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Abstract: The success of ligand docking calculations typically depends on the quality of the receptor structure.

Given improvements in protein structure prediction approaches, approximate protein models now can be routinely

obtained for the majority of gene products in a given proteome. Structure-based virtual screening of large combina-

torial libraries of lead candidates against theoretically modeled receptor structures requires fast and reliable docking

techniques capable of dealing with structural inaccuracies in protein models. Here, we present Q-DockLHM, a method

for low-resolution refinement of binding poses provided by FINDSITELHM, a ligand homology modeling approach.

We compare its performance to that of classical ligand docking approaches in ligand docking against a representa-

tive set of experimental (both holo and apo) as well as theoretically modeled receptor structures. Docking bench-

marks reveal that unlike all-atom docking, Q-DockLHM exhibits the desired tolerance to the receptor’s structure

deformation. Our results suggest that the use of an evolution-based approach to ligand homology modeling followed

by fast low-resolution refinement is capable of achieving satisfactory performance in ligand-binding pose prediction

with promising applicability to proteome-scale applications.
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Introduction

Considerable effort has been directed towards developing fast

and effective ligand docking algorithms applicable to drug dis-

covery and design.1–4 The goal of virtual screening techniques is

to limit the size of the screening library to compounds most

likely to display the desired biological activity. Among com-

monly used virtual screening approaches are docking-based tech-

niques that prioritize the testing compounds by predicting the

binding mode for a query compound5–8; this is followed by the

prediction of binding affinity.9–11 To achieve satisfactory per-

formance, most ligand docking approaches typically require

high-resolution structural information on a potential target recep-

tor, preferably in the ligand-bound conformational state.12

Hence, many studies describe successful self-docking bench-

marks.6,13–15 Nevertheless, many proteins exhibit significant

motion upon ligand binding16–18 and even small motions of side

chains or loops can have a detrimental effect on docking

accuracy.

It has been demonstrated for trypsin, HIV-1 protease and

thrombin that almost 90% of initial docking accuracy is lost if

the mean protein structural rearrangement is greater than

1.5 Å19. A notable drop off in the docking accuracy (from 76 to

49%) was reported in cross-docking experiments where ligands

were docked to the crystal structures derived from complexes

other than their own.20 Another study carried out for eight pro-

tein targets shows considerable deterioration in CDocker’s21 per-

formance from 39% for native receptor structures to 26% for

non-native conformations.22 Further examples of ligand docking

applications using non-native receptor crystal structures include

the comprehensive benchmarks of the GOLD docking program15

against the Astex Non-native Set,23 testing the FITTED docking

protocol on a set of 33 complexes for five drug targets24 and the

assessment of the ICM’s5 performance for a set of four protein

kinases.25 In contrast, there are considerably fewer studies that

focus on the development and benchmarking docking of method-

ologies suitable for theoretical receptor structures, particularly

those modeled using remote protein homology.26–28

Despite the continuous growth of the PDB,29 for many

important drug targets, high quality crystal structures are still

unavailable. In the absence of experimentally determined struc-

tures, homology modeling provides receptor models with an
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accuracy related to the level of sequence identity to the template

protein.30–32 Protein models built on template structures with

more than 50% sequence identity tend to have �1 Å root-mean-

square deviation (RMSD) of their backbone atoms from the cor-

responding experimental structures. Medium-accuracy models

(with a RMSD of 1.5 Å from native for 90% of the backbone

structure) require template structures with a sequence identity of

30–50% to the target. The accuracy of protein models drops

considerably for targets sharing less than 30–35% sequence

identity to their templates. Notwithstanding the progress of

structural genomics projects,33–35 for most proteins, no structural

templates with high sequence identity are available; therefore

their theoretical models, even when they have the correct global

topology, have significant structural inaccuracies in ligand bind-

ing sites. Such structural errors interfere with ligand docking

and cause critical deterioration in the ability to accurately repro-

duce binding poses.

For example, docking experiments using deformed trypsin

structures with a Ca root-mean-square-deviation, RMSD, from

native varying from 1 to 3 Å as targets for docking known tryp-

sin inhibitors revealed that native protein-ligand contacts are

rapidly lost with receptor structure deformation.36 Furthermore,

as demonstrated for 10 enzyme systems, the performance of the

docking calculation is affected by the particular representation

of the receptor and decreases from experimental to theoretically

modeled structures.12 Finally, large-scale benchmarks carried out

for a representative set of protein-ligand complexes revealed that

the relatively high accuracy attained in self-docking frequently

becomes no better than simple random ligand placement if

weakly homologous protein models are used as the target recep-

tors instead of crystal structures.37 This observation clearly

reflects the reduced ability to properly accommodate ligand mol-

ecules in the estimated one half of targets with weakly homolo-

gous protein models that have a RMSD from the native binding

site [2 Å.38 Such structural distortions of the binding sites are

significantly larger than the differences between the apo and

holo structural forms of most proteins.39,40

In that regard, efficient docking methods capable of dealing

with structural deviations from ligand-bound receptor conforma-

tions frequently observed in ligand-free forms and routinely

present in theoretically modeled receptor structures are highly

desired. Low-resolution models26–28,41 and evolution-based

approaches37 have been shown to efficiently tackle this problem.

