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q-Bessel Functions and Rogers-Ramanujan Type Identities

Mourad E. H. Ismail ∗ Ruiming Zhang †

August 24, 2015

Abstract

We evaluate q-Bessel functions at an infinite sequence of points and introduce a generaliza-

tion of the Ramanujan function and give an extension of the m-version of the Rogers-Ramanujan

identities. We also prove several generating functions for Stieltjes-Wigert polynomials with ar-

gument depending on the degree. In addition we give several Rogers-Ramanujan type identities.
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1 Introduction

The Rogers–Ramanujan identities are

∞
∑

n=0

qn
2

(q; q)n
=

1

(q, q4; q5)∞
∞
∑

n=0

qn
2+n

(q; q)n
=

1

(q2, q3; q5)∞
,

(1.1)

where the notation for the q-shifted factorials is the standard notation in [10], [12]. References for
the Rogers-Ramanujan identities, their origins and many of their applications are in [1], [2], and [4].
In particular we recall the partition theoretic interpretation of the first Rogers–Ramanujan identity
as the partitions of an integer n into parts ≡ 1or 4(mod 5) are equinumerous with the part ions of
n into parts where any two parts differ by at least 2.

Garrett, Ismail, and Stanton [9] proved the m-version of the Rogers-Ramanujan identities

∞
∑

n=0

qn
2+mn

(q; q)n
=

(−1)mq−(
m

2 )am(q)

(q, q4; q5)∞
− (−1)mq−(

m

2 )bm(q)

(q2, q3; q5)∞
,(1.2)

where

(1.3)

am(q) =
∑

j

qj
2+j

[

m− j − 2
j

]

q

,

bm(q) =
∑

j

qj
2

[

m− j − 1
j

]

q

.
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The polynomials am(q) and bm(q) were considered by Schur in conjunction with his proof of the
Rogers–Ramanujan identities, see [1] and [9] for details. We shall refer to am(q) and bm(q) as the
Schur polynomials. The closed form expressions for am and bm in (1.3) were given by Andrews in [3],
where he also gave a polynomial generalization of the Rogers–Ramanujan identities. In this paper
we give a family of Rogers–Ramanujan type identities involving the evaluation of q-Bessel and allied
functions at special points. We also give the partition theoretic interpretation of these identities. In
Section 2 we define the functions and polynomials used in our analysis. In Section 3 we present our
Rogers–Ramanujantype identities. They resemble the m form in (1.2).

In a series of papers from 1903 till 1905 F. H. Jackson introduced q-analogues of Bessel functions.
The modern notation for the modified q-Bessel functions, that is q-Bessel functions with imaginary
argument, is, [11],

I(1)ν (z; q) =
(qν+1; q)∞
(q; q)∞

∞
∑

n=0

(z/2)ν+2n

(q, qν+1; q)n
, |z| < 2,(1.4)

I(2)ν (z; q) =
(qν+1; q)∞
(q; q)∞

∞
∑

n=0

qn(n+ν)

(q, qν+1; q)n
(z/2)ν+2n,(1.5)

I(3)ν (z; q) =
(qν+1; q)∞
(q; q)∞

∞
∑

n=0

q(
n

2)

(q, qν+1; q)n
(z/2)ν+2n.(1.6)

The functions I
(1)
ν and I

(2)
ν are related via

I(1)ν (z; q) =
I
(2)
ν (z; q)

(z2/4; q)∞
,(1.7)

[12, Theorem 14.1.3].

Sn(x; q) =
1

(q; q)n

n
∑

k=0

[

n

k

]

q

qk
2

(−x)k =
1

(q; q)n

n
∑

k=0

(q−n; q)k
(q; q)k

q(
k+1

2 ) (xqn)
k
,(1.8)

respectively. Ismail and C. Zhang [14] proved the following symmetry relation for the Stieltjes–
Wigert polynomials

qn
2

(−t)nSn(q
−2n/t; q) = Sn(t; q).(1.9)

Section 2 contanis the evaluation of I
(2)
ν at an infinite number of special points. These new sums

seem to be new. In Section 3 we introduce a generalization of the Ramanujan function

