, rOO ≤ 6.5 Å

= 1− 10

(
rOO − 6.5

7.8− 6.5

)3

+ 15

(
rOO − 6.5

7.8− 6.5

)4

− 6

(
rOO − 6.5

7.8− 6.5

)5

, 6.5 < rOO < 7.8 Å

= 0.0, rOO ≥ 7.8 Å

Figures S3 and S4 show two potential cuts for the 2-b interaction and compare q-AQUA,

MB-pol, and CCSD(T) results.

Figure S3: Comparison of the new 2-b fit and direct CCSD(T) energies for an attractive cut.
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Figure S4: Comparison of the new 2-b fit and direct CCSD(T) energies for a repulsive cut.
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Details concerning the Three-Body PES

We selected a total of 45332 trimer structures from the previous WHBB and MB-pol trimer

configurations, using the criteria of keeping the maximum OO distance within the 2–9.5

Å range. The 3-b energy is defined as

V3b = V(H2O)3 −
3∑

i

V(H2O)2,i +
3∑

i

VH2O,i (6)

For each water trimer structure, CCSD(T)-F12a/aug-cc-pVTZ calculations were performed

and the BSSE correction was included with the counterpoise scheme. All calculations were

conducted using the Molpro package.17 The distributions of the 3-b energies and the max-

imum OO distances are shown in Figure S5. For the calculated 3-b energies, most trimer

structures have 3-b interaction within the range of -6 to 6 kcal/mol, as can be seen in the

left panel of Fig. S5. For the maximum OO distance distribution, it can be seen from the

right panel in Figure S5 that current data set spans a significantly broader region than the

MB-pol data set.

We divided the new 3-b data set into two separate sets: one with maximum OO distance

in the range from 2.0 to 7.0 Å, and another with maximum OO distance in the range from 5.0

to 9.5 Å, resulting in two data sets with 42145 and 15282 structures, respectively. The short-

range data set was fit using 4th-order 222111-symmetry permutational invariant polynomials

which are functions of Morse variables, exp(−rij/a), where rij is the internuclear distance and

a = 3 bohr. The fitting RMS error for this data set is 9 cm−1. The long-range data set is fit

using 3rd-order 222111-symmetry permutational invariant polynomials, which are functions

of inverse of the internuclear distance, rij. The fitting RMS error for this data set is 11 cm−1.

The correlation plots between two 3-b fits and BSSE corrected CCSD(T)-F12a/aug-cc-pVTZ

reference data are shown in Figs. S6 and S7, respectively.

Our 3-b potential energy surface is a mixed one with the two separate fits using a switching

function based on the maximum OO distance, and also smoothly switched to zero. The final

13
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Figure S5: Distribution of 3-b energies, left panel, and OO distances for MB-pol and q-AQUA
data sets.

expression is :

V3b = s1(rOO)×
[
s2(rOO)V short-range

3b + (1− s2(rOO))V long-range
3b

]
(7)

where s1 is calculated by

s1 = 1.0, rOO ≤ 7.0 Å

= 1− 10

(
rOO − 7.0

9.0− 7.0

)3

+ 15

(
rOO − 7.0

9.0− 7.0

)4

− 6

(
rOO − 7.0

9.0− 7.0

)5

, 7.0 < rOO < 9.0 Å

= 0.0, rOO ≥ 9.0 Å

and s2 is calculated by

s2 = 1.0, rOO ≤ 5.0 Å

= 1− 10

(
rOO − 5.0

6.0− 5.0

)3

+ 15

(
rOO − 5.0

6.0− 5.0

)4

− 6

(
rOO − 5.0

6.0− 5.0

)5

, 5.0 < rOO < 6.0 Å

= 0.0, rOO ≥ 6.0 Å

Figure S8 shows an attractive cut through the potential as one monomer is moved relative

to the remaining dimer. The results of the q-AQUA and MB-pol potentials are shown along
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Figure S6: Correlation plot between short-range 3-b fit and BSSE-corrected CCSD(T)-
F12a/aVTZ reference data.

with the calculated CCSD(T)-F12 results. Both potentials do well in the range down to

about 2.5 Å, while the MB-pol potential slightly underestimates and the q-AQUA sightly

overestimates the potential at shorter distances. Results for a repulsive cut have been shown

in the main text.
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Figure S7: Correlation plot between long-range 3-b fit and BSSE-corrected CCSD(T)/CBS
reference data.
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Figure S8: Comparison of the new 3-b fit and direct CCSD(T) energies for an attractive cut.
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Details concerning the Four-Body PES