The latter work by detecting remote functional relationships in

proteins to identify many essential features associated with

ligand binding.37,38 These insights can be profitably exploited to

develop CPU-inexpensive algorithms for ligand comparative

modeling. For example, ligand binding sites can be effectively

detected in protein models whose global (binding pocket) Ca
RMSD is up to 8–10 Å (2–3 Å).38 Furthermore, a pocket-spe-

cific potential of mean force can be derived from weakly homol-

ogous structure templates to facilitate ligand docking. This

potential is often more specific for modeling protein-ligand

interactions than generic knowledge-based potentials derived

from complexes found in the PDB.27 The analysis of ligand

binding modes in evolutionarily distant proteins identified by

threading shows that the ligands that bind to the common

binding site often contain a set of strongly conserved anchor

functional groups as well as variable regions that impart speci-

ficity to the family members42; these observations stimulated the

development of FINDSITELHM, a ligand homology modeling

approach. Remarkably high structural conservation of the anchor

functional groups across weakly related proteins was recently

used to perform rapid ligand docking by homology modeling

with encouraging results.37 Here, we describe Q-DockLHM, the

extension of Q-Dock27 that performs constrained low-resolution

ligand docking simulations to refine the binding poses provided

by FINDSITELHM. In ligand docking against a representative set

of experimental as well as theoretically modeled receptor struc-

tures, we compare its performance to that of classical ligand

docking approaches.8,43

Materials and Methods

CCDC/Astex Dataset

High quality protein–ligand complex X-ray structures were taken

from the CCDC/Astex set.44 We only include proteins for which

at least five ligand-bound, weakly homologous threading tem-

plates can be identified by protein threading and where the bind-

ing pocket can be predicted by FINDSITE38 within 7 Å from

the bound ligand; this results in 204 protein targets of the 305

originally included in the CCDC/Astex set. In addition to the

ligand-bound crystal structures used as target receptors to dock

ligands (Set 0), we compiled three sets of protein models with

different structural accuracy: high, moderate, and low (Set 1, Set

2, and Set 3, respectively). Protein models were built by our

protein structure assembly/refinement protocol, TASSER45 from

multiple distantly related (\35% sequence identity to the target)

template structures identified by PROSPECTOR_3.42 For each

target protein, up to 10 models have been generated; three were

selected and assigned to a particular set based on the TM-score46

to the target crystal structure to retain the average TM-scores for

Set 1, Set 2, and Set 3 of 0.85, 0.80, and 0.75, respectively.

Out of 204 targets included in the dataset, 54 are dimers with

ligand binding pockets formed by both monomer chains. The

quaternary structures of these targets were generated using the

TASSER models of the monomers and 3D-Dock47 and assigned

to a particular set using similar criteria as for the single chain

targets. The average Ca RMSD calculated for individual protein

chains is 2.41, 3.44, and 4.56 Å, for Set 1, Set 2, and Set 3,

respectively. Furthermore, we selected 135 proteins for which

ligand-free structural forms are available in the PDB29 to con-

duct docking simulations using receptor apo crystal structures.

The average global and local deviations from the ligand-bound

crystal structure for the protein models (Sets 1–3) and ligand-

free structures are summarized in Table 1. The dataset is found

at http://cssb2.biology.gatech.edu/skolnick/files/QDOCKLHM.

Position-Specific Anchor restraints

In addition to the pocket-specific contact potential derived from

weakly related template structures,27 Q-DockLHM uses position-

specific anchor restraints imposed on the anchor binding mode

predicted by FINDSITELHM.37 The consensus anchor-binding

pose is derived from weakly homologous (\35% sequence
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identity to the target) ligand-bound template structures identified

by threading. First, upon the global superposition of the thread-

ing templates onto the target’s (experimental or predicted) struc-

ture using TM-align,48 the template-bound ligands that occupy a

top-ranked, predicted binding site are clustered using a SIM-

COMP chemical similarity cutoff of 0.7. SIMCOMP is a chemi-

cal compound-matching algorithm that provides atom equivalen-

ces.49 Subsequently, each cluster of ligand molecules is used to

detect the anchor substructure. The equivalent atom pairs pro-

vided by SIMCOMP are projected onto ligand functional

groups,27 and the anchor substructure is defined as the maximum

set of conserved functional groups present in at least 90% of the

ligands from a single cluster. Having identified the anchor sub-

structure, the average pairwise RMSD for anchor functional

groups is calculated for template-bound ligands upon the global

superposition of the template structures. The consensus anchor

binding mode and its structural conservation is then incorporated

into Q-DockLHM’s force field as follows:

Eanchor ¼
 
RMSD � aRMSD

2

!2

if RMSD > aRMSD
2

0 otherwise

8><
>: (1)

where the RMSD is calculated for a given ligand pose versus

the consensus anchor-binding mode and aRMSD is the average

pairwise RMSD of the anchor substructure calculated over the

template-bound ligands (anchor structural conservation). Ligand

conformations whose anchor functional groups deviate too far

from their consensus positions are penalized, and the lowest

energy poses are typically localized around the anchor consensus

binding mode within the distance proportional to its structural

conservation. As shown below, the restraints imposed on the

consensus anchor-binding mode improve the sampling of native-

like conformations.

Ligand Docking Protocols

In the first step, binding pockets were predicted in the target

proteins by FINDSITE.38 This structure/evolution-based

approach identifies ligand-bound template structures from a set

of distantly homologous proteins detected by the PROSPEC-

TOR_3 threading approach42 and superimposes them onto the

target’s (experimental or predicted) structure using the TM-align

structure alignment algorithm.48 Binding pockets are identified

by the spatial clustering of the center of mass of template-bound

ligands and ranked by the number of binding ligands. Here, we

used the best of top five predicted pockets. We note that only

ligand binding sites whose centers were predicted within 7 Å

from the bound ligand were used to dock ligands. Ligand poses

provided by FINDSITELHM37 were used as the initial conforma-

tions for molecular docking/refinement by Q-DockLHM,

Q-Dock,27 AutoDock3,8 LIGIN43 and AMMOS.50 The protocols

followed are detailed below.

FINDSITELHM is a fast ligand homology modeling approach

that docks flexible ligands by a simple superpositioning proce-

dure.37 It uses a collection of template-bound ligands extracted

from binding sites predicted by FINDSITE and clusters them

using the SIMCOMP chemical similarity score.49 Subsequently,

an ‘‘anchor’’ substructure is identified in each cluster, as defined

earlier. FINDSITELHM superimposes the target ligand onto the

consensus binding pose, the anchor conformation averaged over

the seed compounds (the largest set of compounds that have

their anchor substructures within a 4 Å RMSD from each other)

of the identified anchor substructure. If none of the identified

anchor substructures is covered by the target ligand, it is ran-

domly placed in the predicted pocket. Ligand flexibility is

accounted for by the superposition of multiple conformations of

the target ligand. The conformation that can be superposed onto

the reference coordinates with the lowest RMSD to the predicted

anchor pose is selected as the final model.

Q-DockLHM is a direct extension of Q-Dock27 (see below)

that additionally includes harmonic RMSD restraints imposed on

the predicted anchor-binding pose (defined in eq. 1). Because

the sampling of the lowest-energy conformations is generally

restricted to the space around the consensus anchor pose, the

simulation time was reduced from Q-dock by using 12 replicas,

50 attempts at replica exchange, and 50 MC steeps between rep-

lica swaps. The lowest-energy conformation was selected as the

final docking result.

AMMOS. Ligand poses provided by FINDSITELHM as well

as low-resolution models generated by Q-DockLHM and trans-

formed into the all-atom representation were optionally refined

by molecular mechanics optimization using AMMOS.50

AMMOS uses the AMMP molecular simulation package51 to

carry out automatic refinement of the complexes. We used the

sp4 force field in all simulations. Using the crystal structures of

the receptors, only ligand atoms were permitted to move

(AMMOS Case 5), whereas for protein models, protein atoms

within a 12 Å sphere around the ligand are allowed to be flexi-

ble (AMMOS Case 4).

Q-Dock. We followed the Replica Exchange Monte Carlo

docking protocol27 that allows the sampling of ligand conforma-

tions within a 7 Å radius sphere imposed on the predicted

pocket center with the number of replicas reduced to 12, 50

attempts at replica exchange and 50 MC steeps between replica

swaps. The final docking conformation corresponds to the

lowest-energy pose.

Table 1. Global and Local Deviation From the Ligand-Bound Crystal

Structure (Holo) for the Protein Models (Sets 1–3) and Ligand-Free

(Apo) Structures Used as Target Receptors to Dock Ligands.

