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1 Introduction

Microstate geometries have already yielded remarkable results in the face of seemingly
impossible odds1 that ranged from “No-Go” theorems and apparently insuperable non-
linearities in the geometry, to the Horowitz-Polchinski correspondence principle [2, 3] that
suggested that microstructure must collapse to Planck-scale decoration of a singularity. In
retrospect, the needle that has been threaded by microstate geometries highlights the fact
that they represent the primary mechanism2 [1] through which one can describe the smooth
gravitational expression of coherent microstate structure at the horizon scale. Indeed, the
last few years have seen extensive holographic confirmation that the class of microstate
geometries known as “superstrata” describe families of coherent states of the D1-D5 CFT
that underlie the three-charge black hole in five dimensions [4–11]. In the last twenty years,
microstate geometries have gone from being a chimera to becoming a standard laboratory
for testing holographic CFT and supporting horizon-scale microstructure.

The current challenge for microstate geometries is to get beyond supersymmetry and
extremality. Supersymmetry and the BPS equations have provided immense technical
simplifications that have brought vast families of microstate geometries within range of
analytic construction and exploration. Supersymmetry and extremality also impose a huge
physical simplification: classical stability through positive mass theorems and quantum
stability because of the vanishing Hawking temperature. The information problem is thus
simplified to an “information storage” problem at zero temperature.

Families of supersymmetric microstate geometries are necessarily time independent,
however they have to depend on at least two (spatial) coordinates. Indeed, the fully

1For a more detailed review of this, see the introduction to [1].
2It is the unique mechanism if all the fields are time-independent.
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generic superstratum depends on five spatial coordinates, and the most important fami-
lies of analytically known, “deep, scaling” superstrata must depend, non-trivially, on three
spatial coordinates [12–21]. The construction of non-extremal, time-dependent, Hawking
radiating generalizations of these superstrata would seem to be an impossible ambition,
even by the remarkable standards of the Microstate Geometry Program. This paper pro-
vides an important step in turning this fantasy into a reality, through the construction of
new families of non-extremal microstate geometries in a setting in which the holographic
dictionary is known.

There are many well-known, analytically-constructed examples of non-BPS microstate
geometries. Perhaps the most well known is the JMaRT solution [22]. There are gener-
alizations of this to multi-centered solutions, and there are new bubbled non-BPS solu-
tions [23–29]. All these solutions are interesting but they represent very atypical states of
the underlying black hole: they tend to have very high angular momentum, and often lie in
the “over-spinning” sector of the theory. The current status of non-BPS microstate geome-
tries is somewhat reminiscent of the early results on their supersymmetric counterparts,
where the solutions were also highly specialized.

There were two breakthroughs that followed the early work on supersymmetric mi-
crostate geometries: the construction of scaling geometries that accessed the typical sector
of the dual CFT, and then the construction of superstrata, whose geometries have a precise
holographic correspondence with states of the D1-D5 CFT [4–11].

Our goal here is to build upon the success of superstrata by finding non-extremal
analogues of superstrata, which we will refer to as “microstrata.” These will be non-
BPS geometries in the six-dimensional supergravity with a holographic correspondence to
the D1-D5 CFT. This means that the CFT dual states can ultimately be determined.
Moreover, we will also construct classes of microstrata as excitations of superstrata and
argue that some members of these classes, even if we do not construct them explicitly,
exhibit a scaling behavior similar to superstrata, which suggests they can also access the
typical sector of the CFT.

There are three components of our strategy for surmounting the array of technical
obstacles to constructing such non-BPS solutions. First, we will find solutions that are
asymptotic to AdS3 ×S3. This means that we will put the microstate geometry “in a box”
that prevents its thermal decay. Second, we use the recent discovery that a significant fam-
ily of superstrata are encoded in a consistent truncation of six-dimensional supergravity
on S3 down to a gauged supergravity in three dimensions [21, 30]. The inherent power of
this consistent truncation is that the complicated dependence of solutions on the S3 direc-
tions is handled entirely by the machinery of the consistent truncation. We therefore only
have to work with dependence on the three coordinates, (t, r, v), of the three-dimensional
supergravity.

The hallmark of the superstratum is that it is dual to a CFT state that involves purely
left-moving states, while the right moving sector remains in the Ramond ground state,
preserving the right-moving supersymmetries. This means that the configuration is 1

8 -BPS.
There is similarly the 1

8 -BPS anti-superstratum, with purely right-moving excitations and
a left-moving Ramond ground state. In this paper we construct solutions that have non-
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trivial dependence on both t and v, and so the excitations travel inside the light cone of the
CFT, and are thus a superposition of both left-moving and right-moving excitations. This
breaks all the supersymmetries and leads to families of genuinely non-extremal, non-BPS
solutions.

The third part of our strategy is to use Sidney Coleman’s Q-ball trick (and the re-
lated “coiffuring trick” in microstate geometries [12, 16, 31, 32]) to reduce the core of the
problem to functions of one variable, r. That is, we find configurations within the three-
dimensional supergravity in which the scalar fields depend on all the variables, but their
energy-momentum tensor and electromagnetic currents only depend on the radial vari-
able, r. The end result is a family of coupled, non-linear differential equations for eleven
functions of r.

Much of the effort in this paper focusses on finding interesting families of perturbative
and numerical solutions to this still rather daunting system. Indeed, we will show that
this system of equations is extremely well-adapted to perturbative analysis and we are able
to construct the solution to fourth order, and sometimes to much higher orders. These
perturbative results provide powerful confirmation of the accuracy of, and new features
discovered in, our numerical analysis.

It should be emphasized at the outset that, while we are making use of the “Q-ball
trick,” Sidney Coleman’s Q-ball construction led to a significant change in the effective
potential that produced, for an appropriate range of frequencies, new families of classically
(and quantum mechanically) stable solitons that minimize an energy functional. Given the
complexity of our solutions, and the gravitational back-reaction, it would be technically
difficult to see if our solutions could also be quantum mechanically stable. We are simply
going to use the Q-ball construction as a means to break supersymmetry while keeping the
equations of motion in a simple form, thereby enabling the construction of new supergravity
solutions. Ultimately, some of the solutions we create here may have a more prosaic
interpretation as gravitational bound states of more ordinary scalar excitations.

The reductions and simplifications that we make in constructing our new solutions
mean that they are necessarily extremely specialized. However, as we will discuss in the
final section, this paper provides a powerful leverage point for the construction of far
more general non-BPS microstate geometries. Amongst the many possible threads for
future work, we note that the experience with superstrata suggests that, once one has
asymptotically-AdS solutions, one should be able to couple them to flat space and obtain
asymptotically-flat microstrata. While this will involve some additional technical chal-
lenges, it is evident from the work of [33, 34] that one can analyze such geometries as a
tunneling problem using WKB methods. In this way, the Hawking radiation emitted by mi-
crostrata into flat space can probably be analyzed as a tunneling process from microstrata
constructed in the box of AdS3.

A major motivation for this work is to provide a very important “proof of concept.”
Despite the immense successes of supersymmetric microstate geometries, some suggested
that non-BPS microstate geometries may well prove unstable to collapse to a black hole.
It is still an open question as to whether small perturbations can destabilize the super-
symmetric geometries, especially given the seeming non-linear instability of AdS4 [35–38]
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(and references therein). Thus there was a real concern that any fully back-reacted pertur-
bation away from BPS would simply fold the whole microstate geometry up into a black
hole, or some other singularity. The fact that we have now constructed explicit examples
of non-extremal microstata finally puts this issue to rest. The results presented here tells
us that there are microstrata with “large”3 non-BPS deformations. It is still possible to
find singular limits in some corners of microstrata moduli space and we will discuss this
further in section 9.

One should also remember that some classes of instabilities of microstate geometries
represent a “feature” rather than a “bug,” because such instabilities will prove essential in
the scrambling of matter and in the generation of Hawking radiation. Indeed, this seems
to be precisely the correct interpretation of the instabilities discussed in [34, 39, 40]. As
we have already noted, we expect these physical instabilities to become important when
we couple microstrata to flat space.

In addition to providing a “proof of concept,” our results also have significant impli-
cations for the microstate geometry and fuzzball programs more broadly.

On a technical holographic level, there is the obvious question of looking at the pre-
cision holography of the new microstrata [4–11]. This might seem to be something of a
challenge because precision holography often involves correlators that are protected by su-
persymmetry. On the other hand, it is possible that the microstrata constructed here are
sufficiently specialized, coherent states that their holographic dual might be sufficiently pro-
tected by large-N coherence. At a minimum, the effectiveness of the perturbation theory
we find on the gravity side should have some computational counterpart within the CFT.

On a fundamentally more physical level are the frequency shifts of the normal modes
for microstrata.

One of the tensions between supersymmetric microstate geometries and the microstruc-
ture of black holes is that while both have eS microstates, the former have rationally spaced
energy levels with high occupation numbers while the latter have energy levels spaced by
e−S with occupation numbers of O(1). Thus supersymmetric objects, with vanishing Hawk-
ing temperature, have very rigid structures with apparently very sharp resonances (see, for
example, [33, 34, 41]), spaced out by an energy gap O( 1

N1N5
). The issue for microstate

geometries is how non-BPS microstate geometries can give rise to a “transition to chaos”
with the energy gap and occupation numbers that are characteristic of a black hole.

In this paper we find that the interactions and gravitational back-reaction of the ex-
citations can lead to shifts in the normal mode frequencies of the microstate geometries,
and that these shifts depend non-linearly on the amplitudes of the excitations. As a result,
the back-reaction of excitations creates a complicated set of resonances whose frequencies
shift with the interactions and excitations of new modes. Thus, from these first examples
of non-BPS microstate geometries, we see that the energy levels of the fully back-reacted
microstate geometry are highly non-trivial functions of all the modes and their interactions:
the generic non-BPS excitations may therefore be expected to have a rich, and far more
chaotic spectrum.

3Here “large” means a finite, as opposed to an infinitessimal, fraction of the object’s mass is involved in

the non-BPS deormation.
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In section 2 we summarize the relevant details of the underlying three-dimensional
gauged supergravity, and in section 3 we discuss further truncations of this theory motivated
by the Q-ball/coiffuring trick. In section 4, we restrict ourselves to one of the simplest
possible families of solutions based on the observations in section 3. This family contains
the (1, 0, n) superstratum and microstrata generalizations. We also discuss all the details
of gauge fixing, coordinate choices and boundary conditions for microstrata. In section 5
we discuss how to read off the mass and charges for our three-dimensional solutions and
characterize extremality from the three-dimensional perspective. Section 6 contains an
extensive discussion of the perturbative solutions and how we find them. This section
shows that there are two distinct families of microstrata that fall within the Ansatz of
section 4. Section 6 also contains the perturbative results for the frequency shifts. The
numerical algorithms are described in section 7 and the results of both the perturbation
theory and the numerical solution are shown and compared in section 8. The numerics
and the perturbative analysis are in excellent agreement and the combined picture gives
compelling evidence for the existence of two distinct families of microstrata, providing
a precise description of all the underlying fields and their frequency shifts. Our final
comments appear in section 9.

2 Three-dimensional gauged supergravity

The supergravity theory of interest is the SO(4, 5) theory described in [21, 30]. (Here we
will use the notation and conventions of [30].) This theory has eight supersymmetries: four
two-component spinors in three dimensions, transforming under an SO(4) R-symmetry.
The theory has a graviton, four gravitini, 20 “spin- 1

2” fermions, 6 gauge fields and 14
scalars. Since we are going to focus on non-supersymmetric solutions to the equations of
motion, we restrict our attention to the bosons, and their action.

2.1 The supergravity action

The gauge group is SO(4), and I, J,K, . . . will denote indices transforming in the vector
representation of SO(4). The gauge fields live in the adjoint representation and will be
denoted by: AIJµ = −AJIµ . The scalars live in the 9 + 4 + 1 representations of SO(4), and
are most conveniently represented as a vector, χI , and a symmetric matrix, mIJ = mJI ,
with non-vanishing determinant. The determinant is the SO(4) singlet. This matrix may
be thought of as being parametrized by the non-compact generators of GL(4 ,R) and the
inverse of mIJ will be denoted as mIJ .

The minimal couplings involve the SO(4) duals of gauge fields:

DµχI ≡ ∂µχI − 2 g0 Ãµ
IKχK .

DµmIJ ≡ ∂µmIJ − 2 g0 Ãµ
IKmKJ − 2 g0 Ãµ

JKmIK .
(2.1)

where

Ãµ
IJ ≡ 1

2 ǫIJKLAµ
KL . (2.2)
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This means that the field strengths, and their SO(4) duals, are given by:

Fµν
IJ = 1

2 ǫIJKL F̃µν
KL = ∂µAν

IJ − ∂νAµ
IJ − 2 g0

(
Aµ

IL Ãν
LJ −Aµ

JL Ãν
LI
)
. (2.3)

It is also convenient to define the currents:

Yµ IJ ≡χJ DµχI − χI DµχJ , (2.4)

The bosonic action is then [21, 30]:

L = − 1
4 eR+ 1

8 e g
µνmIJ (Dµ χI) (Dν χJ) + 1

16 e g
µν
(
mIK DµmKJ

)(
mJL DνmLI

)

− e V − 1
8 e g

µρ gνσmIK mJL F
IJ
µν F

KL
ρσ

+ 1
2 e ε

µνρ
[
g0
(
Aµ

IJ ∂νÃρ
IJ + 4

3 g0Aµ
IJ Aν

JK Aρ
KI
)

+ 1
8 Yµ

IJ F IJνρ

] (2.5)

where e =
√
g and V is the scalar potential:

V = 1
4 g

2
0 det

(
mIJ

) [
2
(
1 − 1

4 (χIχI)
)2

+mIJmIJ + 1
2 mIJχIχJ − 1

2 mII mJJ

]
. (2.6)

Note that because this theory has an SO(4) gauge symmetry, we can fix the gauge by
choosing mIJ to be diagonal.

Solving the equations of motion in this action automatically leads to solutions of the
six-dimensional supergravity that is dual to a sector of the D1-D5 CFT. The details of how
to uplift such solutions to six-dimensions can be found in [21] and details of the further
uplift to the IIB supergravity, and the holographic duality can be found in [12, 42]. Here
we will simply focus on the intrinsically three-dimensional description of the geometries
and the microstates.

We also note that the potential has a supersymmetric critical point when χI = 0 and
mIJ = δIJ , at which point V takes the value

V0 = −1
2 g

2
0 . (2.7)

Setting all the other fields to zero, the Einstein equations give:

Rµν = −4V0 gµν = 2 g2
0 gµν . (2.8)

and the supersymmetric vacuum4 is an AdS3 of radius, g−1
0 .

It will also be important to note that this supersymmetric critical point is part of a
family of flat directions for V . Specifically, if χI = 0 then there is a line of critical points
with V = V0 when mIJ has eigenvalues λ, λ, λ−1, λ−1 for any λ > 0. If the background
only involves non-trivial scalar vevs then the critical point only leads to a supersymmetric
background for λ = 1 [30]. We will refer to this as the standard, supersymmetric critical

point. The other critical points will then break supersymmetry. As we will discuss in [43],
this conclusion is not valid if there are also non-trivial gauge configurations: supersym-
metry can be broken by the gauge fields, or supersymmetry can be restored for λ 6= 1 by
appropriately tuned gauge potentials.

4One should note that because we are using a metric signature (+ − −) the cosmological constant of

AdS is positive, contrary to the more standard and rational choice of signature.
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2.2 The three-dimensional metric

Following [30] we will use a metric signature of (+ − −) and, as noted in [30], one can use
coordinate choices to recast the three-dimensional metric in the following form:

ds2
3 = R2

AdS

[
Ω2

1

(
dτ +

k

(1 − ξ2)
dψ

)2

− Ω2
0

(1 − ξ2)2

(
dξ2 + ξ2 dψ2)

]
, (2.9)

for three arbitrary functions Ω0, Ω1 and k of the three coordinates, (τ, ξ, ψ) with

0 ≤ ξ < 1 , ψ ≡ ψ + 2π . (2.10)

We have also introduced an overall scale, RAdS, so that the metric functions and coordinates
can be chosen to be dimensionless. This scale will, of course, become the radius of the AdS
metric at infinity.

To see that one can reduce a general metric to this form, one first uses the spatial
coordinates to make the spatial base conformally flat. Then one uses the freedom to shift τ
by an arbitrary function to reduce the angular momentum vector, k, to a single component.
We have introduced the additional factors of (1 − ξ2) to anticipate and simplify the global
AdS3 limit of this metric.

To relate this to the standard superstratum form of the metric, one uses the change of
variables:

ξ =
r√

r2 + a2
, τ =

t

Ry
, ψ =

√
2 v

Ry
, (2.11)

and
u ≡ 1√

2

(
t− y

)
, v ≡ 1√

2

(
t+ y) , (2.12)

where y is periodically identified as

y ≡ y + 2π Ry , (2.13)

One then obtains the metric:

ds2
3 = R2

AdS

[
Ω2

1

R2
y

(
dt+

√
2

a2
(r2+a2) k dv

)2

−Ω2
0

(
dr2

r2 + a2
+

2

R2
y a

4
r2 (r2+a2) dv2

)]
, (2.14)

If one further sets:

Ω0 = Ω1 = 1 , k = ξ2 =
r2

(r2 + a2)
, (2.15)

then (2.14) becomes the standard metric5 of global AdS3:

ds2
3 = R2

AdS

[(
1 +

r2

a2

)(
dt

Ry

)2

− dr2

r2 + a2
− r2

a2

(
dy

Ry

)2 ]
. (2.16)

As noted after (2.8), the supersymmetric AdS vacuum of the gauged supergravity has
a radius given by:

RAdS =
1

g0
, (2.17)

and so we will henceforth use this to set the overall scale of the general metric (2.9).
5Up to rescaling the coordinates as r → a

RAdS
r̃, t →

Ry

RAdS
τ̃ and y → Ry ỹ.
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We will also set the orientation as in [30]. We take the coordinates to be (x0, x1, x2) =

(τ, ξ, ψ) or (x̂0, x̂1, x̂2) = (t, r, v) and set:

ǫ012 = ǫ012 = +1 . (2.18)

The covariant ε-symbol is then

εµνρ = e ǫµνρ , εµνρ = e−1 ǫµνρ , (2.19)

where e =
√

|g| is the frame determinant. The volume form is then:

vol3 = 1
6 εµνρ dx

µ ∧ dxν ∧ dxρ = e dτ ∧ dξ ∧ dψ = ê dt ∧ dr ∧ dv . (2.20)

2.3 A further truncation: a U(1)-invariant sector

The three-dimensional supergravity can capture what are known as the (1, 0, n) + (1, 1, n)

families of superstrata, which are encoded by two independent holomorphic functions of
one variable. However, for simplicity it is convenient to reduce the theory to a sub-sector
that contains only the (1, 0, n) family of superstrata.

This truncation is defined by requiring the configuration to be invariant under the U(1)

rotation in the (3, 4) internal directions. This reduces the gauge symmetry to U(1) × U(1)

with gauge connections, A12
µ and A34

µ . One also must set χ3 = χ4 = 0 and take mIJ to
have the form:

mIJ =

(
e2µ1 S2×2 02×2

02×2 e2µ2 1l2×2

)
, (2.21)

where

S = OT

(
e2µ0 0

0 e−2µ0

)
O , O =

(
cosσ sin σ

− sin σ cosσ

)
, (2.22)

for some scalar fields, µ0, µ1, µ2 and σ. As we noted above, the gauge invariance can be
used to diagonalize mIJ , and here this reduces to the freedom to use one of the U(1) gauge
invariances to set σ to zero.

