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algebra). The algebra, denoted as YL,M,N , is characterized by three non-negative integers
L,M,N . It has a manifest triality automorphism which interchanges L,M,N , and can be
obtained as a reduction ofW1+∞ algebra with a “pit” in the plane partition representation.
Later, Prochazka and Rapcak proposed a representation of YL,M,N in terms of L+M +N

free bosons by a generalization of Miura transformation, where they use the fractional
power differential operators.

In this paper, we derive a q-deformation of the Miura transformation. It gives a
free field representation for q-deformed YL,M,N , which is obtained as a reduction of the
quantum toroidal algebra. We find that the q-deformed version has a “simpler” structure
than the original one because of the Miki duality in the quantum toroidal algebra. For
instance, one can find a direct correspondence between the operators obtained by the Miura
transformation and those of the quantum toroidal algebra. Furthermore, we can show that
the both algebras share the same screening operators.
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1 Introduction

W-algebra is an extended conformal symmetry that includes the higher spin currents. It
played an essential role in understanding the statistical mechanics and quantum gravity in
two dimensions and rapidly developed around ’90. Recently, W-algebra begins to attract
a renovated interest both from physicists and mathematicians. One of the reasons is the
discovery of AGT correspondence [1], which suggests the algebra and its representation
theory is critically important to understand higher dimensional gauge/string theories.
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A series of studies brought us a novel insight into W-algebras. For example, it was
found that W1+∞ is equivalent to affine Yangian of gl1 [2, 3]. The duality between two
algebra provided us a new perspective on the study of WN algebras and was helpful to
understand how 4D/2D duality works.

Recently, Gaiotto and Rapcak [4] found a new family of W -algebras from D3-branes
attached to a 5-brane junction. They denoted their algebra as YL,M,N [Ψ] where L,M,N

are the number of D3 branes and Ψ is the coupling of N = 4 super Yang-Mills in four
dimensions. The authors of [4, 5] also claimed that the algebra can be obtained as a
truncation of the plane partition representation of the affine Yangian with a “pit” at the
location (L,M,N), [6]. The algebras are referred to as corner VOAs or Y-algebras. One
of the salient features of W1+∞ is the triality [7]. The corner VOA inherits it as the
freedom to reshuffle three integers L,M,N together with an appropriate transformation of
the coupling Ψ. A mathematical proof is given in [8].

As an independent study of the generalization of the WN algebra, the authors of [9]
classified the generic chiral algebras which contain spin three current. Their strategy is
to use the free boson oscillators and a set of screening operators realized by the vertex
operators. They derived a classification on the set of screening operators to have spin three
current to commute with screening currents.

In [10], Prochazka and Rapcak proposed a free field realization of the corner VOAs. It
is one of the most powerful techniques to understand W-algebras and their representation
theories. A typical example is Fateev-Lukyanov’s construction [11], where WN algebras
were introduced. The explicit form of the generators is determined by the so-called Miura
transformation, which is given by an N -th order differential operator. We note that WN

algebra together with U(1) current is a special example of the corner VOA with (L,M,N) =
(0, 0, N). To obtain the generalization for the arbitrary (L,M,N), Prochazka and Rapcak
introduced three types of differential operators so that they will respect the triality. The
new feature in this construction is the appearance of pseudo-differential operators, which
involve fractional powers of derivatives. They also found that the free field realization
defined in this way is consistent with the screening charges derived in [9] by checking the
commutativity at low orders.

An interesting unexplored subject in the corner VOA is the q-deformation.1 The
first attempt to apply q-deformation to the two-dimensional conformal field theory was
made in [14], where the q-deformation of Virasoro algebra was proposed. It was soon
generalized to q-deformed WN algebra, whose generators are defined by q-deformed Miura
transformation [15, 16].

In this paper, we derive a q-deformed version of the generalized Miura transformation
in [10]. It gives an explicit free field realization of q-deformed YL,M,N .

As we wrote, the corner VOA YL,M,N is obtained as a reduction of W1+∞, or the affine
Yangian. One can obtain the q-deformed YL,M,N from the quantum toroidal algebra gl1
(also known as Ding-Iohara-Miki algebra [17, 18]).

1After the corner VOA appeared, several generalizations to a broader class of W-algebras have been
proposed [5, 12, 13].
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Affine Yangian Quantum toroidal algebra

YL,M,N q-YL,M,N

q-deformation

“pit”-reduction

S-dual

It implies several advantages of considering q-deformed Y-algebras by comparing its
universal symmetries — the first line in the above diagram. First, the coproduct becomes
simpler, and it allows us to deal with the tensor product representation spaces. Second, the
quantum toroidal gl1 is more symmetric. It has SL(2,Z) symmetry (Miki-automorphism),
which the affine Yangian does not share. It helps to write the free boson representation
of the Drinfeld currents, and one may compare it directly with that of q-W algebra or
q-YL,M,N algebra. Finally, the quantum toroidal gl1 has a universal R-matrix, which helps
us understand that the connection with the integrable models [19].

We utilize the benefits of the toroidal algebra in our free field construction. We first
introduce three types of difference operators and define the q-YL,M,N algebras by q-deformed
Miura transformation. While the general form of higher spin currents in [10] are difficult
to manage, the q-deformation is expressed more systematically and easier to handle. In
particular, it enables us to calculate the commutativity with screening charges. We prove
that all the generators in our q-W algebras commute with the screening charges derived
in [6]. We also discuss the relation to the quantum toroidal gl1. Because the screening
charges in [6] were originally derived in the context of the quantum toroidal gl1, it should
reproduce the q-W algebra defined by q-deformed Miura transformation. We found how
we can reproduce all the generators from the Drinfeld currents of the quantum toroidal gl1.

We organize the paper as follows. In section 2, we review the quantum Miura trans-
formation of YL,M,N and the screening current associated with it. We also comment on the
singular nature of YN,N,N , which should describe a null system. In section 3, we present
the q-deformation of the Miura transformation. We use the q-Pochhammer to propose the
fractional q-difference operator (3.58), and define the Miura transformation for q-deformed
YL,M,N . As the first consistency check, we compare the generators obtained by the Miura
transformation with the result of [20], where the free boson representation of Wq,t(sl(2|1))
was studied. We note that the algebra is identical to q-deformed Y0,1,2 once we subtract
the U(1) factor. In section 4, we establish a direct correspondence between the Miura
transformation and the Drinfeld currents in the quantum toroidal gl1. We note that there
is no free boson representation for the Drinfeld current in the degenerate limit, and the
direct comparison with the Miura transformation is not possible, which makes it difficult
to show the commutativity with the screening charges. On the other hand, that becomes
almost trivial once we have established the connection to the quantum toroidal gl1 because
its screening charge was already obtained in [6]. That is one of the main advantages of
considering q-deformed version. In the appendix, we presented our partial proof of the
fTT relation proposed in section 3.
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2 Miura transformation for the corner vertex operator algebra YL,M,N

In this section, we review the free boson realization of the Y-algebra YL,M,N [Ψ]. It is a
generalization of the quantum Miura transformation which defines WN algebras [11].

We note that the explicit form of the WN -algebra is not known except for the simplest
cases. Nevertheless, the free field realization of the higher spin charges and the screening
currents are enough to construct the representation theory.

The free field realization of YL,M,N [Ψ] plays a similar role in the representation theory.
The YL,M,N [Ψ] algebra contains WN -algebra asWN ⊕ U(1) ' Y0,0,N . Recently, the authors
of [10] proposed a generalized Miura transformation for YL,M,N [Ψ] in terms of L+M +N

free bosons. On the other hand, the screening currents associated with it was developed
independently [9] in the analysis of a generalization of W3 algebra. Since both the defini-
tions of Miura transformation and the screening charges are essential for us, we summarize
these developments here.

2.1 Free field realization of WN and Y0,0,N 'WN ⊕ U(1)

We first review the free field realization of the WN algebra and Y0,0,N . The algebra WN

consists of spin ` chiral current U` with ` = 2, 3, · · · , N . The precise definition of the
algebra Y0,0,N will be reviewed in the next subsection. For the moment, what we need to
know is that Y0,0,N consists of WN algebra with extra spin 1 current.

Miura transformation. We first explain the Miura transformation for Y0,0,N since it is
simpler. We introduce N free boson fields φi (i = 1, · · · , N) with OPE,

φi(z)φj(w) ∼ −δij log(z − w) . (2.1)

The quantum Miura transformation is

R = R1·R2 · · ·RN = (α0∂+∂φ1(z))(α0∂+∂φ2(z)) · · · (α0∂+∂φN (z)) =
N∑
k=0

Uk(z)(α0∂)N−k,

(2.2)
with Ri = α0∂ + ∂φi. It defines the spin ` currents U` (` = 0, 1, · · · , N). The first few
terms are

U0 = 1, (2.3)

U1 =
N∑
i=1

∂φi(z), (2.4)

U2 =
∑
i<j

∂φi∂φj + α0
∑
i

(i− 1) · ∂2φi, (2.5)

U3 =
∑
i<j<k

∂φi∂φj∂φk + α0
∑
i<j

(i− j)∂(∂φi∂φj)

+ α0
∑
i<j

(j − i− 1)∂φi∂2φj + α2
0

2
∑
i

(i− 1)(i− 2)∂3φi(z). (2.6)
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We identify the stress-energy tensor of Y0,0,N as,

T (z) = U2 −
1
2 : (U1)2 : −N + 1

2 α0∂U1 = −1
2 : (∂~φ)2 : +α0 ~ρ · ∂2~φ , (~ρ)i = i− N + 1

2 ,

(2.7)

where ~φ = (φ1, · · · , φN ). The central charge of the system is,

c = N + 12α2
0 ~ρ · ~ρ = (N − 1)(1 + α2

0N(N + 1)) + 1 . (2.8)

This is the standard central charge for WN algebra plus 1. The extra central charge comes
from the nonvanishing U(1) current U1.

The Miura transformation for WN algebra is obtained from (2.2) by noting that,

Ri = α0∂ + ∂φi = α0∂ + ~εi · ∂~φ+ 1
N
U1 = e

− φ
Nα0 R̃ie

φ
Nα0 , (2.9)

R̃i = α0∂ + ~εi · ∂~φ . (2.10)

Here we define ~εi = ~ei − 1
N

∑
i ~ei with (~ei)j = δij , and φ = ∑N

i=1 φi. We rewrite (2.2) to
define the Miura transformation for WN ,

R =: R1 · · ·RN :=: e−
φ

Nα0 R̃1e
φ

Nα0 · · · e−
φ

Nα0 R̃Ne
φ

Nα0 := e
− φ
Nα0 R̃e

φ
Nα0 , (2.11)

R̃ ≡: R̃1 · · · R̃N :=
N∑
k=0

Ũk(z)(α0∂)N−k . (2.12)

The first few terms are

Ũ0 = 1, (2.13)

Ũ1 =
N∑
i=1

~εi · ∂~φ(z) = 0, (2.14)

Ũ2 =
∑
i<j

: (~εi · ∂~φ)(~εj · ∂~φ) : +α0
∑
i

(i−1)~εi · ∂2~φ(z) = T (z)− 1
2N : (∂~φ)2 := T̃ (z) . (2.15)

The U(1) current is removed and T̃ (z) generates the Virasoro algebra of the central charge

c = (N − 1)(1 + α2
0N(N + 1)) . (2.16)

R̃ is precisely the Miura transformation in [11].

Screening currents. The screening current for Y0,0,N (and the associatedWN ) is defined
as the integral of the vertex operator which commutes with all the higher spin currents
defined by the Miura transformation. It is defined using the neighboring bosonic fields as,

Si =
∮

dz

2πi : exp(aiφi(z)− biφi+1(z)) :, i = 1, · · · , N − 1 . (2.17)
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We note that the part in the Miura transformation which may have the nonvanishing OPE
with Si is restricted to,

RiRi+1 =
2∑
i=0

Ui(z)(α0∂)n, (2.18)

U0 = 1, U1 = ∂φi + ∂φi+1, U2 = ∂φi∂φi+1 + α0∂
2φi+1 , (2.19)

since other parts do not contain φi and φi+1. In order to have vanishing commutation
relation with U1 and U2, one determines,

ai = −bi = b, or 1
b
, (2.20)

if we parametrize α0 = −b− 1/b. The symmetry b↔ 1/b is known as Feigin-Frenkel dual-
ity [21]. We note that the screening current for WN takes exactly the same form [11] since
the screening currents thus determined automatically commute with the vertex operator
exp (φ/Nα0) in the similarity transformation (2.11).

2.2 Affine Yangian of gl1 and YL,M,N

There are two definitions of the corner vertex operator algebra. Original one is obtained
by combining the Drinfeld-Sokolov reduction of super-Lie algebras and the coset construc-
tion [4]. The second one is the reduction of the plane partition representation of the affine
Yangian of gl1 [5]. For our purpose, it is more convenient to use the second.

Affine Yangian. The affine Yangian of gl1 is described by Drinfeld currents

e(u) =
∞∑
j=0

ej
uj+1 , f(u) =

∞∑
j=0

fj
uj+1 , ψ(u) = 1 + σ

∞∑
j=0

ψj
uj+1 . (2.21)

The parameter u is the spectral parameter. We follow the notation in [3] where the algebra
is parametrized by three numbers h1, h2, h3 ∈ C with a constraint,

h1 + h2 + h3 = 0. (2.22)

We denote σ = h1h2h3. The defining relations of the affine Yangian of gl1 is as follows:

e(u)e(v) ∼ ϕ(u− v)e(v)e(u), f(u)f(v) ∼ ϕ(v − u)f(v)f(u),
ψ(u)e(v) ∼ ϕ(u− v)e(v)ψ(u), ψ(u)f(v) ∼ ϕ(v − u)f(v)ψ(u),

(2.23)

[ψi, ψj ] = 0, [ei, fj ] = ψi+j , (2.24)

[ψ0, ej ] = 0, [ψ1, ej ] = 0, [ψ2, ej ] = 2ej ,
[ψ0, fj ] = 0, [ψ1, fj ] = 0, [ψ2, fj ] = −2fj ,

(2.25)

together with Serre relations. ϕ(u) is the structure function,

ϕ(u) = (u+ h1)(u+ h2)(u+ h3)
(u− h1)(u− h2)(u− h3) . (2.26)

– 6 –
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We note that “∼” implies both sides are equal up to regular terms at u = 0 or v = 0.
ψ0 is the central element of the algebra. The structure function (2.26) is invariant under
the scale transformation hi → γhi, ψ0 → γ−2ψ0, u → γu. It implies that we have two
independent parameters.