The four-body potential energy surface was a new potential which improved on the one previ-

ously reported.19 It was based on 4th-order 222221111 symmetry. The basis set was purified

to ensure the correct limiting behavior at long distances between each water monomer and the

remaining trimer and between each pair of water dimers. Compaction reduced the number

of monomials, polynomials, and “renamed” polynomials to 930, 1648, and 279, respectively,

from the original basis set of 2910 monomials and 10,736 polynomials. Determining the

groups of polynomials that were permutationally symmetric with respect to water exchange

further reduced the number of polynomials to 872 while increasing the number of renamed

polynomials to 1927. The advantages of the grouping are that an unreplicated data set can

be used in the fit and that the fitting time is reduced. In order to achieve a good balance

between speed and accuracy, the number of polynomials was further reduced to 200 by the

pruning method described above. The Fortran program produced for evaluating energies

also used the reverse derivative method for calculating gradients.

The coefficients were determined by fitting the basis set to a set of 3692 geometric points

calculated at the CCSD(T)-F12 level. Figure S9 shows the distributions of the 4-b energy

and the OO distances from the data base. Figure S10 provides a correlation plot between

the CCSD(T) energies and the fit energies. The RMS fitting error is 7.2 cm−1.

One might expect that MB-pol 4-body, which uses the TTM4-F, should be precise in the

long range, but this is not the case, as is shown in Fig. S11. In this figure, the difference

between CCSD(T)-F12 4-body energy and the MB-pol/TTM4-F 4-body energy is plotted

against the maximum OO distance in the tetramer, for all the 3692 configurations in our

4-body data set. We can see that TTM4-F has large errors even when the OO distance is

around 7 Å. The RMSE of the TTM4-F 4-body is 21.2 cm−1; for comparison, our 4-body fit

has an RMSE of 7.2 cm−1.
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Details concerning water hexamers

Table of 2-b, 3-b, 4-b, and total dissociation energies for water hex-

amer isomers

Table S1 shows results for the water hexamers (a plot of these data is given in the main

text).

Table S1: 2-b, 3-b, 4-b and total dissociation energies (kcal/mol) for various water hexamer
isomers.

De 2b energy
Isomer CCSD(T)/CBSa q-AQUA MB-pol CCSD(T)/CBSb q-AQUA MB-pol
Prism 45.92 46.00 45.73 -38.94 -39.07 -38.93
Cage 45.67 45.67 45.46 -38.47 -38.49 -38.48
Book 1 45.20 44.99 44.59 -36.02 -35.97 -35.81
Book 2 44.90 44.71 44.36 -36.13 -36.04 -35.92
Bag 44.30 44.31 43.71 -35.28 -35.38 -35.24
Ring 44.12 43.46 43.30 -32.71 -32.59 -32.48
Boat 1 43.13 42.71 42.45 -32.30 -32.27 -32.02
Boat 2 43.07 42.66 42.48 -32.24 -32.21 -32.02
MAE / 0.25 0.53 / 0.07 0.15

3-b energy 4-b energy
Isomer CCSD(T)/CBSb q-AQUA MB-pol CCSD(T)/CBSb q-AQUA MB-pol
Prism -8.70 -8.71 -8.77 -0.66 -0.65 -0.52
Cage -8.97 -9.08 -8.93 -0.53 -0.49 -0.47
Book 1 -10.38 -10.36 -10.26 -1.08 -1.07 -0.92
Book 2 -10.11 -10.06 -10.03 -1.00 -1.06 -0.85
Bag -10.35 -10.34 -10.15 -1.16 -1.18 -0.90
Ring -11.78 -11.61 -11.60 -1.78 -1.59 -1.44
Boat 1 -11.34 -11.23 -11.30 -1.63 -1.52 -1.35
Boat 2 -11.34 -11.25 -11.29 -1.61 -1.49 -1.35
MAE / 0.07 0.10 / 0.07 0.21

a From Ref. 20
b Ref. 21
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Harmonic Frequencies of Water Hexamers

Tables S2 and S3 show a comparison of the harmonic frequencies for four water hexamers

(Prism, Cage, Book1, and Ring) for the q-AQUA and MP-pol potentials as compared with

the benchmark CCSD(T)/CBS calculations of Ref. 22. As can be seen, the results for q-

AQUA and MB-pol are both fairly accurate, with a slight improvement in the mean absolute

error (MAE) from the q-AQUA potential. For both q-AQUA and MB-pol, the discrepancies

between the potential energy fits and the CCSD(T)/CBS calculations are dominated by the

high frequency modes.