2.4 The (1, 0, n) family of superstrata and the AdS3 vacuum

The (1, 0, n) family of superstrata is then given by introducing a holomorphic coordinate:

ζ ≡ ξ eiψ ≡ r√
r2 + a2

e
i

√

2v
Ry . (2.23)

and taking
χ1 + iχ2 =

a√
r2 + a2

F (ζ) (2.24)

for a holomorphic function, F :

F =
∞∑

n=1

bnζ
n . (2.25)

Regularity of the solutions requires that the coefficients, bn, satisfy:

2Q1Q5

R2
y

= 2 a2 +
∞∑

n=1

b2
n, (2.26)
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where Q1 and Q5 are D1 and D5 supergravity charges. In the three-dimensional formula-
tion, these charges set the scale of the AdS3 and thus determine the coupling constant of
the gauged supergravity:

g0 =
(
Q1Q5

)− 1
4 . (2.27)

The regularity condition then becomes:

1

a2 g4
0 R

2
y

= 1 +
1

2

∞∑

n=1

b2
n

a2
. (2.28)

The complete solution is then given by choosing RAdS as in (2.17) and setting

µ1 = 1
2 log

[
1 − 1

4

(
χ2

1 + χ2
2

) ]
, µ0 = µ2 = σ = 0 , (2.29)

Ω0 =
√

1 − 1
4

(
χ2

1 + χ2
2

)
, Ω1 = 1 , k = ξ2 (2.30)

Ã12 =
1

2 g0
dτ , (2.31)

Ã34 = − 1

2 g0

[
1 − 1

4

(
χ2

1 + χ2
2

) ]−1
[
dτ +

ξ2

4 (1 − ξ2)

(
χ2

1 + χ2
2

)
dψ

]
. (2.32)

Note that the gauge connections contain explicit factors of g−1
0 that cancel the explicit

factors of g0 in the minimal couplings, thereby preserving the scale invariance of functions
in the solution.

We impose the boundary conditions that F (ζ) is bounded as |ζ| → 1 so that χ1,2

vanish as r → ∞ (ξ → 1). The metric then limits to that of AdS3 of radius g−1
0 , as defined

by (2.16) and (2.17). Similarly, the “vacuum” solution, with χ1,2 ≡ 0, is simply the global
AdS3 of radius g−1

0 described in section 2.1.

3 “Q-ball” truncations

The core of the “Q-ball trick” is to isolate a complex scalar field and give it a phase
dependence of the form eiωt while arranging that these phases cancel in the currents and in
the energy-momentum tensor. The result is to produce a background in which some of the
scalars oscillate in time while the gauge fields and the metric are completely independent
of t. The important effect of such time-dependent scalars is that they produce an effective
shift in the scalar potential, changing the energetics. As we stated in the introduction, we
are simply using this technique as a way to break supersymmetry and access new families
of solutions, and are not making broader claims about quantum stability of the resulting
solitons.

3.1 The “simplest” microstratum Ansatz

There are several sectors of the three-dimensional supergravity in which this can be imple-
mented. The first, and most obvious lies in the truncation defined in section 2.3. Indeed,
the obvious step to making a “microstratum” is to replace (2.24) by

χ1 + iχ2 =
a√

r2 + a2
F (ζ, ζ̄) eiωt , (3.1)
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where we allow for the fact that a general non-supersymmetric solution will not necessarily
lead to holomorphy. The potential only depends on |χ|2 and so the time-dependence cancels
there. However, the time-dependence does not cancel in the equations for mIJ and some
of these scalars must also be made time dependent. Indeed, consistency requires that one
also takes

σ = ω t (3.2)

in (2.22). Having made these changes, all the equations of motion remain consistent with
the assumption that all the functions only depend on (r, ψ).

In retrospect, this is obvious. This introduction of time dependence through these
phases is gauge equivalent to making a constant shift in the Coulomb potential of Ã12.
This does not mean that these phases are trivial, but simply that they are gauge equivalent
to applying a voltage to the background. We can also think of the fields within this Ansatz
as being precisely those that preserve the global U(1) rotation by an angle α in the (1, 2)-
direction, combined with a time translation t → t− α/ω.

This Ansatz still involves arbitrary functions of ξ and ψ, and while there might be rich
families of such solutions, finding them is still too much of a challenge at this point. Instead
we simplify further by electing to generalize the single-mode superstratum [13, 15, 18]. That
is, we make an Ansatz based on (2.24) and (3.1), in which

χ1 + iχ2 =
a√

r2 + a2
ν(ξ) ei(nψ+ωt) =

√
1 − ξ2 ν(ξ) ei(nψ+ωt) , (3.3)

for some integer, n, and some function, ν(ξ). Note that we are retaining the explicit factor
of
√

1 − ξ2 in our Ansatz as this is somewhat more convenient for the numerical analysis.
The other scalars µj(ξ), j = 0, 1, 2 are also taken to be only functions of ξ, with the

phase in (2.22) now having the form:

σ = nψ + ω t . (3.4)

We make an Ansatz for the gauge fields:

Ã12 =
1

g0

[
Φ1(ξ) dτ + Ψ1(ξ) dψ

]
, Ã34 =

1

g0

[
Φ2(ξ) dτ + Ψ2(ξ) dψ

]
, (3.5)

where we have, once again, introduced explicit factors of g−1
0 so as to cancel the g0’s in

the minimal coupling and thus render the fields and interactions scale independent. We
have also fixed the gauges in Ã12 and Ã34 by removing the components proportional to dξ.
Finally, we assume that all the metric functions, Ω0(ξ), Ω1(ξ) and k(ξ), only depend on ξ.

The Ansatz involves eleven arbitrary functions of one variable, ξ, which we assemble
into a list:

F ≡
{
ν , µ0 , µ1 , µ2 , Φ1 , Ψ1 , Φ2 , Ψ2 , Ω0 , Ω1 , k

}
. (3.6)

The Ansatz is consistent with the equations of motion and it is the one upon which we will
focus in this paper.
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It is useful (and an invaluable tool for checking the equations and numerics) to note
that the “single-mode superstratum” with F (ζ) = α0 ζ

n, for some constant, α0, in (2.24)
corresponds to:

ν = α0 ξ
n , µ1 = 1

2 log
[

1 − 1
4 α

2
0 (1 − ξ2) ξ2n

]
, µ0 = µ2 = 0 ,

Φ1 =
1

2
, Ψ1 = 0 ,

Φ2 =
1

2

[
1 − 1(

1 − 1
4 α

2
0 (1 − ξ2) ξ2n

)
]
, Ψ2 = −α2

0

8

ξ2n+2

(
1 − 1

4 α
2
0 (1 − ξ2) ξ2n

) ,

Ω0 =
√

1 − 1
4 α

2
0 (1 − ξ2) ξ2n , Ω1 = 1 , k = ξ2 ,

(3.7)
where we have made a trivial gauge transformation of Ã34 in (2.32) so that Φ2 vanishes at
ξ = 0.

Note that with these choices, the coefficient of dψ2 in (2.9) is

ξ2

(1 − ξ2)

[
1
4α

2
0 ξ

2n − 1
]
, (3.8)

This means that, to avoid CTC’s one must have |α0| ≤ 2, and for asymptotically AdS3

space-time one must impose the strict inequality:

|α0| < 2 . (3.9)

The limit, |α0| = 2, is usually thought of as the “extremal BTZ limit,” but because of
our formulation of the three-dimensional metric, this limit actually results in a three-
dimensional metric that is asymptotic to AdS2 ×S1, and this is precisely the scaling limit
described and analyzed in [44].

We also note that, modulo issues with gauge fixing that we will discuss later, if one
has n > 0 and ω > 0, then the excitation is traveling inside the light cone of the CFT,
and so will consist of both left-moving and right-moving states. This means that solutions
with n, ω > 0 will break all supersymmetries.

3.2 Other microstrata Ansätze

The are several obvious variations on the Ansatz defined in section 3.1 and it is useful to
catalog some of them here for potential further study.

First one can make a similar generalization of the (1, 1, n) superstratum by working
in the (3, 4) sector, and requiring invariance in the (1, 2) directions. This is a trivial flip
(1, 2) → (3, 4) of the Ansatz above. However, one can do both. That is, one can take

χ1 + iχ2 =
a√

r2 + a2
F1(ξ, ψ) eiω1t , χ3 + iχ4 =

a√
r2 + a2

F2(ξ, ψ) eiω2t , (3.10)

for two arbitrary functions F1 and F2. The phase, σ, in (3.2) will now become σ1 = ω1t. One
will also need to introduce another scalar, µ3, and another phase rotation, σ2, analogous
to (2.22) but in the (3, 4) direction.

σ2 = ω2 t (3.11)

One should note that one can choose ω2 independently of ω1.
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The single-mode truncations follow in an analogous manner, and one can choose dif-
ferent single modes, n1, n2, in the (1, 2) and (3, 4) directions. This truncation can be
characterized as preserving a global U(1)×U(1) rotations by an angle α1 in the (1, 2)-
direction and an angle α2 in the (1, 2)-direction, combined with compensating phase shifts
in t and ψ.

One particularly interesting family would be to look at “co-existing” superstrata. That
is, use a superstratum in the (1, 2)-sector, and an “anti-superstratum” in the (3, 4) sector.
The former is the usual left-moving BPS solution, while the latter is the corresponding
“right-moving” anti-BPS superstratum that can be obtained trivially by replacing the
null coordinate, v, with the other null coordinate, u, in the superstratum solution. The
“seed solution” here would be to start with F1 as a holomorphic function of ζ, and F2

as an anti-holomorphic function. The interactions and scattering between these counter-
moving superstrata will probably destroy the holomorphy properties of F1 and F2 in the full
solution, the attraction here is that the momenta and angular momenta of these solutions
can, in principle, be adjusted to zero.

Other variations on the theme could involve imposing discrete Z2 symmetries like
1 → −1, 2 → −2, or 3 → −3, 4 → −4. If one imposes the latter, then one must set
χ3 = χ4 = 0, but one retains µ3. If one imposes both of these Z2 symmetries then all the
χj must vanish, and yet one retains all the µj , j = 0, 1, 2, 3. This should be a relatively
simple set of excitations, but perhaps cannot lead to scaling microstrata because all the χj
vanish.

While we have highlighted several extremely interesting options, we will not pursue
them further here because we wish to study the generalizations of the superstratum, which
requires some non-zero χj ’s, and we want to start with the smallest number of arbitrary
functions.

There is, however, one very interesting truncation worthy of note because of the con-
nections it affords with other work: one can use a form of generalized “Scherk-Schwarz”
reduction of the three-dimensional supergravity to connect superstrata to a supersymmetric
generalization of JT gravity.

3.3 The “super-JT” truncation

The goal here is to define a reduction of the three-dimensional gauged supergravity de-
scribed in section 2, to a two-dimensional supersymmetric extension of JT gravity and do
it in such a manner that it retains a superstratum solution.

We define the dimensional reduction on the ψ-direction by requiring that the fields are
invariant under the U(1) action:

ψ → ψ + α , O12 =

(
cosn1α − sinn1α

sinn1α cosn1α

)
, O34 =

(
cosn2α − sinn2α

sinn2α cosn2α

)
(3.12)

where the OIJ are commuting global symmetries acting on the internal (I, J) directions.
This will determine precisely how the scalars depend on the ψ-coordinate. In particular,
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one will have

χ1 + iχ2 = F1(t, ξ) ein1ψ , χ3 + iχ4 = F2(t, ξ) ein2ψ . (3.13)

The metric and gauge fields will thus be required to be independent of ψ.
Because it is defined by invariance under a symmetry action, this is manifestly a

consistent truncation and will lead to a two-dimensional theory. This theory will have
both massless and massive scalars. Indeed, the χ’s will have masses set by nj , and the mIJ

will give two real massless fields (µ1 and µ2) and four complex fields whose masses are set
by the eigenvalues 2n1, 2n2, n1−n2 and n1+n2. The gauge fields and “internal metric” will
dimensionally reduce to produce more scalars, and, in particular, the scale of the ψ-circle
will yield the usual scalar field of JT gravity. The three-dimensional supersymmetries rotate
under the action of (3.12) and so could possibly be broken depending on the mode choices.

The important point is that this consistent truncation reduces the three-dimensional
supergravity to a two-dimensional extension of JT gravity, and does so in precisely such a
manner as to preserve and include two single-mode ((1, 0, n1) and (1, 1, n2)) superstrata.
This theory is certainly worthy of further study and, in particular, it would be very inter-
esting to construct the two-dimensional action and investigate its supersymmetry.

4 The action, boundary conditions and gauge choices

The remainder of this paper will focus on the truncation defined in section 3.1 and the eleven
dynamical fields (3.6). We will give the complete action that defines the dynamics of these
functions, and we pin down the gauge degrees of freedom and fix boundary conditions for
the fields. Before diving into the details it is useful to recall the origins of these fields in
IIB supergravity and then review some of the details coming from holography.

The scalar, ν, encodes the NS flux field and is the primary degree of freedom that
defines the superstratum and microstratum. The other scalars, µ0, µ1, µ2, represent shape
modes of the S3 of compactification. In particular, the scalar, µ0, will play an important
independent role in our microstratum solutions and it is interesting to note that within
the six-dimensional theory this scalar generates elliptical deformations of the underlying
supertube configuration.

The Maxwell fields, Φj , Ψj , are Kaluza-Klein fields that define how the S3 is fibered
over the three-dimensional space-time. These fields also appear in the dilaton and fluxes
of the higher-dimensional theory [21]. From the superstratum construction, we also know
that the field, ν, is the leading driver of the flow in that one can choose its boundary data
freely and the other fields are determined by the flow if one requires regularity. As we will
see, holography also tells us that this field is dominant in that it is dual to the field with
the lowest conformal dimension.

The truncation in section 3 involves more fields than the superstratum and there are
almost certainly other fields that drive the flow. Indeed, based on our results, it also seems
that the boundary conditions for µ0 allow additional independent families of solution.
Thus our microstrata solutions will involve more diverse families of solutions than merely
a deformation of the superstratum.
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4.1 Overview and lessons from holography

While the superstratum, and all the backgrounds we construct in this paper, are non-
trivial solutions to the supergravity equations, it is still very instructive to study them as
perturbations around the AdS3 vacuum. This enables us to gain insight into the appro-
priate boundary conditions on the fields, both from holography and from the perspective
of higher dimensional geometries. The mathematics of perturbation theory also elucidates
the possible singular terms that can emerge at higher orders.

The massive scalar wave equation in global AdS3 in the (τ, ξ, ψ) coordinates is:

(1 − ξ2)

R2
AdS

[
(1 − ξ2)

ξ
∂ξ
(
ξ∂ξF

)
+ (ω̂ + n̂)2 F − n̂2

ξ2
F

]
−m2 F = 0 (4.1)

where we have used (2.15) and separated variables by seeking a solution of the form
F (ξ)eiω̂τ+n̂ψ.

The conformal dimension, ∆, of holographic operators is related to the mass via:

m2 =
∆(∆ − 2)

R2
AdS

. (4.2)

This is invariant under ∆ → (2 − ∆), and the conformal dimension is the root with ∆ ≥ 1.
The scalar wave equation becomes:

1

ξ
∂ξ
(
ξ∂ξF

)
+

(ω̂ + n̂)2

(1 − ξ2)
F − n̂2

ξ2 (1 − ξ2)
F =

∆(∆ − 2)

(1 − ξ2)2
F . (4.3)

For generic ∆, the solution to this differential equation is given in terms of hypergeo-
metric functions of r2 (or r−2), and the two solutions, F1(r) and F2(r), are asymptotic, at
infinity, to r(∆−2) and r−∆, where r is related to ξ via (2.11). The series solution around
infinity for F1 is a straightforward power series in r−2, multiplied by r−∆, but when ∆ ∈ Z

and ∆ ≥ 2, the roots of the indicial equation differ by an integer and the series solution
for F2 contains a “sub-leading logarithm” at r−∆. That is, the series solutions for F1 and
F2 have the form:

F1(ξ) = r−∆
∞∑

n=0

bn r
−2n , F2(ξ) = r(∆−2)

∞∑

n=0

an r
−2n + F1(ξ) log r . (4.4)

For ∆ = 1, the indicial equation has a double root and the general solution has the form:

r−1
[ ∞∑

n=0

an r
−2n + log r

∞∑

n=0

bn r
−2n

]
. (4.5)

This solution has a “leading logarithm” in that it defines the leading “non-normalizable”
solution.6

In holography, the standard lore tells us that normalizable modes, with series of the
form F1, are dual to states of the system and non-normalizable modes, with series of the

6Neither solution is normalizable but the term “non-normalizable” is used here to connote the most

divergent solution.
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form F2, are dual to deformations of the Lagrangian. Moreover, the sub-leading logs can be
related to holographic renormalization and conformal anomalies [45–49]. Thus the leading
log in (4.5) plays a very different role from the sub-leading logs in (4.4).

The masses, or conformal dimensions of the scalar fields are easily read off from the
potential, V . The eigenmodes around the supersymmetric critical point are:

ν̂ : m2 = −1 , ∆ = 1 ; µ0 : m2 = 0 , ∆ = 2 ,

µ− ≡ µ1 − µ2 : m2 = 0 , ∆ = 2 ; µ+ ≡ µ1 + µ2 : m2 = 8 , ∆ = 4 ,
(4.6)

where
ν̂ ≡

√
1 − ξ2 ν (4.7)

is the function that appears is the scalar field χ1 + iχ2 without any factors, as seen in (3.3).
One should also recall that the scalars µ1 and µ2 are not oscillating and so have ω̂ = n̂ = 0,
while the scalar ν has ω̂ = ω and n̂ = n and µ0 has ω̂ = 2ω and n̂ = 2n.

At the origin, the solution is dominated by the centrifugal term, ∼ n̂2

ξ2 , and, as is

familiar with Bessel’s equation, the smooth solution falls of as ξn̂ as ξ → 0. Requiring
the solution to be smooth at ξ = 0 and fall off as ξ → 1 typically leads to an eigenvalue
problem and a discrete spectrum for ω.

The normalizable modes of the fields µ0, µ− and µ+ are indeed normalizable, and fall
off as r−2 and r−4 at infinity. For these fields we will only consider such excitations. The
field ν̂ has ∆ = 1 and so we have

χ1 + iχ2 ∼ ν̂ ∼ ĉ1 r
−1 + ĉ2 r

−1 log(r) ⇔ ν ∼ c1 + c2 log(r) , (4.8)

as r → ∞ for some constants ĉ1, ĉ2, c1 and c2. As we have noted, ν̂ and all its radial
derivatives, vanish at infinity for any choices of ĉ1 and ĉ2.

Since we are interested in microstates of a black hole, we are, a priori, interested in the
normalizable modes, and hence the simple power series solutions. We therefore start out by
seeking such solutions at leading order, before computing the back-reaction, perturbatively
or numerically. In particular, our solutions will start out with ĉ2 = 0 in (4.8). However, we
find that, for some classes of microstrata, the back-reaction generates logarithmic terms
in the solutions, and at higher orders one is required to introduce leading logs in ν. See
section 6.4 for more details.