Procházka [22] introduced new parameters λi ∈ C (i = 1, 2, 3) which is convenient to
describe the null states associated with the plane partition. They are related to hi and
ψ0 by,

λi = −ψ0σ

hi
. (2.27)

This combination is invariant under the scale transformation. The relation (2.22) is re-
placed by

3∑
i=1

λ−1
i = 0. (2.28)

Use of λi with the constraint (2.28) is more symmetric representation of the two parameters
in the algebra.

Relation with W1+∞. We remind the reader of the relation between W1+∞-
algebra [7, 23] and the affine Yangian. W1+∞-algebra consists of an infinite chiral currents
W (n)(z) with n = 1, 2, · · · where W (2) is the stress-energy tensor, W (1)(z) is a free U(1)
current and W (n)(z) (n > 2) are the higher spin currents. One may define it as a WN -
algebra with N →∞ limit with an extra decoupled U(1) current and an extra deformation
parameter. Each current has an expansion W (s)(z) = ∑

n∈ZW
(s)
n z−s−n. See also [24]

for W∞.
W1+∞ looks very different from the affine Yangian while they are equivalent. Roughly

speaking, the correspondence between the generators is

W
(s)
−1 ↔ es−1, W

(s)
0 ↔ ψs−2, W

(s)
1 ↔ fs−1. (2.29)

In general, the correspondence is much more involved, see, for instance, [25].2 In a sense,
the expansion (2.21) is with respect to the spin (upper) index of W (s)

n , while the expansion
inW1+∞ is with respect to the lower index. There is an obvious asymmetry between them,
the upper index goes from 1 to ∞, while the lower index can take arbitrary integer.

The algebra contains two parameters, c and x, where c is the central charge of Virasoro
algebra and x is the parameter which describes the OPE coefficients of higher currents.
The relations between the parameters of two algebras are [22],

c = 1 +
3∏
i=1

(λi − 1), x2 = 144(c+ 1)
3∏
i=1

(λi − 2)(λi − 3)−1 . (2.30)

As we see, the reduction to YL,M,N is easiest to describe in the affine Yangian. On the other
hand, the free boson representation of YL,M,N describes higher spin currents ofW1+∞. This
is the origin of the complication to define the Miura transformation.

2The basic idea is as follows. The identification of two algebra can be made through three generators
e0 ∼ W

(1)
−1 , f0 ∼ W

(1)
1 , ψ1 ∼ W

(3)
0 . One may generate the whole algebra by taking commutator of these

elementary generators.
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Representation by plane partition and the reduction to YL,M,N . In the following,
we consider a representation by the affine Yangian in terms of a plane partition [3, 26]. We
introduce a set of basis with a label of a plane partition Λ, and it spans the Hilbert space
of the algebra. The operator ψi is diagonal with respect to |λ〉 and ei(fi) play a role of
adding (removing) a box to Λ:

ψ(u) |Λ〉 = ψΛ(u) |Λ〉 , (2.31)

e(u) |Λ〉 =
∑
∈Λ+

1
u− h

√
− 1
σ

resu→q+h ψΛ(u) |Λ + 〉 , (2.32)

f(u) |Λ〉 =
∑
∈Λ−

1
u− h

√
− 1
σ

resu→q+h ψΛ− (u) |Λ− 〉 , (2.33)

and

ψΛ(u) = ψ0(u)
∏
∈Λ
ϕ(u− h ),

ψ0(u) = u+ ψ0σ

u
.

(2.34)

Here, Λ± are the places where we can add (or remove) boxes so that the shape of plane
partition is consistent. We introduce a coordinate for each box in the plane partition. We
assign (0, 0, 0) to the origin of the partition and (x1, x2, x3) ∈ (Z≥0)⊗3 for a general box.
We assign

h = h1x1 + h2x2 + h3x3 (2.35)

to the box located at (x1, x2, x3).
To define YL,M,N , we impose λi to satisfy an extra condition:

L

λ1
+ M

λ2
+ N

λ3
= 1. (2.36)

From the explicit representation (2.32), (2.33), one can derive the basis |Λ〉 which contains
a box with a coordinate (L,M,N) becomes null. In [6], the authors analyzed the simi-
lar problem for the quantum toroidal algebra. They describe the restriction to the plane
partition realization as “pit” at (L,M,N). In [5], the authors claimed that the affine Yan-
gian whose parameter is constrained by this condition is equivalent to the vertex operator
algebra YL,M,N [Ψ] in [4]. The parameter Ψ of the algebra is written as,

Ψ = −λ1/λ2 . (2.37)

One may solve (2.28), (2.36), (2.37) to express λi as,

λ1 = L−MΨ +N(Ψ− 1), (2.38)

λ2 = −LΨ +M +N

( 1
Ψ − 1

)
, (2.39)

λ3 = L

Ψ− 1 + MΨ
1−Ψ +N . (2.40)

– 8 –
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We note that the condition (2.36) has a shift symmetry,

L→ L+ k, M →M + k, N → N + k. (2.41)

for k ∈ Z due to (2.28). It allows the redefinition the location of the pit such that the
smallest elements are zero and others are greater than zero. The character of the plane
partitions with a pit was derived in [6].

For the special case Y0,0,N , we have a pit at the box (0, 0, N). With such condition, the
height (the number of layers in z direction) of the plane partition Λ for the nonvanishing
states is restricted to N . One may decompose the plane partition layer by layer into N -
tuple Young diagrams Y1, · · · , YN with the condition Y1 � · · · � YN . We note that the Fock
space of the free boson is written in terms of the basis labeled by Young diagrams. They
give a representation space of WN algebra with an extra U(1) factor, which we discussed
in the previous subsection.

2.3 Miura operators

In [10], the authors proposed the Miura transformation which generate the higher spin
charges of the algebra YL,M,N . It is written in terms of L+M +N free boson fields φi(z)
(i = 1, · · · , L + M + N) which obeys the standard OPE relation (2.1). YL,M,N always
contains the Virasoro current in the following standard form:

T (z) = −1
2 : ∂~φ · ∂~φ : +~τ∂2~φ . (2.42)

with the central charge c = L + M + N + 12~τ2. The vertex operator and the conformal
dimension is given by,

V~a(z) =: exp(~a · ~φ(z)) :, ∆(~a) = 1
2~a · (2~τ − ~a) . (2.43)

The Miura transformation [10] consists of three types (pseudo-)differential operators,
which we will refer as the Miura operator

R(c)(φ) =: (∂z + µc∂zφ)νc :=: e−µcφ∂νcz eµcφ :, c = 1, 2, 3 . (2.44)

The parameters are set to,

µ1 = α, ν1 = β2,

µ2 = β, ν2 = α2,

µ3 = αβ, ν3 = 1,
(2.45)

with α, β ∈ C with a constraint:

α2 + β2 + 1 = 0 . (2.46)

They are related to the Ψ parameter in YL,M,N [Ψ] as,

Ψ = −α2/β2 , or α2 = Ψ
1−Ψ , β2 = 1

Ψ− 1 . (2.47)

– 9 –
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These parameters are introduced here to simplify the free boson representations. The other
parameters of the affine Yangian can be set to,

h1 = β/α, h2 = α/β, h3 = α0 = 1
αβ

, ψ0 = Lν1 +Mν2 +Nν3 , (2.48)

λc = −ψ0/νc (c = 1, 2, 3) . (2.49)

Our definition of the Miura operator is identical to the [10], which we refer to as R(PR:c)

R(PR:c) =:
(
α0∂z + h3

hc
J (c)

)hc/h3

: , (2.50)

J (c)(z)J (c)(w) = −hc
σ

1
(z − w)2 . (2.51)

up to the overall coefficient and the rescaling of the currents by J (c)(z) =
√

hc
σ ∂φ, with:

µc = 1
hc

√
hc
σ
, νc = hc

h3
. (2.52)

The parameters µc, νc satisfy the relations,∑
c=1,2,3

νc = 0, µ2
c = ω/νc, ω = α2β2 = (σ)−2. (2.53)

Expansion of pseudo differential operators. The action of the pseudo-differential
operator on a given function is given by,

∂νz f(z) =
∞∑
n=0

(−1)n(−ν)n
n! (∂nz f(z))∂ν−nz , (2.54)

where
(ν)n = (ν + n− 1) · · · (ν + 1)ν , (2.55)

is the Pochhammer symbol. For the expansion of the pseudo-differential operator, the
following formula is useful.

: (∂ + µ∂φ)ν : = : e−µφ∂νeµφ :

=
∞∑
n=0

(−1)n (−ν)n
n! Pn[µ∂φ]∂ν−n , (2.56)

Pn[J ] = : (∂ + J)n : ·1 . (2.57)

The first few examples of Pn are,

P1[J ] = J, P2[J ] = ∂J+ : J2 :, P3[J ] = ∂2J+ : 3J∂J : + : J3 : . (2.58)

We will use a notation,

: (∂ + µc∂φ)νc : =
∞∑
n=1

U (c)
n ∂νc−n , (2.59)

U (c)
n = (−1)n (−νc)n

n! Pn[µc∂φ] , (2.60)

where U (c)
n is the “spin n” component of the expansion.
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2.4 Miura transformation

One defines a generalized Miura transformation for YL,M,N as,

R = R(c1)(φ1)R(c2)(φ2) · · ·R(cn)(φn) =
∞∑
s=0

Us(~φ) ∂π1−s, (2.61)

where n = L+M +N . We use a notation π1 = ∑n
i=1 νci = Lν1 +Mν2 +Nν3 = −ψ0. We

will generalize it to πs = ∑n
i=1(νci)s = Lνs1 +Mνs2 +Nνs3 in the following. Among the set

~c = {c1, · · · , cn}, (2.62)

L indices equal 1, M indices equals 2, and N indices equals 3. The expansion coefficient
Us(~φ) plays the role of spin s current in YL,M,N . When all {c1, · · · , cn} equal 3, we recover
the original Miura transformation of Wn algebra (2.2) up to overall constant.

The authors of [10] proposed,

• The algebra YL,M,N does not depend on the order of the product of the Miura oper-
ators.

• There is a shift symmetry YL,M,N → YL+1,M+1,N+1.

There is a partial arguments for the first point [27]. It is based on the existence of R-matrix,
which changes the order of the Miura operators,

Rc1c2R
(c1)(φ1)R(c2)(φ2) = R(c2)(φ2)R(c1)(φ1)Rc1c2 . (2.63)

Their argument is a generalization of [28, 29] for the R(3) operator in the homogeneous
form (2.2). There is also a different reasoning [9] based on the correlation function of the
screening currents.

For the second point, the existence of the shift symmetry implies that the currents
Ur defined by R(1)(φ1)R(2)(φ2)R(3)(φ3) = ∑∞

r=0 Ur(~φ)∂−r, which describes Y1,1,1 ' Y0,0,0
should be null operators. We will give some arguments that this statement holds.

We come back to the expansion of (2.61) more explicitly.

U0 =1 , (2.64)

U1 =
n∑
i=1

U
(ci)
1 =

n∑
i=1

µciνci∂φi = ~g · ∂~φ, ~g = (µc1νc1 , · · · , µcnνcn) , (2.65)

U2 =
n∑
i=1

U
(ci)
2 +

∑
i<j

(U (ci)
1 U

(cj)
1 + νci∂U

(cj)
1 ) , (2.66)

U3 =
n∑
i=1

U
(ci)
3 +

∑
i<j

(U (ci)
1 U

(cj)
2 + U

(ci)
2 U

(cj)
1 ) +

∑
i<j<k

U
(ci)
1 U

(cj)
1 U

(ck)
1

+
∑
i<j

(νci∂U
(cj)
2 + (νci − 1)U (ci)

1 ∂U
(cj)
1 )

+
∑
i<j<k

(
νci∂(U (cj)

1 U
(ck)
1 ) + U

(ci)
1 νcj∂U

(ck)
1

)
+
∑
i<j

νci(νci − 1)
2 ∂2U

(cj)
1 +

∑
i<j<k

νciνcj∂
2U

(ck)
1 . (2.67)
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The generic generator Us is formally written as,

Us=
∑

`1+···+`n=s, `i≥0

∏n
i=1
(
(−1)`i(−νi)`i

)
`1! · · · `n! : e−µc1φ1∂`1

(
eµc1φ1−µc2φ2∂`2

(
eµc2φ2−µc3φ3∂`3 (· · · )

))
: .

(2.68)

Let us summarize the basic properties of CFTs defined by these operators.

• Spin one U(1) current: J(z) = U1(z). Their OPE is

J(z)J(w) = ωπ1
(z − w)2 . (2.69)

• Stress energy tensor T (z): it takes of the form (2.42) by combining

T0(z) = 1
ω

(
U2−

1
2 : (U1)2 :

)
= −1

2 : (∂~φ)2 : +~τ0 · ∂2~φ , (~τ0)i =
νci−1+2∑j<i νcj

2µci
.

(2.70)

We have to modify T0 by adding a term proportional to ∂J(z) to impose ~τ · ~g = 0.3

T (z) = T0(z)− ~g · ~τ0
~g2 ∂J(z) = −1

2 : (∂~φ)2 : +~τ · ∂2~φ , (2.71)

(~τ)i =
∑
j<i νcj −

∑
j>i νcj

2µci
. (2.72)

We note that

~g2 =
∑
i

µ2
ciν

2
ci = ω

∑
i

νci = ωπ1 , (2.73)

~g · τ0 =
∑
i

βciνci
νci − 1 + 2∑j<i νcj

2βci
= · · · = 1

2π1(π1 − 1) , (2.74)

~τ2
0 = 1

4
∑
i

(
νci − 1 + 2∑j<i νcj

)2

(µci)2 = 1
4ω
∑
i

νci

νci − 1 + 2
∑
j<i

νcj

2

= · · · = 1
4ω

(
−1

3π3 + 4
3(π1)3 − 2(π1)2 + π1

)
. (2.75)

It implies that the central charge of (2.71) is,

c = n+ 12
(
~τ2

0 −
(~g · ~τ0)2

~g2

)
= n+ 1

ω
((π1)3 − π3) . (2.76)

It is identical to (2.30) after some computation by using the indentities (2.48), (2.49).
3When L = M = N , ~g2 = 0 and the expression for T (z) appears to be ill-defined. Actually the operator

∂J becomes null operator and its coefficient is arbitrary. Such a modification does not change the central
charge and the structure of the screening operators.
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Comments.