Deviation

From Holo Set 1a Set 2a Set 3a Apob

Global structure

Ca RMSD (Å) 3.75 6 3.69 5.69 6 5.23 7.32 6 5.34 0.80 6 1.06

TM-score 0.85 6 0.12 0.80 6 0.14 0.75 6 0.15 0.98 6 0.05

Binding pocket residues

Ca RMSD (Å) 1.67 6 0.90 2.39 6 1.62 3.02 6 1.89 0.70 6 0.92

All-atom

RMSD (Å)

2.93 6 0.90 3.55 6 1.50 4.08 6 1.79 1.16 6 1.00

aCalculated over the entire set of 204 proteins.
bCalculated for the subset of 135 proteins for which both holo and apo

structural forms are available.
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AutoDock3. In flexible ligand docking simulations, we used

AutoDock 3,8 which is the most frequently used docking soft-

ware.2 A grid spacing of 0.375 Å was used, with the box dimen-

sions depending on the target ligand size, such that the ligand’s

geometric center was not allowed to move more than 7 Å away

from the predicted binding pocket center. Each docking simula-

tion consisted of 100 runs of a genetic algorithm (GA) using the

default GA parameters. The lowest-energy conformation was

taken as the final docking result.

LIGIN is an all-atom docking approach that uses molecular

shape complementarity and atomic chemical properties to predict

the optimal binding pose of a ligand inside the receptor binding

pocket.43 We adopted the idea of ligand docking using confor-

mational ensembles7,52,53 to mimic the ligand flexibility in

LIGIN. For a given target, we used exactly the same ensemble

of multiple ligand conformations as in Q-Dock/Q-DockLHM sim-

ulations and FINDSITELHM, and docked each of them into the

predicted binding site using LIGIN. The docking procedure was

repeated 1000 times for each ligand conformer. The final bind-

ing mode corresponds to that of maximal complementarity found

in the complete set of ligand conformers. Atom types were

assigned using LPC54; no receptor residues were permitted to

have steric overlap with the ligand.

Evaluation Metrics for Docking Accuracy

The overall quality of the predicted protein-ligand complexes is

assessed in terms of the contact distances between protein and

ligand atoms. Interatomic contacts are identified by LPC.54 The

distribution of the contact distances (atom types are neglected)

were analyzed for the complexes modeled by each ligand dock-

ing method and compared with that observed in the crystal

structure.

Root-mean-square-deviation (RMSD) from native is one of

the most commonly used measures to assess the accuracy of

ligand binding pose prediction. The classical RMSD measure

averages the binding pose prediction accuracy over all ligand

heavy atoms. Because the position of a portion of a ligand can

be significantly better predicted than the remaining part of the

molecule, a simple RMSD evaluation can be very misleading.55

Therefore, we also report the fraction of ligand heavy atoms pre-

dicted within 1, 2, and 3 Å from their reference positions.

The fraction of native protein-ligand contacts recovered in

the predicted complex structures complements the RMSD calcu-

lation in the evaluation of the docking accuracy. Specific

protein-ligand contacts are calculated at the detailed level of

protein/ligand heavy atoms (high-resolution contacts) as well as

at the simplified level of protein residues and ligand functional

groups27 (low-resolution contacts). High-resolution contacts are

extracted from the complex structures by LPC, which is based

on the interatomic contact surface analysis.54 Low-resolution

contacts are calculated using the limiting distances for the cen-

ters of mass of ligand functional groups and protein residues.27

In addition to the specific low-resolution contacts, we also con-

sider consensus quasi-specific contacts that are conserved across

the set of template protein-ligand complexes (present in at least

25% of the template complexes). Here, ligand functional groups

of the same type are equivalent to each other, i.e. quasi-specific

contacts are calculated for the protein residues and ligand func-

tional group types.

For the protein crystal structures used as the target receptors

to dock ligands, the RMSD as well as the fraction of correctly

predicted contacts are calculated using the ligand pose in the

experimental complex as the reference conformation. In theoreti-

cal protein models, the local geometry of the binding pocket fre-

quently deviates from the experimental structure (Table 1). To

assess the ligand binding mode prediction accuracy for protein

models, we used ligand poses transferred from the crystal struc-

tures upon the superposition of the binding residues as reference

ligand conformations. This also roughly estimates the upper

bound for ligand docking accuracy against protein models.

Because of the structural distortions of binding pockets, in many

cases, the requirement of 0 Å RMSD or 100% of the native con-

tacts simply cannot be satisfied. Ligands randomly placed into

the receptors binding pockets within a distance of 7 Å from the

predicted pocket center delineate the lower bound of docking

accuracy.

