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Motivation and Background

. Cloud computing

- Off load processing and storage
- Charged per resource or time unit
- No Quality of Service (QoS) guarantees

. Cloud might not meet the demands of the
customer

. Cloud resources shared among customers

~Virtual Machines

- Contention can result in performance
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Motivation and Background

. Example: Cache contention
. Running alone: level until saturates LLC

. With co-runners: fast and significant time increases

== Running Alone

Execution Time (s)

= Running vs 1 Thread
Running vs 2 Threads

=== Running vs 3 Threads

Working Set Size

Figure 1. Performance impactof cache interference on con-
solidated VMs.
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Motivation and Background

. Solution: tune performance to the level the
customer would see if they were running alone
on the system

. Q-Clouds: “A QoS-aware control framework”

— Allocates resources in a fair way between
customers, resulting in an acceptable QoS level

EECS 750 -- 14 February 2014



Q-Clouds System

. Change resource allocation to meet the various
customers' Service Level Agreements (SLAS)

— Applications perform the same as if the customer
were alone on the hardware

. MIMO (multiple-input multiple-output) closed-
loop feedback model

- Feedback from applications
- “Interference relationships”
- "Q-states” specify QoS level of applications
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Q-Clouds System

. Interference on multi-core processors: QoS not
tied to resources available

. Best way to implement QoS: Guarantee app.
performance, charge for app. Performance

- Charge as if the app. were running without
contention

- When interference occurs, adjust resource
allocations to maintain QoS level

- How to implement this?
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Q-Clouds System

. Q-Clouds: QoS in the face of interference

- Head room: unallocated resources given to an app.
to prevent falling below QoS performance

- Q-States: higher level of QoS to apps. that are
willing to pay for it, when unused head room exists
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Q-Clouds

. Q-Clouds Management Architecture

— Cloud Scheduler: Place VMs on servers according
to resource requirements

Figure 4. VM Deployment and QoS management with Q-
Clouds.
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Q-Clouds System

. Q-Clouds Management Architecture

- First watch the VM on a Staging Server to see how
It would run without contention, then Cloud
Scheduler can place on appropriate server

- The resource needs observed on the Staging
Server also determine $$$

- Interference Mitigation Control

. Subsystem on each server

. Change resource allocations to keep VMSs running at the
same level as they were on the Staging Server
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Q-Clouds System

. Q-Clouds Management Architecture

- Resource Efficiency Control

. Increase QoS for VMs with Q-State levels when there Is
extra (unused) headroom

. Tune Interference Mitigation Control to comply with the
QoS changes determined (new Q-State for a VM)

. How to map resource allocation to QoS?
- MIMO, feedback loops.
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Q-Clouds System

. Q-Clouds MIMO

— Input: control of resource allocations
. This is the system itself, so already available
— Output: VM performance (QoS values)

. Requires feedback from applications
. But each application might have its own QoS metric

. They expect the applications to provide QoS data

- QoS data used in staging area and during run-time adjustments
of resources such, as assignment of Q-States

- MIMO analyzes performance WRT process
Interactions
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Q-Clouds System

. Q-states allow processes to run at a higher
QoS (performance) level if: a) the customer
paid for it, and b) there are extra resources
available (in the headroom)

. Only bump up QoS past base SLA level if every
task is running >= its acceptable minimum,
otherwise use some of that extra headroom to
help a struggling task
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Experiment

. Considered three interference effects:

- Memory bus contention
- Last level cache (LLC) contention
- Prefetching (instructions and data)

. Control interference by capping VM Virtual
Processors (VPS)
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Experiment

. Since controlling interference by limiting VP
function, want to test with CPU-bound
benchmarks

- SPEC CPU2006 benchmark suite
. Four applications on one quad-core processor

. Selected 5 benchmarks from the set, tested
every combination of 4
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Experiment

Table 1. SPEC CPU2006 w orkload ml XeS.
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Experiment

. Dual socket server

. Ea. socket quad-core Nehalem processor

. 18 GB RAM

. Total: 36 GB RAM, eight cores

. Virtualization system: Windows Server 2008
with Hyper-V
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Experiment

. Q-Clouds runs in the hypervisor (‘root partition')

- Watches CPU related performance counters of the
VMs

- Adjusts VP resource allocations

. MATLAB code for the System Controller
functional block of Q-Clouds

— Queries hypervisor for QoS information, adjusts VP
caps in response
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Evaluation
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Evaluation

. What's that tell us? That we can model
Interference and make a MIMO model from
application performance feedback

. Various MIMO models available with different
benefits and drawbacks
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Evaluation

. Back to the point of all this: “Meeting QoS
Requirements with Q-Clouds”

. Must meet the non-contention QoS specified In
the SLA. In the example, the test process set
specifies QoS by processor resources available
to It

. Compare performance to the case where the
system does not allocate resources for QoS, to
test the system

. 3 test SLA levels: require 25%, 50%, 75% of
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Evaluation

Desired CPU Equivalent Performance

(b) Default Resource Allocation
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Evaluation

25% 50% 75%

Desired CPU Equivalent Performance

(a) Default Performance
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Normalized Performance vs SLA
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Evaluation

. Without Q-Clouds, contention Is significant and
nobody gets their desired QoS

. With Q-Clouds, the 25% and 50% CPU
allocation instances are great. But at the 75%
level, the system runs out of resources
(headroom) and contention results in
degradation
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Evaluation

. Other test sets (mixes of the benchmark
programs) show similar results. Q-Clouds
Improves performance as long as there is
headroom available

. When the test is extended to include Q-States
functionality, it Is found that the system is able
to iImplement it successfully, again if there Is
sufficient headroom
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Evaluation
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Figure 13. Resource utilization comparisons between de-

fault systems, Q-Clouds servers, and Q-Clouds with Q-state
enabled resource efficiency optimization.
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Conclusion

. With the cloud comes the need for cloud-aware
scheduling to address performance limiting
factors unique to this environment

. Q-Clouds cant
particular QoS
QoS metric(s) t

neoretically ensure processes a
evel, If the processes know the

nat is(are) important to them
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Questions

. The Q-Clouds system relies on QoS feedback
provided by the application. Is there a way
around this, so that any application could be
handled by Q-Clouds?
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