This is most easily seen through our perturbative analysis, described in section 6, in
which we have to solve differential equations with sources. To find the required inhomoge-
neous solutions we need to use functions of the form:

F = F1(r) log r , (4.9)

where F1 is the “normalizable solution” of the homogeneous equation (4.3). When the
operator in (4.3) acts on a function of the form (4.9), it produces a simple power series
(without logarithmic terms) and precisely these terms appear in some of the sources. Once
one generates such log terms in the solutions, they then appear as sources in the next order
of perturbation theory, and this can lead to polylogarithms. One should note that, despite
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the appearance of the logs in (4.5) and (4.9), all of these expressions, and their derivatives
with respect to r, vanish as r → ∞. This means that such expressions, and the related
polylogarithms, are consistent with vanishing boundary conditions at infinity.

While one might have anticipated the appearance of sub-leading logs, and even the
polylogarithms, as a renormalization effect, we also find that the “non-normalizable” solu-
tion for ν emerges from the back-reaction. This is surprising because it appears to represent
a non-conformal perturbation of the action of the CFT by a relevant operator. We will
discuss this in more detail in sections 6.4 and 9. Here we simply note that the pertur-
bative analysis in supergravity presents some interesting challenges for the interpretation
of microstrata in the dual holographic field theory. Moreover, as we will also discuss in
section 7.2, the generation of the log terms creates a technical complexity in setting up the
numerical analysis.

4.2 The action

The action was computed in [30], and is given in (2.5). It contains a gravitational term,
kinetic terms for the scalars and the gauge fields, a Chern-Simons term, a Chern-Simons-
like coupling between the scalars and the gauge fields, and a potential. We can rewrite it
in terms of our Ansatz in section 3.1.

We decompose the Lagrangian into pieces:

L = Lgravity + Lχ + Lm + LA + LCS + LY − √
g V , (4.10)

and we introduce a convenient shorthand that captures the mode dependence and minimal
couplings:

Γ = ξ2Ω2
0

[
ω + 2 Φ1

]2 − Ω2
1

[
(1 − ξ2)

(
n+ 2 Ψ1) − k

(
ω + 2 Φ1

) ]2
. (4.11)

We then find:

Lgravity ≡ − 1

4

√
g R

=
Ω1

8 g0 ξ

[
Ω2

1

Ω2
0

(
k′ +

2 ξ

1 − ξ2
k

)2

− 4 ξ

(
∂ξ

(
ξ

Ω′
0

Ω0

)
+

1

Ω1
∂ξ
(
ξΩ′

1

))
− 16 ξ2

(1 − ξ2)2

]

(4.12)

Lχ ≡ 1

8

√
g gµν (DµχI)m

IJ (DνχJ)

=
e2(µ0−µ1)

8 g0 ξ (1 − ξ2) Ω1

[
Γ ν2 − ξ2 (1 − ξ2) Ω2

1 e
−4µ0

(
∂ξ
(√

1 − ξ2 ν
))2

]
(4.13)

Lm ≡ 1

16

√
g gµν Tr

(
m−1(Dµm)m−1(Dνm)

)

=
1

2 g0 ξ (1 − ξ2)2 Ω1

[
Γ sinh2 2µ0 − ξ2 (1 − ξ2)2 Ω2

1

(
(µ′

0)2 + (µ′
1)2 + (µ′

2)2)
]

(4.14)
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LA ≡ −1

8
e gµρ gνσmIK mJL F

IJ
µν F

KL
ρσ

=
1

2g0 ξΩ1

[
ξ2
(
e4µ2 Φ′2

1 + e4µ1 Φ′2
2

)

− Ω2
1

Ω2
0

(
e4µ2

(
(1 − ξ2) Ψ′

1 − kΦ′
1

)2
+ e4µ1

(
(1 − ξ2) Ψ′

2 − kΦ′
2

)2
)]

(4.15)

LCS ≡ 1

2
g0 e ε

µνρ
(
Aµ

IJ ∂νÃρ
IJ + 4

3 g0Aµ
IJ Aν

JK Aρ
KI
)

=
1

g0

(
Φ1Ψ′

2 − Ψ2Φ′
1 + Φ2Ψ′

1 − Ψ1Φ′
2

)
(4.16)

LY ≡ 1

16
e εµνρ Yµ

IJ F IJνρ

=
1

4g0

(
1 − ξ2

)
ν2 ((2Ψ1 + n) Φ′

2 − (2Φ1 + ω) Ψ′
2

)
(4.17)

V =
g2

0

2
e−4(µ1+µ2)

[
1 − 2 e2(µ1+µ2) cosh(2µ0) + e4µ1 sinh2(2µ0)

+
1

16
ν2
(
1 − ξ2

)(
(1 − ξ2) ν2 + 4 e2(µ0+µ1) − 8

)]
(4.18)

Here, ′ indicates a differentiation with respect to ξ.

One should note that because the action is gauge invariant, the expression, Γ, contains
the gauge invariant terms that result from either introducing n and ω or shifting the gauge
potentials, Φ1 and Ψ1. In particular, the gauge invariant combinations are

GΦ1 ≡ (ω + 2 Φ1) , GΨ1 ≡ (n+ 2 Ψ1) . (4.19)

This means that the values of ω and n only have meaning once we have specified the gauge
for Φ1 and Ψ1. We will typically fix these gauges by specifying the asymptotics of the
gauge potentials at ξ = 0, or as ξ → 1.

It is important to note that for the superstratum (see (3.7)) one has GΦ1 = 1 and
GΨ1 = n. Our earlier comments about supersymmetry breaking and n, ω > 0 should be
interpreted in this context. The gauge invariant way to express this is to consider the UV
limit (ξ → 1) and then the excitation will travel inside the light cone if GΦ1(ξ = 1) > 1 and
GΨ1(ξ = 1) = n > 0. We can only express this as n, ω > 0 provided that we have chosen

the gauge fields to limit to the superstratum values at ξ = 1. When we make this gauge
choice, we will denote the frequency by ω∞.

One can always change the action by a total derivative, and it is convenient to do this
with the gravitational action and with the Chern-Simons action, by defining

L̂gravity ≡ Lgravity +
1

2 g0
∂ξ

[
Ω1

(
ξΩ′

0

Ω0
+
ξΩ′

1

Ω1
+

(1 + ξ2)

(1 − ξ2)

)]

=
Ω1

8 g0 ξ

[
Ω2

1

Ω2
0

(
k′ +

2 ξ

1 − ξ2
k

)2

+ 4 ξ
Ω′

1

Ω1

(
ξΩ′

0

Ω0
+

(1 + ξ2)

(1 − ξ2)

)]
(4.20)

L̂CS ≡ LCS +
1

g0
(Φ1Ψ2 − Φ2Ψ1)′ =

2

g0

(
Φ1Ψ′

2 − Ψ1Φ′
2

)
(4.21)
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Note that Lgravity involves, at most, first derivatives of metric quantities and that L̂CS only
involves the derivatives of Φ2 and Ψ2.

The variation of the Lagrangian with respect to the eleven functions (3.6) yields the
equations of motion. Note that the scale, g−1

0 appears as a uniform overall factor in this
Lagrangian, and so the equations of motion are scale free.

We note that the standard supersymmetric minimum of the scalar potential corre-
sponds to setting ν = µ0 = µ1 = µ2 = 0, and, as described in section 2.1, this truncation
also contains a family of flat directions: ν = µ0 = 0, µ2 = −µ1.

4.3 Integrals of the motion

The action given in section 4.2 can be used to obtain eleven second-order differential equa-
tions for the functions (3.6). However, there are three elementary integrals of the motion.

The first comes from the usual “Hamiltonian constraint” that emerges from the four

non-trivial Einstein equations for the three metric functions. Define

H ≡ ξ2 (1 − ξ2)

k

[
1

ξΩ1

(
L̂gravity + LA +

√
g V − Lχ − Lm

)

− 1

g0

(
(µ′

0)2 + (µ′
1)2 + (µ′

2)2 +
1

4
e−2(µ0+µ1)

(
∂ξ
(√

1 − ξ2 ν
))2

)]
. (4.22)

One can then show, using the Euler-Lagrange equations derived from (4.10), that this is a
constant of the motion.

The other conserved quantities arise only for the truncation defined in section 2.3,
where there are no fields that have minimal couplings to Ã34. This means that undif-
ferentiated potentials, Φ2 and Ψ2, only contribute to the action via the Chern-Simons
interaction, LCS , in (4.16), and so the equations of motion for Φ2 and Ψ2 are total deriva-
tives. Indeed, replacing LCS by L̂CS means that the complete action does not contain
undifferentiated potentials, Φ2 and Ψ2. This leads to two integrals of the motion:

I1 ≡ e4µ1 (1 − ξ2) Ω1

ξΩ2
0

(
(1 − ξ2) Ψ′

2 − kΦ′
2

)
−
(
ω + 2 Φ1

) (
1 − 1

4 (1 − ξ2) ν2) , (4.23)

I2 ≡ e4µ1 kΩ1

ξΩ2
0

(
(1 − ξ2) Ψ′

2 − kΦ′
2

)
+
e4µ1 ξΦ′

2

Ω1
−
(
n+ 2 Ψ1

) (
1 − 1

4 (1 − ξ2) ν2) . (4.24)

It is also useful to note that at infinity (ξ = 1) the first of these conserved quantities
captures the gauge invariant combination:

I1 = −(ω + 2 Φ1)
∣∣
ξ=1

, (4.25)

and so if one fixes the gauge of Φ1 at infinity, this conserved quantity determines the
frequency of the solution.

4.4 Boundary conditions, gauge fixing and coordinate choices

To solve the system we need to fix all the gauge choices and impose boundary conditions.
Our choices of boundary conditions will be strongly influenced by the superstratum solution
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of section 2.4, and while there may be broader options, the goal of the present work is to
find examples of non-extremal microstrata, rather than classify more extensive families.

The bottom line is that because our equations of motion are second order we need to
specify two pieces of data for each field. As is familiar from elementary physics problems,
in seeking smooth solutions we are typically going to specify boundary data that requires
each field to limit to finite values at both ends of the system: ξ = 0 and ξ = 1. For
some fields, these choices will be influenced by coordinate choices, gauge fixing and the
stipulation of the UV fixed point at ξ = 1.

4.4.1 Boundary conditions and gauge fixing

The overarching condition on our solutions is that they must be smooth. We will also
require the solution to be asymptotic to the standard supersymmetric, AdS vacuum at
infinity. This means that the scalar fields will go to the standard supersymmetric critical
point, and so will be required to vanish at infinity (ξ = 1), and metric must limit to that
of AdS3 of radius g−1

0 .
To be more specific, we take the metric to have the form (2.9) and require:

Ω0 ,Ω1 → Ω
(∞)
0 ,Ω

(∞)
1 , k → Ω

(∞)
0

Ω
(∞)
1

as ξ → 1 , (4.26)

for some constants Ω
(∞)
0 > 0 and Ω

(∞)
1 > 0. Observe that the condition on k at infinity is

required in order to cancel the leading divergence in the dψ2 term of the metric. One can
also verify that, having chosen all the scalars to vanish at infinity, the equations of motion
imply |Ω(∞)

0 | = 1 and we take:
Ω

(∞)
0 = 1 . (4.27)

This sets the scale of the metric at infinity to be that of AdS3 of radius (2.17). Finally,
observe that Ω

(∞)
1 can be rescaled by redefining the scale of the time coordinate, τ , and

without loss of generality we can take:

Ω
(∞)
1 = 1 , (4.28)

and thus the metric at infinity limits to that of (2.15). However, while imposing (4.26)
and (4.27), we are, for technical reasons, not going to impose (4.28) in our numerical
analysis. We will fix the freedom to re-scale τ at the origin.

At the other boundary, ξ = 0, we allow more freedom. The scalars can, in principle, go
to any constant values, although the potential and dynamics constrains half of the scalars
to vanish at ξ = 0. Interestingly enough, the scalar µ−, defined in (4.6), can, and does,
limit to a non-zero constant value at ξ = 0 in some of our solutions. This is the flat
direction in the scalar potential.

Motivated by fact that the superstratum caps off in a manner very similar to that of
global AdS3, we are going to impose similar AdS-like boundary conditions at the origin.
That is, we require

Ω0 ,Ω1 → Ω
(0)
0 ,Ω

(0)
1 , k ∼ O(ξ2) as ξ → 0 , (4.29)

– 19 –



J
H
E
P
1
1
(
2
0
2
1
)
0
2
8

where Ω
(0)
0 > 0 and Ω

(0)
1 > 0 are constants. It is necessary that k vanishes at least as fast

as ξ2 at the origin so as to avoid closed time-like curves and conical singularities at ξ = 0

(because of the ψ-periodicity (2.10)). In our numerical analysis, we will fix the freedom to
re-scale the time coordinate, τ , by setting:

Ω
(0)
1 = 1 , (4.30)

(and we leave Ω
(∞)
1 as the free parameter).

Finally, the gauge potentials will be required to limit to constant values at both ξ = 0

and ξ = 1. These constants can be shifted uniformly through gauge transformations, and
so to fix this gauge invariance we fix the constant values at ξ = 0:

Φ1(0) =
1

2
, Φ2(0) = Ψ1(0) = Ψ2(0) = 0 . (4.31)

These choices are, of course, motivated by the superstratum solution (2.32) and the form
of (3.5). The constant values at infinity are not necessarily the same as those in (4.31).
Indeed, the dynamics can create a physical electric and magnetic “voltage” differences
between zero and infinity. For example, (3.7) shows that for the superstratum there is a
magnetic potential difference in Ψ2 between ξ = 0 and ξ = 1.

As we noted in section 4.3, constant shifts of Φ2 and Ψ2 do not change any of the
equations of motion and so the constants in Φ2 and Ψ2 can be chosen at will. We have
thus set Φ2(0) and Ψ2(0) to zero in (4.31).

On the other hand, the gauge fields Φ1 and Ψ1 minimally couple to non-vanishing
scalar fields, and so their constant values play a role in the dynamics through the gauge
invariant term (4.11). By fixing the gauge as in (4.31), we have thus given the choice of ω
and n a gauge-invariant meaning, with ω = 0 corresponding to the superstratum. Other
choices of ω encode different, gauge inequivalent physics.

The gauge choices, (4.31), were made for convenience in the numerical shooting algo-
rithm. As a result, the frequency, ω, appearing in all our computations will be given in this
gauge. As we have already noted, it is more physically meaningful to fix the constant values
of the gauge fields to those of the superstratum at infinity. This is because we want the
solution to limit, at infinity, to the gravity dual of the supersymmetric ground state of the
UV CFT so that the frequency is measured relative to that UV fixed point. In particular,
this means that the angular momentum terms in the S3 fibration should limit, at infinity,
to those of the supertube and so we should use a gauge where the three-dimensional gauge
fields limit to these that descend from the supertube, or superstratum, at infinity. Thus
the physical UV frequency, ω∞, of the solution is determined by using this gauge. We will
return to this in section 6.4, where we will make the necessary gauge shifts to compute the
physical, UV frequency, ω∞ from our numerical results. For future reference, we note that
for the superstratum, (3.7), the gauge fields take the following constant values at ξ = 1:

Φ1(1) =
1

2
, Φ2(1) = Ψ1(1) = 0 , Ψ2(1) = −α2

0

8
. (4.32)
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4.4.2 Residual coordinate choices: boosted frames

We must now consider whether we have fixed all the diffeomorphism invariance of the
metric. The ability to redefine (ξ, ψ) has been fixed by making the spatial base flat, fixing
the period of ψ according to (2.10), and mapping infinity to ξ = 1. We have also used the
ability to shift τ by a function of ξ to remove dτ dξ terms. What remains is the possibility
of mixing ψ and τ , and since these are both Killing directions this means one can only use
constant linear combinations. We have fixed the scales of τ and ψ by the choices (4.30)
and (2.10), and so this leaves the possible shifts: τ → τ + cψ and ψ → ψ + λτ for
some constants c and λ. The former is no longer an option because it conflicts with the
asymptotics behavior in k given in (4.29). The latter is a more interesting possibility and
we look at it in more detail.

Consider the metric (2.9) and replace ψ → ψ + λτ . One can now re-complete the
square in the first term and re-write the metric in the form:

ds2
3 = R2

AdS

[
Ω̂2

1

(
dτ +

k̂

(1 − ξ̂2)
dψ

)2

− Ω̂2
0

(1 − ξ̂2)2

(
dξ̂2 + ξ̂2 dψ2)

]
, (4.33)

where
Ω̂1

Ω1
=

1

(1 − ξ2)

[ (
1 + λk − ξ2)2 − λ2 ξ2 Ω2

0

Ω2
1

] 1
2

(4.34)

and the new coordinate ξ̂ is defined by integrating

dξ̂

ξ̂
=

Ω̂1

Ω1

dξ

ξ
(4.35)

The remaining functions are then given by:

Ω̂0

Ω0
=

Ω1

Ω̂1

ξ

ξ̂

(1 − ξ̂2)

(1 − ξ2)
, k̂ =

Ω2
1

Ω̂2
1

(1 − ξ̂2)

(1 − ξ2)2

[
k
(
1 + λk − ξ2)− λ ξ2 Ω2

0

Ω2
1

]
. (4.36)

It is evident from (4.35) that ξ = 0 corresponds to ξ̂ = 0, and one must then choose the
constant of integration in (4.35) so that and ξ = 1 corresponds to ξ̂ = 1, so as to retain
the poles at ξ̂ = 1 in the new metric.

Now suppose that the original metric obeys the asymptotics defined by (4.26) and (4.27)
and, for simplicity, choose the normalization of the τ coordinate that leads to (4.28). One
then finds that as ξ → 1, one has

Ω̂1

Ω1
∼

√
λ O

(
1√

1 − ξ2

)
. (4.37)

Thus Ω̂1 becomes singular as ξ → 1, except when λ = 0, which correspond to the identity
transformation. It follows that any such shift in the ψ coordinate is excluded by our
boundary conditions, (4.26).

The significance of this for our analysis is that we are going to find solutions in which
the natural frequency of oscillation undergoes a shift. A coordinate change of ψ → ψ+ λτ

can also change the frequency and so we need to make sure our frequency shifts are not
merely a coordinate artifact. Our boundary conditions at infinity preclude such coordinate
transformations and exclude the “trivial” frequency-shifted solutions swept out by them.
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5 Mass, charge and angular momenta

Once we have constructed our new solutions, we need to read off their masses and charges
and determine the extent to which they are non-BPS. The challenge is that we need to
extract black-hole data from an asymptotically-AdS solution, and so we need to understand
the issues in doing that.

5.1 Masses from the five-dimensional black-hole perspective

It is useful to begin by reviewing how the mass is computed for supertubes and su-
perstrata and see how the data of the asymptotically-flat solutions transitions into the
asymptotically-AdS analogs.