Details of diffusion Monte Carlo calculations

The use of the diffusion Monte Carlo (DMC) method to estimate the vibrational ground-

state energy (i.e., zero-point energy) is based on the similarity between the diffusion equation

and the imaginary-time Schrödinger equation with an energy shift Eref

∂ψ(x, τ)

∂τ
=

N∑

i=1

h̄2

2mi

∇2
iψ(x, τ)− [V (x)− Eref]ψ(x, τ) (8)

The reference energy Eref in the above equation is used to stabilize the diffusion system

in its ground state and thus is the estimator of the zero-point energy.23 We employed the

unbiased, unconstrained implementation of DMC,24 in which the DMC calculation starts

from an initial guess of the ground-state wave function, represented by a population of

N(0) equally weighted Gaussian random walkers. These walkers then diffuse randomly in

imaginary time according to a Gaussian distribution and the population is controlled by

birth-death processes, given as

Pbirth = exp[−(Ei − Eref)∆τ ]− 1 (if Ei < Eref), (9)

Pbirth = 1− exp[−(Ei − Eref)∆τ ] (if Ei > Eref), (10)
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Table S2: Comparison of harmonic frequencies (in cm−1) of Prism and Cage hexamers from
q-AQUA and MB-pol with CCSD(T)/CBS frequencies.a

Isomer Prism Cage
Method CCSD(T) q-AQUA MB-pol CCSD(T) q-AQUA MB-pol
mode 1 61 61 62 42 42 43
mode 2 70 71 73 56 58 57
mode 3 74 78 75 74 75 75
mode 4 98 91 110 100 99 98
mode 5 112 103 120 127 120 129
mode 6 149 145 150 153 149 153
mode 7 173 168 173 185 173 178
mode 8 178 175 179 194 186 191
mode 9 212 211 204 210 209 207
mode 10 217 225 218 223 218 214
mode 11 238 234 230 231 227 223
mode 12 246 241 241 234 234 230
mode 13 275 279 272 242 244 238
mode 14 284 282 277 253 249 247
mode 15 287 287 281 281 277 267
mode 16 357 346 347 293 295 290
mode 17 367 362 366 383 386 378
mode 18 420 417 407 395 399 391
mode 19 427 422 424 437 437 426
mode 20 462 462 447 453 456 441
mode 21 491 488 490 467 463 461
mode 22 530 530 527 534 528 523
mode 23 547 541 536 553 539 542
mode 24 612 604 590 620 618 603
mode 25 638 636 625 682 683 671
mode 26 675 669 661 717 720 700
mode 27 711 709 696 774 761 752
mode 28 823 821 808 790 785 772
mode 29 868 859 851 852 842 833
mode 30 1001 998 977 975 973 952
mode 31 1663 1658 1652 1666 1660 1663
mode 32 1674 1667 1671 1673 1667 1672
mode 33 1683 1678 1680 1684 1681 1681
mode 34 1699 1696 1689 1698 1694 1691
mode 35 1716 1709 1711 1707 1704 1704
mode 36 1733 1730 1729 1722 1716 1712
mode 37 3301 3317 3306 3324 3339 3310
mode 38 3509 3519 3512 3517 3530 3530
mode 39 3601 3620 3603 3556 3556 3563
mode 40 3620 3651 3627 3604 3632 3616
mode 41 3717 3753 3730 3650 3675 3671
mode 42 3735 3762 3748 3718 3759 3736
mode 43 3784 3812 3792 3757 3784 3768
mode 44 3799 3824 3807 3792 3819 3806
mode 45 3821 3835 3819 3895 3894 3901
mode 46 3898 3898 3909 3896 3905 3905
mode 47 3899 3908 3911 3899 3909 3912
mode 48 3901 3913 3912 3908 3928 3916
MAE / 7.9 7.8 / 7.7 8.9
a From Ref. 22
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Table S3: Comparison of harmonic frequencies (in cm−1) of book-1 and ring hexamers from
q-AQUA and MB-pol with CCSD(T)/CBS frequencies.a