1. When the Miura transformation is homogeneous, namely R(c1)(φ) = · · · = R(cn)(φ) =
R(c)(φ), the central charge becomes

cc = n+ ν3
c

ω
(n3 − n) . (2.77)

We note that
ν3

1
ω

= (α+ α−1)2,
ν3

2
ω

= (β + β−1)2,
ν3

3
ω

= (α/β + β/α)2 .

It takes the form of the central charge of Wn algebra and a U(1) boson. As we will
see, the screening currents for YN,0,0, Y0,N,0, Y0,0,N takes the similar form. It implies
that these three Miura transformations defines the same algebra with the parameter
redefined.

2. It is clear from the final expression (2.69), (2.76) that the level of U(1) (the numer-
ator factor of (2.69)) and the central charge is independent of the order of Miura
transformation (2.61).

3. For Y1,1,1, which be equivalent to Y0,0,0, π1 = 0, π3 = 3ω. It gives the level of U(1) cur-
rent algebra and the central charge of W∞ to vanish. It implies that there are no op-
erators proportional to the identity operator in the commutation relations. From this
fact, one may claim that the norm of the states generated by U (s)

−n, s, n = 1, 2, · · · ,∞
(obtained from the mode expansion of Us(z)), vanishes, while it is generated by non-
trivial free bosons. Thus, the Miura transformation for Y1,1,1 gives “null operators”
Us while their appearance is very complicated.

2.5 Screening currents

The screening currents for the Miura transformation (2.61) should commute with the neigh-
boring Miura operators, R(ci)(φi)R(ci+1)(φi+1). One expands,

R(a)(φ1)R(b)(φ2) = ∂νa+νb + U1∂
νa+νb−1 + U2∂

νa+νb−2 + · · · . (2.78)

We define the screening currents as

Sab =
∮

dz

2πi : exp(~kab · ~φ(z)) :, ~kab = (k1
ab, k

2
ab), ~φ = (φ1, φ2) . (2.79)

They should commute with Un in (2.78). We use the notation (~g, ~τ) in section 2.4 for this
short Miura transformation. The commutativity with U1 and U2 gives,

~g · ~kab = 0, ∆(~kab) = 1
2
~k12 · (2~τ − ~kab) = 1 . (2.80)

The solutions to these equations are given as follows,

~k±cc = νc±1
µc

(1,−1) , (2.81)

~kab =
(
νb
µa
,−νa

µb

)
, a 6= b . (2.82)
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More explicitly,

~k11 = (α±1,−α±1), ~k22 = (β±1,−β±1), ~k33 = ((α/β)±1,−(α/β)±1) , (2.83)
~k12 = (α,−β), ~k21 = (β,−α), ~k13 = (α−1,−β/α), ~k31 = (β/α,−α−1),
~k23 = (β−1,−α/β), ~k32 = (α/β,−β−1) . (2.84)

We note that for R(c)R(c), we have two solutions which depends the index a which is
different from c in the set {1, 2, 3}. We denote them as c ± 1. This is the reason that ~kcc
has an extra upper index. For the inhomogeneous case R(a)R(b) (a 6= b), we have a second
solution −2~kab for (2.80). The vertex operator for the second solution, however, does not
commute with the higher currents.

The screening current for Sab (a 6= b) anticommutes with itself. Thus it is nilpotent
(Sab)2 = 0 [6]. We refer such screening charge as “fermionic”, while we refer the screening
charge S±cc as “bosonic”.

To examine the commutativity of the screening currents with the higher charges Un in
general, we evaluate,

∞∑
n=0

[Sab, Un(w)] ∂νa+νb−n
w

=
∮
Cw

dz

2πie
~kab·~φ(z)Un(w)∂νa+νb−n

w

= Resz=w : e~kab·~φ(z) :: R(a)(w)R(b)(w) :

= Resz=w
(
: e~kab·~φ(z) :: e−µaφ1(w)∂νaeµaφ1(w) · e−µbφ2(w)∂νbeµaφ2(w) :

)
. (2.85)

In order to show the screening charge commutes with arbitrary Un, one has to show the
residue in the last line is zero.

To go further, we note that there are some components that do not have OPE
with e~kabφ.

• Bosonic screening charge a = b: since ~kaa ∝ (1,−1), we have the following decompo-
sition.

φ± = φ1 ± φ2, φ±(z)φ±(z) ∼ −2 log(z − w), φ+(z)φ−(w) ∼ 0 . (2.86)

We rewrite,

: R(a)R(a) : =: e−
µa
2 φ+R(aa)(φ−)e+µa

2 φ+ , (2.87)
R(aa)(φ−) =: e−

µa
2 φ−∂νaeµaφ−∂νae−

µa
2 φ− : . (2.88)

Since the vertex operator in the screening operator commutes with φ+, the last line
in (2.85) is simplified to,

: e−
µa
2 φ+ : Resz=w

(
: e

νb
µa
φ−(z) :: R(aa)(φ−(w)) :

)
: e

µa
2 φ+ : , (2.89)

where we take ~k(b)
aa (b 6= a) for the choice of the two screening currents.
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• Fermionic screening charge a 6= b: let c be the third number other than a, b in the
set (1, 2, 3). First we note some identities,

µ2
a + µ2

b = −ν2
c , µaµb = µcνc . (2.90)

We redefine the free boson generator,

φ+ = µbφ1 + µaφ2
νc

, φ− = µaφ1 − µbφ2
νc

, (2.91)

φ±(z)φ±(z) ∼ log(z − w), φ+(z)φ−(w) ∼ 0 . (2.92)

We derive after the help of (2.90),

~κab · ~φ = φ− , (2.93)
: R(a)R(b) : =: e−µcφ+R(ab)(φ−)eµcφ+ : , (2.94)
R(ab)(φ−) =: eνbφ−∂νaeνcφ−∂νbeνaφ− : . (2.95)

Since the vertex operator in the screening operator commutes with φ+, the last line
in (2.85) is simplified to,

: e−µcφ+(w) : Resz=w
(
: eφ−(z) :: R(ab)(φ−) :

)
: eµcφ+(w) : . (2.96)

We do not have an analytic proof the residue appearing in (2.89), (2.96) vanishes. It is,
however, possible to calculate them by computer. We check the residue in (2.89), (2.96)
vanishes up to spin 8. In section 4, the commutativity of the screening currents is explicitly
proved for the q-deformed case. By taking the degenerate limit q → 1, we obtain the
analytic proof of the statement.

3 q-deformation of corner VOA

In this section, we propose a q-deformation of the Miura transformation for YL,M,N .

3.1 q-deformation of the Miura transformation for Y0,0,N and WN algebra

As a warm-up, we first review the q-deformation of the Miura transformation of Y0,0,N and
WN -algebra [14–16]. It is written to get accustomed to the q-deformation of the oscillator
algebra. The readers who are familiar with the subject can skip this subsection.

3.1.1 q-deformation of the Heisenberg algebra and the Miura transformation
for Y0,0,N

As in the previous section, the construction of the q-deformation of Y0,0,N is similar to
WN algebra up to the subtraction of U(1) part. We introduce the q-deformed Miura
operators. By expanding the product of these operators we obtain the explicit generators
which generate q-Y0,0,N .
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Y0,0,N before the q-deformation depends on three parameters h1, h2, h3 and they satisfy
h1 +h2 +h3 = 0. Let the parameters of the q-deformation be q1, q2, q3. hc (c = 1, 2, 3) and
qc are related with4

qc = eεhc , (3.1)

where ε is a constant. They have the following relation corresponding to h1 + h2 + h3 = 0,

q1q2q3 = 1. (3.2)

We introduce a q-deformation of the N free bosons defined by the Heisenberg alge-
bra [6],

[a(i)
m , a

(j)
n ] = −m(q

m
2

3 − q
−m2
3 )3

κm
δm+n,0δi,j , (i = 1, 2, · · · , N) (3.3)

where κm is defined as

κm =
3∏
c=1

(q
m
2
c − q

−m2
c ). (3.4)

In the q → 1 (or ε → 0) limit, which we will refer to as the degenerate limit, the
coefficient in the right-hand side of (3.3) becomes

−m(q
m
2

3 − q
−m2
3 )3

κm
→ −m h2

3
h1h2

+O(ε). (3.5)

This is the same as (2.51).
We define vertex operators Λi by using free bosons a(i)

r as

Λi(z) = exp
(
ε
h1h2
h3

a
(i)
0

)
exp

∑
r>0

κr
r
q
− r2N
3

q
r
2 (i−1)
3

(q
r
2
3 − q

− r2
3 )2

a
(i)
−rz

r


× exp

∑
r>0

κr
r
q
r
2N
3

q
− r2 i
3

(q
r
2
3 − q

− r2
3 )2

a(i)
r z
−r +

∑
r>0
−κr
r
q
r
2N
3

N∑
j=i+1

q
− r2 (j−1)
3

q
r
2
3 − q

− r2
3

a(j)
r z−r

 ,
(3.6)

The second term in the second line describes the mixing of the off-diagonal (j 6= i) compo-
nents of the free bosons. It comes from the coproduct structure of the quantum toroidal
algebra, which we discuss later in section 4. In the degenerate limit,

Λi(z) = 1 + ε
h1h2
h3

∑
r∈Z

a
(i)
−rz

r +O(ε2). (3.7)

4The parameter ε can be absorbed by rescaling hi. However, we keep ε in order to take the degenerate
limit.
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It will be useful to recombine free bosons to include the off-diagonal parts to make the
definition of the vertex operator simpler. For r > 0, we define h(i)

r (i = 1 ∼ N) as:

h
(i)
−r = κr

r
q
− r2N
3

q
r
2 (i−1)
3

(q
r
2
3 − q

− r2
3 )2

a
(i)
−r,

h
(i)
0 = ε

h1h2
h3

a
(i)
0 ,

h(i)
r = κr

r
q
r
2N
3

q
− r2 i
3

(q
r
2
3 − q

− r2
3 )2

a(i)
r −

κr
r
q
r
2N
3

N∑
j=i+1

q
− r2 (j−1)
3

q
r
2
3 − q

− r2
3

a(j)
r . (3.8)

The commutation relation between them is

[h(i)
−r, h

(j)
r ] = κr

r

1
qr3 − 1δi,j −

κr
r
θ(i > j), (3.9)

where r is positive. Using these bosons h(i)
−r, we can rewrite the vertex operator Λi as

Λi(z) =: exp

∑
r∈Z

h
(i)
−rz

r

 :, (i = 1, · · · , N). (3.10)

Using the vertex operator Λi, we define the quantum Miura operator as

Ri(z) = 1− Λi(z)q−Dz3 , i = 1, · · · , N. (3.11)

Here the derivative Dz is defined as Dz = z d
dz and the shift operator qDz3 acts as

qDz3 f(z) = f(q3z). (3.12)

In the degenerate limit, by using (3.7),

Ri(z) = εh3

Dz −
h1h2
h2

3

∑
r∈Z

a
(i)
−rz

r

+O(ε2) ≡ εh3z(∂ + µ3∂φ(z)) +O(ε2), (3.13)

which coincides with the Miura operator in section 2 (2.44) up to the multiplication of z.
The quantum Miura transformation is constructed from the product of N Miura op-

erators as

: R1(z)R2(z) · · ·RN (z) :=
N∑
i=0

(−1)iTi(z)q−iDz3 . (3.14)

In the right-hand side, the coefficient of each order of q3 is the generator of the algebra
Y0,0,N :

T1(z) = Λ1(z) + Λ2(z) + · · ·ΛN (z), (3.15)
T2(z) =: Λ1(z)Λ2(q−1

3 z) : + : Λ1(z)Λ3(q−1
3 z) : + · · ·+ : ΛN−1(z)ΛN (q−1

3 z) :, (3.16)
...

TN (z) =: Λ1(z)Λ2(q−1
3 z) · · ·ΛN (q−N+1

3 z) : . (3.17)
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3.1.2 Miura transformation for q-WN

WN algebra can be obtained from Y0,0,N by subtracting U(1) current. The procedure is
parallel to the undeformed case.