5.1.1 The mass for superstrata

Superstrata are defined in terms of the six-dimensional metric:

ds2
6 = − 2√

P
(dv + β)

[
du+ ω + 1

2 F (dv + β)
]

+
√

P ds2
4 , (5.1)

and for most of the known solutions, the four dimensional spatial metric is simply flat R
4

written in spheroidal coordinates, (r, θ, ϕ1, ϕ2):

ds2
4 = Σ

( dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2 θ dϕ2

1 + r2 cos2 θ dϕ2
2 . (5.2)

where
Σ ≡ r2 + a2 cos2 θ . (5.3)

To extract the mass one reduces this metric to five dimensions, which is canonically
done [50] (given the coordinate choices (2.12)) by defining:

Z3 = 1 − F
2
, k =

ω + β√
2

, (5.4)

and completing the squares in the metric so as to write it as a y-circle fibered over the
five-dimensional space-time asymptotic to R

4,1:

ds2
6 = − 1

Z3

√
P

(dt+k)2 +
Z3√

P

[
dy +

(
1 − Z−1

3

)
(dt+ k) +

β − ω√
2

]2

+
√

P ds2
4(B) . (5.5)

To dimensionally reduce on the y-circle and get the five-dimensional Einstein action, one
must introduce the proper warp factors and this leads to the five-dimensional metric:

ds2
5 = −(Z3 P)− 2

3 (dt+ k)2 + (Z3 P)
1
3 ds2

4(B) . (5.6)

At large r, one has7

P ∼ (Z1 Z5) ∼
(

1 +
Q1

Σ

)(
1 +

Q5

Σ

)
∼ 1 +

(Q1 +Q5)

r2
, (5.7)

7We have dropped the function Z4 because it is sub-leading at infinity.
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and
F ∼ −2QP

r2
. (5.8)

Thus the coefficient of dt2 in the five-dimensional metric leads to:

(Z3 P)− 2
3 ∼ 1 − 2

3

(Q1 +Q5 +QP )

r2
. (5.9)

which gives the BPS result:8

M = Q1 +Q5 +QP . (5.10)

5.1.2 Asymptotically AdS supertubes and superstrata

To get superstrata that are asymptotically AdS, one simply “drops the 1’s” in Z1 and Z5.
To see the effect of this, we first consider the round supertube [12, 13, 16] and take:

Z1 = 1 +
Q1

Σ
, Z2 = 1 +

Q5

Σ
, F = 0 . (5.11)

with the angular momentum and fibration vectors:

β =
Ry a

2

√
2 Σ

( sin2 θ dϕ1 − cos2 θ dϕ2 ) . (5.12)

ω = ω0 , ω0 ≡ a2Ry√
2 Σ

(sin2 θdϕ1 + cos2 θ dϕ2) . (5.13)

Smoothness at the supertube requires:

Q1Q5 = R2
y a

2 . (5.14)

After dropping the 1’s in (5.11), the metric (5.1) can then be recast as:

ds2
6 =

√
Q1Q5

[
− (r2 + a2)

a2R2
y

dt2 +
dr2

(r2 + a2)
+

r2

a2R2
y

dy2

+ dθ2 + sin2 θ

(
dϕ1 − 1

Ry
dt

)2

+ cos2 θ

(
dϕ2 − 1

Ry
dy

)2]
.

(5.15)

The important point here is that in the asymptotically-flat metric the mixed dϕjdu and
dϕjdv terms are folded into the (du, dv) terms to define the v-fibration and the angular-
momentum. In the asymptotically-AdS metric, these cross-terms are folded into fibering
and boosting the S3 metric, leaving the intrinsic three-dimensional metric in (du, dv, dr).
Thus the S3 of the consistent truncation is a boosted, fibered form of the S3 at infinity in
the five-dimensional space-time. Since this re-writing of the metric involves a modification
of the dt2 and dy2 terms, it will shift the spectrum and energies of states. This has a simple
and well known interpretation in terms of the holographic theory: the compactification on
S3 to AdS3 naturally selects the NS vacuum, but to realize the geometry smoothly in an
asymptotically-flat space one is required to do a spectral flow to the Ramond sector. This
spectral flow is implemented by the seemingly trivial shifts of dϕ1 and dϕ2 in (5.15).

8A discussion of the dimension-dependent factors implicit in this result may be found in [1] or [51].
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The situation for a superstratum, with a non-vanishing momentum charge, QP , is
rather more complicated. First, the smoothness relation (5.14) is modified by the super-
stratum modes in F , as in (2.26). In addition, the “coiffuring conditions” are slightly
different for asymptotically flat and asymptotically AdS solutions [16]. Furthermore, the
fibration and boosting of the S3 now involves non-trivial Kaluza-Klein Maxwell fields, Ã12

and Ã34. One could look at the asymptotics of these solutions and the fibrations and undo
the asymptotic shifts and connect the compactification S3 back to the S3 at infinity in
five dimensions, but there is a simpler way forward. One can use the superstratum as a
baseline: the superstratum is BPS, and so it represents the lowest mass state in a given
charge sector with a given smooth topology. Our new solutions are obtained as “large”
deformations of the superstratum and so their “mass above extremality” can be determined
by comparing the three-dimensional mass to the mass of a superstratum with the same
charges. So we need to look at the definition of mass in three dimensions.

5.2 The BTZ perspective

The BTZ black hole has a metric of the form (see, for example, [51]):

ds2
3 =

(ρ2 − ρ2
+)(ρ2 − ρ2

−)

ℓ2 ρ2
dt2 − ℓ2 ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2 − ρ2

(
dϕ+

ρ+ ρ−

ℓ ρ2
dt

)2

. (5.16)

The horizons are at ρ = r± and the mass and angular momenta are9

M =
(ρ2

+ + ρ2
−)

8G3ℓ2
, J =

ρ+ ρ−

4G3ℓ2
, (5.17)

and extremality corresponds to

ρ+ = ρ− ⇔ M = J . (5.18)

A canonical choice is to take:
G3 =

1

8
. (5.19)

and we convert to dimensionless variables:

ρ̂ ≡ ρ

ℓ
, τ̂ ≡ t

ℓ
. (5.20)

At large ρ̂ one then has:

ds2
3 ∼ ℓ2

[
ρ̂2
(

1−M

ρ̂2
+O(ρ̂−2)

)
dτ̂2 −

(
1+

M

ρ̂2
+O(ρ̂−2)

)
dρ̂2

ρ̂2
− ρ̂2 dϕ2 −J dϕdτ̂

]
. (5.21)

From the BTZ perspective one sees that global AdS has a mass, M = −1 and J = 0.
This reflects the energy of the NS vacuum and the fact that the BTZ black hole has no
knowledge of the spatial angular momentum of the supertube and the flow to the Ramond
sector.

9We have chosen to divide the angular momentum by an extra factor of ℓ so as to give it the same

dimensions as the mass. To get the more usual conventions one should replace J here by J
ℓ

.
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Extracting the details of the superstratum from the BTZ limit is a little more subtle
and complicated. One starts with the metric (2.9) taking RAdS = ℓ = g−1

0 and uses the
superstratum data: (2.30) and (3.3). First one must define ρ̂ so that the coefficient of dψ2

is exactly ρ̂2. Then one must complete the square so as to absorb the ρ̂2dψdt terms into a
term of the form ρ̂2dϕ2 ≡ ρ̂2(dψ + cdt)2, for some constant, c. One then collects the dτ2

and dr2 terms and rewrites them in terms of ρ̂. Finally one must rescale τ to τ̂ so that the
leading term is ρ̂2dτ̂2. Doing this yields:

ds2
3 ∼ 1

g2
0

[
ρ2
(

1− M̃

ρ2
+O(ρ−2)

)
dτ̂2 −

(
1+

M

ρ2
+O(ρ−2)

)
dρ2

ρ2
−ρ2 dϕ2 −J dϕdτ̂

]
, (5.22)

where
τ̂ ≡ τ

1 − 1
4 α

2
0

, ϕ ≡ ψ − τ̂ , (5.23)

and

M̃ ≡ −
(

1 − 1

4
α2

0

)2

+
1

2
nα2

0 , M ≡ −1 +
1

2
nα2

0 +
1

16
α4

0 , J ≡ 1

2
nα2

0 . (5.24)

The issue now is whether M or M̃ is the mass. General Relativity tells us that the mass
can be determined through the time-like Killing vectors, and hence from the expansion of
gtt. This would also agree with the use of uplifts to six dimensions and then coupling to
flat space. From this perspective, the mass should be determined from M̃ . We note that

M̃ − |J | = −
(

1 − 1

4
α2

0

)2

= −
(

1 − J

2n

)2

, (5.25)

which, given (3.9), is always negative and only vanishes at the “extremal BTZ limit:”
|α0| = 2.

On the other hand, holographic renormalization in asymptotically-AdS3 suggests [52]
that the mass is to be read off from gρρ and is therefore given by M . One therefore has:

M − |J | = −1 +
1

16
α4

0 = −1 +

(
J

2n

)2

. (5.26)

and again, given (3.9), this is always negative.
The curve, (5.25) for M̃−|J |, and the curve, (5.26) for M−|J |, considered as a function

of J , are parabolae that intersect at J = 0 and at J = 2n. Because these curves are defined
for superstrata, they should provide BPS bounds. We will remain agnostic about which
represents the true mass, and we will compute both quantities for microstrata. However,
we note here that M̃ − |J | is based on a time-like Killing vector and so would seem better
adapted to uplifting and coupling to flat space.

6 Perturbative analysis

A very important aspect of the simplifications afforded by the Ansatz described in sec-
tion 3.1 is that perturbation theory can be used to construct solutions to surprisingly high
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order. In this section we will perform this perturbative analysis. This will enable us to
anticipate many of the features we find in the numerical analysis, and to confirm that
our numerical methods are, in fact, converging on solutions to the system of equations.
Perhaps the two most significant new features we uncover are the frequency shifts and the
emergence of non-normalizable modes. Specifically, we find microstata have normal modes
whose frequencies depend on the amplitudes of the fields and we find that the field, ν,
develops a non-normalizable component at third order in perturbations.

Note. For simplicity we are henceforth going to restrict our study to the families of
solutions with n = 2 in (3.3) and (3.4). We choose this mode number because lower mode
numbers in superstrata have large and more extended bump functions. However, we choose
n = 2 rather than n = 1 because we want the bump functions to vanish more strongly in
the cap, leading to something approaching AdS geometry in the cap. We will also focus
primarily on modes with ω ≈ 0 and ω ≈ 2, but we will also present several results for
ω ≈ 4.

6.1 Setting up the perturbation theory

We will perturb around the global AdS3 vacuum of the theory. That is we take all the scalars
and electromagnetic fields to vanish and the metric to be that of global AdS3. Specifically,
one can think of the unperturbed background as that of section 2.4 with χ1 = χ2 = 0, of
the solution (3.7) with α0 = 0. Thus the vacuum solution is given by

νAdS = 0 , µAdS
0 = µAdS

1 = µAdS
2 = 0 ,

ΦAdS
1 =

1

2
, ΦAdS

2 = ΨAdS
1 = ΨAdS

2 = 0 ,

ΩAdS
0 = ΩAdS

1 = 1 , kAdS = ξ2 .

(6.1)

We then introduce a small parameter, ε, and expand every field, X , in (3.6). as

X = X AdS + ε δX + ε2 δ2X + . . . (6.2)

We will also expand the frequency in powers of ε:

ω = ω0 + ε δω + ε2 δ2ω + . . . . (6.3)

At linear order, the equations of motion naturally diagonalize on the fields:

µ+ = µ1 + µ2 , Φ+ = Φ1 + Φ2 , Ψ+ = Ψ1 + Ψ2 , (6.4)

µ− = µ1 − µ2 , Φ− = Φ1 − Φ2 , Ψ− = Ψ1 − Ψ2 . (6.5)

The perturbation theory is also easier to organize in this basis.
In order to find a unique solution, we need to fix the gauges and the asymptotics of

the perturbed solution. As explained in section 4.4, the geometry and the gauge fields are,
at every order in perturbation, required to satisfy the following:

Φ1(0) =
1

2
, Φ2(0) = Ψ1(0) = Ψ2(0) = 0 ,

Ω0(1) = Ω1(0) = 1 , k(ξ → 0) = O(ξ2) , k(1) = Ω1(1)−1 .
(6.6)
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Note that we could have chosen to fix the values of the gauge fields to any constant
values at the origin. As we have already remarked, shifting Φ2 or Ψ2 by a constant has
no effect on the dynamics. The explicit undifferentiated potentials, Φ1 or Ψ1, only appear
in (4.11), where it is evident that their constant asymptotic values are gauge equivalent to
shifts in ω and n. As we will see, the value of (n + 2 Ψ1) is easily fixed by regularity of
series expansion about the origin. The value of (ω + 2 Φ1) is also fixed by regularity, but,
as we will discuss in detail, this is a much more subtle phenomenon involving smoothness
at both the origin and infinity.

Since we are going to use the superstratum as a reference point, we use the asymptotic
values of Φ1 or Ψ1 for the superstratum to fix gauges. This then gives an appropriately
gauged fixed meaning to the values of n and ω. That is, the reference superstratum has (6.6)
and n = 2, ω = 0, and the microstrata will obey (6.6) with n = 2 and an ω 6= 0.

Finally, we require that the solution in the UV goes to the supersymmetric critical
point of the potential. This means that we impose:

µ0(1) = µ1(1) = µ2(1) = 0 , and
√

1 − ξ2 ν(ξ) → 0 , as ξ → 1 . (6.7)

One should recall that ν is related to the supergravity scalars via (3.3), and hence |χ(ξ)| ∼√
1 − ξ2 ν(ξ) → 0 as ξ → 1.

One should also note that requiring the µj to vanish at infinity means that we are
restricting them to their normalizable modes, and hence only allowing them to deform the
state of the holographic system.

6.2 Overview of the results

Our purpose here is three-fold. First, we wish to evolve perturbative solutions as far as
practicable to provide tests for our numerical solutions. Second, we wish to see how the
frequencies, ω, of the normal modes depend on the amplitudes of the fields. This will be
done by ensuring regularity of the perturbative solution, order by order, at ξ = 0 and ξ = 1

and using this to determine the expansion in (6.3). We also want to track higher-order
non-analytic terms, the logs and poly-logs, as they appear in the solution. These terms do
not affect the boundary conditions, but they are significant for holography and can affect
the convergence of our numerics.

Despite the complexity of the action defined in section 4.2, it is remarkably straightfor-
ward to organize the perturbation theory. The linearized analysis leads to a “fundamental
linear differential operator” for each field in (3.6). These differential operators are all
hypergeometric operators, (4.3), inherited from the linearized theory in the global AdS3

background, and, as one would expect, at linear order these equations are all homogeneous
and lead to solutions written in terms of hypergeometric functions. Imposing boundary
conditions and smoothness also leads to oscillations that have the normal mode frequencies
of global AdS. As we will discuss in section 6.3, this leads us to start the expansion in (6.3)
with even integers:

ω0 = 0 , ±2 , ±4 , . . . (6.8)

and, as we commented earlier, we will focus on ω0 = 0 , 2 , 4 .
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At second and higher orders, the same linear differential operators appear with their
corresponding functions from (3.6) and all the complicated non-linearities of the action
in section 4.2 appear only in the source terms. That is, order by order, one only has to
solve linear differential equations whose sources are made out of (non-linear) combinations
of lower order solutions. One then finds particular solutions to these equations and adds
homogeneous solutions so that the final result does not diverge at ξ = 0 or ξ = 1, and
obeys the conditions (6.6) and (6.7). These conditions lead to constraints on the frequency
ω, and to the non-trivial expansion (6.3).

In this process we find families of solutions that depend on three parameters: the
value of ω0 from (6.8), and two apparently independent continuum parameters, α and
β. The parameter α is analogous to α0 in superstrata, and determines the overall scale
of the scalar field, ν. The parameter β determines the overall scale of µ0. This second
scalar vanishes identically in the superstratum but seems to be an independent degree of
freedom in the microstratum. It is possible that α and β become linked in some way at
higher orders in perturbation theory, but to the order we have computed, these parameters
remain independent.

At second order in perturbations, we find that the first-order shift in the frequency,
δω, must be zero and it is only at third order that we find a non-trivial frequency-shift.
Indeed, we find an expression for δ2ω as a quadratic in α and β. In section 8.2 we will see
that this expression matches very well with our numerical results.

6.3 Linear perturbations

6.3.1 The scalar fields

The equation of motion for the scalar ν is given by

1

ξ
∂ξ
(
ξ
(
1 − ξ2

)
δν ′
)

−
(

4

ξ2
− (ω0 + 2)(ω0 + 4)

)
δν = 0 , (6.9)

or, equivalently:

1

ξ
∂ξ
(
ξ δν̂ ′)+

(ω0 + 3)2

(1 − ξ2)
δν̂ − 4

ξ2 (1 − ξ2)
δν̂ +

1

(1 − ξ2)2
δν̂ = 0 , (6.10)

where ν̂ = |χ| is defined in (4.7). This is precisely of the form (4.3) with ∆ = 1. The shift
from (ω̂ + n̂) = (ω̂ + 2) to (ω0 + 3) occurs because we have a non-trivial gauge field, Φ1,
in (6.6).

The linearized equations of the other scalars are:

1

ξ
∂ξ
(
ξ δµ′

0

)
+

4 (ω0 + 3)2

(1 − ξ2)
δµ0 − 16

ξ2 (1 − ξ2)
δµ0 = 0 (6.11)

1

ξ
∂ξ
(
ξ δµ′

+

)
− 8

(1 − ξ2)2
δµ+ = 0 ,

1

ξ
∂ξ
(
ξ δµ′

−

)
= 0 (6.12)

Again these are of the form (4.3). The scalar, µ0, has ∆ = 2 and, as noted in (3.4), it
oscillates with twice the frequency and mode numbers of ν, which accounts for the extra
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factors of 4 compared to (6.10). The scalars µ+ and µ− only depend on r and have ∆ = 4

and ∆ = 2 respectively.
The solutions for δµ± are elementary:

δµ+ =
1

(1 − ξ2)

[
c1
(
1 + ξ2)+ c2

(
2 + (1 + ξ2) log ξ

) ]
, δµ− = c3 + c4 log ξ , (6.13)

for some constants cj . Regularity at ξ = 0 and ξ = 1 implies c1 = c2 = c4 = 0, and the
boundary conditions (6.7) means that c3 = 0. So these scalars are trivial at this order.

The smooth solution for δν can be written:

δν ∼ 2F1

(
3 +

ω0

2
, −ω0

2
, 3 ; ξ2

)
ξ2 . (6.14)

We also note that there are also solutions of the form

δν ∼ 2F1

(
3 +

ω0

2
, −ω0

2
, 3 ; ξ2

)
ξ2 log

(
ξ2

1 − ξ2

)
+ ξ−2 Pω0(ξ) , (6.15)

for some fully determined polynomial, Pω0(ξ). This solution still leads to ν̂ → 0 as ξ = 1,
but it diverges as ξ−2 as ξ → 0. Its significance to our subsequent discussion is that it has
the “non-normalizable” asymptotics at infinity:

δν̂ =
√

1 − ξ2 δν ∼
√

1 − ξ2 log
(
1 − ξ2

)
→ 0 as ξ → 1 , (6.16)

but it cannot be used because it is singular at the origin.
The solution (6.14) vanishes at ξ = 0 and is generically log-divergent at ξ = 1, as

in (4.8), and so ν̂ will vanish at ξ = 1. However, we want to start our solutions from the
“normalizable” mode in the AdS3, and so we need to avoid such log terms. This means
that we must choose ω0 to be an even integer, as in (6.8), and for ω0 ∈ 2Z and ω0 ≥ 0,
these solutions are all polynomial.10 For ω0 = 0, 2, 4 we will use:

δν = α ξ2 , δν = α ξ2 (4ξ2 − 3) , δν = α ξ2 (15 ξ4 − 20 ξ2 + 6) , (6.17)

for some constant parameter, α. Note that these solutions vanish at the origin and that ν̂
vanishes at ξ = 1. We have plotted these functions in figure 1 for later comparison with
the perturbative corrections and numerical results.

The story for δµ0 is very similar. The values of ω0 are already fixed to be even integers
and the smooth solutions are hypergeometric polynomials:

δµ0 ∼ 2F1

(
5 + ω0, −1 − ω0, 5 ; ξ2

)
ξ4 , (6.18)

and for ω0 = 0, 2 we will use:

δµ0 = β ξ4 (1 − ξ2) , δµ0 =
β

5
ξ4 (1 − ξ2) (12ξ4 − 16ξ2 + 5) . (6.19)

These solutions vanish at both ξ = 0 and ξ = 1. It is interesting to note that if ν ≡ 0, or
if one allows “non-normalizable” modes in ν, then µ0 is also polynomial for ω0 ∈ Z.