Aq(z) :=

∞
∑

n=0

(−z)n
(q; q)n

qn
2

,(1.10)

which S. Ramanujan introduced and studied many of its properties In the lost note book [18]. It was
later realized that this is an analogue of the Airy function. In Section 4 we introduce a function Bα

q

prove some identities it satisfies then use them to derive several Rogers-Ramanujan type identities.
The function Bα

q is also a generalization of the Ramanujan function and is expected to lead to
numerous new Rogers-Ramanujan type identities. The Stieltjes-Wigert polynomials satisfy a second
order q-difference equation of polynomial coefficients of the for

f(x)y(qx) + g(x)y(x) + h(x)y(x/q) = 0.

In Section 5 we evaluate y(qnx) in terms of y(x and y(x/q) with explicit coefficients. Section 6
contains misclaneous properties of the Stieltjes-Wigert polynomials.
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2 q-Bessel Sums

Our first result is the following theorem.

Theorem 2.1. The function I
(2)
ν has the represetation

I(2)ν (2z; q) =
zν

(q; q)∞
1φ1(z

2; 0; q, qν+1).(2.1)

In particular I
(2)
ν takes the special values

(2.2) I(2)ν

(

2q−n/2; q
)

=
qνn/2Sn (−q−ν−n; q)

(qn+1; q)∞
,

and

(2.3) I(2)ν

(

2q−n/2; q
)

=
q−νn/2Sn (−qν−n; q)

(qn+1; q)∞

Proof. Recall the Heine transformation [10, (III.2)]

2φ1

(

A,B
C

∣

∣

∣

∣

q, Z

)

=
(C/B,BZ; q)∞

(C,Z; q)∞
2φ1

(

ABZ/C,B
BZ

∣

∣

∣

∣

q,
C

B

)

.(2.4)

The left-hand side of (2.1) is

(qν+1; q)∞
(q; q)∞

zν
∞
∑

k=0

qk
2+kνz2k

(qν+1, q; q)k
=

(qν+1; q)∞
(q; q)∞

zν lim
a,b→∞

2φ1

(

a, b
qν+1

∣

∣

∣

∣

q,
qν+1z2

ab

)

=
(qν+1; q)∞
(q; q)∞

zν
1

(qν+1; q)∞
lim

a,b→∞
2φ1

(

z2, b
z2qν+1/a

∣

∣

∣

∣

q,
qν+1

b

)

which implies (2.1). When z = q−n/2 and in view of (1.8), the left-hand side of (2.2) equals its
right-hand side. Formula (2.3) follows from the symmetry relation (1.9)

The results (2.2)–(2.3) of Theorem 2.1 when written as a series becomes

∞
∑

k=0

qk(k+ν−n)

(q, qν+1; q)k
=

qnν

(qν+1; q)∞

n
∑

k=0

[

n

k

]

q

qk
2

q−k(ν+n)

=
1

(qν+1; q)∞

n
∑

k=0

[

n

k

]

q

qk
2

qk(ν−n).

(2.5)

Another way to prove (2.2) for integer ν is to use the generating function

∞
∑

−∞

q(
m

2 )I(2)m (z; q)tm = (−tz/2,−qz/2t; q)∞.(2.6)

Carlitz [6] did this for n = 0, 1 and used this to give another proof of the Rogers–Ramanujan
identities.

Theorem 2.2. [1] The q-binomial coefficient
[

n
k

]

q
is the generating function for integer partitions

whose Ferrers diagrams fit inside a k × (n− k) rectangle.
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Recall that

I(j)ν (z; q) = e−iνπ/2J (j)
ν (eiπ/2z; q), j = 1, 2.(2.7)

Chen, Ismail, and Muttalib [8] established an asymptotic series for J
(2)
ν (z; q). Their main term for

r > 0 is

I(2)ν (r; q) = (r/2)ν
(q1/2; q)∞
2(q; q)∞

×
[

(rq(ν+1/2)/2/2; q1/2)∞ + (−rq(ν+1/2)/2/2; q1/2)∞,
]

(2.8)

as r → +∞. This determines the large r behavior of the maximum modulus of I
(2)
ν .

