Q-Clouds: Managing Performance
Interference Effects for

QoS-Aware Clouds

Ripal Nathuj
Aman Kansal
Alireza Ghaffarkhah

Presented by Joshua Davis

Motivation and Background

. Cloud computing

- Off load processing and storage
- Charged per resource or time unit
- No Quality of Service (QoS) guarantees

. Cloud might not meet the demands of the
customer

. Cloud resources shared among customers

~Virtual Machines

- Contention can result in performance
iS SUes EECS 750 -- 14 February 2014

Motivation and Background

. Example: Cache contention
. Running alone: level until saturates LLC

. With co-runners: fast and significant time increases

== Running Alone

Execution Time (s)

= Running vs 1 Thread
Running vs 2 Threads

=== Running vs 3 Threads

Working Set Size

Figure 1. Performance impactof cache interference on con-
solidated VMs.

EECS 750 -- 14 February 2014

Motivation and Background

. Solution: tune performance to the level the
customer would see if they were running alone
on the system

. Q-Clouds: “A QoS-aware control framework”

— Allocates resources in a fair way between
customers, resulting in an acceptable QoS level

EECS 750 -- 14 February 2014

Q-Clouds System

. Change resource allocation to meet the various
customers' Service Level Agreements (SLAS)

— Applications perform the same as if the customer
were alone on the hardware

. MIMO (multiple-input multiple-output) closed-
loop feedback model

- Feedback from applications
- “Interference relationships”
- "Q-states” specify QoS level of applications

EECS 750 -- 14 February 2014

Q-Clouds System

. Interference on multi-core processors: QoS not
tied to resources available

. Best way to implement QoS: Guarantee app.
performance, charge for app. Performance

- Charge as if the app. were running without
contention

- When interference occurs, adjust resource
allocations to maintain QoS level

- How to implement this?

EECS 750 -- 14 February 2014

Q-Clouds System

. Q-Clouds: QoS in the face of interference

- Head room: unallocated resources given to an app.
to prevent falling below QoS performance

- Q-States: higher level of QoS to apps. that are
willing to pay for it, when unused head room exists

EECS 750 -- 14 February 2014

Q-Clouds

. Q-Clouds Management Architecture

— Cloud Scheduler: Place VMs on servers according
to resource requirements

Figure 4. VM Deployment and QoS management with Q-
Clouds.

EECS 750 -- 14 February 2014

Q-Clouds System

. Q-Clouds Management Architecture

- First watch the VM on a Staging Server to see how
It would run without contention, then Cloud
Scheduler can place on appropriate server

- The resource needs observed on the Staging
Server also determine $$$

- Interference Mitigation Control

. Subsystem on each server

. Change resource allocations to keep VMSs running at the
same level as they were on the Staging Server

EECS 750 -- 14 February 2014

Q-Clouds System

. Q-Clouds Management Architecture

- Resource Efficiency Control

. Increase QoS for VMs with Q-State levels when there Is
extra (unused) headroom

. Tune Interference Mitigation Control to comply with the
QoS changes determined (new Q-State for a VM)

. How to map resource allocation to QoS?
- MIMO, feedback loops.

EECS 750 -- 14 February 2014 10

Q-Clouds System

. Q-Clouds MIMO

— Input: control of resource allocations
. This is the system itself, so already available
— Output: VM performance (QoS values)

. Requires feedback from applications
. But each application might have its own QoS metric

. They expect the applications to provide QoS data

- QoS data used in staging area and during run-time adjustments
of resources such, as assignment of Q-States

- MIMO analyzes performance WRT process
Interactions

EECS 750 -- 14 February 2014

11

Q-Clouds System

. Q-states allow processes to run at a higher
QoS (performance) level if: a) the customer
paid for it, and b) there are extra resources
available (in the headroom)

. Only bump up QoS past base SLA level if every
task is running >= its acceptable minimum,
otherwise use some of that extra headroom to
help a struggling task

EECS 750 -- 14 February 2014 12

Experiment

. Considered three interference effects:

- Memory bus contention
- Last level cache (LLC) contention
- Prefetching (instructions and data)

. Control interference by capping VM Virtual
Processors (VPS)

EECS 750 -- 14 February 2014

1L¢]

Experiment

. Since controlling interference by limiting VP
function, want to test with CPU-bound
benchmarks

- SPEC CPU2006 benchmark suite
. Four applications on one quad-core processor

. Selected 5 benchmarks from the set, tested
every combination of 4

EECS 750 -- 14 February 2014

14

Experiment

Table 1. SPEC CPU2006 w orkload ml XeS.