Results

Accuracy of the Binding Pocket Prediction by FINDSITE

In this study, we used binding pockets predicted by FINDSITE

as the target sites to dock ligands. FINDSITE is a threading-

based binding site prediction/protein functional inference/ligand

screening algorithm that detects common ligand binding sites in

a set of evolutionarily related proteins.38 The results of pocket

prediction carried out for the CCDC/Astex set are shown in

Figure 1. A remarkable feature of FINDSITE is its high insensi-

tivity to the structural distortions in protein models. Considering

Figure 1. Accuracy of ligand binding site prediction by FINDSITE

for the CCDC/Astex dataset using the protein crystal structures (Set

0) and theoretically modeled structures (Sets 1–3) compared with

randomly selected patches on a target protein surface. Main plot:

Cumulative fraction of proteins with a distance between the center

of mass of a ligand in the native complex and the center of the best

of top five predicted binding sites displayed on the x-axis. Inset:

rank of the best pocket selected from the top five predictions.
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a cutoff distance of 4 Å as a hit criterion, the success rates for

Set 0 (crystal structures), Set 1, Set 2, and Set 3 (protein mod-

els) are 83.8%, 81.4%, 78.9%, and 76.5%, respectively, with

comparable ranking (Fig.1, inset). Here, we allow a binding

pocket center to be predicted within a distance of 7 Å from the

center of a bound ligand in the crystal structure and the docking

protocols were adjusted to allow the sampling of native-like con-

formations.

Overall Quality of the Predicted Complex Structures

The cumulative distribution of interatomic contact distances cal-

culated for ligand and protein heavy atoms is presented in

Figure 2. A significant fraction of close contacts and steric

clashes between ligand and protein heavy atoms can be observed

in the conformations predicted by FINDSITELHM. This is

because the receptor structure is absent in FINDSITELHM that

docks ligands by a simple superpositioning procedure using the

ligand consensus binding mode derived from template struc-

tures.37 Ligand conformations modeled by Q-DockLHM typically

contain less close contacts; however, some are still present after

the reconstruction of all-atom models from the low-resolution

structures. High-resolution refinement using AMMOS applied to

ligand poses reconstructed from Q-DockLHM’s conformations

removes most of the unphysical contacts, and similar to Auto-

Dock3 and LIGIN, produces ligand-protein complexes that

closely follow the crystal structures with respect to the intera-

tomic distances. AMMOS was found to be more effective in

removing close contacts when applied to ligand poses refined by

Q-DockLHM than those provided by FINDSITELHM. This is

especially important for subsequent ligand ranking studies.

Accuracy of the Binding Pose Prediction

Typically, the binding pose prediction accuracy of docking algo-

rithms is assessed by ligand RMSD from the crystal structure. The

median RMSD calculated for ligands docked by FINDSITELHM

for the CCDC/Astex dataset of 204 proteins using receptor crys-

tal structures is 5.10 Å (we note that for the subset of 47 proteins

whose predicted binding pockets are within 2 Å from the native

ligand’s center that provide a substantial anchor coverage (�0.9)

for the target ligand, the median RMSD for FINDSITELHM (fur-

ther refined by AMMOS) is 3.14 Å (2.83 Å), which is in good

agreement with our previous benchmarks37). Using Q-Dock

(Q-DockLHM), the median RMSD of the predicted ligand poses

decreases to 4.42 Å (4.10 Å). Furthermore, we find that the sub-

sequent high-resolution refinement by AMMOS improves the

accuracy of the all-atom conformations reconstructed from low-

resolution models provided by Q-DockLHM to a median RMSD

of 4.02 Å. Here, AutoDock3 provides the most accurate poses

with the median RMSD of 3.68 Å. The RMSD calculated for

ligand conformations obtained from LIGIN is 5.14 Å. We note

that random ligand placement gives much worse results; the

median RMSD is 9.23 Å.

For modeled protein structures used as the target receptors,

the results of docking simulations are assessed in terms of the

Figure 2. Cumulative distribution of interatomic contact distances in the complexes modeled by

FINDSITELHM, Q-DockLHM, AMMOS, AutoDock3 and LIGIN using (A) receptor crystal structures

and protein models from (B) Set 1, (C) Set 2, and (D) Set 3 compared with the contacts distances

observed in the experimental structures.
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fraction of ligand heavy atoms that have been predicted within

1, 2, and 3 Å from their reference positions as well as the frac-

tion of correctly predicted specific contacts and compared to

these obtained for receptor crystal structures. The reference

ligand coordinates for receptor models are calculated by trans-

ferring ligands from the crystal structures into the modeled

Figure 3. Average fraction of ligand heavy atoms predicted within a distance of 1, 2, and 3 Å from

their reference positions by FINDSITELHM, Q-DockLHM, AMMOS, Q-Dock, AutoDock3, and LIGIN

using (A) receptor crystal structures as well as protein models from (B) Set 1, (C) Set 2, and (D) Set 3.

Figure 4. Correlation between RMSD from the native ligand pose and the fraction of (A) high- and (B)

low-resolution specific protein-ligand contacts plotted for the docking poses predicted by all programs

used in this study. The transferred ligand coordinates from the crystal structures to the protein models

were used as the reference ligand poses for Sets 1–3. The Pearson’s correlation coefficients (r) are given.
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structures upon the local superposition of the binding residues.