We next derive a Mittag–Leffler expansion for I
(1)
ν .

Theorem 2.3. We have the expansion

(2.9) I(1)ν (z; q) =

(

z
2

)ν

(q; q)
2
∞

∞
∑

n=0

(−1)
n
q(

n+1

2 )Sn (−qν−n; q)

(1− z2qn/4)
.

Using residues it is easy to see that the difference between I
(1)
ν (z; q) /(z2; q)∞ and the right-hand

side of (2.9) is entire. We give a direct proof that this difference is zero.

Proof of Theorem 2.3. Use (1.8) to see that the sum on the right-hand side of (2.9) is

∞
∑

n=0

(−1)
n
q(

n+1

2 )

(1− z2qn/4)

n
∑

k=0

qk
2+k(ν−n)

(q; q)k(q; q)n−k

=

∞
∑

k=0

(−1)kqk(ν+(k+1)/2)

(q; q)k(1− z2qk/4)
1φ1(z

2qk/4; z2qk+1/4; q, q).

Now apply (III.4) of [10] with a = z2qk/4, b = 1, c = 0, z = q to see that the above sum is
(q; q)∞/(z

2qk+1/4; q)∞. This shows that the right-hand side of (2.9) is given by

(z/2)ν

(q, z2/4; q)∞
1φ1(z

2/4; 0; q, qν+1),

and the result follows from (2.1) and (1.7).

3 A Generalization of the Ramanujan Function

The Rogers-Ramanujan identities evaluate Aq at z = −1,−q, The result (1.2) evaluates Aq(−qm).
This motivated us to consider the function

um(a, q) :=

∞
∑

n=−∞

qn
2+mn

(aq; q)n
,(3.1)

as a function of qm. When a = 1 we get the Rogers-Ramanujan function. It is clear that

qm+1um+2(a, q) =

∞
∑

n=−∞

(1− aqn)

(aq; q)n
qn

2+mn
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Therefore

qm+1um+2(a, q) = um(a, q)− aum+1(a, q).(3.2)

Let um(a, q) = q−(
m

2 )(−1)m ũm(a, q). Then {ũm(a, q)} satisfy the difference equation

ym+1 = qm−1 ym−1 + aym, m = 0,±1, · · · .(3.3)

We now solve (3.3) form ≥ 0 using generating functions. The generating function Y (t) :=
∑∞

n=0 ynt
n

satisfies

Y (t) =
y0 + t(y1 − ay0)

1− at
+

t2

1− at
Y (qt),

whose solution is

Y (t) =

∞
∑

n=0

qn(n−1)t2n

(at; q)n+1
[y0 + tqn(y1 − ay0].

We now need two initial conditions, so choose two solutions {cm(a, q)} and {dm(a, q)}

c0(a, q) = 1, c1(a, q) = 0, d0(a, q) = 0, d1(a, q) = 1.(3.4)

Theorem 3.1. The polynomials {cm(a, q)} and {dm(a, q)} have the generating functions

∞
∑

n=0

cn(a, q)t
n =

∞
∑

n=0

qn(n−1)

(at; q)n
t2n,(3.5)

∞
∑

n=0

dn(a, q)t
n =

∞
∑

n=0

qn
2

t2n+1

(at; q)n+1
.(3.6)

It is clear from the initial conditions (3.4) and the recurrence relation (3.3) that both {cn(a, q)}
and {dn(a, q)} are polynomials in a and in q.

Theorem 3.2. The polynomials {cn(a, q)} and {dn(a, q)} have the explicit form

cn(a, q) =

⌊(n−2)/2⌋
∑

j=0

qj(j+1)

[

n− j − 2

j

]

q

an−2j−2,(3.7)

dn(a, q) =

⌊(n−1)/2⌋
∑

j=0

qj
2

[

n− j − 1

j

]

q

an−2j−1.(3.8)

The proof follows form equations (3.5) and (3.6); and the q-binomial theorem.