We remove the diagonal U(1) current from the the vertex operators Λi to define Λ̃i
(i = 1 ∼ N),

Λ̃i(z) = exp

εh1h2
h3

a(i)
0 −

1
N

N∑
j=1

a
(j)
0


× exp

∑
r>0
−κr
r

1
q
r
2N
3 − q−

r
2N

3

N∑
j=1

q
− r2 j
3

q
r
2
3 − q

− r2
3

a
(j)
−rz

r +
∑
r>0

κr
r
q
− r2N
3

q
r
2 (i−1)
3

(q
r
2
3 − q

− r2
3 )2

a
(i)
−rz

r


× exp

∑
r>0
−κr
r

1
q
r
2N
3 − q−

r
2N

3

N∑
j=1

q
− r2 (j−1)
3

q
r
2
3 − q

− r2
3

a(j)
r z−r +

∑
r>0

κr
r
q
r
2N
3

q
− r2 i
3

(q
r
2
3 − q

− r2
3 )2

a(i)
r z
−r

+
∑
r>0
−κr
r
q
r
2N
3

N∑
j=i+1

q
− r2 (j−1)
3

q
r
2
3 − q

− r2
3

a(j)
r z−r

 . (3.18)

In the degenerate limit, the vertex operator reduces to

Λ̃i(z) = 1 + ε
h1h2
h3

∑
r∈Z

a(i)
−r −

1
N

N∑
j=1

a
(j)
−r

 zr +O(ε2) (3.19)

This is the subtraction of the diagonal U(1) which we met in section 2.
As in Y0,0,N , we introduce free bosons h̃(i)

r (i = 1 ∼ N) by combining the off-diagonal
part. For r > 0,

h̃
(i)
−r = −κr

r

1
q
r
2N
3 − q−

r
2N

3

N∑
j=1

q
− r2 j
3

q
r
2
3 − q

− r2
3

a
(j)
−r + κr

r
q
− r2N
3

q
r
2 (i−1)
3

(q
r
2
3 − q

− r2
3 )2

a
(i)
−r,

h̃
(i)
0 = ε

h1h2
h3

a(i)
0 −

1
N

N∑
j=1

a
(j)
0

 ,
h̃(i)
r = −κr

r

1
q
r
2N
3 − q−

r
2N

3

N∑
j=1

q
− r2 (j−1)
3

q
r
2
3 − q

− r2
3

a(j)
r + κr

r
q
r
2N
3

q
− r2 i
3

(q
r
2
3 − q

− r2
3 )2

a(i)
r

− κr
r
q
r
2N
3

N∑
j=i+1

q
− r2 (j−1)
3

q
r
2
3 − q

− r2
3

a(j)
r . (3.20)

The commutation relation is,

[h̃(i)
−r, h̃

(j)
r ] = κr

r

(
1

qrN3 − 1
+ 1
qr3 − 1δi,j − θ(i > j)

)
(3.21)

where r is positive. Due to the subtraction of the diagonal U(1), h̃(i)
r satisfies the condition,

N∑
i=1

qri3 h̃
(i)
r = 0. (3.22)
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Using these bosons h̃(i)
−r, the vertex operators Λ̃i is simplified,

Λ̃i(z) =: exp

∑
r∈Z

h̃
(i)
−rz

r

 : . (3.23)

We define Miura operators as

Ri(z) = 1− Λ̃i(z)q−Dz3 . (3.24)

In the degenerate limit ε→ 0,

Ri = εh3

Dz −
h1h2
h2

3

∑
r∈Z

(
a

(i)
−r −

1
N

N∑
i=1

a
(j)
−r

)
zr

+O(ε2). (3.25)

From the same procedure as (3.13), we see that this is the same as the Miura operators of
WN algebra before the q-deformation up to the multiplication by z.

The quantum Miura transformation is constructed by the product of N Miura opera-
tors as

: R1(z)R2(z) · · ·RN (z) :=
N∑
i=0

(−1)iTi(z)q−iDz3 . (3.26)

In the right-hand side, the coefficient of each order of q3 is the generator of the algebra.
By expanding the above equation, we obtain the generators as

T1(z) = Λ̃1(z) + Λ̃2(z) + · · · Λ̃N (z), (3.27)
T2(z) =: Λ̃1(z)Λ̃2(q−1

3 z) : + : Λ̃1(z)Λ̃3(q−1
3 z) : + · · ·+ : Λ̃N−1(z)Λ̃N (q−1

3 z) :, (3.28)
...

TN (z) =: Λ̃1(z)Λ̃2(q−1
3 z) · · · Λ̃N (q−N+1

3 z) := 1. (3.29)

These are almost the same as (3.15)–(3.17), but vertex operators Λi are replaced with
Λ̃i. The only difference is that the generator TN (z) becomes an identity operator as a
consequence of the subtraction of U(1).

3.1.3 Quadratic relations

In the q-deformed case, the commutation relations (or the operator product expansion) in
2D CFT is replaced by so-called fTT (or quadratic) relations. We review it here for the
simplest example, q-Virasoro algebra, along the line of [14].

In this case, we have only one non-trivial generator,

T (z) = Λ̃1(z) + Λ̃2(z). (3.30)

It satisfies the following equation, which is referred to as the fTT (or the quadratic)
relation,

f

(
w

z

)
T (z)T (w)− f

(
z

w

)
T (w)T (z) = (q

1
2
1 − q

− 1
2

1 )(q
1
2
2 − q

− 1
2

2 )

q
1
2
3 − q

− 1
2

3

(
δ

(
q3w

z

)
− δ

(
w

q3z

))
,

(3.31)
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where δ(z) is the delta function defined as

δ(z) =
∑
m∈Z

zm. (3.32)

f(z) in the above equation is defined as

f(z) = exp
[ ∞∑
m=1

κm

qm3 − q
−m
3

zm
]
. (3.33)

A similar quadratic relation holds for all q-WN algebras [15]. The fTT relation reduces to
the commutation relation in the degenerate limit.

Degenerate limit. The commutation relation of h̃(i)
r becomes

[h̃(i)
−r, h̃

(j)
r ] = rε2h1h2

2 (1 + 2δi,j) +O(ε3). (3.34)

We note that h̃(i)
r ∼ O(ε). In the small ε limit, T (z) is expanded as

T (z) = 2 +
∑
r∈Z

(h̃(1)
−r + h̃

(2)
−r)zr + 1

2
∑
r,s∈Z

(h̃(1)
−rh̃

(1)
−s + h̃

(2)
−rh̃

(2)
−s)zr+s +O(ε3). (3.35)

Here it looks like that T (z) has O(ε) term, but because we have the condition (3.22) the the
lowest term except the constant term is O(ε2). By writing h(i)

r using a(i)
r , we can rewrite

T (z) as

T (z) = 2 + ε2h1h2

 h3√
h1h2

∑
r∈Z

rã−rz
r +

∑
r,s∈Z

: ã−rã−s : zr+s
+O(ε4), (3.36)

where ãr is defined as

ãr =
√
h1h2
h3

(
−1

2a
(1)
r + 1

2a
(2)
r

)
(3.37)

and it has the following commutation relation:

[ãr, ãs] = −r2δr+s,0. (3.38)

One can obtain the Virasoro generator multiplied by z2 from the coefficient of −ε2h1h2 by
subtracting some constants [14],

L(z) = − h3√
h1h2

∑
r∈Z

rã−rz
r−2 −

∑
r,s∈Z

: ã−rã−s : zr+s−2 + const., (3.39)

so we see that q-Virasoro algebra becomes the Virasoro algebra in the degenerate limit.
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3.2 q-deformation of the Miura operators from q-Pochhammer

To define the q-deformation of the Miura operators, we find that the q-analogue of the
Pochhammer symbol is useful. For a comprehensive review, see for example [30].

In the original Y-algebra, the quantum Miura transformation was represented by a
fractional power differential operator (2.44). To illustrate the relevance of the Pochhammer
symbol, we consider a simplified operator (∂ + ∂φ)ν , and examine a simplified situation
where ν is a positive integer n. We note that a formal expression in terms of Pochhammer
symbol (2.55) gives a correspondence between the integer power differential operators. We
use −Dz −Dzφ = z(−∂ − ∂φ) as the argument of Pochhammer symbol,

(−Dz −Dzφ)n
= (z(−∂ − ∂φ) + n− 1) · · · (z(−∂ − ∂φ) + 1)(z(−∂ − ∂φ))
= zn(−∂ − ∂φ)n. (3.40)

This is the Miura operator multiplied by (−z)n.
An advantage of replacing the differential operator by the Pochhammer symbol is that

the q-deformation (q-Pochhammer) is well-known:

(x; q)n =
n−1∏
j=0

(1− xqj). (3.41)

In the limit of

x = qy, q → 1, y : fixed, (3.42)

q-Pochhammer gives a proper definition of the q-deformation in the following sense,

lim
q→1

(x; q)n
(1− q)n = (y)n. (3.43)

One can also define the analytic continuation of the parameter n to a complex number
ν, which is essential to rewrite the fractional power appearing in the Miura operator. For
this purpose we introduce,

(x; q)∞ =
∞∏
j=0

(1− xqj). (3.44)

We can define the analytic continuation as,

(x; q)ν = (x; q)∞
(qνx; q)∞

. (3.45)

One can derive that it reduces to the original definition when ν is an integer n,

(x; q)∞
(qnx; q)∞

=
∏∞
j=0(1− qjx)∏∞

j=0(1− qn+jx) =
n−1∏
j=0

(1− qjx) = (x; q)n. (3.46)
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Finally, we will use the q-binomial series to express the q-Pochhammer symbol in terms
of the powers of the operator,

(x; q)ν =
∞∑
k=0

(−x)kq
k(k−1)

2

[
ν

k

]
q

, (3.47)

where
[
ν

k

]
q

is a q-binomial coefficient defined as

[
ν

k

]
q

= (q; q)ν
(q; q)k(q; q)ν−k

. (3.48)

When ν is a positive integer n, the summation over k is truncated by n. This is the
q-deformation of the binomial theorem. Otherwise, it defines the analytic continuation.

3.3 Definition of quantum Miura transformation

From the analysis of the previous subsection, we propose a q-deformed Miura transfor-
mation which gives the generators of q-deformed YL,M,N . The main claims of the section
are (3.58) and (3.67). This proposal will be justified by,

• It gives the generators of q-deformedW (sl(2|1)) [20] which corresponds to Y0,1,2 after
removing the U(1) factor.

• The generators of q-deformed YL,M,N can be naturally identified with a direct product
representation of the quantum toroidal gl1.

• One can find the q-analog of the screening currents which commutes with the Miura
transformation.

The first statement is provided in section 3.4. The second one is critical to justify our
proposal since q-deformed YL,M,N should be directly related to the quantum toroidal gl1.
Finally, the third statement follows the second observation. The commutativity with the
screening currents becomes the consequence of the known result. We will explain them in
section 4.

Free bosons and vertex operators. We start by preparing the notation. The Miura
transformation before the q-deformation depends on h1, h2, h3 and they satisfy h1 + h2 +
h3 = 0. To construct the q-deformed version, we introduce q1, q2, q3. These satisfy q1q2q3 =
1. The relation between qc and hc is (3.1). We combine q1, q2, q3 to define q~c as

q~c =
L+M+N∏
i=1

qci = qL1 q
M
2 qN3 , (3.49)

where ~c is defined as (2.62). From (2.48) and (2.52), q~c will be related to a central element
of the toroidal gl1, C⊥, as we see in section 4. As we will show later, the corresponding
formula is (4.3) in terms of the quantum toroidal gl1.
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While the Miura transformation before the q-deformation is written by free bosons
Ji and derivatives, the q-deformed quantum Miura transformation can be written by the
vertex operators Λi and shift operators.

For the purpose of defining the vertex operators, we introduce the free bosons with
the commutation relation:

[a(i)
m , a

(j)
n ] = m

(q
m
2
ci − q

−m2
ci )3

−κm
δm+n,0δi,j , (3.50)

which is a generalization of (3.3). We check that a(i) is a q-deformation of the free boson
in the degenerate limit (2.51). The limit qc → 1 is the same as ε → 0. The coefficient in
the right-hand side of (3.50) becomes

m
(q

m
2
ci − q

−m2
ci )3

−κm
→ −m

h3
ci

σ
+O(ε), (3.51)

in the limit ε→ 0. This is the same as (2.51).
We define vertex operators Λi by using free bosons a(i)

r as

Λi(z) = exp
(
ε
σ

h2
ci

a
(i)
0

)
exp

∑
r>0

κr
r
q
− r2
~c

q
r
2
c1 · · · q

r
2
ci−1

(q
r
2
ci − q

− r2
ci )2

a
(i)
−rz

r


× exp

∑
r>0

κr
r
q
r
2
~c

q
− r2
c1 · · · q

− r2
ci

(q
r
2
ci − q

− r2
ci )2

a(i)
r z
−r +

∑
r>0
−κr
r
q
r
2
~c

L+M+N∑
j=i+1

q
− r2
c1 · · · q

− r2
cj−1

q
r
2
cj − q

− r2
cj

a(j)
r z−r

 .
(3.52)

As in q-Y0,0,N , there is a mixing in the second line, which is related to the coproduct of the
toroidal algebra. In the limit ε→ 0, the vertex operator becomes

Λi(z) = 1 + ε
σ

h2
ci

∑
r∈Z

a
(i)
−rz

r +O(ε2). (3.53)

To simplify the appearance of the vertex operator, we recombine free bosons to define
h

(i)
r . With a positive r,

h
(i)
−r = κr

r
q
− r2
~c

q
r
2
c1 · · · q

r
2
ci−1

(q
r
2
ci − q

− r2
ci )2

a
(i)
−r,

h
(i)
0 = ε

σ

h2
ci

a
(i)
0 ,

h(i)
r = κr

r
q
r
2
~c

q
− r2
c1 · · · q

− r2
ci

(q
r
2
ci − q

− r2
ci )2

a(i)
r −

κr
r
q
r
2
~c

L+M+N∑
j=i+1

q
− r2
c1 · · · q

− r2
cj−1

q
r
2
cj − q

− r2
cj

a(j)
r . (3.54)

We note that h(i)
0 commutes with all generators. The commutation relation of free bosons

h
(i)
r (i = 1, 2, · · · , L+M +N) is

[h(i)
−r, h

(j)
r ] = κr

r

q
− r2
ci

q
r
2
ci − q

− r2
ci

δi,j −
κr
r
θ(i > j), (3.55)

– 23 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
2

where r is positive and all the other commutation relations vanish. The vertex operators
Λi can be expressed by h(i)

−r as

Λi(z) =: exp

∑
r∈Z

h
(i)
−rz

r

 : . (3.56)

The operator products of Λi satisfies the following formula:

Λi(z)Λj(w) =



exp
( ∞∑
r=1

κr
r(1− qrci)

(
w

z

)r)
: Λi(z)Λj(w) : (i = j)

: Λi(z)Λj(w) : (i > j)

exp
( ∞∑
r=1

κr
r

(
w

z

)r)
: Λi(z)Λj(w) : (i < j) .

(3.57)

Miura operator. We are ready to describe the definition of the Miura operators:

Using the vertex operators Λi and the q-deformed Pochhammer symbol, we define a
q-deformation of the Miura operator as

R(c)(z) =:
(
q

1−νc
2

3 Λ(z)q−Dz3 ; q3

)
νc

:

=
∞∑
n=0

:
n∏
j=1

−q 1
2
c q
− j−1

2
3 − q−

1
2

c q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ(q−j+1
3 z)

 : q−nDz3 . (3.58)

For each subscript c, more explicit formulae are

R(1)(z) =
∞∑
n=0

:
n∏
j=1

−q 1
2
1 q
− j−1

2
3 − q−

1
2

1 q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ(q−j+1
3 z)

 : q−nDz3 , (3.59)

R(2)(z) =
∞∑
n=0

:
n∏
j=1

−q 1
2
2 q
− j−1

2
3 − q−

1
2

2 q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ(q−j+1
3 z)

 : q−nDz3 , (3.60)

R(3)(z) = 1− Λ(z)q−Dz3 . (3.61)

We note that R(3) consists of finite terms, while R(1) and R(2) have an infinite number
of terms. This is parallel to the degenerate limit (2.44), where R(3) is a differential op-
erator of order one, while R(1) and R(2) are the pseudo-differential operators which are
rewritten as infinite series of the differential operators. From this analogy, we sometimes
call R(3) a difference operator and call R(1) and R(2) pseudo-difference operators in the
q-deformed case.