Our solutions involve the two free parameters, α and β, which appear independently
at linear order. These parameters also appear to remain independent at higher orders in
perturbations.

10They are actually the Jacobi polynomial of class (2, 0) and of order ω0/2, which is an integer since ω0

is even.
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Figure 1. Plots of δν as given in (6.17) with ω0 = 0, 2, 4 and α = 1. As one would expect,
the number of nodes increases with frequency, and this can be used to distinguish the individual
functions.

6.3.2 The Maxwell potentials

The equations for the gauge fields are similar to those of the scalar fields. We find:

∂ξ
(
ξδΦ′

+

)
= 0 , ∂ξ

(
1 − ξ2

2 ξ
δΨ′

+ − δΨ+ − δΦ+

)
= 0 (6.20)

∂ξ

(
1 − ξ2

2 ξ
δΨ′

− + δΨ− + δΦ−

)
= 0 , ∂ξ

(
ξδΦ′

−

)
+ 4 δΨ′

− − 4
ξ2

1 − ξ2
δΦ′

− = 0 . (6.21)

The first two equations are trivially integrated to yield

δΦ+ = c5 + c6 log ξ , δΨ+ =
1

1 − ξ2

(
c7 + c8 ξ

2 + c6 ξ
2 log ξ

)
, (6.22)

for some constants c5, c6, c7 and c8. One can eliminate δΦ− from the fourth equation using
the third equation to arrive at a third order equation for δΨ−. This is trivially integrated
to yield:

δΨ− =
1

1 − ξ2

(
c9 + c10 ξ

2 + c11 ξ
2 log ξ

)
, (6.23)

for some constants c9, c10 and c11. The third equation can then be used to determine the
last gauge field:

δΦ− = c12 − 1

1 − ξ2

(
2 (c9 + c10) ξ2 + c11

(
1 + ξ2

)
log ξ

)
, (6.24)

for some constant c12.
The only smooth solutions are constant gauge potentials, and the conditions (6.6)

then imply that the constants c5 to c12 all vanish. The gauge fields are then trivial at
linear order.
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6.3.3 The metric functions

The equations for the metric functions can be reduced to a simple “upper triangular” linear
system that can be solved successively:

∂ξ
(
ξ
(
1 − ξ2

)
δΩ′

1 − 2 δΩ1

)
= 0 , (6.25)

∂ξ
(
ξδΩ′

0

)
− 8

ξ

(1 − ξ2)2 δΩ0 = −3
1 + ξ2

1 − ξ2
δΩ′

1 , (6.26)

∂ξ
(
ξ−1 δk′

)
=

1

1 − ξ2

(
4 δΩ′

0 − 6 δΩ′
1

)
. (6.27)

The solution for δΩ1 is
δΩ1 = c13 +

c14

1 − ξ2
. (6.28)

The only smooth solution is the constant function, and (4.28) means this must vanish.
The equation for δΩ0 becomes the same as the equation for µ+, and the solution is

given in (6.13). Again the only smooth solution is the constant solution and this is set to
zero by the boundary condition (4.27).

The equation for δk now leads to

δk = c15 + c16 ξ
2 . (6.29)

The constant term is eliminated by the boundary condition at the origin, (4.29), and while
the term involving c16 is consistent with (4.29), this term is eliminated by (6.6).

6.3.4 Summary of linear solution

At linear order, the only non-vanishing perturbation involves arbitrary linear combinations,
with coefficients α and β, of the two “seed solutions,” (6.14) and (6.18). We will normalize
these seeds in a somewhat arbitrary manner by taking α to be the value of δν at ξ = 1,
and β to be the coefficient of the ξ4 term in the expansion of µ0 at ξ = 0. Indeed, we have
adopted this normalization in (6.17) and (6.19). The parameters, α and β, will also be
taken to be the small parameters of the perturbation expansion. This makes ǫ redundant,
and so we set ǫ = 1.

We will see from our perturbative analysis that these seeds remain independent to very
high orders and so lead to a two-parameter family of microstrata.

6.4 Results from higher orders perturbation theory

We now use the zeroth order AdS vacuum solution (6.1) and the linear seed solu-
tions, (6.14), (6.18), (6.17) and (6.19), as a starting point for the perturbative analysis
for the equations of motion that follow from the action given in section 4.2. Our presenta-
tion will focus primarily on the scalars.

As we have remarked, at each order, we have the linear equations of section 6.3 sourced
by the solutions at earlier orders. As is typical in this sort of problem, we will use the
homogeneous linear solutions to adjust particular solutions to remove divergencies at ξ = 0

or ξ = 1.
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6.4.1 Overview

There are two interesting physical phenomena that we wish to track. The first is the shift
in the “resonant” frequency, ω, of the normal modes. As one would expect, the frequency
depends on the smoothness at the origin and the boundary conditions at infinity. We will
typically impose the boundary conditions that drive the solution to the standard supersym-
metric vacuum at infinity but one should note that other choices are possible and this leads
to slightly different shifts in frequency. These choices may well have significant implications
for holography and for connecting our solutions to asymptotically-flat geometries.

The second feature that we will track are the “leading-log” terms that appear in ν at
higher orders in perturbations, giving rise to asymptotic behavior of the form (6.16) as
ξ → 1. Indeed, while our seed solution has ν → α as ξ → 1, we find that, at higher order
in perturbation theory, the solution for ν necessarily generates a leading-log divergence
that cannot be cancelled even with the tuning of integration constants and the shift in
the frequency. These log terms are thus a feature of our solutions, but do not spoil the
asymptotics because ν̂ still vanishes at infinity. The fact that the superstratum, and some
of the microstrata, do not exhibit such leading logs reinforces the idea that such solutions
represent states of the CFT. The appearance of the leading logs in some microstrata sug-
gests that the microstratum not only involves a perturbation of the state but may also
involve a perturbation of the CFT Lagrangian.

Interestingly enough, one can delay the onset of the leading logs by tuning the resonant
frequency to a slightly different value, and therefore moving the scalars slightly away from
the supersymmetric critical point at infinity. However, this merely delays the appearance
of the log terms to higher order in the perturbation theory. This observation may also
have an interesting holographic interpretation, and so we will describe how it appears in
supergravity.

We also find that sub-leading logarithmic terms appear in the other fields at higher
orders in the perturbation theory. These logs are sub-leading in the sense described in
section 4.1: terms of the form (4.9) play an essential role in solving the inhomogeneous
equations but do not involve changes in the leading asymptotics of the fields as ξ → 0 or
ξ → 1. As we also noted in section 4.1, such terms also do not lead to any singularities in
the radial derivatives at infinity, but they can lead to divergent ξ-derivatives. They are thus
not an issue for physical boundary conditions but they can be a source of some numerical
instabilities. We will not catalog these in any detail here and leave a more systematic
analysis for future work [53].

There are some very significant qualitative differences between microstrata with ω0 = 0

and ω0 = 2. If one sets β = 0 and solves the system with ω0 = 0, one is led uniquely to
the susperstratum solution. One can therefore think of the ω0 = 0 solutions, with general
β, as being some µ0-fluctuation about a superstratum background. (We will return to this
in section 8.5.) Taking ω0 6= 0 deforms the superstratum into a non-BPS microstratum.
We find that this physical distinction becomes manifest in the leading and sub-leading logs
that appear in the perturbation theory. For ω0 = 0, β 6= 0 we find that, once one makes
the appropriate shifts in ω (or in the potential Φ1), the solution has no logs at all, leading
or sub-leading. We have confirmed this to eleventh order.
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However, for ω0 = 2 we find that even when frequency shifts are made, the log-terms,
both leading or sub-leading, appear to be endemic. By adjusting boundary conditions one
can suppress the leading logs in ν at third order in perturbations, but they are irremovable
at fourth order. We find qualitatively similar results for ω0 = 4.

We also find that the physical, UV frequency, ω∞, is shifted non-trivially for ω0 = 2,
which means that these solutions break all supersymmetries. On the other hand, for ω0 = 0

and any α, β, we find that ω∞ ≡ 0, which suggests that these solutions may well preserve
supersymmetry. We will discuss this in more detail in section 8.5.

While there is a complicated interplay between the perturbative corrections of all the
fields, it is the scalar seeds, ν and µ0, that act as the bellwether excitations. These fields
not only control the asymptotic vacuum states but also encode the essential features of the
perturbation theory, and so we will focus on these scalars in our more detailed description
of the perturbative analysis.

6.4.2 The solution for ω0 = 2

At second order, the equations for δ2ν and δ2µ0 are:

1

ξ
∂ξ
(
ξ
(
1 − ξ2

)
δ2ν ′

)
−
(

4

ξ2
− 24

)
δ2ν =

− 10α δω1 ξ
2
(
4 ξ2− 3

)
+

4

5
αβ ξ4

(
2400 ξ10 − 7632 ξ8 + 9212 ξ6 − 5194 ξ4 + 1335 ξ2−120

)

(6.30)
and

1

ξ
∂ξ
(
ξ δ2µ′

0

)
+

100

(1 − ξ2)
δ2µ0 − 16

ξ2 (1 − ξ2)
δ2µ0

= −12α2 ξ4
(
1 − ξ2

)
− 8β δω1 ξ

4
(
12 ξ4 − 16 ξ2 + 5

) (6.31)

It is elementary to obtain the following solutions:

δ2ν = − αβ

5
ξ6 (1 − ξ2) (1 − 2ξ2) (3 − 4ξ2) (5 − 6ξ2)

+
1

2
α δω1

(
2 ξ4 + ξ2 (4 ξ2 − 3) log

(
1 − ξ2

)) (6.32)

and

δ2µ0 = − α2

10
ξ6 (1 − ξ2)

(
6 − 7 ξ2

)

− β δω1

105
ξ6
(
155 ξ4 − 259 ξ2 + 105

)
− β δω1

5
ξ4 (1 − ξ2) (1 − 2ξ2) log

(
1 − ξ2

)

(6.33)
where we have chosen homogeneous solutions so as to cancel ξ−2 divergences at the ori-
gin. One can also add further amounts of the smooth homogeneous solutions described in
section 6.3.1 but this is simply a re-definition of α or β, and so we ignore such additions.

First observe that

δ2µ0(1) = − β

105
δω1 (6.34)
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and so, to remain at the supersymmetric point in the UV we must take β = 0 or δω1 = 0.
Furthermore, the log term in (6.32) is exactly of the form (4.9) with F1 being the middle
term in (6.17). Since F1(1) = 1, this term gives rise to a leading log correction to ν.

To preserve the generality of the solution (β 6= 0) and to remove this leading log,
we set:

δω1 = 0 . (6.35)

At third order, the sources become significantly more complicated. We find:

1

ξ
∂ξ
(
ξ
(
1 − ξ2

)
δ3ν ′

)
−
(

4

ξ2
− 24

)
δ3ν

= −10α δω2 ξ
2
(
4ξ2 − 3

)
+

2

5
α3ξ6

(
1400ξ8 − 4572ξ6 + 5357ξ4 − 2574ξ2 + 405

)

− 2αβ2

11025
ξ2(76204800ξ22 − 422739072ξ20 + 1002999424ξ18

− 1324731072ξ16 + 1060451252ξ14 − 523632522ξ12

+ 154429380ξ10 − 24570315ξ8 + 1587600ξ6 + 360ξ2 − 270
)

(6.36)

1

ξ
∂ξ
(
ξ δ3µ′

0

)
+

100

(1 − ξ2)
δ3µ0 − 16

ξ2 (1 − ξ2)
δ3µ0

= −8β δω2 ξ
4
(
12ξ4 − 16ξ2 + 5

)
− 4

5
α2β ξ8

(
560ξ8 − 1526ξ6 + 1422ξ4 − 525ξ2 + 63

)

− 4β3

18375
ξ4(16934400ξ24 − 106884288ξ22 + 292824000ξ20 − 455704088ξ18

+ 442275240ξ16 − 276195666ξ14 + 110209718ξ12 − 26839537ξ10 + 3575743ξ8

− 196032ξ6 + 688ξ4 − 608ξ2 + 140
)

(6.37)

Solving this leads to:

δ3µ0(1) =
67α2β

21 450
+

11 762β3

312 687 375
− βδ2ω

105
(6.38)

and setting this to zero, in order to keep the scalars at infinity at the UV critical point,
yields

δ2ω =
469α2

1 430
+

11 762β2

2 977 975
(6.39)

With this choice, the leading log in ν no longer vanishes and we find:

δ3ν =
α
(
371 875α2 + 52 232β2

)

178 678 500
ξ2
(
4 ξ2 − 3

)
log
(
1 − ξ2

)
+ polynomial terms (6.40)

Alternatively, if one makes the choice:

δ2ω =
34α2

105
+

8 842β2

2 627 625
(6.41)

then this removes the leading log in ν at this order but displaces the scalars away from the
supersymmetric critical point. Indeed, with this choice, one finds:

δ3µ0(1) =
(371 875α2 + 52 232β2)β

9 380 621 250
(6.42)

We will, however, use (6.39) and keep the supersymmetric asymptotics at infinity.
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At fourth order we find that the leading log in ν cannot be removed and that there are
sub-leading logs in all the fields. To preserve supersymmetry at infinity we find a further
correction to the frequency:

δ3ω =
7 351α2β

756 756
. (6.43)

Thus perturbation theory to fourth order leads to the following third-order expression for
the frequency of the normal mode:

ω = 2 +
469α2

1 430
+

11 762β2

2 977 975
+

7 351α2β

756 756
+ O(α, β)4 . (6.44)

As we observed in section 4.4.1, this is not the physical, UV frequency of the solution. To
obtain this, we must change the gauge to that of (4.32) and this results in a further shift
of the frequency because the quantities (4.19) are gauge invariant.

The perturbative expansion leads to the following expressions for the gauge fields at
infinity:

Φ1(1) =
1

2
+

β2

1 225
+

211α2β

264 600
− α4

7 350
− 9 957 284 807α2β2

29 827 064 767 500
− 170 663 576 257β4

32 325 081 441 778 125

+ O(α, β)5 , (6.45)

Φ2(1) =
β2

1 225
+

197α2β

264 600
+

5 874 710 946 229 125α4 − 158 400 821 198 370α2β2

1 034 402 606 136 900 000
+ O(α, β)5 ,

(6.46)

Ψ1(1) = 0 , (6.47)

Ψ2(1) = − 525α2 + 8β2

4 200
− 3α2β

700

+
1 932 099 503 959 625α4 + 80 399 006 203 530α2β2 + 743 238 512 608β4

38 311 207 634 700 000

+ O(α, β)5 . (6.48)

The frequency, ω∞, relative to the UV fixed point is then given by:

ω∞ =ω + 2 Φ1(1) − 1

= 2 +
469α2

1 430
+

16 624β2

2 977 975
+

283α2β

25 025
+ O(α, β)4 , (6.49)

where ω and Φ1(1) are given by (6.44) and (6.45), and the −1 comes from 2Φ1(1) in
the gauge (4.32). The quantity, ω∞, is then the physical UV frequency relative to the
supertube geometry. The fact that it is positive means that the excitation propagates
inside the light-cone of the dual CFT, and hence breaks the supersymmetry.

One can also combine (6.45)–(6.48) with (4.31), to determine the potential differences
between ξ = 0 and ξ = 1.

6.4.3 The solution for ω0 = 0

This solution is significantly simpler than the one above, and it is not too much of a
challenge to go to elventh order in perturbations. As we have already remarked, if one sets
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β = 0, the result is exactly the superstratum. Thus one can think of this microstratum as
µ0 oscillations, with scale set by β, about a superstratum, whose scale is set by α.

Exactly as above, one finds δ2µ0(1) ∼ δω1 and so we, once again impose (6.35). At
third order we find that the value of µ0 at infinity is:

δ3µ0(1) = −2β3

125
− βδ2ω

5
(6.50)

which leads to the constraint

δ2ω = − 2

25
β2 . (6.51)

The analysis proceeds in a straightforward manner, order by order and by imposing
δnµ0(1) = 0 up to tenth order we obtain:

ω = − 2β2

25
− α2β

100
+

6β4

625
+
α2β3

500
+

25α4β2 − 288β6

250 000
− 21α2β5

62 500

− 25α4β4 − 108β8

781 250
− 25α6β3 − 1296α2β7

25 000 000
+

9β6(125α4 − 288β4)

156 250 000
+ O(α, β)11

(6.52)
While the intermediate solutions contain logs, we also find that if one imposes

δnµ0(1) = 0 then it also causes all the logarithmic terms to vanish. Indeed, once one
has imposed (6.52), the complete solution at eleventh order is entirely polynomial in ξ.

The expression of the gauge fields, truncated to seventh order, are

Φ1(1) =
1

2
+
β2

25
+
α2β

200
− 3β4

625
− α2β3

1000
+

−25α4β2 + 288β6

500 000
+ O(α, β)7 (6.53)

Φ2(1) =
β2

25
+
α2β

200
− β4

625
− 3α2β3

5000
+

25α4β2 + 32β6

500 000
+ O(α, β)7 (6.54)

Ψ1(1) = 0 (6.55)

Ψ2(1) = −5α2 + 8β2

40
− α2β

20
− 5α2β2 − 8β4

1000
− 40α2β4 + 640β6

2 000 000
+ O(α, β)7 (6.56)

One finds a very interesting result in making the gauge transformation to obtain the
physical UV frequency, ω∞, relative to the supertube geometry at infinity. One now has:

ω∞ = ω + 2 Φ1(1) − 1 = 0 + O(α, β)11 , (6.57)

where ω and Φ1(1) are given by (6.52) and (6.53). This strongly suggests that for the
ω0 = 0 solutions, the frequency relative to the supertube boundary conditions at infinity
is identically zero:

ω∞ = 0 , (6.58)

for all α and β. Thus for ω0 = 0 there is no shift in the physical UV frequency. This
means that the excitations of the UV CFT are still purely left-moving. Therefore, these
solutions could still be supersymmetric,. However, it is also possible that other background
fields still break the right-moving supersymmetry. See section 8.5 for further discussion of
this issue.
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Combing (6.53)–(6.56) with (4.31), one can, once again, determine the potential dif-
ferences between ξ = 0 and ξ = 1.

It is interesting to note that while the solution described above is symmetric under
α → −α, it is not symmetric under β → −β. This symmetry is however restored when
α = 0.

While the fact that ω∞ = 0 perhaps represents the most remarkable feature of this
family of solutions, we also catalog some other features that will be compared against the
numerical results.

The solution explores the µ1 − µ2 flat direction of the potential in the IR (ξ → 0).
Indeed, we find that the first terms in its expansion are:

µ1 − µ2 −−−→
ξ→0

− 2β2

25
− α2β

100
+

2β4

625
+
α2β3

2 500
− 14β6

46 875
− α2β5

12 500
+ O(α, β)8 (6.59)

We can compute the mass and angular momentum of the solutions using (5.21), the
first few terms are given by:

M + 1 = α2 +
12β2

5
+

3α2β

5
+
α4

16
− 32β4

125
− α2β3

25
+ O(α, β)6 (6.60)

M̃ + 1 =
3

2
α2 +

12β2

5
+

3α2β

5
− α4

16
− α2β2

5
− 32β4

125
− α3β2

20
− α2β3

25
+ O(α, β)6

(6.61)

J = α2 +
8β2

5
+

2α2β

5
− 8β4

125
+
α2β3

25
+ O(α, β)6 (6.62)

7 Numerical analysis

7.1 Solving the boundary value problem

We have to solve for the eleven functions given in the list, F , given in (3.6). The equations
of motion (4.10) give us eleven second-order differential equations with three integrals of
motion given in section 4.3. To solve this system we need essentially 22 pieces of data.
Much of this data is encompassed by requiring that the solution is smooth at ξ = 0 and
ξ = 1, however, as we saw in section 6.1 this is not sufficient and so we will also impose
the same boundary conditions that we imposed on the linear system: the gauge fixing of
the Maxwell potentials and metric functions, (6.6), and the requirement that the scalars
approach the supersymmetric critical point at infinity, (6.7).