Theorem 3.3. We have

∞
∑

n=−∞

qn
2+mn

(aq; q)n
= (−1)mq−(

m

2 )

×
[

cm(a, q)

∞
∑

n=−∞

qn
2

(aq; q)n
+ dm(a, q)

∞
∑

n=−∞

qn
2+n

(aq; q)n

]

The case a = 1 is the m-version of the Rogers-Ramanujan identities in (1.2) first proved by
Garret, Ismail, and Stanton [9].

We now solve (3.3) for m ≤ 0. From the initial conditions (3.4) it is clear that

c−1(a, q) = −aq, d−1(a, q) = q.(3.9)
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We follow the same generating function technique and conclude that

∞
∑

n=0

c−n(a, q)t
n =

∞
∑

n=0

(−1)nq(
n+1

2 )antn(qt/a; q)n,(3.10)

∞
∑

n=0

d−n(a, q)t
n = qt

∞
∑

n=0

(−1)nantn(qt/a; q)nq
(n+2

2 ).(3.11)

This establishes the following theorem.

Theorem 3.4. For n ≥ 0 we have

c−n(a, q) = (−1)nq(
n+1

2 )
⌊n/2⌋
∑

k=0

qk(k−n)

[

n− k

k

]

q

an−2k,(3.12)

d−n−1(a, q) = (−1)nq(
n+2

2 )
⌊n/2⌋
∑

k=0

qk(k−n)

[

n− k

k

]

q

an−2k(3.13)

The polynomials {cn(a, q)} and {dn(a, q)} first appeared in Carlitz’s paper [7] where he intro-
duced them as Fibonacci polynomials. Štampach [20] observed that they are orthogonal polynomials
and studied their moment problem including computing the corresponding Nevanlinna matrix. In
Štampach’s notation

dn(x, a) = φn(x; q), Tn(x; q) = q−ncn+2(xq, q), n = 0, 1, · · · .(3.14)

He did not consider the case n < 0.

4 Rogers-Ramanujan Type Identities

In this section we prove several identities of Rogers-Ramanujan type. One of the proofs uses the
Ramanujan 1ψ1 sum [10, (II.29)]

∞
∑

−∞

(a; q)n
(b; q)n

zn =
(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

,

∣

∣

∣

∣

b

a

∣

∣

∣

∣

< |z| < 1.(4.1)

Throughout this section we define ρ by

ρ = e2πi/3.(4.2)

Lemma 4.1. For nonnegative integer j, k, ℓ,m, n and ρ = e2πi/3 we have

(4.3)

n
∑

k=0

(a; q)k (a; q)n−k (−1)
k

(q; q)k (q; q)n−k

=







0 n = 2m+ 1
(a2;q2)

m

(q2;q2)
m

n = 2m
,

and

(4.4)
∑

j + k + ℓ = n
j, k, ℓ ≥ 0

(a; q)j (a; q)k (a; q)ℓ
(q; q)j (q; q)k (q; q)ℓ

ρk+2ℓ =







0 3 ∤ n
(a3;q3)

m

(q3;q3)
m

n = 3m
.
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For j, k,m, ℓ, n ∈ Z, we have

(4.5)
∑

j+k=n

(a; q)j (a; q)k (−1)
k

(b; q)j (b; q)k
=







0 n = 2m+ 1

(q,b/a,−b,−q/a;q)
∞

(−q,−b/a,b,q/a;q)
∞

(a2;q2)
m

(b2;q2)
m

n = 2m

and

(4.6)

∞
∑

j+k+ℓ=n

(a; q)j (a; q)k (a; q)ℓ ρ
k+2ℓ

(b; q)j (b; q)k (b; q)ℓ
= 0

for 3 ∤ n,

∞
∑

j+k+ℓ=3m

(a; q)j (a; q)k (a; q)ℓ ρ
k+2ℓ

(b; q)j (b; q)k (b; q)ℓ
(4.7)

=
(q, b/a; q)

3
∞

(b, q/a; q)
3
∞

(

b3, q3a−3; q3
)

∞

(q3, b3a−3; q3)

(

a3; q3
)

m

(b3; q3)m
.