We may replace the parameter q3 to q1 or q2 in (3.58). With such choices the Miura
operator R(1) or R(2) becomes finite instead of R(3). This corresponds to an operation
which interchages R(c).
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Degenerate limit. To explain that it describes a q-deformation of the (pseudo-)dif-
erential operator, we use the relations in the previous subsection. The parameters ν1, ν2, ν3
in (3.58) are defined as

νc = logq3 qc, (3.62)

which are identical to (2.52) in the degenerate limit. Dz = z d
dz and a shift operator qDz3

acts as (3.12). We also used the q-binomial series (3.47) to obtain the second line of (3.58)
from the first.

To derive the degenerate limit (2.44) from (3.58), we apply the relation between
the Pochhammer and the q-deformed one (3.43), to the definition of the Miura operator
R(i)(3.58). In this case, the deformation parameter is q3. y in (3.43) is

y = −Dz + 1− νi
2 + h1h2

h2
ci

∑
r∈Z

a
(i)
−rz

r, (3.63)

which rewrite

y = z(−∂ − µci∂φi(z)). (3.64)

When n ∈ Z, the Pochhammer symbol (y)n is rewritten as

(y)n = (y + n− 1) · · · (y + 1)y = (−z)n(∂ + µci∂φi)n. (3.65)

By taking analytic continuation from n ∈ Z>0 to νci ∈ C, one obtains

(y)νci = (−z)νci (∂ + µci∂φi)νci . (3.66)

This is the same as the Miura operator in the degenerate limit (2.50) up to the first factor
(−z)νci . When we multiply such operators in the Miura transformation, we move these
factors to the left or right of the Miura transformation. It causes the shift of the zero mode
of φ, which can be absorbed in the redefinition.

Miura transformation. As in the degenerate case (2.61), the Miura transformation is
defined as an ordered product of the Miura operators,

We mutiply the Miura operators L R(1), M R(2) and N R(3),

: R(c1)
1 (z)R(c2)

2 (z) · · ·R(cL+M+N )
L+M+N (z) :=

∞∑
n=0

(−1)nTn(z)q−nDz3 . (3.67)

The expansion in terms of the shift operator q−Dz3 defines T1, T2, T3, · · · which are
the generators of the q-deformed YL,M,N .

There are (L+M +N)!/L!M !N ! ordering of R(1), R(2), R(3). As in the degenerate case, we
expect that the algebra generated by Ti are mutually isomorphic for the different choices
of the ordering. We can prove this statement in the next section.
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The explicit form of Ti is

Ti(z)=
∑
n1+···

+nL+M+N =i

L+M+N∏
k=1

q 1
2
ckq

1
2 (1−jk)
3 − q−

1
2

ck q
− 1

2 (1−jk)
3

q
jk
2

3 − q
− jk

2
3

 :
L+M+N∏
l=1

 nl∏
jl=1

Λl(q
−(
∑l−1

m=1
nm+jl−1)

3 z)

 : .

(3.68)

The corresponding formula in the degenerate case is (2.68). Since the shift operator is
easier to handle than the higher order differentiation, the q-deformed version is easier to
study. Indeed, one can directly compare it with the generators of the quantum toroidal
algebra in the next section.

Removal of the U(1) factor. So far, we define YL,M,N which contains the diagonal
U(1) current. To compare our construction with the references of q-W algebras, such
as [15] and [20], we have to remove the U(1) factor and we refer to the algebra thus
obtained as ỸL,M,N .

What we need to do is parallel to the q-WN algebra. We redefine the vertex operator,

Λ̃i(z)= exp

ε σ
h2
ci

a
(i)
0 − ε

σ

Lh1 +Mh2 +Nh3

L+M+N∑
j=1

a
(j)
0
hcj


× exp

∑
r>0
−κr
r

1
q
r
2
~c − q

− r2
~c

L+M+N∑
j=1

q
− r2
c1 · · · q

− r2
cj

q
r
2
cj − q

− r2
cj

a
(j)
−rz

r +
∑
r>0

κr
r
q
− r2
~c

q
r
2
c1 · · · q

r
2
ci−1

(q
r
2
ci − q

− r2
ci )2

a
(i)
−rz

r


× exp

∑
r>0
−κr
r

1
q
r
2
~c − q

− r2
~c

L+M+N∑
j=1

q
− r2
c1 · · · q

− r2
cj−1

q
r
2
cj − q

− r2
cj

a(j)
r z−r+

∑
r>0

κr
r
q
r
2
~c

q
− r2
c1 · · · q

− r2
ci

(q
r
2
ci − q

− r2
ci )2

a(i)
r z
−r

+
∑
r>0
−κr
r
q
r
2
~c

L+M+N∑
j=i+1

q
− r2
c1 · · · q

− r2
cj−1

q
r
2
cj − q

− r2
cj

a(j)
r z−r

 . (3.69)

We note that our construction does not work for L = M = N since the factor q
r
2
~c − q

− r2
~c

appearing in the denominator vanishes. As in the degenerate case, YL,L,L describes a
trivial system, which we will see in the next section. In the following, we ignore these
singular cases.

In the limit ε→ 0, the vertex operator becomes

Λ̃i(z) = 1 + εσ
∑
r∈Z

zr

 1
h2
ci

a
(i)
−r −

1
Lh1 +Mh2 +Nh3

L+M+N∑
j=1

a
(j)
−r
hcj

+O(ε2). (3.70)

This is almost the same as (3.53) but only the choice of the boson is different.
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For convenience of calculation, we express free bosons as h̃(i)
r . For r > 0,

h̃
(i)
−r = −κr

r

1
q
r
2
~c − q

− r2
~c

L+M+N∑
j=1

q
− r2
c1 · · · q

− r2
cj

q
r
2
cj − q

− r2
cj

a
(j)
−r + κr

r
q
− r2
~c

q
r
2
c1 · · · q

r
2
ci−1

(q
r
2
ci − q

− r2
ci )2

a
(i)
−r,

h̃
(i)
0 = ε

σ

h2
ci

a
(i)
0 − ε

σ

Lh1 +Mh2 +Nh3

L+M+N∑
j=1

a
(j)
0
hcj

,

h̃(i)
r = −κr

r

1
q
r
2
~c − q

− r2
~c

L+M+N∑
j=1

q
− r2
c1 · · · q

− r2
cj−1

q
r
2
cj − q

− r2
cj

a(j)
r + κr

r
q
r
2
~c

q
− r2
c1 · · · q

− r2
ci

(q
r
2
ci − q

− r2
ci )2

a(i)
r

− κr
r
q
r
2
~c

L+M+N∑
j=i+1

q
− r2
c1 · · · q

− r2
cj−1

q
r
2
cj − q

− r2
cj

a(j)
r . (3.71)

We note that h̃(i)
0 commutes with all terms.

The L + M + N bosons h̃(i)
r (i = 1 ∼ L + M + N) have the following commutation

relation for a positive r,

[h̃(i)
−r, h̃

(j)
r ]

= κr
r

1
(q

r
2
~c − q

− r2
~c )2

N∑
k=1

q−rc1 · · · q
−r
ck−1(1− q−rck ) + κr

r

q
r
2
~c

q
r
2
~c − q

− r2
~c

N∑
k=j+1

q−rc1 · · · q
−r
ck−1(1− q−rck )

− κr
r

q
r
2
~c

q
r
2
~c − q

− r2
~c

q−rc1 · · · q
−r
cj −

κr
r

q
− r2
~c

q
r
2
~c − q

− r2
~c

+ κr
r

q
− r2
ci

q
r
2
ci − q

− r2
ci

δi,j −
κr
r
θ(i > j). (3.72)

All the other commutation relations vanish.
For q-WN algebra, the removal of the U(1) factor is described by (3.22). For ỸL,M,N ,

the generalized formula is,

L+M+N∑
i=1

(q
r
2
ci − q

− r2
ci )qrc1 · · · q

r
ci−1q

r
2
ci h̃

(i)
r = 0. (3.73)

Using h̃(i)
−r, the vertex operator Λ̃i can be written as

Λ̃i(z) =: exp

∑
r∈Z

h̃
(i)
−rz

r

 : . (3.74)

The normal ordering of the Λ̃i is

Λ̃i(z)Λ̃j(w) =



exp
( ∞∑
r=1

κr(qrci − q
r
~c )

r(1− qrci)(1− qr~c )

(
w

z

)r)
: Λ̃i(z)Λ̃j(w) : (i = j)

exp
( ∞∑
r=1

−κr
r(1− qr~c )

(
w

z

)r)
: Λ̃i(z)Λ̃j(w) : (i > j)

exp
( ∞∑
r=1

κr

r(1− q−r~c )

(
w

z

)r)
: Λ̃i(z)Λ̃j(w) : (i < j) .

(3.75)
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We can obtain the Miura operator R(i) by replacing Λi with Λ̃i in (3.58). The degen-
erate limit of R(i) is almost the same as before. We consider the procedure from (3.63)
to (3.66) and replace y slightly as

y = −Dz + 1− νi
2 +

h1h2
h2
ci

∑
r∈Z

a
(i)
−r −

h1h2
Lh1 +Mh2 +Nh3

∑
r∈Z

L+M+N∑
j=1

a
(j)
−r
hcj

 zr. (3.76)

Also in the case without U(1) current, the q-deformed Miura operator reduces to the Miura
operator in section 2 in the degenerate limit.

fT T relation for ỸL,M,N . When i ≤ j, we define fi,j as

fi,j(z) = exp

 ∞∑
m=1

1
m

(q
i
2m
3 − q−

i
2m

3 )(q
m
2
~c q
− j2m
3 − q−

m
2

~c q
j
2m
3 )(q

m
2

1 − q
−m2
1 )(q

m
2

2 − q
−m2
2 )

(q
m
2
~c − q

−m2
~c )(q

m
2

3 − q
−m2
3 )

zm

 .
(3.77)

We note that the structure functions only depend on ~c through q~c. This implies that the
quadratic relations does not depend on the color order ~c, and the algebra of q-ỸL,M,N is
unique. For i ≥ j, we define fi,j(z) = fj,i(z).

We conjecture that the quadratic relation between T s is as follows,

fi,j

q i−j2
3 w

z

Ti(z)Tj(w)− fj,i

q j−i2
3 z

w

Tj(w)Ti(z)

= (q
1
2
1 − q

− 1
2

1 )(q
1
2
2 − q

− 1
2

2 )

q
1
2
3 − q

− 1
2

3

i∑
k=1

k−1∏
l=1

(1− q1q
−l
3 )(1− q2q

−l
3 )

(1− q−l−1
3 )(1− q−l3 )

×
(
δ

(
qk3w

z

)
fi−k,j+k(q

i−j
2

3 )Ti−k(q−k3 z)Tj+k(qk3w)

− δ
(
qi−j−k3 w

z

)
fi−k,j+k(q

j−i
2

3 )Ti−k(z)Tj+k(w)
)
, (3.78)

where we assume i ≤ j.

The relation is a generalization of fTT relation in [20], where the author gives a description
of W (sl(2|1)) algebra, which corresponds to Ỹ0,1,2. We give a partial proof of the quadratic
relations when one of the generators is the lowest generator T1(z) in the appendix. The
quadratic relations for other currents can be obtained by using the fusion formulas as in
the main theorem in [20].

3.4 (L,M,N) = (0, 1, 2) case: Wq,t(sl(2|1))

In this section, we show that the q-deformed Ỹ0,1,2 is equivalent to Wq,t(sl(2|1)) proposed
in [31]. The q-W algebra Wq,t(sl(2|1)) is defined by the screening charges associated with
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sl(2|1) and realized by two free bosons. Because there are two types of Dynkin diagrams
for sl(2|1), Wq,t(sl(2|1)) has two free boson representations. As we discussed in section 2,
that corresponds to the fact that the order of the Miura operators is not unique. As we
have seen, the bosonic (resp. fermionic) screening charge arises between the neighboring
Miura operators of the same (resp. different) type.

In the following, we compare the generators derived from the Miura transformation
with those for Wq,t(sl(2|1)), whose detail is studied recently in [20]. This result supports
our proposal of the Miura transformation.

3.4.1 One bosonic, one fermionic case: R(3)R(3)R(2)

In our approach, we first define the Miura operators R(i), and by using the Miura trans-
formation we obtain the generators. In this case, (L,M,N) = (0, 1, 2), so we use one R(2)

and two R(3). The ordering of the R(2) and R(3) corresponds to the number of bosonic
currents and fermionic currents. Here we consider one bosonic and one fermionic case, so
one screening current between the same type Miura operators and one screening current
between the different type Miura operators are needed. There is two choices, which satisfies
the above condition, R(3)R(3)R(2) and R(2)R(3)R(3), which should be equivalent. Here we
use the ordering R(3)R(3)R(2), which is directly comparable to [20].