Figure 3 presents the fraction of ligand heavy atoms placed near

their reference positions. For the crystal structures (Fig. 3A),

Autodock3, Q-DockLHM followed by AMMOS and LIGIN give

comparably accurate results for the largest threshold; roughly

half of the ligand atoms are predicted within a distance of 3 Å

from their crystal positions. Clearly, AutoDock3 is the most

accurate for the smallest threshold, where one-quarter of ligand

heavy atoms are placed within 1 Å on average. For protein mod-

els, FINDSITELHM docks the ligands with the highest fraction

of their heavy atoms predicted within 1 Å from reference

coordinates. Using a distance threshold of 3 Å, in most cases

Q-DockLHM gives the most accurate binding poses, but they are

often close to FINDSITELHM. These results (and also the analy-

sis of the overall quality of the complex structures) suggest that

in many cases due to the structural distortions of the binding

pockets in modeled protein structures (Table 1), the approxi-

mately correct binding pose of a ligand as assessed by the

RMSD or the portion of the ligand placed near it’s reference

conformation violates the excluded volume causing a strong

energy penalty. However, as we show below, the low-resolution

refinement by Q-Dock and especially by Q-DockLHM recovers

more specific protein-ligand contacts than FINDSITELHM despite

the higher RMSD values.

Protein-Ligand Contacts

It has been pointed out that comparing the performance of

ligand docking programs is a nontrivial task.13,55 The evaluation

is even more complicated when docking accuracy is assessed

Figure 5. Fraction of specific high-resolution interatomic contacts predicted by FINDSITELHM,

Q-DockLHM, AMMOS, Q-Dock, AutoDock3, and LIGIN compared with the ligand poses directly

transferred from the crystal structures as well as to ligands randomly placed into the binding pockets.

Boxes end at the quartiles Q1 and Q3; a horizontal line in a box is the median. ‘‘Whiskers’’ point at

the farthest points that are within 3/2 times the interquartile range. Outliers and suspected outliers are

presented as solid and blank circles, respectively.
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based on ligand binding poses predicted using inaccurate recep-

tor models, where a simple RMSD value may not provide an

adequate evaluation metric. For that reason, in addition to the

traditional RMSD calculations and the fraction of ligand heavy

atoms predicted within various distance thresholds from their

reference positions, we also use the fraction of native protein-

ligand contacts recovered in the predicted complex structures to

assess docking accuracy. Because interaction-based assessment

is sensitive to what is defined as an interaction, we consider two

accuracy measures based on the fraction of correctly reproduced

high- (calculated on interatomic distances between heavy atoms

calculated using LPC54) as well as low-resolution (based on the

distance between the centers of mass of protein residues that

optimize the overlap with the high resolution definition27) pro-

tein-ligand interactions. We find that the fraction of recovered

specific native contacts, both high- and low-resolution, correlates

well with a ligand’s RMSD from the native pose (Fig. 4). Low-

resolution contacts reliably reproduce the real interatomic con-

tacts in all-atom structures with an average Matthew’s correla-

tion coefficient of 0.8,27 yet are less sensitive to small deviations

in the ligand and protein coordinates compared to the high-reso-

lution contacts (Fig. 4, RMSD range of 0–3 Å).

The fraction of correctly predicted specific high- and low-

resolution native contacts is presented in Figures 5 and 6,

respectively. For the receptor crystal structures, the fraction of

recovered specific native contacts is highest for AutoDock3

(Figs. 5A and 6A). However, all-atom docking approaches were

found to be considerably less accurate in the prediction of spe-

cific protein-ligand contacts than FINDSITELHM and particularly

for the case of low-resolution docking when modeled protein

Figure 6. Fraction of specific low-resolution contacts predicted by FINDSITELHM, Q-DockLHM,

AMMOS, Q-Dock, AutoDock3, and LIGIN compared with the ligand poses directly transferred from

the crystal structures as well as to ligands randomly placed into the binding pockets. Boxes end at the

quartiles Q1 and Q3; a horizontal line in a box is the median. ‘‘Whiskers’’ point at the farthest points

that are within 3/2 times the interquartile range. Outliers and suspected outliers are presented as solid

and blank circles, respectively.
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structures were used as the target receptors (Figs. 5B-5D and

6B-6D). Furthermore, low-resolution docking/refinement by

Q-Dock/Q-DockLHM improves the accuracy of ligand binding

pose prediction over FINDSITELHM in terms of the recovered

specific high- and low-resolution protein-ligand contacts, which

is essential for improved ligand ranking. Finally, for receptor

crystal structures and high-resolution contacts (Figure 5A), all-

atom refinement using AMMOS slightly improves the binding

poses predicted by Q-DockLHM.