Having done this, the linear system still had three degrees of freedom, ω, α and β. A
canonical choice for the latter variables would be to take:

α̂ ≡ ∂2
ξν(0) and β ≡ ∂4

ξµ0(0) . (7.1)

This choice has the advantage of not receiving higher order corrections in perturbation
theory. However, our numerical analysis is configured somewhat differently and we use
α to parametrize the constant value of ν at infinity. We also know that the value of ω is
discrete and we will solve for it in the vicinity of ω0 ∈ 2Z and, as we have already indicated,
we will consider ω0 = 0, 2, 4.
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This characterizes the families of solutions we seek, but, as always, one cannot simply
plug these constraints into a numerical algorithm. The primary challenge is that ξ = 0

and ξ = 1 are regular singular points of all the differential equations, and almost all these
equations have singular branches. This means that if one “shoots” from one end of the
ξ-interval, (0, 1), then the numerical solution will, through numerical error, pick up one of
the singular branches and diverge hopelessly at the other end of the interval.

Our solution to this problem is to use a “double-shooting” method. That is, we com-
pletely specify initial data near ξ = 0 and use standard algorithms (such as Runge-Kutta)
to evolve it towards ξ = 1. Similarly, we completely specify initial data near ξ = 1 and
numerically evolve the solution towards ξ = 0. We then examine both solutions at some
intermediate point, which we take to be ξmid ≡ 3

5 , and try to match the two solutions by
adjusting the initial data at both ends while respecting the boundary conditions we wish
to impose.

While seemingly simple, there is a further issue: the fact that ξ = 0 and ξ = 1

are singular points of the differential equations means that we cannot simply specify the
initial conditions at these points. We have to determine the solution at an infinitessimal
displacement away from the end points and then shoot from these displaced initial points.
Specifically, we take the initial points for the numerics to be ξ0 = 1/100 and ξ1 = 995/1000.
We expand every one of the eleven functions in series about ξ = 0 and in series about ξ = 1

and impose the boundary data on these series and choose values of α and β. We then
use the equations of motion to determine the series as much as possible. In this way
we obtain approximate solutions at ξ0 and at ξ1. These approximate solutions still have
undetermined coefficients and these become the data that must be varied in order to find
a matched solution at the “mid-point,” ξmid = 3

5 . Obviously the match will not be perfect,
and we express the mismatch in terms of a cost function. The complete numerical algorithm
then involves the minimization of this cost function.

7.2 Series expansions at the boundaries

Our purpose here is to use series expansions to generate approximate solutions at ξ0 =

1/100 and ξ1 = 995/1000. Motivated by our initial expectation that the normalizable
modes would lead to simple power series solutions, we are going to take a short cut in
this process: we will ignore all logs, both leading, and sub-leading. As we saw from the
perturbation theory, this will be exact (at least to very high orders) for ω0 = 0, but will
introduce small systematic errors for ω0 = 2. Indeed, one can make an estimate of these
errors from (6.40), and they are typically < 10−4, which will translate into < 10−8 in the
cost function. The numerics actually performs better than this naive expectation: the series
solutions place us in the neighborhood of families of smooth solutions and the numerics is
able to compensate for the small systematic errors in our series and converge on nearby,
more accurate solutions. As a result, our numerics for ω0 = 2 generally converge with cost
function values between 10−8 and 10−12, depending on the size of α.

We also note that for ω0 = 0, where are no log terms in the higher-order perturbation
theory, our numerics converge with cost function values less than 10−15. We therefore find
our numerical results to be well within range of an acceptable approximation for this first
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foray into numerical solutions for these equations. We will perform a much more careful
series analysis in [53].

At ξ = 0 we take:

ν =
∑

n≥2

ν(0)
n ξn , µ0 = β ξ4 +

∑

n≥5

µ
(0)
0,n ξ

n ,

µ1 =
∑

n≥0

µ
(0)
1,n ξ

n , µ2 =
∑

n≥0

µ
(0)
2,n ξ

n ,

Φ1 =
1

2
+
∑

n≥1

φ
(0)
1,n ξ

n , φ2 =
∑

n≥1

φ
(0)
2,n ξ

n ,

Ψ1 =
∑

n≥1

ψ
(0)
1,n ξ

n , Ψ2 =
∑

n≥1

ψ
(0)
2,n ξ

n ,

Ω0 =
∑

n≥0

ω
(0)
0,n ξ

n , Ω1 = 1 +
∑

n≥1

ω
(0)
1,n ξ

n ,

k =
∑

n≥2

k(0)
n ξn .

(7.2)

and at ξ = 1 we take:

ν = α+
∑

n≥1

ν(∞)
n (1 − ξ2)n , µ0 =

∑

n≥1

µ
(∞)
0,n (1 − ξ2)n ,

µ1 =
∑

n≥1

µ
(∞)
1,n (1 − ξ2)n , µ2 =

∑

n≥1

µ
(∞)
2,n (1 − ξ2)n ,

Φ1 =
∑

n≥0

φ
(∞)
1,n (1 − ξ2)n , Φ2 =

∑

n≥0

φ
(∞)
2,n (1 − ξ2)n ,

Ψ1 =
∑

n≥0

ψ
(∞)
1,n (1 − ξ2)n , Ψ2 =

∑

n≥0

ψ
(∞)
2,n (1 − ξ2)n ,

Ω0 = 1 +
∑

n≥1

ω
(∞)
0,n (1 − ξ2)n , Ω1 =

∑

n≥0

ω
(∞)
1,n (1 − ξ2)n ,

k =
1

ω
(∞)
1,0

+
∑

n≥1

k(∞)
n (1 − ξ2)n .

(7.3)

We then substitute these expansions in the equations of motions and solve for the
coefficients order by order.

The result is that all but 19 of the coefficients are fixed by the equations of motion.
We can furthermore fix two of them using the conserved quantities defined in section 4.3.
Indeed, since these quantities are independent of ξ, they can be used to relate some of the
coefficients at infinity with the coefficients at the origin:

φ
(∞)
1,0 = φ

(0)
1,0 − e4µ

(0)
1,0
ψ

(0)
2,2

ω
(0)
0,0

and ψ
(∞)
1,0 = 0 . (7.4)

The constant terms in Φ2 and Ψ2 are special in that they do not enter the dynamics, and
so, a priori, φ(0)

2,0, ψ(0)
2,0, φ(∞)

2,0 and ψ(∞)
2,0 can be set to arbitrary values in the shooting process.
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Indeed we start by setting them to zero. However, the potential differences φ
(∞)
2,0 − φ

(0)
2,0

and ψ
(∞)
2,0 − ψ

(0)
2,0 do have physical meaning, and are determined by the dynamics. What

this means is that when we evolve the solutions from their zero initial values at ξ = 0 and
ξ = 1, the solutions from each end will have a constant offset relative to one another at
the mid-point, ξmid = 3

5 . A smooth solution is then obtained by uniformly shifting either
the solution from ξ = 0, or the solution from ξ = 1, by the constant offset. We therefore
determine the potential differences between ξ = 0 and ξ = 1 from these offsets at ξmid.
The important point here is that the data φ(0)

2,0, ψ(0)
2,0, φ(∞)

2,0 and ψ(∞)
2,0 is irrelevant to solving

the shooting problems, but the potential differences are easily read off from the solutions.
We are thus left with 15 parameters that must be varied in order to find the solution:

P =
{
ν

(0)
2 , µ

(0)
1,0 , µ

(0)
2,0 , ψ

(0)
1,2 , ψ

(0)
2,2 , k

(0)
2 , ω

(0)
0,0 ,

µ
(∞)
0,1 , µ

(∞)
1,1 , µ

(∞)
1,2 , φ

(∞)
2,1 , ψ

(∞)
1,1 , ω

(∞)
1,0 , k

(∞)
1 , k

(∞)
2

}
.

(7.5)

7.3 The minimization procedure

The first step is to choose fixed values of α, β and ω0. We then choose a set of values of the
parameters, P, (7.5), and use them to fix the values of all the fields and their derivatives
close to both ends of the segment, at ξ0 = 1/100 and ξ1 = 995/1000. This provides initial
conditions for the shooting process from each end. Finally, we select a value of ω close to
ω0. We apply the shooting algorithm from both ends, to get two solutions in the bulk. We
denote these solutions respectively S0 and S1.

We then compare these solutions at a “mid-point” in the bulk, which we take to be
ξmid = 3

5 . The comparison is made by defining a cost function:

C(ω,P) =
∑

v∈F\{Φ2,Ψ2}

(vS0(ξmid) − vS1(ξmid))
2 +

∑

v∈F

(
v′

S0
(ξmid) − v′

S1
(ξmid)

)2 (7.6)

where F = {ν, µ0, µ1, µ2,Φ1,Φ2,Ψ1,Ψ2,Ω0,Ω1, k} is the set of all the fields. Note that, for
the reasons explained above, we do not match on the values of Φ2 and Ψ2.

The goal is now to compute numerically the values of ω and P that minimize C(ω,P).
We do this by using numerical algorithms built into Mathematica, and, in particular,

we use ParametricNDSolve for the shooting and FindMinimum to compute the minimum
of the cost function. Rather than simply treat the latter as a black box, we summarize
what is going on inside the algorithm and how we adapted some of the options to make
the solution technique more effective.

We use the Levenberg-Marquardt algorithm (a refinement of the Gauss-Newton algo-
rithm), implemented in FindMinimum. This algorithm makes successively more accurate
approximations of the minimum by using quadratic approximations to the cost function.
This method is particularly well-adapted for minimization problems for which the cost
function is written as a sum of squares, C =

∑
r2
i . The schematic process is then:

Step 1 Choose a first estimate of the solution ω and P. These values are used as a seed
for the algorithm. Such seeds can be based on other known solutions, or starting
from the exactly known superstratum result. The seed must be close enough to the
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solution, or at least not so far as to make the results from the shooting diverge before
reaching ξmid.

Step 2 Use this data and ParametricNDSolve to compute a solution and calculate the
value of the cost function, C(ω,P). Next compute numerically the Jacobian J of the
functions, ri, at this point by computing the difference between the original value of
the ri, and the new values obtained using small perturbations of the parameters.

Step 3 Ideally a quadratic approximation would involve computing the Hessian of the
cost function, but this is numerically very demanding and compounds numerical
errors. Instead, the Gauss-Newton algorithm uses the Jacobian to construct an ap-
proximation to the Hessian and makes a quadratic approximation based on this. The
displacements of the parameters, ∆ω and ∆P, that move the solution towards the
minimum are thus estimated by computing the minimum of the quadratic approxi-
mation:

∑

ij


ri(ω,P) Jji

(
∆ω

∆P

)

j

+
1

2

(
∆ω

∆P

)

i

(JJ⊤)ij

(
∆ω

∆P

)

j


 . (7.7)

Step 4 The danger, as ever, with such an algorithm is that it might overshoot, or oscillate
around, the minimum. So FindMinimum actually treats (∆ω ,∆P) as displacement
in the parameters space and then finds a better estimate of the minimum of the
cost function in the one-dimensional space along this direction. This is the primary
function of the “step control” within FindMinimum. The result is a new estimate of
the parameters of the solution given by ω+ λ∆ω and P + λ∆P, where λ is a step in
the minimizing direction deemed good enough by FindMinimum.

Step 5 Then FindMinimum repeats steps 2 to 4 with the new estimates, and does so
until it achieves a good level of convergence.11

In this way our numerical methods converge not only on the solution of the boundary
value problem but also on the “resonant frequency,” that is the shifted frequency of the
normal modes.

8 Results

Here we present some representative examples of the results obtained from the numerical
method described in section 7. The examples are relatively typical and explore the moduli
space parametrized by α and β. We provide comparisons between the numerical solutions,
the series solutions and the analytically-known superstrata. For small to moderate α and β,
the agreement between the numerics and the series solutions of section 6 is exceptional. This
gives us great confidence in the accuracy of our methods and provides further confirmation
of the structure of our solutions.

11It can also generate errors where it has failed to converge adequately and then one must adjust the

values of ω and P and restart the search.
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Figure 2. Plot of the minimum value of the cost function for various values of α, with β = 0

and ω0 = 2. The value of ω at each point grows with increasing α, see figure 10. The vertical red
dashed line corresponds to the CTC locus (see section 8.3) and data points to the right of this line
are unphysical.

We use the series solutions and the numerical analysis to explore the physical properties
of the moduli space of solutions. First we track the shift in the frequencies of the normal
modes as a function of (α, β). Since our construction builds in smoothness at the outset, the
standard superstratum “smoothness conditions,” like (2.26), arise through the appearance
of closed time-like curves (CTC’s) at infinity (ξ → 1). We therefore track the appearance
of CTC’s and use this to constrain the moduli, (α, β). We also compute the masses and
momentum charge (J = QP ) of our solutions and compare them with the superstrata, and
this will show that the new microstrata are indeed non-extremal.

In terms of the practicalities of the numerics, we track the behavior of the cost func-
tion, (7.6). We start to consider a solution reliable when the cost function is less than
10−8, and we fully trust it when it is less than 10−10. Since the cost function is a sum of
squares, this means that we begin to trust the functions when the errors are less than 10−4

and fully trust them when the errors are less than 10−5.

In practice, we have excellent accuracy for the solutions at ω0 = 0, where the cost
function (for α = 1) ranges from 10−24 at β = 1

4 , to 10−15 at β = 2. The solutions at
ω0 = 2 are somewhat less accurate, almost certainly because of the appearance of log terms
and the systematic errors they introduce into our series analysis. For ω0 = 2 , the cost
function ranges from 10−15 at α = 1

5 , to 10−7 at α ≥ 6
5 . It is below the limit of 10−8 when

α ≤ 4
5 . In figure 2, we have shown the minimal values of the cost function for ω0 = 2,

β = 0 for seventeen solutions in the range 0 < α < 1.6. As we will discuss in section 8.3,
the solutions with α & 4

3 are unphysical because of the presence of CTC’s.
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Figure 3. Numerical solution for all the fields at ω0 = 0, α = 1 and β = 1

4
. The microstratum

is the blue solid line, and the corresponding superstratum solution (α = 1, β = 0) is the red line
with circles. We note that there is a step discontinuity in Ω1 but its size much smaller than our
numerical accuracy and is thus a numerical artefact.

In addition to the smallness of the cost function, we have confidence in our solutions
because of their excellent match with the series expansions, even at a relatively large range
of values of the parameters (α, β). We also find that the convergence of our numerics
becomes dramatically better when the frequency approaches the “resonance” for a normal
mode, and the result is an extremely sharp, narrow valley in the plot of the cost function
against frequency. See, for example, figure 9, and note that this is a plot of the log of
the cost-function. Not only does this add to our confidence in the numerics, but it also
provides an effective search algorithm for the normal frequencies of oscillation.

8.1 Sample solutions

For ω0 = 0, and β = 0, the series solution and the numerical solution both reduce to the
analytically-known superstratum. Thus the interesting families of microstrata correspond
to taking β 6= 0. Figure 3 shows our numerical results for ω0 = 0, α = 1 and β = 1

4 , along
with the superstratum for reference. Figure 4 shows a comparison of the numerical with
the series solution up to eleventh order.

First we note the prefect match between the numerics and the series solution. The
only somewhat anomalous plot is that of Ω1 (figure 3 and figure 4). There appears to be a
step discontinuity but its size is ∼ 10−12, which makes a contribution of 10−24 to the cost
function. Moreover the series solution shows that Ω1 = 1, and so we are confident that
this step is merely a numerical error, well below the level of the cost function.

There are also obvious differences between the microstratum and the superstratum
(see figure 3). These are most evident in the scalars and in the electromagnetic potentials.
However, as we will discuss in section 8.4, the small differences in the metric coefficients
lead to a different mass and momentum charge for the microstratum. Of particular note is
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Figure 4. A comparison of the series solution and the numerical results for ω0 = 0, α = 1 and
β = 1

4
. The numerics are solid blue and the series solution is dashed-dotted green. We note that

there is a step discontinuity in Ω1 but its size much smaller than our numerical accuracy and is
thus a numerical artefact.
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Figure 5. Numerical solution for all the fields at ω0 = 2, α = 1 and β = 0. The microstratum is
the blue solid line, and the corresponding superstratum solution (α = 1, β = 0) is the red line with
circles.

the fact that µ1 and µ2 do not vanish at ξ = 0: this means that the scalars are not settling
down to the supersymmetric minimum at ξ = 0. We will discuss this further in section 8.5.

For ω0 > 0, there is no superstratum solution but there are solutions for generic (α, β)

(so long as they are not too large). In figure 5 and figure 6 we show the numerical solutions
(ω0 = 2, α = 1, β = 0) and (ω0 = 4, α = 1

4 , β = 0), respectively. Again we have plotted
the superstratum solution (with ω0 = 0, β = 0 and same α) for reference. Note that for

– 44 –



J
H
E
P
1
1
(
2
0
2
1
)
0
2
8

0.2 0.4 0.6 0.8 1.0

-0.10

-0.05

0.05

0.10

0.15

0.20

0.25

0.2 0.4 0.6 0.8 1.0

-0.0012

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

0.0002
0.2 0.4 0.6 0.8 1.0

-0.0015

-0.0010

-0.0005

0.2 0.4 0.6 0.8 1.0

2.×10-7
4.×10-7
6.×10-7
8.×10-7
1.×10-6
1.2×10-6

0.2 0.4 0.6 0.8 1.0

-1.2×10-6
-1.×10-6
-8.×10-7
-6.×10-7
-4.×10-7
-2.×10-7

0.2 0.4 0.6 0.8 1.0

-0.0030

-0.0025

-0.0020

-0.0015

-0.0010

-0.0005

0.2 0.4 0.6 0.8 1.0

-3.×10-7

-2.×10-7

-1.×10-7

1.×10-7 0.2 0.4 0.6 0.8 1.0

-0.006

-0.004

-0.002

0.2 0.4 0.6 0.8 1.0

0.996

0.997

0.998

0.999

1.000

0.2 0.4 0.6 0.8 1.0

1.000

1.001

1.002

1.003

1.004

1.005

1.006

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Microstratum

Superstratum

Figure 6. Numerical solution for all the fields at ω0 = 4, α = 1

4
and β = 0. The microstratum is

the blue solid line, and the corresponding superstratum solution (α = 1, β = 0) is the red line with
circles.
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Figure 7. A comparison of the series solution and the numerical results for ω0 = 2, α = 1

4
, β = 0.

The numerics are solid blue and the series solution is dashed-dotted green. Note the close match
between the two.

ω0 = 2 and ω0 = 4, the function ν has one and two nodes respectively, as one should expect
from the linearized results in figure 1.

