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Synopsis — White matter fiber crossing can be resolved by q-space diffusion imaging methods or by mixture modeling of high angular resolution diffusion imaging 
data. However, q-space imaging requires long acquisition times, and mixture modeling, like diffusion tensor imaging, requires a model of the underlying diffusion 
function. Here, we present a model-independent reconstruction scheme for spherically-sampled diffusion imaging data. The reconstruction algorithm is based on the 
Funk-Radon transform, an extension of the Radon transform to the sphere. The technique, termed q-ball imaging, exhibits sharper diffusion peaks relative to a 
comparable Cartesian q-space acquisition. 
 

Background — Magnetic resonance diffusion tensor imaging (DTI) can resolve the mean white matter fiber orientation within a voxel [1, 2]. However, a given voxel 
may contain a number of fiber orientations due to, for example, intravoxel fiber crossing or clusters of diverging fibers [3-8]. Such intravoxel orientational 
heterogeneity can be resolved with model-independent diffusion imaging approaches such as q-space imaging or diffusion spectrum imaging (DSI) [8]. However, both 
q-space imaging and DSI require three-dimensional Cartesian sampling and thus require significantly longer acquisition times than DTI or high angular resolution 
diffusion imaging (HARDI). Fiber crossing can also be resolved with mixture modeling of HARDI data, but such approaches are heavily model-dependent [5-7]. It 
would be desirable to have a diffusion imaging acquisition/reconstruction scheme with the model-independence of the q-space imaging methods and the efficiency of 
the spherical-sampling approaches. Here, we present a novel, model-independent reconstruction algorithm for inverting spherically-sampled diffusion imaging data. 
The technique, termed q-ball imaging (QBI) [7], is based on the Funk-Radon forward transform which we describe in the following section.  
 

Theory — The diffusion orientation distribution function (ODF) ψ(u) is defined at the radial projection of the Cartesian ensemble-average diffusion propagator (EAP) 

P(r) [9] onto the sphere: ∫= drrP )()( uuψ . The ODF describes the volume of spins displacing into a solid angle about the director u. The Funk-Radon transform, also 

known as the spherical Radon transform, is an integral transform on the sphere. For a function f(x) and a given direction u and radius r, the Funk-Radon transform G is 
simply the integral on the great circle (equator) ∫= ⊥ux xxx dffG )()]([  around the director (pole) u [10, 11]. The Funk-Radon transform of the diffusion signal yields 

an ODF ϕ(u) which strongly approximates the true ODF ψ(u). Recall the Fourier relation between the diffusion signal E(q) and the EAP: F[E(q)]=P(r) where q=γδg is 
the diffusion wavevector [12]. It can be shown [7] that the Funk-Radon transform of the diffusion signal is the zeroth-order Hankel transform H of the EAP projected 
onto the plane containing the great circle; that is, ][)]([)( uqu PHEG ==ϕ  where Pu is the EAP projected onto the plane with surface normal u. To the degree that the 

mass of the zeroth-order Bessel function is concentrated at the origin, the Funk-Radon transform yields an ODF which strongly approximates the true ODF, ϕ(u)≈ψ(u) 
[7]. Stated more simply, for a given diffusion direction of interest u, simply summing the diffusion signal along an equator (great circle) around u yields a diffusion 
ODF which is approximately equal to the diffusion ODF obtained by explicit computation from a Cartesian Fourier reconstruction.  
 

Methods — MR diffusion images were obtained on a healthy volunteer on 
a 3T Siemens Allegra (Erlangen, Germany). The experiments consisted of 
a DSI acquisition and 2 QBI acquisitions. All three experiments used a 
twice-refocused balanced echo EPI sequence. The slice prescription for all 
three experiments was identical and consisted of two sagittal slices with 
isotropic 2.8mm resolution and a 6.72mm gap. Whole-head MPRAGE 
images were also acquired for anatomical reference. The sequence 
parameters for the DSI experiment were TR/TE/∆/δ=800/143/66/61ms, 
bmax=1.7×104s/mm2. 515 q-space points were sampled on a keyhole 
Cartesian grid with gmax=40mT/m and qmax=0.097µm-1. For both q-ball 
experiments, the q-space sampling points were obtained from the n=492 
vertices of a 7-fold tessellated icosahedron, giving an average angular 
distance between sampling points of 9.30±0.76º. The sequence parameters 
for the first QBI experiment were TR/TE/∆/δ=800/98/44/39ms, 
bmax=4.0×103s/mm2, gmax=40mT/m, q=0.057µm-1, and the parameters for 
the second QBI experiment were TR/TE/∆/δ =800/130/60/55ms, 
bmax=1.2×104s/mm2, q=0.085µm-1. The DSI images were reconstructed by 
three-dimensional Fourier transform and then radial projection using cubic 
spline interpolation. The QBI images were reconstructed using the Funk-
Radon transform. The great circle integrals were computed using Parzen 
window interpolation with a Gaussian kernel [13]. 
  

Results — The low frequency QBI (q=0.057µm-1) yielded diffusion ODF 
maps highly similar to DSI at q=0.097µm-1, although with slightly sharper 
diffusion peaks (Fig. 1). The high frequency QBI (q=0.085µm-1) exhibited 
sharper diffusion peaks than both the DSI and low-frequency QBI. The 
ODF maps derived from the high-frequency QBI revealed finer fiber 
interdigitation than was apparent on either the DSI or low-frequency QBI. 
 

Discussion — QBI using the Funk-Radon transform provides a model-free 
method for reconstructing diffusion imaging data sampled on the sphere. 
By varying the radius of the sphere, it is possible to specify the width of 
the projection kernel and, in turn, control the tradeoff between signal-to-noise and angular resolution. Further, by combining multiple sampling shells it should be 
possible to design more optimal projection kernels than can be achieved with a single shell. 
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Fig. 1. Comparison of diffusion ODF maps from (a) DSI at qmax=0.097µm-1, (b) QBI at 
q=0.057µm-1, and (c) QBI at q=0.085µm-1. ROI: crossing of the superior longitudinal 
fasciculus (slf), the corona radiata (cr), and the callosal striations (cc) to motor cortex. 
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