Proof. Formula (4.3) follows from

(at; q)∞
(t; q)∞

(−at; q)∞
(−t; q)∞

=

(

a2t2; q2
)

∞

(t2; q2)∞
, |t| < 1,

while (4.4) follows from

(at; q)∞
(t; q)∞

(aρt; q)∞
(ρt; q)∞

(

aρ2t; q
)

∞

(ρ2t; q)∞
=

(

a3t3; q3
)

(t3; q3)
, |t| < 1.

For
∣

∣ba−1
∣

∣ < |x| < 1, apply the Ramanujan 1ψ1 sum (4.1) to the identity

(ax, q/ (ax) ; q)∞
(x, b/ (ax) ; q)∞

(−ax,−q/ (ax) ; q)∞
(−x,−b/ (ax) ; q)∞

=

(

a2x2, q2/
(

a2x2
)

; q2
)

∞

(x2, b2/ (a2x2) ; q2)∞
,

to derive (4.5). Similarly we apply (4.1) to
(

a3x3, q3/
(

a3x3
)

; q3
)

∞

(x3, b3/ (a3x3) ; q3)∞

=

(

axρ2, q/
(

axρ2
)

; q
)

∞

(xρ2, b/ (axρ2) ; q)∞

(axρ,−q/ (axρ) ; q)∞
(xρ,−b/ (axρ) ; q)∞

(ax, q/ (ax) ; q)∞
(x, b/ (ax) ; q)∞

,

and establish (4.6)-(4.7).

It must be noted that (4.3) is essentially the evaluation of a continuous q-ultraspherical polyno-
mial at x = 0, [12, (12.2.19)].

For α > 0, let

(4.8) A(α)
q (a; t) =

∞
∑

n=0

(a; q)n q
αn2

tn

(q; q)n
,

in particular,

A(1)
q (q; t) = ω (t; q) , A

(2)
q2

(

q2; t2
)

= ω
(

t2; q4
)

, A(1)
q (0; t) = Aq (−t) ,

where

ω (v; q) =

∞
∑

n=0

qn
2

vn.
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Theorem 4.2. Let α ≥ 0, then

(4.9) A
(2α)
q2

(

a2; t2
)

=

∞
∑

j=0

(a; q)j q
αj2 (−t)j

(q; q)j
A(α)

q

(

a; tq2αj
)

.

For ρ = e2πi/3 we have

(4.10) A
(3α)
q3

(

a3; t3
)

=

∞
∑

j,k=0

(a; q)j (a; q)k ρ
kqα(j+k)2tj+k

(q; q)j (q; q)k
A(α)

q

(

a; ρ2q2α(j+k)t
)

.

Proof. These two identities can be proved by applying (4.3) and (4.4) and straightforward series
manipulation.

Corollary 4.3. For any m = 0, 1, . . . we have

(4.11)

q−(
m

2 )am(q2)

(q2, q8; q10)∞
− q−(

m

2 )bm(q2)

(q4, q6; q10)∞

=
∞
∑

j=0

(−q1−m)j

(q; q)j q
j2

{

am+2j(q)

(q, q4; q5)∞
− bm+2j(q)

(q2, q3; q5)∞

}

.

In particular for m = 0, 1 we have

(4.12)
1

(q2, q8; q10)∞
=

∞
∑

j=0

(−q)j
(q; q)j q

j2

{

a2j(q)

(q, q4; q5)∞
− b2j(q)

(q2, q3; q5)∞

}

and

(4.13)
1

(q4, q6; q10)∞
=

∞
∑

j=0

(−1)j

(q; q)j q
j2

{

b2j+1(q)

(q2, q3; q5)∞
− a2j+1(q)

(q1, q4; q5)∞

}

.

Proof. Observe that

A(1)
q (0; z) = Aq (−z) , A

(2)
q2

(

0, z2
)

= Aq2
(

−z2
)

and

Aq2
(

−t2
)

= A
(2)
q2

(

0; t2
)

=

∞
∑

j=0

qj
2

(−t)j
(q; q)j

A(1)
q

(

0; tq2j
)

=

∞
∑

j=0

qj
2

(−t)j
(q; q)j

Aq

(

−tq2j
)

.