The Miura operators (3.58) are written as,

R
(3)
1 (z) = 1− Λ̃1(z)q−Dz3 , (3.79)

R
(3)
2 (z) = 1− Λ̃2(z)q−Dz3 , (3.80)

R
(2)
3 (z) =

∞∑
n=0

:
n∏
j=1

−q 1
2
2 q
− j−1

2
3 − q−

1
2

2 q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ̃3(q−j+1
3 z)

 : q−nDz3 . (3.81)

We use Λ̃(z) since we need to subtract the U(1) factor. The Miura transformation (3.67)
becomes

: R(3)
1 (z)R(3)

2 (z)R(2)
3 (z) :=

∞∑
n=0

(−1)nTn(z)q−nDz3 . (3.82)

The coefficients of the above expansion become,

T1(z) = Λ̃1(z) + Λ̃2(z) + q
1
2
2 − q

− 1
2

2

q
1
2
3 − q

− 1
2

3

Λ̃3(z), (3.83)

T2(z) =: Λ̃1(z)Λ̃2(q−1
3 z) : +q

1
2
2 − q

− 1
2

2

q
1
2
3 − q

− 1
2

3

: Λ̃1(z)Λ̃3(q−1
3 z) : (3.84)

+ q
1
2
2 − q

− 1
2

2

q
1
2
3 − q

− 1
2

3

: Λ̃2(z)Λ̃3(q−1
3 z) : + q

1
2
2 − q

− 1
2

2

q
1
2
3 − q

− 1
2

3

q
1
2
2 q
− 1

2
3 − q−

1
2

2 q
1
2
3

q3 − q−1
3

: Λ̃3(z)Λ̃3(q−1
3 z) :,
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Tn≥3(z)=:
n∏
j=1

q
1
2
2 q
− j−1

2
3 −q−

1
2

2 q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ̃3(q−j+1
3 z) : + : Λ̃1(z)

n−1∏
j=1

q
1
2
2 q
− j−1

2
3 −q−

1
2

2 q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ̃3(q−j3 z) :

+ : Λ̃2(z)
n−1∏
j=1

q
1
2
2 q
− j−1

2
3 − q−

1
2

2 q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ̃3(q−j3 z) :

+ : Λ̃1(z)Λ̃2(q−1
3 z)

n−2∏
j=1

q
1
2
2 q
− j−1

2
3 − q−

1
2

2 q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ̃3(q−j−1
3 z) : . (3.85)

fi,j (i ≤ j) is give by (3.77),

fi,j(z) = exp
(
−
∞∑
m=1

1
m

(q
i
2m
3 − q−

i
2m

3 )(q
m
2

2 q
(1− j2 )m
3 − q−

m
2

2 q
−(1− j2 )m
3 )

× (q
m
2

1 − q
−m2
1 )(q

m
2

2 − q
−m2
2 )

(q
m
2

2 qm3 − q
−m2
2 q−m3 )(q

m
2

3 − q
−m2
3 )

zm
)
, (3.86)

and the fTT relation (3.78) is satisfied.
If we change parameters as

q1 = x2r, q2 = x−2(r−1), q3 = x−2, (3.87)

the generators are the same as those in [20] up to difference of the argument z, and we
have the same fi,j . Thus the quadratic relation coincides exactly if we shift the argument
z of Ti(z) by qi3.

3.4.2 Two fermionic case: R(3)R(2)R(3)

Next, we consider the two fermionic case. Now (L,M,N) = (0, 1, 2), we have one R(2) and
two R(3). The procedures are similar to the one bosonic and one fermionic case. In this
case, two screening currents between the different type Miura operators are needed. The
only ordering which satisfies the above condition is R(3)R(2)R(3).

By (3.58), the Miura operators are written as

R
(3)
1 (z) = 1− Λ̃1(z)q−Dz3 , (3.88)

R
(2)
2 (z) =

∞∑
n=0

:
n∏
j=1

−q 1
2
2 q
− j−1

2
3 − q−

1
2

2 q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ̃2(q−j+1
3 z)

 : q−nDz3 , (3.89)

R
(3)
3 (z) = 1− Λ̃3(z)qDz3 , (3.90)

The definition of the quantum Miura transformation (3.67) becomes

: R(3)
1 (z)R(2)

2 (z)R(3)
3 (z) :=

∞∑
n=0

(−1)nTn(z)q−nDz3 . (3.91)
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We obtain the generators as,

T1(z) = Λ̃1(z) + q
1
2
2 − q

− 1
2

2

q
1
2
3 − q

− 1
2

3

Λ̃2(z) + Λ̃3(z), (3.92)

T2(z) =: Λ̃1(z)Λ̃3(q−1
3 z) : +q

1
2
2 − q

− 1
2

2

q
1
2
3 − q

− 1
2

3

: Λ̃1(z)Λ̃2(q−1
3 z) : (3.93)

+ q
1
2
2 − q

− 1
2

2

q
1
2
3 − q

− 1
2

3

: Λ̃2(z)Λ̃3(q−1
3 z) : +q

1
2
2 − q

− 1
2

2

q
1
2
3 − q

− 1
2

3

q
1
2
2 q
− 1

2
3 − q−

1
2

2 q
1
2
3

q3 − q−1
3

: Λ̃2(z)Λ̃2(q−1
3 z) :,

Tn≥3(z) =:
n∏
j=1

q
1
2
2 q
− j−1

2
3 −q−

1
2

2 q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ̃2(q−j+1
3 z) : + : Λ̃1(z)

n−1∏
j=1

q
1
2
2 q
− j−1

2
3 −q−

1
2

2 q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ̃2(q−j3 z) :

+ :
n−1∏
j=1

q
1
2
2 q
− j−1

2
3 − q−

1
2

2 q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ̃2(q−j+1
3 z)Λ̃3(q−n+1

3 z) :

+ : Λ̃1(z)
n−2∏
j=1

q
1
2
2 q
− j−1

2
3 − q−

1
2

2 q
j−1

2
3

q
j
2
3 − q

− j2
3

Λ̃2(q−j3 z)Λ̃3(q−n+1
3 z) : . (3.94)

fi,j (i ≤ j) is the same as (3.86), and the fTT relation (3.78) is satisfied. If we choose the
parameters as

q1 = x2r, q2 = x−2(r−1), q3 = x−2, (3.95)

our results are consistent with [20].

4 Miura transformation from quantum toroidal gl1

The quantum toroidal gl1 is a q-deformation of W1+∞. It contains parameters q1, q2, q3
and there is a Fock realization Fc (c = 1, 2, 3) associated with each of them. The main
claim of this section is that the Miura transformation in the previous section, namely,
the definition of higher currents by taking a product of the Miura operators in an order,
corresponds to taking a coproduct of these Fock spaces in the same order. For instance,
the Miura transformation for the quantum WN algebra with the U(1) current corresponds
to the tensor product of N Fock spaces of the same type.

In [6], the authors studied the coproduct of the Fock spaces of two different types
in detail. They found that the screening charges associated with the gln|m root system
characterizes the corresponding quantum W-algebras.

In this section, we prove the claim by expressing the generators, obtained from the
Miura transformation, as the product of the Drinfeld currents of the quantum toroidal
algebra, and show that they are identical.
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4.1 Quantum toroidal gl1
The quantum toroidal gl1,5 denoted by E1(q1, q2, q3) has parameters qc = eεhc (c = 1, 2, 3)
with the constraint q1q2q3 = 1, and q ≡ q1/2

3 . It is generated by the Drinfeld currents,

E(z) =
∑
m∈Z

Emz
−m, F (z) =

∑
m∈Z

Fmz
−m, K±(z) = (C⊥)±1 exp

(∑
r>0
∓κr
r
H±rz

∓r
)
,

with the central elements C,C⊥ and two degree operators D,D⊥. Here, we use κr defined
in (3.4).

The defining relation of the quantum toroidal gl1 is given as follows:

DE(z) = E(qz)D, DF (z) = F (qz)D, DK±(z) = K±(qz)D,

D⊥E(z) = qE(z)D⊥, D⊥F (z) = q−1F (z)D⊥,
[
D⊥,K±(z)

]
= 0 ,

g(z, w)E(z)E(w) + g(w, z)E(w)E(z) = 0, g(w, z)F (z)F (w) + g(z, w)F (w)F (z) = 0,

K±(z)K±(w) = K±(w)K±(z), g(C−1z, w)
g(Cz,w) K−(z)K+(w) = g(w,C−1z)

g(w,Cz) K+(w)K−(z),

g(z, w)K±(C(−1∓1)/2z)E(w) + g(w, z)E(w)K±(C(−1∓1)/2z) = 0,
g(w, z)K±(C(−1±1)/2z)F (w) + g(z, w)F (w)K±(C(−1±1)/2z) = 0 ,

[E(z), F (w)] = 1
κ1

(
δ

(
Cw

z

)
K+(w)− δ

(
Cz

w

)
K−(z)

)
,

Sym
z1,z2,z3

z2z
−1
3 [E(z1), [E(z2), E(z3)]] = 0, Sym

z1,z2,z3
z2z
−1
3 [F (z1), [F (z2), F (z3)]] = 0,

where

g(z, w) =
3∏
c=1

(z − qcw).

The generator Hr in the definition of K± satisfies the following commutation relations:

[Hr, Hs] = δr+s,0r
Cr − C−r

κr
,

[Hr, E(z)] = −C(−r−|r|)/2E(z)zr,
[Hr, F (z)] = C(−r+|r|)/2F (z)zr.

(4.1)

They are equivalent to some of the defining relations.
For later convenience, we introduce a current t(z) which commutes with the Heisenberg

subalgebra generated by Hr as follows [32]:

t(z) = α(z)E(z)β(z),

α(z) = exp
( ∞∑
r=1

−κr
r(1− C2r)H−rz

r),
β(z) = exp

( ∞∑
r=1

−C−rκr
r(1− C−2r)Hrz

−r).
(4.2)

5We will use the notation in [6] in this section.
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As we mentioned in section 2, the quantum toroidal gl1 has a plane partition repre-
sentation [26], where one of the central elements is set to C = 1. While it is irreducible for
generic value of C⊥, there appears null states (“pit”) at (L,M,N) if we set,

C⊥ = q
L/2
1 q

M/2
2 q

N/2
3 . (4.3)

It corresponds to the condition in the affine Yangian (2.36). We note that q1q2q3 = 1 implies
that C⊥ is invariant under the shift symmetry (2.41). In particular, for L = M = N , the
central charges becomes trivial C = C⊥ = 1. It means that we have a pit at (0, 0, 0) and
there is no non-vanishing states except for the highest weight state.

We remark here that the quantum toroidal gl1 is more symmetric than the affine
Yangian. It is symmetric with respect to “S-duality” transformation referred to as Miki
automorphism.

C⊥ → C → (C⊥)−1 → C−1 (4.4)
D⊥ → D → (D⊥)−1 → D−1 (4.5)
E0 → H−1 → F0 → H1 (4.6)

It maps the spectral parameter to the world sheet parameter, and the plane partition
representation with a “pit” to the free boson representation. It allows us to describe the
(q-deformed) YL,M,N from totally different viewpoint.

For instance, the most fundamental representation where the pit is located at (1, 0, 0),
(0, 1, 0), (0, 0, 1) are originally defined as C = 1 and C⊥ = q

1/2
c for c = 1, 2, 3. Through the

Miki automorphism, they are mapped to the Fock representation with,6

C = q1/2
c , C⊥ = 1 (c = 1, 2, 3). (4.7)

We note that there are three kinds of representations, which can be shuffled by the triality.
For each c, we denote the corresponding Fock module by Fc(u). We fix the normalization
of the free boson in the same way as (3.50):7

[ar, as] = r
(qr/2c − q−r/2c )3

−κr
δr+s,0. (4.8)

The Drinfeld currents are realized as the vertex operators:

ρ(c)
u (E(z)) = 1− qc

κ1
ηc(z), ρ(c)

u (F (z)) = 1− q−1
c

κ1
ξc(z), ρ(c)

u (Hr) = ar

q
r/2
c − q−r/2c

, (4.9)

where

ηc(z) = u exp
( ∞∑
r=1

q
−r/2
c κr

r(qr/2c − q−r/2c )2
a−rz

r

)
exp

( ∞∑
r=1

κr

r(qr/2c − q−r/2c )2
arz
−r
)
, (4.10)

ξc(z) = u−1 exp
( ∞∑
r=1

−κr
r(qr/2i − q−r/2i )2

a−rz
r

)
exp

( ∞∑
r=1

−qr/2i κr

r(qr/2i − q−r/2i )2
arz
−r
)
. (4.11)

6In general, the quantum toroidal algebra has SL(2,Z) automorphism. While we can realize (C,C⊥) =
(q1/2
c , q

n/2
c ) (c = 1, 2, 3) representations by free bosons, the free field description for other cases is difficult.

Therefore, the action of the general element of SL(2, Z) will be hard to describe.
7For simplicity, we do not put the subscript c on ar.
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where u is the normalization parameter. We also denote

ρ(c)
u (K±(z)) = ϕ±c (z) = exp

( ∞∑
r=1

−κr
r(qr/2c − q−r/2c )

a±rz
∓r
)
. (4.12)

To obtain the representation with C = q
L/2
1 q

M/2
2 q

N/2
3 which is the counterpart of (4.3),

we need to consider the tensor product of the Fock spaces. The action of the Drinfeld
currents are determined from the coproduct:

∆(Hr) = Hr ⊗ 1 + C−r ⊗Hr, ∆(H−r) = H−r ⊗ Cr + 1⊗H−r, r > 0

∆(E(z)) = E
(
C−1

2 z
)
⊗K+

(
C−1

2 z
)

+ 1⊗ E (z) ,

∆(F (z)) = F (z)⊗ 1 +K−
(
C−1

1 z
)
⊗ F (C−1

1 z),

∆(X) = X ⊗X, for X = C,C⊥,

(4.13)

where C1 = C ⊗ 1, C2 = 1 ⊗ C. For convenience, we set L + M + N as n. Because the
coproduct of the central element is defined multiplicatively, the representation which is of
our interest is realized by the tensor product of L pieces of F1,M pieces of F2 and N pieces
of F3 in an arbitrary order ~c in (2.62). In the following, we write F~c(~u) ≡ Fc1⊗Fc2⊗· · · Fcn .
As an example, we consider the action of E(z) on F~c(~u). We set

∆(m) = (1⊗∆)∆(m−1), ∆(1) = ∆, q~c =
n∏
i=1

qci . (4.14)

One can see from (4.13) that the n-coproduct of E(z) consists of n factors as follows:

∆(n−1)(E(z)) = E(C−1
2 C−1

3 · · ·C
−1
n z)⊗K+(C−1

2 C−1
3 · · ·C

−1
n z)⊗ · · · ⊗K+(C−1

n z)
+ 1⊗ E(C−1

3 · · ·C
−1
n z)⊗K+(C−1

3 · · ·C
−1
n z)⊗ · · · ⊗K+(C−1

n z)
+ · · ·
+ 1⊗ · · · ⊗ E(z).

