
Q-Clouds: Managing Performance
Interference Effects for

QoS-Aware Clouds

Ripal Nathuji
Aman Kansal

Alireza Ghaffarkhah

Presented by Joshua Davis

EECS 750 -- 14 February 2014 2

Motivation and Background

● Cloud computing

– Off load processing and storage

– Charged per resource or time unit

– No Quality of Service (QoS) guarantees

● Cloud might not meet the demands of the
customer

● Cloud resources shared among customers

–Virtual Machines

–Contention can result in performance
issues

EECS 750 -- 14 February 2014 3

Motivation and Background

● Example: Cache contention

● Running alone: level until saturates LLC

● With co-runners: fast and significant time increases

EECS 750 -- 14 February 2014 4

Motivation and Background

● Solution: tune performance to the level the
customer would see if they were running alone
on the system

● Q-Clouds: “A QoS-aware control framework”

– Allocates resources in a fair way between
customers, resulting in an acceptable QoS level

EECS 750 -- 14 February 2014 5

Q-Clouds System

● Change resource allocation to meet the various
customers' Service Level Agreements (SLAs)

– Applications perform the same as if the customer
were alone on the hardware

● MIMO (multiple-input multiple-output) closed-
loop feedback model

– Feedback from applications

– “Interference relationships”

– “Q-states” specify QoS level of applications

EECS 750 -- 14 February 2014 6

Q-Clouds System

● Interference on multi-core processors: QoS not
tied to resources available

● Best way to implement QoS: Guarantee app.
performance, charge for app. Performance

– Charge as if the app. were running without
contention

– When interference occurs, adjust resource
allocations to maintain QoS level

– How to implement this?

EECS 750 -- 14 February 2014 7

Q-Clouds System

● Q-Clouds: QoS in the face of interference

– Head room: unallocated resources given to an app.
to prevent falling below QoS performance

– Q-States: higher level of QoS to apps. that are
willing to pay for it, when unused head room exists

EECS 750 -- 14 February 2014 8

Q-Clouds

– Cloud Scheduler: Place VMs on servers according
to resource requirements

● Q-Clouds Management Architecture

EECS 750 -- 14 February 2014 9

Q-Clouds System

● Q-Clouds Management Architecture

– First watch the VM on a Staging Server to see how
it would run without contention, then Cloud
Scheduler can place on appropriate server

– The resource needs observed on the Staging
Server also determine $$$

– Interference Mitigation Control

● Subsystem on each server

● Change resource allocations to keep VMs running at the
same level as they were on the Staging Server

EECS 750 -- 14 February 2014 10

Q-Clouds System

● Q-Clouds Management Architecture

– Resource Efficiency Control

● Increase QoS for VMs with Q-State levels when there is
extra (unused) headroom

● Tune Interference Mitigation Control to comply with the
QoS changes determined (new Q-State for a VM)

● How to map resource allocation to QoS?

– MIMO, feedback loops.

EECS 750 -- 14 February 2014 11

Q-Clouds System

● Q-Clouds MIMO

– Input: control of resource allocations

● This is the system itself, so already available

– Output: VM performance (QoS values)

● Requires feedback from applications

● But each application might have its own QoS metric

● They expect the applications to provide QoS data

– QoS data used in staging area and during run-time adjustments
of resources such, as assignment of Q-States

– MIMO analyzes performance WRT process
interactions

EECS 750 -- 14 February 2014 12

Q-Clouds System

● Q-states allow processes to run at a higher
QoS (performance) level if: a) the customer
paid for it, and b) there are extra resources
available (in the headroom)

● Only bump up QoS past base SLA level if every
task is running >= its acceptable minimum,
otherwise use some of that extra headroom to
help a struggling task

EECS 750 -- 14 February 2014 13

Experiment

● Considered three interference effects:

– Memory bus contention

– Last level cache (LLC) contention

– Prefetching (instructions and data)

● Control interference by capping VM Virtual
Processors (VPs)

EECS 750 -- 14 February 2014 14

Experiment

● Since controlling interference by limiting VP
function, want to test with CPU-bound
benchmarks

– SPEC CPU2006 benchmark suite

● Four applications on one quad-core processor

● Selected 5 benchmarks from the set, tested
every combination of 4

EECS 750 -- 14 February 2014 15

Experiment

EECS 750 -- 14 February 2014 16

Experiment

● Dual socket server

● Ea. socket quad-core Nehalem processor

● 18 GB RAM

● Total: 36 GB RAM, eight cores

● Virtualization system: Windows Server 2008
with Hyper-V

EECS 750 -- 14 February 2014 17

Experiment

● Q-Clouds runs in the hypervisor ('root partition')

– Watches CPU related performance counters of the
VMs

– Adjusts VP resource allocations

● MATLAB code for the System Controller
functional block of Q-Clouds

– Queries hypervisor for QoS information, adjusts VP
caps in response

EECS 750 -- 14 February 2014 18

Evaluation

● App. From Figure 1 shown

here. Note that capping

CPU resources linearly

increases execution time

● Running four at a time

causes performance to

degrade faster

● WSS relevant

EECS 750 -- 14 February 2014 19

Evaluation

● What's that tell us? That we can model
interference and make a MIMO model from
application performance feedback

● Various MIMO models available with different
benefits and drawbacks

EECS 750 -- 14 February 2014 20

Evaluation

● Back to the point of all this: “Meeting QoS
Requirements with Q-Clouds”

● Must meet the non-contention QoS specified in
the SLA. In the example, the test process set
specifies QoS by processor resources available
to it

● Compare performance to the case where the
system does not allocate resources for QoS, to
test the system

● 3 test SLA levels: require 25%, 50%, 75% of
CPU

EECS 750 -- 14 February 2014 21

Evaluation

EECS 750 -- 14 February 2014 22

Evaluation

EECS 750 -- 14 February 2014 23

Evaluation

● Without Q-Clouds, contention is significant and
nobody gets their desired QoS

● With Q-Clouds, the 25% and 50% CPU
allocation instances are great. But at the 75%
level, the system runs out of resources
(headroom) and contention results in
degradation

EECS 750 -- 14 February 2014 24

Evaluation

● Other test sets (mixes of the benchmark
programs) show similar results. Q-Clouds
improves performance as long as there is
headroom available

● When the test is extended to include Q-States
functionality, it is found that the system is able
to implement it successfully, again if there is
sufficient headroom

EECS 750 -- 14 February 2014 25

Evaluation

EECS 750 -- 14 February 2014 26

Conclusion

● With the cloud comes the need for cloud-aware
scheduling to address performance limiting
factors unique to this environment

● Q-Clouds can theoretically ensure processes a
particular QoS level, if the processes know the
QoS metric(s) that is(are) important to them

EECS 750 -- 14 February 2014 27

Questions

● The Q-Clouds system relies on QoS feedback
provided by the application. Is there a way
around this, so that any application could be
handled by Q-Clouds?

EECS 750 -- 14 February 2014 28

References

R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-Clouds: Managing performance
interference effects for QoS-aware clouds. Microsoft Research.