We rewrite (1.2) to get

am(q)

(q, q4; q5)∞
− bm(q)

(q2, q3; q5)∞
= (−1)mq(

m

2 )
∞
∑

n=0

qn
2+mn

(q; q)n

and

(4.14)
am+2j(q)

(q, q4; q5)∞
− bm+2j(q)

(q2, q3; q5)∞
= O

(

q(
m+2j

2 )
)

as j → ∞. Then for any nonnegative integer m we get

∞
∑

n=0

q2n
2+2mn

(q2; q2)n
=

(−1)mq−2(m2 )am(q2)

(q2, q8; q10)∞
− (−1)mq−2(m2 )bm(q2)

(q4, q6; q10)∞

=

∞
∑

j=0

(−1)jqj
2+mj

(q; q)j
Aq(−qm+2j) =

∞
∑

j=0

(−1)j+mqj
2+mj

(q; q)j q
(m+2j

2 )

{

am+2j(q)

(q, q4; q5)∞
− bm+2j(q)

(q2, q3; q5)∞

}

,

which simplifies to (4.11). From (4.14) it is clear that the above series actually converges very
fast.
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We now consider the following generalization of the 1ψ1 function. For α ≥ 0, define B
(α)
q by

(4.15) B(α)
q (a, b;x) =

∞
∑

n=−∞

(a; q)n
(b; q)n

qαn
2

xn,

Theorem 4.4. We have

(4.16)
(−b,−q/a, q, b/a; q)∞
(−q,−b/a, b, q/a; q)∞

B
(2α)
q2

(

a2, b2;x2
)

=
∞
∑

j=−∞

(a; q)j q
αj2 (−x)j

(b; q)j
B(α)

q

(

a, b;xq2αj
)

.

and

(4.17)

B
(3α)
q3

(

a3, b3;x3
)

=
(b, q/a; q)

3
∞

(q, b/a; q)
3
∞

(

q3, b3a−3; q3
)

(b3, q3a−3; q3)∞

×
∞
∑

j,k=−∞

(a; q)j (a; q)k ρ
kqα(j+k)2xj+k

(b; q)j (b; q)k
B(α)

q

(

a, b;xq2α(j+k)
)

.

The proof follows from (4.5), (4.6) and (4.7) and straightforward series manipulation.

Corollary 4.5. The following Rogers-Ramanujan type identities hold

(−a,−q/a, q, q; q)∞
(a, q/a,−q,−q; q)∞

∞
∑

n=−∞

q4n
2

x2n

1− a2q2n
=

∞
∑

j,k=−∞

q(j+k)2 (−1)
j
xj+k

(1− aqj) (1− aqk)
,(4.18)

(q, q; q)∞
(−q,−q; q)∞

∞
∑

n=−∞

q4n
2

x2n

1 + q2n+1
=

∞
∑

j,k=−∞

q(j+k)2 (−1)
j
xj+k

(

1 + iqj+1/2
) (

1 + iqk+1/2
) .(4.19)

Proof. Formula (4.18) is the special case α = 1 and b = aq of (4.16) while (4.19) is the speical case
a = −q1/2i of (4.18).

The special choice α = 1 and b = aq in (4.17) establishes

(4.20)

∞
∑

n=−∞

q9n
2

x3n

1− a3q3n
=

(

q3; q3
)2

∞

(q; q)
6
∞

(a, q/a; q)
3
∞

(a3, q3a−3; q3)∞

×
∞
∑

j,k,ℓ=−∞

ρk+2ℓq(j+k+ℓ)2xj+k+ℓ

(1− aqj) (1− aqk) (1− aqℓ)
.

Two special case of (4.20) are worth noting. First when a = q1/3 we find that

(4.21)

(q; q)
7
∞

(q3; q3)
3
∞

(

q1/3, q2/3; q
)3

∞

∞
∑

n=−∞

q9n
2

x3n

1− q3n+1

=

∞
∑

j,k,ℓ=−∞

ρk+2ℓq(j+k+ℓ)2xj+k+ℓ

(

1− qj+1/3
) (

1− qk+1/3
) (

1− qℓ+1/3
) .