I---

459 (n,msFDTD X | X

obn X XXX
Alomnetpp | [X[X[X[X

EECS 750 -- 14 February 2014

15

Experiment

. Dual socket server

. Ea. socket quad-core Nehalem processor

. 18 GB RAM

. Total: 36 GB RAM, eight cores

. Virtualization system: Windows Server 2008
with Hyper-V

EECS 750 -- 14 February 2014

16

Experiment

. Q-Clouds runs in the hypervisor (‘root partition')

- Watches CPU related performance counters of the
VMs

- Adjusts VP resource allocations

. MATLAB code for the System Controller
functional block of Q-Clouds

— Queries hypervisor for QoS information, adjusts VP
caps in response

EECS 750 -- 14 February 2014 17

Evaluation

-

e
©

. App. From Figure 1 shown

ce
o
®

Py o
>

Normalized Performan

here. Note that capping

¢ o
i

CPU resources linearly
Increases execution time
. Running four at a time

rmalized Performance

0.4

causes performance to
degrade faster

VM CPU Cap

(b) Application with 3MB Working Set Size

° WS S re | evant Figure 7. Comparing the deviation from isolate er for
ma

wance as VMs are consolidated onto a multicore package

EECS 750 -- 14 February 2014 18

Evaluation

. What's that tell us? That we can model
Interference and make a MIMO model from
application performance feedback

. Various MIMO models available with different
benefits and drawbacks

EECS 750 -- 14 February 2014

19

Evaluation

. Back to the point of all this: “Meeting QoS
Requirements with Q-Clouds”

. Must meet the non-contention QoS specified In
the SLA. In the example, the test process set
specifies QoS by processor resources available
to It

. Compare performance to the case where the
system does not allocate resources for QoS, to
test the system

. 3 test SLA levels: require 25%, 50%, 75% of

C P U EECS 750 -- 14 February 2014 20

)
a
J
°
8
g
<

Evaluation

Desired CPU Equivalent Performance

(b) Default Resource Allocation

W 436 cactusADM
W 437 leslie3d

Allocated CPU

B459.GemsFDTD
W470.1bm

EECS 750 -- 14 February 2014

25% 50% 75%
Desired CPU Equivalent Performance

(b) Q-Clouds Resource Allocation

W 436 cactusADM
W437 lesliedd
H459.GemsFDTD
W470/bm

21

2
4
v
o
c
]
E
~
)
t
g
o
o
@
]
m
E
—~
Q
<

Evaluation

25% 50% 75%

Desired CPU Equivalent Performance

(a) Default Performance

W 436.cactusADM
@437 . leslie3d

[459.GemsFDTD
W470.lbm

Normalized Performance vs SLA

EECS 750 -- 14 February 2014

25% 50% 75%
Desired CPU Equivalent Performance

(a) Q-Clouds Performance

W 436 cactusADM
m437 leslie3d

@ 459.GemsFDTD
m470.1bm

22

Evaluation

. Without Q-Clouds, contention Is significant and
nobody gets their desired QoS

. With Q-Clouds, the 25% and 50% CPU
allocation instances are great. But at the 75%
level, the system runs out of resources
(headroom) and contention results in
degradation

EECS 750 -- 14 February 2014 23

Evaluation

. Other test sets (mixes of the benchmark
programs) show similar results. Q-Clouds
Improves performance as long as there is
headroom available

. When the test is extended to include Q-States
functionality, it Is found that the system is able
to iImplement it successfully, again if there Is
sufficient headroom

EECS 750 -- 14 February 2014

24

Evaluation

«~o=Default Resource
Utilization

«=Q-Clouds Resource
Utilization
Q-Clouds+Q-States
Resource Utilization

c
2
B
b
Y
o
3
R
v
-

Workload Mix

Figure 13. Resource utilization comparisons between de-

fault systems, Q-Clouds servers, and Q-Clouds with Q-state
enabled resource efficiency optimization.

EECS 750 -- 14 February 2014

25

Conclusion

. With the cloud comes the need for cloud-aware
scheduling to address performance limiting
factors unique to this environment

. Q-Clouds cant
particular QoS
QoS metric(s) t

neoretically ensure processes a
evel, If the processes know the

nat is(are) important to them

EECS 750 -- 14 February 2014 26

Questions

. The Q-Clouds system relies on QoS feedback
provided by the application. Is there a way
around this, so that any application could be
handled by Q-Clouds?

EECS 750 -- 14 February 2014

27

References

R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-Clouds: Managing performance
iInterference effects for QoS-aware clouds. Microsoft Research.

EECS 750 -- 14 February 2014

28