Improvement of Q-DockLHM Over FINDSITELHM

Benchmark simulations reported here demonstrate that ligand

homology modeling by FINDSITELHM followed by anchor-con-

strained low-resolution refinement by Q-DockLHM outperforms

other approaches in ligand binding pose prediction against mod-

eled receptor structures. FINDSITELHM provides an approxi-

mately correct binding pose for the highly conserved portion of

a ligand, termed the anchor, and evaluates its structural conser-

vation across the set of evolutionarily related proteins. This

information is subsequently utilized in low-resolution docking to

refine the binding mode and, as it is evident from Figure 7, to

recover significantly more specific protein-ligand contacts than a

simple all-atom refinement, e.g. using AMMOS, with compara-

ble CPU time (see below).

Assessment of the Q-Dock/Q-DockLHM Docking Accuracy

Here, we assess how the harmonic RMSD restraints imposed on

the anchor portion of a ligand in Q-DockLHM simulations affect

the predicted binding pose compared to Q-Dock. Table 2 shows

the median RMSD from the crystal structure, the fraction of

recovered specific high-resolution contacts, the Matthew’s corre-

lation coefficient calculated for consensus (derived from tem-

plate protein-ligand complexes) low-resolution contacts and the

docked energy obtained from Q-Dock and Q-DockLHM starting

from the binding poses provided by FINDSITELHM as well as

from random ligand conformations. Using the binding modes

predicted by FINDSITELHM as the initial poses, the improve-

ment of Q-DockLHM over Q-Dock is rather minor for the recep-

tor crystal structures. However, as assessed by the RMSD and

the fraction of recovered high-resolution contacts, the improve-

ment is statistically significant at the level of 0.05 for theoreti-

cally modeled receptor structures, particularly those that are the

most distorted (Sets 2 and 3). Additionally, we carried out dock-

ing simulations starting from the random ligand conformations

instead of those provided by FINDSITELHM. Here, the improve-

ment of Q-DockLHM over Q-Dock is highly significant in all the

cases (Table 2, values given in parentheses). As one would

expect, with an appropriately long simulation time, the results

should not depend on the initial conformation. Nevertheless, vir-

tual screening applications require the docking simulations to be

limited to at most few minutes per single compound.

Moreover, significantly higher MCC values obtained for the

consensus quasi-specific low-resolution contacts recovered by

Q-DockLHM result in ligand conformations with lower docked

energy (Table 2), which is a critical factor for effective ligand

ranking. We also find that the sampling of native-like conforma-

tions is improved in Q-DockLHM with respect to Q-Dock. Figure 8

shows the median root-mean-square displacement of a ligand

Figure 7. Fraction of specific low-resolution contacts predicted by FINDSITELHM followed by

Q-DockLHM (low-resolution refinement, top plots) and FINDSITELHM followed by AMMOS (all-atom

refinement, bottom plots) and for 204 complexes from the CCDC/Astex dataset using (A) receptor

crystal structures as well as protein models from (B) Set 1, (C) Set 2, and (D) Set 3. The area shaded

in gray highlights the improvement in contact prediction by AMMOS/Q-DockLHM over FINDSITELHM.

Dashed lines depict the estimated lower and upper bounds for the docking accuracy.
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geometric center from the ligand center in the crystal structure

across all replicas used in Replica Exchange Monte Carlo simu-

lations. For receptor crystal structures (Fig. 8A), the median dis-

placement of a ligand center is lower, particularly for middle

temperature replicas, when the Q-DockLHM protocol is used. In

case of protein models (Figs. 8B-8D), a difference between

Q-Dock and Q-DockLHM is also seen for low temperature repli-

cas. When docking time is of importance, the harmonic

restraints imposed on the structurally conserved portion of a

ligand rapidly direct toward the native-like conformations. Thus,

they improve the sampling of native-like conformations and pro-

vide acceptably accurate binding poses.

Docking Results for Ligand-Free Crystal Structures

The very high sensitivity to structural distortions in protein mod-

els revealed for AutoDock3 and LIGIN motivated us to examine

the accuracy of ligand binding mode prediction for ligand-free

crystal structures used as target receptors. Figure 9 presents the

docking results obtained for 135 proteins selected from the

CCDC/Astex dataset for which both ligand-bound (holo) and

ligand-free (apo) structural forms are available in the PDB.

Clearly, even small deviations from the holo structures (Table 1)

cause a statistically significant deterioration in the ability to

reproduce the ligand binding mode for all-atom docking

approaches as assessed by the RMSD (Fig. 9A) as well as the

fraction of ligand heavy atoms that have been predicted within

1, 2, and 3 Å from their experimental positions (Fig. 9B). In

contrast, ligand binding poses provided by low-resolution dock-

ing by Q-DockLHM using holo receptor structures are indistin-

guishable from these obtained using the apo structural forms.

Furthermore, we find that all-atom refinement by AMMOS

applied to the ligand binding poses predicted by Q-DockLHM

improves the accuracy of the final models irrespective of the

receptor ligand binding state.