Isomer Book-1 Ring
Method CCSD(T) q-AQUA MB-pol CCSD(T) q-AQUA MB-pol
mode 1 27 24 25 28 24 27
mode 2 37 37 36 28 24 27
mode 3 53 52 51 45 41 43
mode 4 67 67 69 45 41 43
mode 5 85 86 86 50 45 48
mode 6 156 155 155 82 77 77
mode 7 179 176 172 156 155 152
mode 8 189 183 181 172 161 167
mode 9 195 194 189 195 184 182
mode 10 225 219 214 195 184 182
mode 11 233 229 223 211 205 200
mode 12 245 238 232 211 205 200
mode 13 250 247 236 254 241 236
mode 14 271 269 257 254 241 236
mode 15 282 275 266 282 268 263
mode 16 291 287 277 292 286 276
mode 17 302 301 289 292 286 276
mode 18 377 369 367 323 315 305
mode 19 393 383 381 407 387 386
mode 20 432 422 426 426 404 409
mode 21 443 437 437 426 404 409
mode 22 467 458 458 441 432 431
mode 23 533 525 522 450 434 438
mode 24 601 592 586 450 434 438
mode 25 708 698 678 757 737 728
mode 26 735 731 711 776 753 738
mode 27 811 798 777 776 753 738
mode 28 829 820 800 867 842 818
mode 29 874 866 835 867 842 818
mode 30 989 980 953 941 916 892
mode 31 1661 1654 1655 1665 1665 1659
mode 32 1673 1669 1667 1676 1670 1668
mode 33 1675 1672 1670 1676 1670 1668
mode 34 1691 1682 1683 1701 1691 1691
mode 35 1702 1696 1695 1701 1691 1691
mode 36 1730 1721 1721 1716 1706 1705
mode 37 3386 3397 3413 3440 3469 3488
mode 38 3455 3474 3463 3505 3534 3531
mode 39 3503 3540 3521 3505 3534 3531
mode 40 3587 3598 3612 3554 3595 3577
mode 41 3637 3661 3653 3554 3595 3577
mode 42 3651 3680 3667 3570 3622 3596
mode 43 3768 3791 3781 3901 3901 3908
mode 44 3893 3896 3899 3901 3901 3908
mode 45 3898 3905 3908 3901 3901 3908
mode 46 3900 3907 3909 3901 3902 3911
mode 47 3900 3909 3912 3901 3902 3911
mode 48 3903 3916 3913 3901 3907 3912
MAE / 8.2 12.6 / 13.5 16.5
a From Ref. 22
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where Ei is the energy of the ith walker. To maintain the number of random walkers at

about the initial value N(0), Eref is adjusted at the end of each time step according to

Eref(τ) = 〈V (τ)〉 − αN(τ)−N(0)

N(0)
(11)

where N(τ) is the number of walkers at the time step τ and 〈V (τ)〉 represents the average

potential energy of all of the walkers at that step.

In this study, the imaginary time step ∆τ = 10 a.u. and α = 10. The random walkers are

initiated at the Prism, Cage, and Book isomers respectively, and for each isomer, three DMC

calculations are performed. In each DMC calculation, the number of walkers is 50,000, and

these walkers are equilibrated for 10,000 time steps followed by 50,000 propagation steps.

Previous studies show that this number of walkers may produce systematic uncertainties in

terms of the absolute values of the ZPEs due to finite number of walkers; however, the relative

ZPEs between different isomers are reliable, based on previous studies.25,26 In addition to

the systematic uncertainties, there are statistical uncertainties because the reference energy

oscillates around the ZPE. The statistical uncertainty is estimated as the standard deviation

of the 3 DMC runs for the same isomer.

Details of the molecular dynamics simulations

We interfaced the q-AQUA water potential with the i-PI software27 to enable both classical

and path integral molecular dynamics simulations to be performed for bulk water. Both

classical and path integral molecular simulations were conducted with 256 water molecules

in a periodically replicated simulation box with the experimental density set to be that at 300

K. For the classical MD simulation, at each temperature, we first propagated the trajectory

for 100 ps to reach thermal equilibrium and then ran three independent trajectories for

100 ps each. The static and dynamical properties were calculated as an average over the

three trajectories. The stochastic velocity rescaling thermostat is employed for the NVT
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classical MD simulations. For the path integral and also the ring polymer MD simulations

(PIMD and RPMD), the trajectories were propagated in the NVT ensemble with a path-

integral white noise Langevin thermostat (PILE-g), and 8 beads were included. For each

temperature, we ran a single trajectory for 50 ps to achieve thermal equilibrium and then

ran three independent trajectories for 50 ps with time step of 0.25 fs.