We have also generated comparison plots of the numerical and fourth-order series
solutions for ω0 = 2. The results for α = 1

4 , β = 0 are shown in figure 7, where it is evident
that agreement is essentially perfect. We show similar plots with α = 1, β = 0 in figure 8.
The agreement is schematically similar, but is not perfect because α = 1 is far from being
a “small parameter,” and in this regime the accuracy of the numerics is slightly below our
threshold of reliability: the cost function is of order 10−7.
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Figure 8. A comparison of the series solution and the numerical results for ω0 = 2, α = 1,
β = 0. The numerics are solid blue and the series solution is dashed-dotted green. The two are
schematically similar but the match is imperfect because α is not small.

8.2 Finding the normal modes

In section 6, we showed that the solutions depend on the choice of a “zeroth-order” fre-
quency ω0, which, for our choice of boundary conditions, will be an even integer, and we
showed that the excitations produce a shift in this frequency of the normal mode, (6.44)
and (6.52). This is to be expected because the excitations generate a change in the shape
and depth of the geometry.

The numerical solutions also exhibit the same shift. To track this shift, we compute the
minimum of the cost function (7.6) at fixed values of ω around the “zeroth-order” frequency
and look for a “resonance,” at which the convergence and accuracy of the numerical solution
improves dramatically. A typical result of our search algorithm is shown in figure 9. The
steep dip in the cost function provides a sharp signal of the normal frequency of oscillation.

To test that the numerical algorithm is indeed correctly identifying the normal modes,
we compared the results of the numerical searches for “resonances” with the predictions
from the series expansions (6.44) and (6.52). These comparisons are shown in figure 10.
The numerical results closely match the perturbative computations for a surprisingly large
range of α and β, which means that the numerical search algorithm does indeed provide
an effective method of determining the normal modes of microstata.

8.3 Closed time-like curves and scaling limits

In superstrata there is a familiar constraint, like (2.26), on the amplitude of the super-
tube and superstratum modes that is usually characterized as a regularity or smoothness
condition. However, this condition arises from the combined requirement of well-behaved
asymptotics, with no CTC’s at infinity, and smoothness at the center of the solution. In the
solutions we construct here, we have built in the smoothness at ξ = 0 and so this standard
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Figure 9. Plot of the cost function minP C(ω,P) as a function of ω, with parameters α = 1

4
,

β = 0 and ω0 = 2. It shows the frequency shift away from ω0 = 2.

Numerical

Perturbative

0.5 1.0 1.5 2.0

-0.20

-0.15

-0.10

-0.05

0.00

Numerical

Perturbative

0.2 0.4 0.6 0.8 1.0 1.2 1.4

2.0

2.2

2.4

2.6

2.8

Figure 10. Plots of the frequencies of the normal modes. The red dots represent the numerical
results, while the blue curves are perturbative results, at eleventh order when ω0 = 0 (6.52), and
at fourth order when ω0 = 2 (6.44). In the first graph we have taken ω0 = 0, α = 1, and β going
from 0 to 2. The second graph corresponds to ω0 = 2, β = 0, and α going from 0 to 3

2
.

smoothness condition will emerge from requiring the absence of CTC’s at infinity. This
condition also places a bound on the amplitude of the superstratum modes, and in the
limit in which this bound is saturated (and the original supertube modes have vanishing
amplitude), the geometry approaches a scaling limit in which it develops an infinitely long
AdS2 ×S1 throat.

For the (1, 0, n) superstratum the bound arises from taking the a → 0 limit in (2.26),
and, as we will discuss below, this leads to the condition |α| ≤ 2. However the scaling limit,
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Figure 11. Plot of (1 − ξ2) times the coefficient of dψ2 as a function of ξ. The curves in solid
blue correspond to solutions with no CTC’s. The curves in dashed red have CTC’s. In the first
figure we have taken ω0 = 0, α = 1, with β going from 0 to 2. In the second figure we have taken
ω0 = 2, β = 0, with α going from 0 to 3

2
. (Note that the curves do not represent regularly spaced

values of the parameters.)

α → 2, can be taken in two ways. The standard limit is most simply expressed in terms
of the conventional superstratum metric written in terms of the radial coordinate, r. One
then keeps r finite and takes a → 0. This produces an asymptotically AdS3 geometry and
the metric becomes that of extremal BTZ black hole. The other way to take this limit was
discussed in [44]: one also sends a → 0 but one keeps r/a finite. In this limit one scales
with the cap, and the asymptotic AdS3 now goes to an infinite distance: the geometry
limits to a smooth cap that is asymptotic to AdS2 ×S1 at infinity. It is this second limit
that appears in our formulation of microstrata and superstrata: in using the coordinates ξ
and τ , the parameter, a, has been scaled out and thus α → 2 limit of the superstratum will
yield the asymptotically AdS2 ×S1 geometry of [44]. Similarly, the corresponding limit of
microstata will result in asymptotically AdS2 ×S1 geometries, and thus generate a capped,
semi-infinite AdS2 ×S1 throat.

Put differently, we will find a range of parameters for which the coefficient of dψ2 is
negative and diverges as (1 − ξ2)−1 ∼ r2/a2 as ξ → 1. These geometries are asymptotic
to AdS3. At the edge of this range of parameters the coefficient of dψ2 is negative and
limits to a constant: these geometries are asymptotic to AdS2 ×S1. Outside this range of
parameters, the coefficient of dψ2 becomes positive (and diverges as (1 − ξ2)−1 ∼ r2/a2) as
ξ → 1. These contain CTC’s and such metrics are unphysical.

In figure 11, we have plotted (1 − ξ2) times the coefficient of dψ2 as a function of ξ
for two different ranges of α and β. We see that the solutions are CTC-free when the
parameters α and β are sufficiently small and develop CTC’s if α or β become too large.
We thus have a range of physical solutions. For ω0 = 2 and β = 0 we find that the solutions
are CTC-free for α . 1.3. For ω0 = 0 we will discuss the CTC limit in detail below.

As one transitions from the CTC-free families to the families with CTC’s, one sees
from figure 11 that all the curves have a positive slope near ξ = 1. This means that, in
the limiting geometry, in which the coefficient of dψ2 limits to a constant, this constant is
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Figure 12. The physical region of the (α, β) parameter space at ω0 = 0 based on the (8.1). The
part of the space we have investigated numerically is given by the horizontal dashed black line and
the vertical solid green line. The former corresponds to superstrata, whereas the latter represents
microstrata with α = 1. The solid, egg-shaped, red line delimits the CTC-free region of space, with
the hatched region corresponding to unphysical solutions containing CTC’s.

negative (because −(1 − ξ2) has positive slope) and so the S1 in these geometries remains
space-like. For ω0 = 0, we have used the eleventh-order perturbative solution to estimate
that this slope is ∼ 4 to very high accuracy.

It follows that these limiting microstrata are also good physical solutions, and it is in
this sense that we mean that microstrata exhibit the same scaling behavior as superstrata.
We similiarly expect infinite red-shifts between the cap and the top of the throat, and so in
the scaling limit, excitations that localize in the cap will have vanishingly small energies.

We can also use the series analysis of section 6.1 to estimate the limits placed by CTC’s
on physical ranges of the parameters. In particular, in section 6.4 we computed analytic
results to high orders in the perturbation theory for ω0 = 0. From the series expansion,
we can obtain an expression for the coefficient of dψ2 that is reliable up to eleventh order,
and we suspect that it is probably valid at all orders:12

lim
ξ→1

(1 − ξ2)gψψ = −1 +
25

(25 − β2)

α2

4
+

10β2

25 + β2
+

125α2 β

2(25 − β2)(25 + β2)
(8.1)

The solutions are CTC-free when this coefficient is negative. We have depicted the
CTC-free region of (α, β)-space in figure 12. The region with CTC’s is hatched. The limit

12We found a startlingly simple pattern in the series expansion, which we then fit to the rational func-

tion (8.1). We then checked that (8.1) gives the correct result to eleventh order in perturbations.
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where this coefficient goes to zero corresponds, as for the superstrata, to the infinite-throat
limit of the geometry. It is represented by a red line on the figure.

It is interesting to note that (8.1) is not an even function of β and it seems that for
small β < 0, one can have α > 2, where one should recall that α = 2 is the limit set by
superstrata. It would be most interesting to understand what this represents in terms of
the physics of microstrata.

More generally, the putative exact formula (8.1) raises an interesting question about
the general smoothness condition. Superstratum smoothness requires (2.28) and, for our
particular superstratum, only b2 is non-zero. This condition therefore reduces to:

a2R2
yg

4
0 = 1 − α2

4
. (8.2)

where α is related to b2 via:

α =
2 b2√
b2

2 + 2 a2
. (8.3)

Note that the superstratum bound α < 2 comes from the limit a → 0.
Equation (3.8) shows how the right-hand side of (8.2) emerges from

lim
ξ→1

(1 − ξ2)gψψ (8.4)

We also know that the limit a → 0 corresponds to the infinite throat limit, where the size
of the ψ circle becomes constant at infinity.

Given the analytic expression for the CTC bound, (8.1), one can make an educated
guess for the smoothness condition for general values of a, α and β with ω0 = 0:

a2R2
y g

4
0 = 1 − 25

(25 − β2)

α2

4
− 10β2

25 + β2
− 125α2 β

2(25 − β2)(25 + β2)
. (8.5)

We note that this reproduces the correct result for β = 0, and in the limit a → 0.

8.4 Non-extremality

As we discussed in section 5, there are two important notions of non-extremality. The first,
and most basic, is non-extremality relative to the superstratum: namely, how much more
mass do our microstrata have relative to superstrata with the same charges. The other,
more stringent, notion of non-extremality is to measure it relative to the BTZ solution and
ask where the microstrata lie with respect to the mass and angular momentum (J = QP )
of a BTZ black hole.

We therefore used our numerical solutions to make an asymptotic expansion of the
metric at infinity as in (5.22) and extracted the parameters M , M̃ and J . We then
plotted the difference between the masses, MMS and M̃MS , of the microstratum and the
corresponding masses, MSS and M̃SS , of the superstratum with the same charges. The
results are shown in figure 13.

For ω0 = 2 we find that for all the physical, CTC-free solutions these mass differences
are always positive. (The only solutions where this conclusion fails are unphysical in that
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Figure 13. Plot of the difference, MMS −MSS and M̃MS − M̃SS, at the same values of J . In the
first plot we have taken ω0 = 0, α = 1, with varying β. In the second plot we have taken ω0 = 2,
β = 0, with varying α. The vertical red dashed lines correspond to the CTC locus and data points
to the right of this line are unphysical.

they have CTC’s.) The non-extremality of the physical, CTC-free solutions is completely
consistent with the supersymmetry breaking and the fact that the microstratum excitations
propagate inside the light cone of the dual CFT.

For ω0 = 0, we find a mixed message. The holographic mass, M , suggests non-
extremality, while the mass, M̃ , coming from the time-like Killing vector leads to a van-
ishing mass difference (to within the accuracy of the approximations). We will discuss this
in section 8.5.

To track non-extremality relative to the BTZ black-hole metric, we plotted M − J

and M̃ − J against the parameters for two families of numerical solutions. The results are
shown in figure 14. One should remember that M − J < 0 for superstrata and has the
value −1 for the supertube.

We find that for both families of microstratum solutions one has −1 < M −J < 0 and
−1 < M̃ − J < 0. Indeed, these quantities were only positive in solutions with CTC’s.

For ω0 = 0 we have also used the eleventh order perturbative analysis of section 6
to compute contours of M − J and M̃ − J on the (α, β) plane and on these plots we
have overlaid the CTC locus determined from (8.1). The results are shown in figure 15
and figure 16. We see that the interior of the CTC-free domain obeys M − J < 0 and
M̃ − J < 0, and the boundary coincides with M − J = 0 and M̃ − J = 0 to within the
accuracy of the perturbation theory.

It therefore seems that, with our simple microstratum Ansatz, at least for ω0 ≥ 0, we
are unable to break into the non-extremal region of the BTZ phase diagram.

8.5 Superymmetry breaking and generalized superstrata

For ω0 > 0 it is evident that supersymmetry is broken and the solutions are non-extremal.
First, the positive frequency, ω∞, means that the microstratum momentum lies inside the
light cone of the CFT and the supergravity solution explicitly depends upon t. Moreover,
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Figure 14. Plots of M − J and M̃ − J for various families of microstrata. In the first plot we
have taken ω0 = 0, α = 1, with varying β. In the second plot we have taken ω0 = 2, β = 0, with
varying α. The vertical red dashed lines correspond to the CTC locus and data points to the right
of this line are unphysical.

both mass parameters, M and M̃ , of the microstrata exceed those of the corresponding
superstrata.

The situation for ω0 = 0 is a little more ambiguous. First, these solutions have ω∞ ≡ 0

for all α and β. From the perspective of the UV CFT, this means that the excitations are
purely left-moving. The right-moving sector could therefore still be in the Ramond ground
state and thus preserve right-moving supersymmetries. The fact that the energy, ω∞, is not
modified or lifted by perturbations is highly suggestive of some supersymmetric protection.

Indeed, the deformation by β gives the supertube a fundamentally elliptical shape
and we know that supertubes of any shape are 1

4 -BPS. Naively one would expect that
adding left-moving momentum excitations, starting from ω0 = 0, would produce a 1

8 -
BPS configuration. Thus one might reasonably expect that the ω0 = 0 microstrata could
actually be generalized superstrata.

The mass, M̃ , of these microstrata is consistent with the states being BPS, and hence
supersymmetric. We expect this mass would be the one that is relevant to the uplift to six
dimensions and the coupling to flat space, and so these solutions may indeed be supersym-
metric. The discrepancy with the holographic mass remains a puzzle. It is possible that
we have not used a suitably general holographic formula that takes into account the gauge
fields and scalars in our rather complicated families of solution.13

13We are grateful to Rodolfo Russo for suggesting this possibility.

– 52 –



J
H
E
P
1
1
(
2
0
2
1
)
0
2
8

-2 -1 0 1 2

-2

-1

0

1

2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2.0

Figure 15. Contour plot of M − J in the (α, β) plane at ω0 = 0, using eleventh order in
perturbations. The white dashed-dotted line delimits the CTC-free region. To within the accuracy
of the approximation, the CTC-free region corresponds with M − J ≤ 0.

Independent of the supersymmetry of the ω0 = 0 family for general α and β, we also
would like to draw attention to a special locus of solutions:

β = −1

8
α2 , (8.6)

which exhibits properties that are even more closely matched to the supersymmetric sig-
natures of the superstratum and which we will explore in more detail in (8.5.2).

8.5.1 Supersymmetry breaking

We begin by noting some of the other interesting features of the asymptotics of microstra-
tum solutions that also signal supersymmetry breaking. By construction, the ones we have
considered here asymptote, at infinity, to the standard supersymmetric AdS3 vacuum. The
original superstrata also asymptote to the supersymmetric AdS3 vacuum in the center of
the cap. Thus the holographic “flow” from the UV to the IR goes between supersymmetric
vacua and the holographic state changes the intervening geometry.

This raises the obvious question as to whether microstrata also flow to the supersym-
metric vacuum in the cap. The answer is generically no, and the best way to see this is
to consider the behavior of the scalars fields, ν, µ0, µ1 and µ2, as ξ → 0. A quick look
at figures 5 and 6 suggest that microstrata with ω0 > 0 and β = 0 are asymptotic to the
superstrata behavior as ξ → 0, however one can see that µ2 does not vanish at ξ = 0, and
this will probably break supersymmetry. For ω0 = 4, depicted in figure 6, the value of
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Figure 16. Contour plot of M̃ − J in the (α, β) plane at ω0 = 0, using eleventh order in
perturbations.The green dotted line delimits the CTC-free region. To within the accuracy of the
approximation, it seems that M̃ − J ≤ 0 everywhere, and that the boundary of CTC-free region
corresponds with M̃ − J = 0.

µ2 at the origin is of the same order as the numerical errors. However, the perturbative
solutions shown in figures 7 and 8 confirm that µ2 is non-vanishing at ξ = 0, and so this
also suggests that supersymmetry is broken in the cap.

As evident from figures 3 and 4, the microstrata with ω0 = 0 and β 6= 0 have non-
vanishing µ1 and µ2 at ξ = 0. Indeed, we find that for ω0 = 0, α = 1 and β 6= 0, the scalar
µ− = µ1 − µ2 limits to a finite, non-zero value. We have plotted the behavior of µ−(ξ) as
a function of ξ for various values of β in figure 17 and we have also plotted the value of µ−

at ξ = 0 for a larger range of β in figure 18.

While it is hard to see from the plots, we also find that the scalar µ+ = µ1 + µ2, for
ω0 = 0 and β 6= 0, does not vanish at ξ = 0 but is very much smaller than µ−. For α = 1,
and β = 0.1, µ+ is 1000 times smaller than µ− and as β approaches the CTC region, µ+

is still about 10 times smaller than µ−. In this sense, the solutions with ω0 = 0 appear to
be exploring the neighborhood of the flat direction (described in section 2.1 and defined
by ν = 0, µ0 = µ+ = 0) of the supergravity potential.

Naively, such behavior would suggest that supersymmetry is broken, but such a con-
clusion is only valid for purely scalar and metric excitations. The non-trivial Maxwell fields
modify the BPS conditions and this may allow supersymmetry to survive.

Independent of the possible supersymmetry at general values of β, one can see from
figure 18 that µ− not only vanishes at β = 0 (the superstratum solution) but also vanishes
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Figure 17. Exploring the non-supersymmetric vacuum in the cap. Plot of µ− as a function of ξ,
at ω0 = 0, α = 1, and β varying from 0.1 (dark blue curve at the top of the graph) to 1 (yellow-green
curve at the bottom of the graph).

at14 β = −1
8 , α = 1. This lies on the special locus, (8.6), and we now investigate this locus

in detail.

8.5.2 Generalized superstrata?

In this section we focus entirely on the solution with ω0 = 0, and we base our discussion on
the results from eleventh order in perturbation theory. As we have discussed, it is possible
that the microstrata with ω0 = 0 are all supersymmetric, and thus represent generalized
microstrata. However, the locus (8.6) has many additional features that match those of
the original superstrata.

First, consider the potential difference:

VΦ1 ≡ Φ1(ξ = 1) − Φ1(ξ = 0) , (8.7)

between ξ = 0 and ξ = 1. The superstratum has a constant electromagnetic potential, Φ1,
and so this difference is zero. In figure 19 we have plotted this potential difference, as a
function of (α, β), for ω0 = 0. The superstratum is, of course, β = 0, but the curve (8.6)
also stands out as a second branch of the vanishing locus of VΦ1 .

We find it intriguing that between the superstratum locus and the new special locus
the solution has VΦ1 < 0, while outside these loci the solution has VΦ1 > 0. These regions
therefore seem to define two very different families of microstrata and it would be extremely
interesting to study them from the CFT perspective.

14We computed this to eleventh order in perturbation theory and obtained β ≈ −0.12500000000054966

and made the obvious choice.
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Figure 18. Plot, based on eleventh order in perturbation theory, of the value of µ− at ξ = 0 for
ω0 = 0, α = 1 and varying β . The main plot shows µ0(0) for −2 < β < 2, while the inset zooms
on the range −0.19 < β < 0.07. Observe that the curve is not invariant under β → −β and that
µ− vanishes at β = 0 and β = − 1

8
.

We also find an almost identical plot coming from the values of µ−(ξ = 0) as a function
of (α, β). This is shown in figure 20. This suggests that at least for the special locus, the
solution in the cap is limiting to the standard supersymmetric vacuum.