(4.15)

The representation ρ~c on the tensor product Fock space F~c(~u) is written as the sum of n
vertex operators:

ρ~c (E(z)) =
n∑
i=1

1− qci
κ1

Λi(z), (4.16)

Λi(z) = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗ηci(q−1/2
ci+1 · · · q

−1/2
cn z)⊗ ϕ+

ci+1(q−1/2
ci+1 · · · q

−1/2
cn z)⊗ · · · ⊗ ϕ+

cn(q−1/2
cn z).

(4.17)

For later convenience, we adjust the normalization parameter ui to rewrite it as,

ρ~c (E(z)) =
n∑
i=1

yiΛi(z), yi = q
1/2
ci − q

−1/2
ci

q
1/2
3 − q−1/2

3
. (4.18)
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We note that the Λi(z) obtained here are identical to the bosonic representation which we
proposed in (3.52) if we identify ui = exp

(
εh1h2h3

h2
ci

a
(i)
0

)
. For reference, we write down the

contraction between Λi(z) and Λj(w) again:

Λi(z)Λj(w) =



exp
( ∞∑
r=1

κr
r(1− qrci)

(
w

z

)r)
: Λi(z)Λj(w) : (i = j)

: Λi(z)Λj(w) : (i > j)

exp
( ∞∑
r=1

κr
r

(
w

z

)r)
: Λi(z)Λj(w) : (i < j) .

(4.19)

When we need to eliminate the extra gl1 factor as in the quantum WN , we should use
t(z) instead of E(z). We can obtain the coproduct of α(z), β(z) just by replacing H±r and
C with ∆(H±r) and ∆(C). Because it consists of a single vertex operator, t(z) also acts
as the sum of n vertex operators,

ρ~c (t(z)) =
n∑
i=1

yiΛ̃i(z), (4.20)

where Λ̃(z) matches again the vertex operator we obtained in (3.69).

An alternative identification with Drinfeld currents. One can also use the Drinfeld
current F (z) to describe the Miura operators. Instead of (4.16), we write

ρ~c(F (z)) =
n∑
i=1

yiΛ∗i (z), (4.21)

where

Λ∗i (z) = ϕ−c1(q−1/2
c1 z)⊗ · · · ⊗ ϕ−ci−1(q−1/2

c1 · · · q−1/2
ci−1 z)⊗ ξi(q−1/2

ci · · · q−1/2
ci−1 z)⊗1 · · · ⊗ 1︸ ︷︷ ︸

n−i

.

(4.22)

The contraction formula (4.19) are modified to,

Λ∗i (z)Λ∗j (w) =



exp
( ∞∑
r=1
− κr

r(1− q−rci )

)
: Λ∗i (z)Λ∗j (w) : (i = j),

: Λ∗i (z)Λ∗j (w) : (i > j),

exp
( ∞∑
r=1
−κr
r

(
w

z

)r)
: Λ∗i (z)Λ∗j (w) : (i < j)

. (4.23)

For this identification, the definition of the Miura operators should be modified8

R∗(c)(z) =
∞∑
n=0

:
n∏
k=1

(
−q

1/2
c q

−(k−1)/2
3 − q−1/2

c q
(k−1)/2
3

q
k/2
3 − q−k/23

Λ∗(qk−1
3 z)

)
: qnDz3 (c = 1, 2, 3).

(4.24)
8One can indeed obtain the Miura operators and contraction formula for F (z) by using the Miki au-

tomorphism (4.4) directly on the formula derived from E(z). After using Miki automorphism the central
element changes as C → C−1 so we need to reverse all the parameters as qc → q−1

c .
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4.2 Comparison with q-deformed Miura transformation

In this section, we establish the direct relation between the quantum toroidal gl1 and the
q-deformed corner VOA defined by the Miura transformation (3.67). We first use the first
identification of the Drinfeld currents with the Miura operator (4.16),

We claim that the product of the Drinfeld currents:

Em(z) ≡ E(q−m+1
3 z)E(q−m+2

3 z) · · · · · ·E(z), (4.25)

in ρ~c representation can be identified with the current generated by the Miura
transformation Tm(z):

R
(c1)
1 R

(c2)
2 · · ·R(cn)

n =
∞∑
m=0

(−1)mTm(z)q−mDz3 . (4.26)

when it is operated on the Fock space Fc1 ⊗Fc2 ⊗ · · · ⊗ Fcn . Namely,

ρ~c(Em(z)) = Tm(z). (4.27)

It establishes that the Miura transformation we proposed properly describes the
q-deformed corner VOA.9

In the rest of this section, we give a proof of this statement. From (4.19), one can see that
Λi(q−1

3 z)Λj(z) vanishes when i < j. Then we have

Em(z) =
∑

m1,··· ,mn≥0∑n

i=1
mi=m

−−→
mn∏
in=1

ynΛn(q−m+in
3 z)

−−−−→
mn−1∏
in−1=1

yn−1Λn−1(q−m+mn+in−1
3 z) · · ·

−−→
m1∏
i1=1

y1Λ1(q−m1+i1
3 z).

(4.28)

The product symbol with an arrow implies a fixed ordering of factors:
−−→
mj∏
ij=1

Λj(q
−(m1+···+mj)+ij
3 z)

≡ Λj(q
−(m1+···+mj)+1
3 z)Λj(q

−(m1+···+mj)+2
3 z) · · ·Λj(q

−(m1+···+mj−1)
3 z). (4.29)

To confirm the above claim, we only have to check that we can reproduce the coefficient
in (3.58) by rewriting (4.25) with the normal ordered product. The contraction between
the vertex operators can be evaluated from the following formula derived from (4.19):

Λj(q−`3 z)Λk(z) =

χ
(`)
j : Λj(q−`3 z)Λk(z) : (j = k)

: Λj(q−`3 z)Λk(z) : (j > k),
(4.30)

9One may wonder why the shift parameter in (4.25) is set to q3 although there is triality symmetry
among q1, q2, q3. This is because we defined the Miura operator so that R(3) would consist of finite terms.
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where we set

χ
(`)
j =

(1− q`3)(1− q`3q−1
cj )

(1− qcj+1q`3)(1− qcj−1q`3)
. (4.31)

Using this relation, we have
−−→
mj∏
ij=1

yjΛj(q
−(m1+···+mj)+ij
3 z) = y

mj
j

mj−1∏
`=1

(χ(`)
j )mj−` :

mj∏
ij=1

Λj(q
−(m1+···+mj)+ij
3 z) : . (4.32)

When cj 6= 3, we have χ(`)
j =

(1−q`3)(1−q`3q
−1
cj

)
(1−q`+1

3 )(1−q`−1
3 q−1

cj
)
and

y
mj
j

mj−1∏
`=1

(χ(`)
j )mj−` =

mj∏
`=1

q
1/2
cj q

(1−`)/2
3 − q−1/2

cj q
−(1−`)/2
3

q
`/2
3 − q−`/23

. (4.33)

One can check that this expression is also true for cj = 3 because both hand sides indeed
become zero for mj ≥ 2. The factor (4.33) is exactly the same as the coefficient in (3.58).
Thus, Em(z) matches Tm(z).

One may obtain the similar statement for the second identification with the Drinfeld
currents (4.21). Defining the product of Drinfeld currents as

Fm(z) ≡ F (qm−1
3 z)F (qm−2

3 z) · · ·F (z) (4.34)

and currents generated from Miura transformation as

R
∗(c1)
1 R

∗(c2)
2 · · ·R∗(cn)

n ≡
∞∑
m=0

(−1)mT ∗m(z)qmDz3 , (4.35)

the correspondence between the two is

ρ~c(Fm(z)) = T ∗m(z). (4.36)

The proof of these claims is exactly parallel to the first identification.
Before finishing this section, we comment on the order independence of the Miura

operators. As we mentioned, one expects that the corner VOA YL,M,N does not depend on
the order of the Miura operators in the Miura transformation. The proof of the statement
was difficult since handling the higher currents was difficult.

In the q-deformed version, we can provide a straightforward proof of this claim. In
this section, we have established a direct link between the Miura transformation in the
order ~c with the ρ~c representation of the quantum toroidal gl1. We can map the ordering
independence of the Miura transformation to that of the tensor product representation ρ~c.
In the quantum toroidal gl1, there is a universal R-matrix.10 One can show the equivalence
between the tensor products of two Fock representations with a different order, Fc ⊗ Fc′
and Fc′ ⊗Fc, by using this R-matrix. This fact, after coming back to the equivalent Miura
transformation, implies the ordering independence of Miura operators.

10The explicit form the R-matrix in terms of the free boson is rather complicated even for the tensor
product of the form Fa ⊗Fa [33] (see also [34, 35]).
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4.3 Screening currents

In this section, we discuss the screening charges of the q-deformed Y algebra defined by
the Miura transformation. The screening charges for the quantum toroidal gl1 realized on
Fc1 ⊗ Fc2 ⊗ · · · ⊗ Fcn were constructed in [6] as the vertex operators commuting with the
Drinfeld currents. Because we have already expressed all the generators determined by the
Miura transformation as the product of the Drinfeld currents, the screening charges in [6]
work for the q-deformed Y algebra as well. To make this paper self-contained, we give their
explicit form below.

Let us first consider the product of the two Fock spaces Fc(u1) ⊗ Fc(u2) of the same
type. There are two screening charges as follows:

S±cc =
∮
dzS±cc(z), (4.37)

S+
cc(z) = e

hc+1
hc

Q−z
−hc+1

hc
a−0 + hc

hc−1

× exp

 ∞∑
r=1

−(qr/2c+1−q
−r/2
c+1 )

r(qr/2c −q−r/2c )
v−rz

r

 exp

 ∞∑
r=1

(qr/2c+1−q
−r/2
c+1 )

r(qr/2c −q−r/2c )
vrz
−r

 , (4.38)

S−cc(z) = e
hc−1
hc

Q−z
−hc−1

hc
a−0 + hc

hc+1

× exp

 ∞∑
r=1

−(qr/2c−1−q
−r/2
c−1 )

r(qr/2c −q−r/2c )
v−rz

r

 exp

 ∞∑
r=1

(qr/2c−1−q
−r/2
c−1 )

r(qr/2c −q−r/2c )
vrz
−r

 , (4.39)

where

vr = qr/2c a(1)
r − qrca(2)

r , v−r = q−rc a
(1)
−r − q−r/2c a

(2)
−r (r > 0), (4.40)

a−0 = a
(1)
0 − a

(2)
0 , Q− = Q(1) −Q(2). (4.41)

The operator Q is defined as [an, Q] = −h3
c

σ δn,0. This is exactly the screening charges for
q-Virasoro algebra [14]. For different types of the Fock spaces, say, F1(u1) ⊗ F2(u2), the
screening charge is given by

S12 =
∮
S12(z)dz,

S12(z) = e
h2
h1
Q(1)−h1

h2
Q(2)

z
h2
h1
a

(1)
0 −

h1
h2
a

(2)
0 +h2

h3 exp
( ∞∑
r=1

1
−r

v′−rz
r

)
exp

( ∞∑
r=1

1
r
v′rz
−r
)
,

(4.42)

where

v′−r = q−r1 (qr/22 − q−r/22 )
q
r/2
1 − q−r/21

a
(1)
−r −

q
−r/2
1 (qr/21 − q−r/21 )
q
r/2
2 − q−r/22

a
(2)
−r ,

v′r = q
r/2
1 (qr/22 − q−r/22 )
q
r/2
1 − q−r/21

a(1)
r −

q
−r/2
3 (qr/21 − q−r/21 )
q
r/2
2 − q−r/22

a(2)
r , (r > 0).

(4.43)
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For a generic tensor product Fc1(u1)⊗Fc2(u2)⊗· · ·⊗Fcn(un), the screening charge Scici+1 is
assigned to each pair Fci(ui)⊗Fci+1(ui+1) of neighboring Fock spaces. The commutativity
with the Drinfeld currents can be immediately seen from the coproduct structure such
as (4.15).

Since the screening charges commute with the Drinfeld currents, they also commute
with the generators derived from Miura operators, which are equivalent to the product of
the Drinfeld currents. We conclude that the screening currents for the Miura operators are
the same as the algebra defined in [6].

For reference, we write down the explicit commutation relation between the screening
currents and the higher generators. There are three nontrivial cases: F1(u1) ⊗ F3(u2),
F1(u1)⊗F2(u2) and F1(u1)⊗F1(u2). For the first case, we have

[Tl(z), S13(w)] =
l−1∏
j=1

(1− j; 1)
(j; 0) q

l
2
3

(
δ

(
w

q−l3 z

)
− q2δ

(
w

q−l3 q−1
2 z

))
:

l∏
j=1

Λ1(q−j+1
3 z)S13(q−l3 z) :

=
l−1∏
j=1

(1− j; 1)
(j; 0) q

l
2
3 Dq2

wδ( w

q−l3 z

)
:

l∏
j=1

Λ1(q−j+1
3 z)S13(q−l3 z) :

 , (4.44)

where we used the notation

Daf(w) = f(w)− f(wa)
w

, (p; q) = q
p
2
3 q

q
2
1 − q

− p2
3 q

− q2
1 . (4.45)

We note that (p; q) is not the q-Pochhammer symbol. For the second case, we have

[Tl(z), S12(w)]

=
l∑

n=0

l−n∑
q=1

q
− l

2
1 q

−n2
3

×
n+q∏
j=1

(
−(j − 1;−1)

(j; 0)

) l−n−q∏
k=1

(
−(k; 1)

(k; 0)

) n+q∏
j 6=n+1

(j − n; 1)
(j − n− 1; 0)

 (1; 1)
(
l−n∏
k=1

(k + q; 1)
(k + q; 0)

)

× q−q3 Dqq3

wδ( w

q1q
−n+1
3 z

)
:
n∏
j=1

Λ1(q−j+1
3 z)

l−n∏
k=1

Λ2(q−k+1−n
3 z)S12(q1q

−q−n+1
3 z) :

 .
(4.46)

For the last case, we have two screening currents S±11(w). The commutation relations are
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as follows:

[
Tl(z), S+

11(w)
]

= −
l∑

n=0

l−n∑
q=1

(q
1
2
1 q

1
2
3 )l−2n

×
n∏
j=1

(1− j; 1)
(j; 0)

l−n∏
k=1

(1− k; 1)
(k; 0)

 n∏
j=1

(j − n− q; 1)
(j − n− q − 1; 0)

l−n∏
k 6=q

(k − q − 1;−1)
(k − q; 0)

 (1; 1)

× q−q3 Dqq3

wδ
 w

q
1
2−n
3 z

 :
n∏
j=1

Λ1(q−j+1
3 z)

l−n∏
k=1

Λ2(q−n−k+1
3 z)S+

11(q−n−q+
1
2

3 z) :

 , (4.47)

[
Tl(z), S−11(w)

]
=

l∑
n=1

q
n− l

2
3 (0; 1)

n−1∏
p=1

(−p; 1)
(p; 0)

l−n∏
p=1

(−p; 1)
(p; 0)

×Dq2

wδ
 w

q
− 1

2
1 q

−n+ 1
2

3 z

 :
n−1∏
j=1

Λ1(q−j+1
3 z)

l−n+1∏
k=1

Λ2(q−n−k+2
3 z)S−11(q

1
2
1 q
−n+ 3

2
3 z) :

 .
(4.48)

As is expected, all the above relations are expressed in the form of total difference.