Mean square displacement and self-diffusion constants

The self diffusion coefficient, D, of liquid water can be calculated from:

D =
1

3

∫ ∞

0

〈v(0) · v(t)〉dt =
1

6
lim
t→∞

d〈‖ r(t)− r(0) ‖2〉
dt

(12)

where 〈‖ r(t) − r(0) ‖2〉 is the mean square displacement (MSD). For each trajectory, we

used the center of mass of each water molecule to calculate the MSDs and conducted linear

fits to obtain the slope of the MSD curve. The self-diffusion constant D is simply 1/6 of the

MSD slope and the final values reported in the main text are from the averaged values over

different trajectories.
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Figure S12: Mean square displacements for classical MD (blue) and PIMD (red) at the
temperature of 298 K as a function of time.
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Figure S12 shows two typical MSD curves from classical and ring polymer MD simulation

at 298 K. As seen, both of them show linear behavior with the propagation of time and it

is reliable to perform a linear fit for obtaining the diffusion coefficient. However, it should

be noted that to obtain more accurate and converged diffusion constants of liquid water,

longer time trajectories are required. We will conduct more extensive MD simulations in the

future.

Second-order rotational time correlation functions and orientational

relaxation time

The second-order rotational time correlation function for OH bond is calculated as:

C2(t) =
〈
P2(uOH(t) · uOH(0))

〉
(13)

where uOH(t) is the unit vector along each OH bond, and P2 is the second-order Legendre

polynomial.
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Figure S13: Typical second-order rotational time correlation functions, C2(t), from classical
and ring polymer MD simulations at 298 K
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Figure S13 shows two typical second-order rotational time correlation functions at 298

K from classical MD and RPMD simulations. To predict the orientational relaxation time,

τ2, for both classical MD and RPMD simulations, we fit the correlation function C2(t) to a

single exponential function first. The fitted exponential function was used to describe the

long-time decay of C2(t) for times longer than 10 ps. We then numerically integrated the

C2(t) function covering both short-time and long-time regions to obtain τ2.

Many body effects in liquid water

As mentioned above, the q-AQUA water potential is constructed from 1-b, intrinsic 2-b,

3-b and 4-b interactions. It becomes natural to investigate how different components of

potential influence the properties of liquid water. In Figure S14, we show both the OO

radial distribution function and the MSD curves for liquid water at 298 K from classical MD

simulation with different levels of potentials. As seen, using only 1-b + 2-b, both the static

structural properties and dynamic properties of liquid water deviate considerably from the

experiment. In particular, the peak positions of the OO radial distribution function do not

agree with the experimental results. The slope of MSD curve is around 6 times of that when

using full q-AQUA potential, where the latter is proven to have a diffusion coefficient close

to the experiment. Thus, the use of only the 1-b + 2-b interactions cannot describe the

important properties of liquid water – higher body interactions are needed. This is verified

by the fact that when the 3-b interaction is added (see blue lines in Figure S14), both the

radial distribution function and the MSD curve reach reasonable agreement with experiment.

The self diffusion coefficients calculated from the 1-b + 2-b + 3-b interactions with classical

MD simulations at different temperatures are listed in Table S4. It can be seen that when

the PES is truncated at three-body level, it can already provide qualitatively reasonable

diffusion coefficients comparing with the experiment.