To substantiate this further, and to help with future investigation, we catalog the
similarities between the special microstratum (for α = 1, β = −1

8) and the superstratum
(for α = 1, β = 0) which are both plotted in figure 21 and whose difference is shown in
figure 22:

• The scalar function, µ2(ξ) vanishes to an accuracy of 10−13. It is identically zero
for the superstratum, (3.7). Varying α keeps the µ2(ξ) amplitude vanishingly small,
strengthening our expectations that it should vanish for the special microstratum
locus.

• The metric function, Ω1(ξ) = 1 everywhere, exactly as in the superstratum, (3.7).

• The potential functions, Φ1 and Ψ1 are given by the superstratum (3.7) values to an
accuracy of 10−13. As with µ2, varying α does not change this picture qualitatively
and we expect that Φ1 and Ψ1 should vanish identically.

• The scalars ν and µj all vanish to better than 3.1 × 10−13 at ξ = 0. For general α we
have verified that these scalars vanish to O(α12) at ξ = 0.

while the differences are

– 56 –



J
H
E
P
1
1
(
2
0
2
1
)
0
2
8

Figure 19. Contours of VΦ1
as a function of (α, β). The loci VΦ1

= 0 are highlighted in white,
and are defined by β = 0 and, to high perturbative accuracy, by β = − 1

8
α2. (These loci meet at

(0, 0) but this detail is not properly resolved by the plot.) Between these loci, one has ω > 0 and
outside these loci one has ω < 0.

Figure 20. Contours of µ−(ξ = 0) as a function of (α, β). The vanishing loci are highlighted in
white, and are defined by β = 0 and (to high perturbative accuracy) by β = − 1

8
α2.
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Figure 21. The solution for all the fields of the microstratum at ω0 = 0, α = 1 and β = − 1

8

are shown as solid blue lines. The corresponding superstratum solution (α = 1, β = 0) is the
red line with circles. The apparent differences for µ2 and Ψ2 are due to insignificant errors in the
perturbation expansion. The most significant difference is in µ0, and there are also some similar
differences in some of the other functions: see figure 22.

• The primary distinction is driven by the scalar, µ0(ξ), which is identically zero in
the superstratum. The scalar, ν(ξ), also exhibits a slight difference between the
microstratum and superstratum profile.

• The scalar, µ1(ξ), potential functions, Φ2(ξ), Ψ2(ξ), and the metric functions, Ω0(ξ),
k(ξ) all show small differences between the superstratum and microstratum profiles,
but despite the smallness of the difference, these are well within the accuracy of the
perturbation theory, and so they are indeed real differences.

Another very important property of the microstratum with ω0 = 0 and satisfying (8.6)
is that ∣∣µ1(ξ) − µ0(ξ)

∣∣ < 4 × 10−10 , (8.8)

for α < 1. That is, to high perturbative accuracy, one has:

µ1 = µ0 . (8.9)

Combining this with µ2 = 0 and (2.21) implies that the matrix, mIJ , has three eigenvalues
equal to 1 and one eigenvalue of e4µ0 = e4µ1 . This makes the solution fundamentally
distinct from the superstratum. In particular, the degeneracy of the eigenvalues of mIJ

mean that the shape of the S3 preserves an SO(3) invariance, as opposed to the U(1)×U(1)-
invariance of the superstratum. Amongst other things, this means that the special locus is
fundamentally distinct from the original superstratum locus.

Naively, the triple degeneracy of eigenvalues and the SO(3) symmetry suggests that
the special locus involves the flattening of the supertube to a line. However, we note that
this SO(3) does not commute with the combined gauge and U(1) symmetry in the (1, 2)
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8
and the corresponding superstratum solution (α = 1, β = 0). There are small, but

significant differences in ν, µ0, µ1, Φ2, Ψ2, Ω0 and k.

directions. This means that the supertube is still spiraling around the ψ-direction, and the
flattening may be an artifact of the projection along the ψ direction. We will investigate
this further in [43].

9 Final comments

We have constructed, both in perturbation theory and numerically, families of non-extremal
microstrata. There is excellent accord between the numerical and perturbative results and
this gives us a high level of confidence in the accuracy of our solutions and in our predictions
for the microstrata frequencies. It is important to stress that the microstrata with ω0 > 0

are not just non-supersymmetric, or non-BPS, but are genuinely non-extremal solutions,
whose mass exceeds that of a BPS superstratum with the same charges. Our primary goal
in this paper has been proof of concept: showing that such microstrata exist and can be
constructed using the “Q-ball/coiffuring” trick. In achieving this we found a new families of
microstrata involving fluctuations in µ0, parametrized by β, and, for ω0 = 2, 4, we also have
non-trivial, non-extremal deformations of the underlying superstratum parametrized by α.

The existence of non-extremal microstrata demonstrates, once and for all, that su-
perstrata are not merely isolated supersymmetric freaks whose slightest perturbation will
result in singularities. However, our successful microstrata constructions are not immune
to becoming singular or suffering from the presence of CTCs at diverse edges of their mod-
uli spaces. Indeed we saw that, just like superstrata, if the amplitudes become too large
then the solution develops closed time-like curves. From the perspective of microstate ge-
ometries and fuzzballs, the presence of singularities or CTCs within the geometry is not a
pathology that implies one should go back to working with black holes. Such problematic
edges of moduli space are a consequence of either too much symmetry, or suppressing low-
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mass degrees of freedom that are becoming important and that will resolve the singularity.
Thus, while this paper represents a very significant advance for the microstate geometry
program, the goal posts will now move, and continue to move, until we have mapped out
every branch of every moduli space of every family microstate of geometries and show how
they provide a network of coherent structures throughout the space of fuzzballs.

One of the other important features of the microstrata constructed here, and their gen-
eralizations based on our approach, is that they have been constructed in a gravity theory
for which the holographic dictionary has been mapped out and thoroughly tested. This
makes these microstrata especially interesting as one already has the tools and background
necessary to relate these geometries to excitations of the D1-D5 CFT.

In retrospect, the dependence of microstratum frequencies on their amplitudes should
not be very surprising. The normal modes of oscillation will naturally depend on the shape
of the geometry and particularly upon the depth, or red-shift, between the cap and the top
of the AdS throat. Since we know that these geometric features depend on the amplitudes,
α and β, of the microstratum, it must follow that these amplitudes lead to non-linear shifts
in the frequencies of the normal modes. It is, however, gratifying to see this explicitly and
it also suggests how microstate geometry fluctuations will lead to the development of a
chaotic spectrum. As we noted in the introduction, the non-linear dynamics will re-shuffle
the spectrum, and may well result in the eigenvalue repulsion that is characteristic of
non-integrable field theories.

Apart from the questions about the holography of microstrata, there are a multitude
of possible future directions arising from our results within supergravity.

First, we constructed our microstrata by making reductions, consistent truncations,
implementing a Q-ball Ansatz, focussing on a single mode number, n = 2, and restricting
to three fundamental frequencies, ω0 = 0, 2, 4. We have thus mapped out a tiny corner of
the possible families of microstrata within the scope of our analysis. There are thus some
simple generalizations that are potentially very interesting.

When the frequencies of the microstrata are positive we expect that they represent
solitonic configurations propagating inside the light cone of the CFT. Indeed, for n = 2 the
linearized solutions have what one would naturally associate with a collective velocity (with
regards to the propagation of such configurations), whose Minkowski norm is proportional
to the quadratic form15 ω0(ω0 + 6). This is negative for −6 < ω0 < 0 and positive outside
this range. The frequency ω0 = −6 corresponds to the right-moving anti-superstratum, and
ω0 = −4 is mapped to ω0 = −2 by sending y → −y. This leaves ω0 = −2 as an interesting
new possibility (and there will be more such possibilities for n > 2). Linearized analysis
shows that these solutions, while smooth, involve mixed series involving log

(
1 − ξ2

)
and

log ξ and powers of ξ. The series expansions needed to initiate the numerical analysis are
significantly more complicated and so we restricted our attention here to the sector with
ω0 > 0. We will examine the negative values of ω0 in future work [53]. One might hope
that because microstrata with −6 < ω0 < 0 have smaller, or even vanishing QP = J , this
“space-like” range of momenta could lead to microstrata with M − |J | > 0.

15The shift is created by a mixture of n and the electrostatic potential, but the spectrum is invariant

under ω0 → −ω0 − 6 and so this is the correct quadratic form.
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We also note that the discussion of these qualitatively different microstata are based
on the linear seed solutions and their unperturbed frequencies, ω0. The fully back-reacted
solutions have metric deformations and shifted frequencies that will modify our discussion
of the Minkowski norm. Small perturbative corrections will not push microstrata across a
light cone, and so the linearized solution will determine whether the velocity is space-like
or time-like for small parameters. If the parameters become too large, it is possible that
the velocity could move between being space-like and time-like, but we expect that this
would involve the emergence of CTC’s, as described in section 8.3, and the solution will
become unphysical.

On a more physical level, by focussing on ω0 ≥ 0, we have restricted our attention
to “time-like” microstrata. There should also be families of space-like microstrata that
consist primarily of space-like excitations. These could emerge as a final state of some
superstratum “collision” that has come to equilibrium with the excitations of the graviton
multiplet.

The solutions ω0 = 0 and β 6= 0 are particularly interesting. First, recall that β = 0

corresponds to the superstratum and that turning on β makes an elliptical deformation
of the underlying supertube. In section 8.5, we gave several pieces of evidence that these
solutions are still supersymmetric, 1

8 -BPS backgrounds. First, the supersymmetry of the
superstrata should be robust against such elliptical deformations. As further evidence for
this, we found that the frequency of the solution relative to the supertube at the UV fixed
point, ω∞, is identically zero. Equivalently, we found that the gauge invariant quantity,
GΦ1 , defined in (4.19) is exactly the same as for the supertube. This means that the
CFT excitations are all purely left-moving. In addition, the mass M̃ , suggests that these
solutions saturate the BPS bound.

Independent of the status of the solutions with ω0 = 0 and general β, we also identified
a very interesting special locus (8.6) on which many of the fields vanish, as they do in the
original superstratum. We also saw that the scalar matrix degenerates in a different way
from the superstratum, which means that the underlying supertube has a very different
configuration. We are currently investigating the supersymmetry of all of these solutions
as well as their underlying geometries.

As we described in section 3.2, there are slightly more general Ansätze that result in
equations and actions that also only depend on the radial coordinate, r. These include the
possibility of interacting and colliding superstrata in different sectors of the theory, and
perhaps will allow us to see how such a collision could develop into a more “relaxed” ground
state. In another vein, there are going to be time-independent families of single-variable
solutions that represent oscillating end-states of microstate geometry interactions.

Investigating all these solutions will require a more careful series analysis than the
approximate series we used in section 7.2, especially because we need to get control of the
log terms in the more general problems. Indeed, if one improved some of the systematic
errors arising from the series expansion, it would be really interesting to construct and
investigate, with high accuracy, the deep, scaling microstrata that arise at the limiting
values of α and β discussed in section 8.3. Thus, there is much to be done in a more
systematic investigation of the ideas explained here.
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Moving in a more ambitious direction, one can try to find solutions that depend on
more that one variable. There are trivial extensions of our “Q-ball” truncations that
suppress only one variable, leaving an action that depends on two variables. Perhaps
the best choice for a first attempt at this would be to look for time-independent ground
states of the microstratum system. Another possibility is to use perturbative methods to
explore two-variable solutions in the vicinity of the one-variable solutions considered here.
Put differently, starting from the kinds of microstrata we have constructed here, there are
evidently going to be vast families of microstrata solutions “nearby.” That is, by turning
on additional excitation modes, or allowing dependence on more variables, one will be able
to access many microstrata that have non-trivial dependence on all the variables in the
three-dimensional supergravity.

The extension of super-JT gravity discussed in section 3.3 has similar mathematical
underpinnings, but has an entirely different goal. One of the surprising features of JT
gravity is that it is a very simple “bottom-up” model whose Euclideanization can capture
some of the universal aspects of the spectrum of black-hole microstates. It would be very
interesting to connect this approach to “top-down” stringy models and use this connection
to generalize JT gravity in a way that might capture “microstratum-inspired” features of
black-hole microstructure.

Returning to the search for new microstrata, it may be possible to distill the core
elements of the “Q-ball” trick we found in three dimensions and implement it directly in
six dimensions. Doing this might enable one to get beyond the limitations imposed by the
consistent truncation Ansatz. One of the issues with this Ansatz is that it restricts generic
(k,m, n) superstrata to k = 1, and these have rather weak fall-off at infinity. Making the
“Q-ball” trick work for higher values of k would be most interesting.

By construction, the superstrata we have considered here asymptote, at infinity, to
the supersymmetric AdS3 vacuum. We have seen that there are also limiting microstrata
that asymptote to AdS2 ×S1 and generalize the limiting superstrata studied in [44]. As we
noted in section 8.3, these microstrata seem to develop infinitely long throats and exhibit
the same scaling behavior as superstrata. As we remarked above, it would be interesting to
construct accurate scaling microstrata, along with their limits whose geometries asymptote
to AdS2 ×S1, and verify that they do indeed share the same features as scaling superstrata.

Then there is the very important problem of microstrata in asymptotically-flat space.
This has to be done in the six-dimensional formulation. For superstrata, the extension
from asymptotically-AdS to asymptotically-flat space is a straightforward computational
process. Interestingly enough, the coupling to flat space breaks the coiffuring so that the
geometry depends on the same variables as the fluctuating fields, except that these non-
coiffured terms can be made small in deep-scaling superstrata [34]. One might hope to
make a similar approach to that of [34], and treat the coupling to flat space perturbatively,
using it to compute the Hawking radiation. Indeed, probably the simplest first attempt
at this difficult, but extremely important, problem would be to use the µ0 excitation,
parametrized by β, in the microstratum with ω0 = 0, and generalize the perturbation theory
of section 6.4.3. This has the advantage of being very close to the starting point of [34].
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More broadly, it is valuable to consider the microstrata constructed here in wider con-
text of constructing smooth, solitonic solutions in supergravity. The key new ingredient in
using the “Q-ball trick” is to break the supersymmetry by introducing a time-dependence
in some of the fields while cancelling it in the energy-momentum tensor and the electro-
magnetic currents. This is how such configurations dodge the limitations of the theorem
in [1]: this theorem about solitons specifically excludes time-dependent matter fields. Bose
stars are entirely supported by such scalar dynamics, but are extremely finely-tuned with
essentially no structure and no moduli. What makes microstrata far richer is that they
are supported by both topological fluxes and by scalar dynamics that provides additional
energy and momentum to source the “classical lump,” or soliton. The resulting hybrid has
all the rich structure of superstrata combined with the non-supersymmetric scalar dynam-
ics of Bose stars. This suggests that the study of Bose stars, and their properties, would
be hugely enriched by incorporating higher-dimensional physics, and especially the fluxes,
that are central to the construction of microstate geometries.

At the more formal level, our “Q-ball” Ansatz involves a new scalar field, µ0, whose
amplitude is parametrized by β, and this field has not, so far, played a major role in the
construction of superstrata. As we noted in section 4 this generates elliptical deformations
of the supertube and the holographic dual of such deformations is part of the standard
lexicon [4–11]. Such elliptical supertubes were also examined from the perspective of the
world-sheet CFT in [54]. Given our extensive knowledge of the properties of such super-
tubes, it seems likely that there are 1

8 -BPS momentum excitations on them, and these
should lead to generalized superstrata. The results of section 8.5 suggest that these gener-
alized superstrata will be limited to the locus β = −1

8α
2. It would be very interesting to

confirm the supersymmetry by analytic computation in gravity, and to understand, from
within the CFT, why this locus is special, and why the states of the superstratum are
“lifted” outside the loci β = 0 and β = −1

8α
2.

One of the obvious limitations of our microstrata is that, by reducing to three dimen-
sions, we have locked two of the charges to their BPS values: that is, we have locked in the
pure D1-D5 structure. Our non-BPS deformations all relate to shifting the mass relative
to the third charge, QP or J , in the three-dimensional formulation. One would obviously
like to achieve similar things with the D1 and D5 background charges, and there are cer-
tainly suggestions as to how one might achieve such a thing [55]. Maybe one can gain some
insight by taking duals of the microstrata constructed here and see how the sub-extremal
momentum charge translates into other sub-extremal brane charges.

This paper also presents some tantalizing challenges for the holographic field theory,
especially because of our perturbative analysis. Indeed, one should be able to replicate some
aspects of the gravitational perturbation expansion in α and β directly from the CFT.

Perhaps the most intriguing conceptual challenge is the appearance, for ω0 > 0, of
“non-normalizable” terms, like those of (6.40), in the scalar, ν, arising at third (or higher
orders) in perturbation theory. The “normalizable” terms in ν have the standard interpre-
tation of representing states of the system, and this is entirely consistent with the idea that
microstrata are duals of states in the D1-D5 CFT. The appearance of non-normalizable
terms in modes of a field of conformal dimension, ∆ = 1, suggests that the holographic
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field theory of microstrata necessarily involves a relevant, massive deformation of the CFT
that drives a flow to a new IR fixed point. Indeed the holographic dual operator of ν is
well-known, (see equation (2.6) in [7]16), and it is a fermion mass term.

Thus microstrata with ω0 > 0 seem, at higher orders in perturbation theory, to break
the conformal invariance in the action of the holographically dual field theory. One possible
interpretation of our results is that the state created by such a microstratum coincides with
a perturbative state of the CFT up to second order in perturbation theory, however, it is
only at higher orders that one discovers that the holographic state really belongs to a
massive perturbation of the CFT. Hopefully this could be explored within the CFT itself.
It is also instructive to note that all these non-normalizable terms can be cancelled in
microstrata with ω0 = 0, and so the breaking of conformal invariance in the field theory
action only arises for ω0 > 0.

It is, of course, possible that this naive application of the standard holographic lore
on normalizable and non-normalizable modes is invalid, and that our computations are
exposing some subtlety in the holographic dictionary, perhaps similar to the alternative
quantization story in four dimensions [56, 57].

On the other hand, physics suggests that one should have anticipated the breaking of
conformal invariance in the action of the CFT because non-extremal black holes do not
have AdS throats and probably should not ultimately be described by a CFT. It is doubly
gratifying to see that our microstrata not only exhibit this phenomenon but also provide a
perturbative route that may well help us understand it more deeply within the field theory:
one might be able to leverage this property of microstrata to probe the new holographic
field theory that emerges as the black hole is perturbed away from extremality.

For all of these reasons, we think that this paper will open the way to a range of
exciting new investigations into non-extremal microstate geometries and their CFT duals.

Note added. Since this work was completed and submitted to the archive, there have
been two very significant developments

(i) Preliminary computations [43] suggest that the microstrata with ω0 = 0 are super-
symmetric for all values of α and β. They therefore define new, generalized superstrata.
This makes the role of the special locus (8.6) all the more intriguing.

(ii) Stefano Giusto and Rodolfo Russo have informed us that it is possible to “coiffure”
microstrata with ω0 = 2 so that the log terms no longer appear. This puts the asymptotics
of such microstrata firmly in realm of CFT states rather than Lagrangian deformations [58].

Dedication. While we lost Sidney Coleman more than a decade ago, the underpinnings
of this work make it entirely appropriate to dedicate this paper to his memory. Long
ago, Sidney was exceptionally kind and welcoming to a new junior faculty member at
the “technical college down the road from Harvard”. Sidney was a generous spirit with a
laconic and infectious sense of humor. Apart from a being an inspiring colleague, he was
a delightful hiking partner in Aspen and a deep well of information about Science Fiction
and the authors of many of the Sci-Fi classics.

16We are grateful to Rodolfo Russo for pointing us towards this equation.
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