With a = −q1/3 in (4.20) we conclude that

(4.22)

∞
∑

n=−∞

q9n
2

x3n

1 + q3n+1
=

(

q3; q3
)2

∞

(q; q)
6
∞

(

−q1/3,−q2/3; q
)3

∞

(−q2,−q; q3)∞

×
∞
∑

j,k,ℓ=−∞

ρk+2ℓq(j+k+ℓ)2xj+k+ℓ

(

1 + qj+1/3
) (

1 + qk+1/3
) (

1 + qℓ+1/3
) .

It is clear that one can generate other identities by specializing the parameters in the master
formulas.
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5 q-Lommel Polynomials

Iterating the three term recurrence relation of the q-Bessel function leads to

(5.1) qnν+n(n−1)/2J
(2)
ν+n(x; q) = hn,ν

(

1

x
; q

)

J (2)
ν (x; q)− hn−1,ν+1

(

1

x
; q

)

J
(2)
ν−1(x; q),

where hn,ν (x; q) are the q-Lommel polynomials introduced in [11], [12, §14.4]. It is more convenient
to use the polynomials

pn,ν(x; q) := e−iπn/2hn,ν(ix) =

⌊n/2⌋
∑

j=0

(qν , q; q)n−j

(q, qν ; q)j(q; q)n−2j
(2x)n−2jqj(j+ν−1).(5.2)

The identity (5.1) expressed in terms of Iν ’s is

(−1)nqnν+n(n−1)/2I
(2)
ν+n(x; q)

= pn,ν(1/x; q)I
(2)
ν (x; q)− pn−1,ν+1(1/x; q)I

(2)
ν−1(x; q),

(5.3)

When x = 2q−k/2 we obtain, after replacing ν by ν + k,

(−1)nqn(n+2ν+k−1)/2Sk

(

−qν+n; q
)

= pn,ν+k(q
k/2/2; q)Sk (−qν ; q)

−qk/2pn−1,ν+k+1(q
k/2/2; q)Sk

(

−qν−1; q
)

.

We now rewrite this as a functional equation in the form

ynqn(n+k−1)/2Sk (yq
n; q) = un(q

k/2,−yqk; q)Sk (y; q)

−qk/2un−1(q
k/2,−yqk+1; q)Sk (y/q; q) .

(5.4)

with

un(x, y) =

⌊n/2⌋
∑

j=0

(y, q; q)n−j

(q, y; q)j(q; q)n−2j
xn−2j .(5.5)

Therefore

Sk(y; q) =
ynqn(n+k−1)/2un(q

k/2,−yqk+1; q)

∆n
Sk(yq

n; q)

−y
n+1q(n+1)(n+k)/2un+1(q

k/2,−yqk+1; q)

∆n
Sk(−qν+n+1; q),

(5.6)

where

∆n = un(q
k/2,−yqk+1; q)un(q

k/2,−yqk; q)
−un+1(q

k/2,−yqk; q)un−1(q
k/2,−yqk+1; q).

(5.7)

10

Oct 22 2015 02:34:49 EDT
Version 2 - Submitted to PROC

Algebra+NT+Comb+LogiThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



6 Identities Involving Stieltjs–Wigert Polynomials

In this section we state several identities involving Stieltjes–Wigert polynomials and the Ramanujan
function.

(xt,−t; q)∞ =

∞
∑

n=0

q(
n

2)tnSn

(

xq−n; q
)

.(6.1)

q(
n

2)xn

(q; q)n
=

n
∑

k=0

(−1)kq(
k

2)

(q; q)n−k

Sk

(

xq−k; q
)

,(6.2)

Sn (x) =

∞
∑

k=0

q(
k+1

2 )(xqn)kAq

(

xqk
)

(q; q)n (q; q)k
,(6.3)

Sn (ab; q) = bn
n
∑

k=0

(

b−1; q
)

k

(

−q1−n
)k
q(

k

2)

(q; q)k
Sn−k

(

aqk; q
)

,(6.4)