5 Summary and future directions

In this paper, we proposed the Miura transformation associated with the q-deformed corner
vertex operator algebra. It is based on the q-deformed version of the fractional power
differential operators, which can be expressed by q-Pochhammer symbol and the vertex
operators. We show that the operator thus defined has much simpler properties compared
with the undeformed case.

• The higher generators have a manageable form than the undeformed case. Indeed,
it can be identified with the products of the Drinfeld currents in the direct product
representations of the quantum toroidal gl1.

• The commutativity of the screening operators with the higher currents is difficult to
prove analytically for the undeformed case. After q-deformation, one can identify
them with those of the toroidal algebra. The proof of the commutativity with the
higher currents becomes a straightforward consequence of the known results.

• We can prove the order independence of the Miura operators from the existence of
the universal R-matrix of the toroidal algebra.

In a sense, the symmetry property (Miki automorphism) of the toroidal algebra helps give
a simple understanding of the whole picture. The appearance of the fractional power in
the undeformed case finds a natural origin in the rewriting of the Drinfeld currents in a
Fock space Fc with the coefficients with a different parameter.

There are a few subjects that we wish clarify in the near future.
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• Proof of the quadratic relation (3.78): we have conjectured a quadratic relation for the
q-deformed corner vertex operator algebra. We give a partial proof of the statement
in appendix A. It will be desirable to complete the proof.11 We are also interested
in the relation between the quadratic basis of W1+∞ in [22] and the primary basis of
q-deformed corner VOA.

• Matrix analog of the Miura transformation: in [12, 13], the authors proposed a matrix
generalization of the Miura transformation to describe the rectangle W algebra (see
for instence, [37, 38]). We conjecture that its q-deformation can be directly related
to the quantum toroidal glk (see for instance, [39, 40]).

• The computation of the R matrix for the mixed Miura operators: while the existence
of the universal R-matrix is known, the free boson representation of such R-matrix is
very relevant for the explicit computation. While it was conjectured in [27], it does
not capture the deformation parameters appearing in the higher currents and may
need some modifications. In the q-deformed case, the R-matrix is given in [33] for the
bosonic case. We hope to derive the corresponding formula for the fermionic cases.

• The relation between the q-deformation and M-theory: the authors of [41, 42] found
that the Y-algebra appeared also in the system of M2-branes and M5-branes. It may
be interesting to explore how the q-deformation of corner VOA in our paper can be
interpreted in terms of M-theory.
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A Quadratic relations

In this section, we give a partial proof of the quadratic relations, which we conjectured
in (3.78). The analysis is limited to the case where one of the generators is the lowest one
T1(z). The complete proof would be obtained by using the fusion formulas in [20], which
we will not pursue here. We claim,

f1,m

(
q
−m−1

2
3

w

z

)
T1(z)Tm(w)− fm,1

(
q
m−1

2
3

z

w

)
Tm(w)T1(z)

= (q
1
2
1 − q

− 1
2

1 )(q
1
2
2 − q

− 1
2

2 )

(q
1
2
3 − q

− 1
2

3 )

[
δ

(
q3
w

z

)
Tm+1(q3w)− δ

(
q−m3

w

z

)
Tm+1(w)

]
(A.1)

11While preparing this draft, we noticed a paper [36], which seems to be very relevant to this question.

– 41 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
2

In this section we consider the general Fock representation Fc1(u1)⊗Fc2(u2)⊗· · ·⊗Fcn(un).
We also assume that the number of Fock spaces of type 1, 2, 3 is not be the same (namely
q~c 6= 1), such that one can eliminate the gl1 factor. For later convenience, we rewrite (3.75)
and (3.77) as follows,

f1,1(z) = exp
(
−
∞∑
r=1

κr
r

(qr3 − qr~c )
(1− qr3)(1− qr~c )

zr
)
, (A.2)

f1,1(w
z

)Λ̃i(z)Λ̃j(w) =



γci(
w

z
) : Λ̃i(z)Λ̃j(w) : (i = j),

∆(q−
1
2

3
w

z
) : Λ̃i(z)Λ̃j(w) : (i > j),

∆(q
1
2
3
w

z
) : Λ̃i(z)Λ̃j(w) : (i < j),

(A.3)

where we set

∆(z) = (1− q1q
1
2
3 z)(1− q−1

1 q
− 1

2
3 z)

(1− q
1
2
3 z)(1− q−

1
2

3 z)
, (A.4)

γci(z) =
(1− qciz)(1− q−1

ci z)
(1− q3z)(1− q−1

3 z)
. (A.5)

We note γ3(z) = 1. We obtain from (3.77)

f1,i(z) =
∏i
k=1 f1,1(q

1
2 (i+1−2k)
3 z)∏i−1

k=1 ∆(q
1
2 (i−2k)
3 z)

. (A.6)

For simplicity, we use the notation

Tm(z) =
∑∑n

i=1 mi=m

n∏
k=1

A(mk, ck) :
n∏
l=1

( ml∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 mk+jl−1)
3 z)

)
:, (A.7)

where we set

A(mk, ck) ≡
mk∏
jk=1

q
1
2
ckq

1
2 (1−jk)
3 − q−

1
2

ck q
− 1

2 (1−jk)
3

q
jk
2

3 − q
− jk2
3

.

The left-hand side of (A.1) is

f1,m

(
q
−m−1

2
3

w

z

)
T1(z)Tm(w)− fm,1

(
q
m−1

2
3

z

w

)
Tm(w)T1(z)

= (q
1
2
1 −q

− 1
2

1 )(q
1
2
2 −q

− 1
2

2 )

(q
1
2
3 − q

− 1
2

3 )

n∑
p=1

∑
m1+···+mn=m

∏
k 6=p

A(mk, ck)A(mp+1, cp)
(
δ

(
z

q
−(m1+···+mp−1)+1
3 w

)

− δ
(

z

q
−(m1+···+···mp)
3 w

))
: Λ̃p(z)

n∏
l=1

( ml∏
jl=1

Λ̃l(q
−(
∑l−1

i=1 mi+jl−1)
3 w)

)
: . (A.8)

The right-hand side contains many terms which are not in (A.1), but the terms not con-
taining δ

(
z
q3w

)
or δ

(
z

q−m3 w

)
actually cancel out each other. To see that, let us divide it

into four parts as follows:
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• p = 1 of the first delta function∑∑n

i=1 mi=m

∏
k 6=1

A(mk, ck)A(m1 + 1, c1)

× : Λ̃1(q3w)
n∏
l=1

( ml∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 mk+jl−1)
3 w)

)
: δ
(

z

q3w

)
(A.9)

• 2 ≤ p ≤ n of the first delta function
n∑
p=2

∑∑n

i=1 mi=m

∏
k 6=p

A(mk, ck)A(mp+1, cp)

× : Λ̃p(q
−
∑p−1

j=1 mj+1
3 w)

n∏
l=1

( ml∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 mk+jl−1)
3 w)

)
: δ

 z

q
−
∑p−1

j=1 mj+1
3 w


(A.10)

• 1 ≤ p ≤ n− 1 of the second delta function

−
n−1∑
p=1

∑∑n

i=1 mi=m

∏
k 6=p

A(mk, ck)A(mp + 1, cp)

× : Λ̃p(q
−
∑p

j=1 mj
3 w)

n∏
l=1

( ml∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 mk+jl−1)
3 w)

)
: δ

 z

q
−
∑p

j=1 mj
3 w

 (A.11)

• p = n of the second delta function

−
∑∑n

i=1 mi=m

∏
k 6=n

A(mk, ck)A(mn + 1, cn)

× :
n∏
l=1

( ml∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 mk+jl−1)
3 w)

)
Λ̃n(q−m3 w) : δ

(
z

q−m3 w

)
(A.12)

In the following, we prove that the terms proportional to δ
(

z
q−r+1

3 w

)
(1 ≤ r ≤ m) vanish

and the remaining terms are given by

(A.10) + (A.11) =
n∑
p=2

∑
mp+···+mn=m

∏
k 6=p

A(mk, ck)A(mp + 1, cp)

× : Λ̃p(q3w)
n∏
l=p

( ml∏
jl=1

Λ̃l(q
−(
∑l−1

k=pmk+jl−1)
3 w)

)
: δ
(

z

q3w

)

−
n−1∑
p=1

∑∑p

i=1 mi=m

∏
k 6=p

A(mk, ck)A(mp + 1, cp)

× :
p∏
l=1

( ml∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 mk+jl−1)
3 w)

)
Λ̃p(q−m3 w) : δ

(
z

q−m3 w

)
. (A.13)
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The coefficients of δ
(

z
q−r+1

3 w

)
(1 ≤ r ≤ m) are

n∑
p=2

{ ∑∑p−1
i=1 mi=r∑n

i=p=m−r

∏
k 6=p

A(mk, ck)A(mp+1, cp) : Λ̃p(q−r+1
3 w)

n∏
l=1

( ml∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 mk+jl−1)
3 w)

)
:

(A.14)
−

∑∑p−1
i=1 m

′
i=r−1∑n

i=pmi=m−r+1

∏
k 6=p−1

A(m′k, ck)A(m′p−1 + 1, cp−1)

× : Λ̃p−1(q−r+1
3 w)

n∏
l=1

( m′l∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 m
′
k+jl−1)

3 w)
)

:
}
. (A.15)

To derive (A.13), we need to prove that the sum of (A.14) and (A.15) vanishes. Be-
cause (A.15) contains at least one Λ̃p−1, it is convenient to consider separately the case of
mp−1 = 0 and the case of mp−1 ≥ 1 in (A.14). Similarly, we consider m′p = 0 and m′p ≥ 1
in (A.15) separately. Then we have

(A.14) =
n∑
p=2

{ ∑
m1+···+mp−2=r
mp+···+mn=m−r

mp−1=0

∏
k 6=p

A(mk, ck)A(mp + 1, cp)

× : Λ̃p(q−r+1
3 w)

n∏
l=1

( ml∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 mk+jl−1)
3 w)

)
: (A.16)

+
∑

m1+···+mp−2=r
mp+···+mn=m−r

mp−1≥1

∏
k 6=p,p−1

A(mk, ck)A(mp + 1, cp)A(mp−1, cp−1)

× : Λ̃p(q−r+1
3 w)

n∏
l=1

( ml∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 mk+jl−1)
3 w)

)
:
}
, (A.17)

(A.15) =−
n∑
p=2

{ ∑∑p−1
i=1 m

′
i=r−1∑n

i=p+1 mi=m−r+1
m′p=0

∏
k 6=p−1

A(m′k, ck)A(m′p−1 + 1, cp−1)

× : Λ̃p−1(q−r+1
3 w)

n∏
l=1

( m′l∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 m
′
k+jl−1)

3 w)
)

: (A.18)

+
∑∑p−1

i=1 m
′
i=r−1∑n

i=pmi=m−r+1
m′p≥1

∏
k 6=p−1,p

A(m′k, ck)A(m′p−1 + 1, cp−1)A(m′p, cp)

× : Λ̃p−1(q−r+1
3 w)

n∏
l=1

( m′l∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 m
′
k+jl−1)

3 w)
)

:
}
. (A.19)
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We can easily see (A.17)+(A.19)=0 under the identification

mp−1 ≥ 1, m′p ≥ 1,
mi = m′i (i ≤ p− 2),

mp−1 = m′p−1 + 1,
mp + 1 = m′p,

mi = m′i (i ≥ p+ 1).

(A.20)

We can derive (A.16)+(A.18)=0 similarly. The sum in (A.16) is
n∑
p=2

∑
m1+···+mp−2=r
mp+···+mn=m−r

mp−1=0

=
n∑
p=3

∑
m1+···+mp−2=r
mp+···+mn=m−r

mp−1=0

, (A.21)

because when p = 2 there are no terms satisfying the condition m1 + · · ·+mp−2 ≥ 1. The
same thing happens with (A.18) and we get

n∑
p=2

∑∑p−1
i=1 m

′
i=r−1∑n

i=p+1 mi=m−r+1
m′p=0

=
n−1∑
p=2

∑∑p−1
i=1 m

′
i=r−1∑n

i=p+1 mi=m−r+1
m′p=0

(A.22)

=
n∑
p=3

∑∑p−2
i=1 m

′
i=r−1∑n

i=pmi=m−r+1
m′p−1=0

. (A.23)

Applying the same argument, the region of p decreases one by one and finally becomes
zero. Then we obtain (A.16)+(A.18)=0 and (A.14)+(A.15)=0.

Summing (A.9), (A.12), (A.13), we finally arrive at

f1,m

(
q
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2
3

w

z

)
T1(z)Tm(w)− fm,1
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− 1
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1 )(q
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2
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∏
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n∏
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( ml∏
jl=1

Λ̃l(q
−(
∑l−1

k=1 mk+jl−1)
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q3w
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∑
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∏
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A(mk, ck)A(mp + 1, cp) :
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jl=1
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q−m3 w
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2
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2
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1
2
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2
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1
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2
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Tm+1(q3w)δ
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q3w
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− Tm+1(w)δ

(
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. (A.24)
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The last equation comes from the observation that the normal ordered vertex operator
part of Tm+1(z) can be written by adding one vertex operator to each side of the normal
ordered vertex operator part of Tm(z).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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