Finally, when the full q-AQUA potential is employed with the inclusion of 4-b inter-

actions, Figure S14 shows that classical MD simulations give a more localized OO radial
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distribution function with higher distribution around 4-5 Å. The slope of the MSD is low-

ered compared with that calculated with the 1-b + 2-b + 3-b interactions, and the diffusion

constant at 298 K is also further decreased. These observations call into question of the role

of the 4-b interaction and the adequacy of a classical MD simulation for accurately capturing

all the static and dynamic properties.
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Figure S14: Effects of 2-b, 3-b, and 4-b interactions on the static structural and dynamical
properties of liquid water at 298 K from classical MD simulations. Left: the OO radial distri-
bution function (Experimental data are from Ref. 28), Right: the mean square displacement
(MSD) as a function of time. MD (1-2 body) is the MD simulation using only 1-b + 2-b
interactions. MD (1-3 body) is the MD simulation using 1-b + 2-b + 3-b interactions. MD
(1-4 body) is the MD simulation using full q-AQUA potential with all 1-b, 2-b, 3-b and 4-b
interactions included

Nuclear quantum effects in liquid water

Figure S15 shows the effect of using 1- through 3-b interactions (left panel) or 1- through 4-b

interactions (right panel) and using either classical molecular dynamics (MD) or quantum

path-integral molecular dynamics (PIMD). For both the 1- through 3-body and 1- through

4-body calculations, the quantum PIMD calculation is in substantially better agreement

with experiment than that with classical MD.
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Figure S15: Nuclear quantum effects on the OO radial distribution function for liquid water
at 298 K from classical MD and PIMD simulations. Left: using potential with 1-b + 2-
b + 3-b interactions. Right: using full q-AQUA potential with all 1-b, 2-b, 3-b and 4-b
interactions included. Experimental data are from Ref. 28

Table S4: Self-diffusion constant (Å2/ps) of liquid water at different temperatures using
different components of the potential and different methods

Use full q-AQUA potential (1-b + 2-b + 3-b + 4-b)
Temperature (K) Classical RPMD Expt.a

278 0.080 ± 0.016 0.130 ± 0.015 0.131
288 0.102 ± 0.017 0.177 ± 0.015 0.177
298 0.145 ± 0.012 0.226 ± 0.020 0.230
320 0.248 ± 0.011 0.331 ± 0.016 0.360

Use partial q-AQUA potential (1-b + 2-b + 3-b)
Temperature (K) Classical RPMD Expt.a

278 0.088 ± 0.006 0.170 ± 0.014 0.131
288 0.131 ± 0.011 0.216 ± 0.010 0.177
298 0.188 ± 0.012 0.242 ± 0.012 0.230
320 0.332 ± 0.031 0.344 ± 0.020 0.360

a from Ref. 29 and Ref. 30
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Computational cost of q-AQUA water potential

Table S5 shows the computation cost of the q-AQUA model for both energy and gradient

calculations for a 256-water system, using single core and multicores of 2.4 GHz Intel Xeon

processor. Two calculations are shown, one with periodic boundary conditions (PBC) and

one without. The number of n-body configurations considered in the calculation is shown

in the second column and is limited by a cut-off for the maximum OO distance. For the

2-b interaction, in gas-phase cluster calculations there is no cut-off because the potential

is switched in the long range to the dipole-dipole interaction. In the MD simulation, a 14

Å cut-off was used. Figs. S3 and S4 show that the potential is essentially zero at this

distance. In the 3-b calculation, the cut-off limit was 9 Å, at which distance the potential is

also exceedingly small, as seen from Fig S8. For the 4-b interaction, the switching range to

zero for the MD simulations was set s 5.0–6.0 Å in order to limit the number of calculations

needed. A longer range of 5.8–7.5 Å was used in for the gas-phase cluster work. In the MD

simulations, the same cut-off maximum distances were used in calculations both with and

without PBCs. Reverse derivative methods were used in all calculations with the exception

of long-range 2-b ones that are based on the dipole-dipole interactions.
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Table S5: The computation cost of the q-AQUA method for energy and gradient calculations
of a 256 water system

No PBC Time for energy (s) Time for energy+gradient (s)
Component Number 1 core 8 core 1 core 8 core
1-b 256 0.002 0.002a 0.003 0.003a
2-b 32640 0.23 0.02 0.72 0.08
3-b 84051 0.42 0.05 1.94 0.26
4-b 115922 1.26 0.17 4.34 0.52

Total 2.00 0.35 7.12 0.97
With PBC Time for energy (s) Time for energy+gradient (s)

Component Number 1 core 8 core 1 core 8 core
1-b 256 0.002 0.002a 0.003 0.003a
2-b 48919 0.38 0.04 1.18 0.18
3-b 195058 0.84 0.12 5.30 0.70
4-b 268304 2.91 0.37 11.55 1.31

Total 4.52 0.83 18.05 2.49
a 1-b terms are not parallelized
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