Sn (a; q) =
(−aq; q)∞
(q,−aq; q)n

∞
∑

k=0

qk
2

(−a)k
(q,−aqn+1; q)k

,(6.5)

S2n+1

(

q−2n−1; q
)

= 0, S2n

(

q−2n; q
)

=
(−1)

n
q−n2

(q2; q2)n
.(6.6)

Sn

(

−q−n+1/2; q
)

=
q−(n

2−n)/4
(

q1/2; q1/2
)

n

,(6.7)

Sn

(

−q−n−1/2; q
)

=
q−(n

2+n)/4
(

q1/2; q1/2
)

n

,(6.8)

Aq (wz) = (wq; q)∞

∞
∑

n=0

qn
2

wn

(wq; q)n
Sn

(

zq−n; q
)

.(6.9)

Aq (z) = (q; q)m

∞
∑

n=0

qn
2+mn (−z)n
(q; q)n

Sm (zqn; q) .(6.10)

Proofs. Formula (6.1) follows from the definition (1.8) and Euler’s identities. Dividing both sides of
(6.1) by (−t; q)∞ then expand 1/(−t; q)∞ on the right-hand side implies (6.2). The expansion (6.3)
follows from (1.10), and the q-binomial theorem in the form

(x; q)n =

n
∑

j=0

[

n

j

]

q

(−x)jq(
k

2).(6.11)

To prove (6.4) start with (6.1) as

∞
∑

n=0

q(
n

2)tnSn(abq
−n; q) = (abt,−t; q)∞ = (abt,−bt; q)∞

(−t; q)∞
(−bt; q)∞

,

then expand the first product in Sk(aq
−k; q) and the second term using the q-binomial theorem. The

proof of (6.5) consists of writing (−aq; q)∞/(−aq; q)n(−aqn+1; q)k as −aqn+k+1; q)∞ then expand
this infinite product and use (6.11). The special values in (6.6) follow from letting x = 1 in (6.1)
then equate like powers of t. Similarly the special values in (6.7) and (6.8) follow from putting

x = −q∓1/2 in (6.1). Replace x by z in then multiply by (−w)nq(
n+1

2 ) and sum to prove (6.9). To
prove (6.10) we expand the right-hand side in powers of z and realize that the coefficient of (−z)n is

qn
2+mn

(q; q)n
2φ1(q

−m, q−n; 0, ; q, q).
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By the q-Chu-Vandermonde sum [10, (II.6)] the 2φ1 equals q−mn.

We note that the polynomials {Sn(xq
−n; q)} are related to the q−1-Hermite polynomials, [5],

[13], which are defined by

hn(sinh ξ | q) =

n
∑

k=0

(q; q)n
(q; q)k(q; q)n−k

(−1)kqk(k−n)e(n−2k)ξ.(6.12)

Indeed

Sn(e
−2ξq−n; q) =

1

(q; q)n
hn(sinh ξ | q).(6.13)

In fact (6.1) is equivalent to the generating function for the q−1-Hermite polynomials, [12]. Moreover
(6.13) and the generating function [12, Theorem 21.3.1] lead to

∞
∑

n=0

(q; q)nq
n2/4

(
√
q;
√
q)n

tnSn(zq
−n; q) =

(−tq1/4,−tq1/4z;√q)∞
(−t2z; q)∞

.(6.14)

The Poisson kernel of q−1-Hermite polynomials, [12, Theorem 21.2.3] implies

∞
∑

n=0

(q; q)nq
(n2)tnSn(zq

−n; q)Sn(ζq
−n; q) =

(−t,−tzζ, tz, tζ; q)∞
(t2zζ/q; q)∞

.(6.15)

Similarly one can derive other generating relations.

It must be noted that (6.7) and (6.8) when written in terms of the q−1-Hermite polynomials are
the evaluation of hn(0|q), see [12, Corollary 21.2.2]. It is easy to see that the evaluations (6.7) and
(6.8) are equivalent to the identity in the following theorem.

Theorem 6.1. We have

Aq2
(

−b2
)

= (b
√
q; q)∞

∞
∑

n=0

qn
2/2bn

(

q, b
√
q; q

)

n

,(6.16)
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