Docking Times

Conformational search efficiency in ligand docking is of particu-

lar importance in structure-based virtual screening. The large

number of small compounds (usually thousands to millions)

subjected to docking simulations in a typical virtual screening

experiment requires that a binding pose must be predicted

in an acceptable amount of CPU time. Figure 10 shows

docking times for the programs and protocols used in this study.

FINDSITELHM is the least CPU-expensive procedure with a

median docking time of 19 sec. Q-Dock and Q-DockLHM require

�7 min to dock a ligand on average. High-resolution refinement

by AMMOS typically uses �5 min of a CPU time. All-atom

docking by AutoDock3 (LIGIN) requires �60 (�30) min on

average. We note that for AMMOS, AutoDock3, and LIGIN, the

default sets of parameters were used in this study, and the dock-

ing protocols have not been optimized with respect to accuracy

and simulation time.T
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Discussion

Ligand virtual screen is routinely used in drug discovery to accel-

erate the identification of lead candidates for pharmacologically

important targets.56–58 In practice, virtual screening algorithms

suffer from a number of limitations. Because of the inherent

imperfections of the energy functions, the predicted binding affin-

ity is often strongly correlated with the molecular weight of the

ligand, independent of whether or not it really binds.36,59,60 In vir-

tual screening, the high contribution of ligand molecular weight

to the predicted binding energy typically favors the selection of

large compounds.61 This problem can be addressed by using more

specific potentials such as pocket-specific potentials derived from

a set of evolutionarily related complex structures,27 targeted scor-

ing functions,62 or normalized energy scores.61 Furthermore, the

very high sensitivity to the structural distortions of ligand-binding

sites makes most existing ligand docking approaches inapplicable

to theoretically modeled receptor structures, particularly those

modeled by remote protein homology.26–28

The analysis of ligand binding mode conservation in evolutio-

narily related proteins demonstrates that their ligands typically

bind in similar fashion. Indeed, across distantly related proteins,

the average RMSD of the protein binding pockets is 2–3 Å.37,63

The remarkably strong conservation of the chemical and structural

aspects of ligand binding across evolutionarily related binding

pockets suggests that it should be possible to correctly predict

protein-ligand interactions even as the binding sites become some-

what distorted. This would beneficially expand the pool of bona

fide drug targets from the small fraction of a proteome for which

high quality crystal structures are available to the majority pro-

teins whose requisite quality structures can be modeled using

state-of-the-art protein structure prediction approaches.30–32,45

Here, we demonstrate that the high performance of all-atom

docking approaches in self-docking experiments falls of dramati-

cally if modeled protein structures are used as the target recep-

tors to dock ligands. Even moderate structural distortions of the

modeled binding pockets that in principle should be tolerated as

explained above (experimentally their binding pockets bind simi-

lar ligands, yet their RMSD is 2–3 Å), drastically interfere with

the ability of the all-atom docking approaches to identify correct

docking geometries. This problem might be alleviated by intro-

ducing flexibility into the receptor protein.64–66 However, inclu-

sion of explicit receptor flexibility greatly increases the dimen-

sion of the conformational space and the simulation time67,68;

thus it is inapplicable in virtual screening experiments that typi-

cally involve docking a large collection of drug candidates with

a computational effort of minutes per single compound. Further-

more, it has been demonstrated that the protein flexibility in

ligand docking against non-native receptor structures typically

does not improve the binding pocket RMSD due to the rugged

energy landscapes created by all-atom force fields.68 In addition,

the generation of ligand conformers is a limiting factor for dock-

ing accuracy.68 A somewhat more plausible explanation for the

decreasing docking accuracy with the structural distortion of the

binding pockets is that many ligand docking algorithms work

mainly by shape complementarity; therefore they are missing

essential features of binding.

To address this significant problem, we recently developed

FINDSITELHM, a novel evolution-based ligand docking

approach by homology modeling.37 The underlying basis of

FINDSITELHM is that evolution tends to conserve not only func-

tionally important regions in the protein structure but also

conserves a subset of ligand features as well. In addition,

the low-resolution description of molecular recognition was

Figure 8. Median root-mean-square displacement of the ligand geometric center from the ligand cen-

ter in the crystal structure for individual replicas in Replica Exchange Monte Carlo docking simula-

tions using (A) receptor crystal structures as well as protein models from (B) Set 1, (C) Set 2, and (D)

Set 3. Replicas are ordered by increasing temperature (1, lowest temperature replica; 12, highest tem-

perature replica).
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demonstrated to recapitulate essential features of ligand-protein

and protein-protein complexes by simulating the average effects

of conformational flexibility.27,28,41,69 Here, we show how the

structural diversity of the binding site captured by protein

threading can be exploited in low-resolution modeling of pro-

tein-ligand interactions. In fact, very similar techniques are com-

monly used in template-based protein structure prediction, where

the structural information in the form of protein-specific poten-

tials, distance and contact restraints is derived from multiple

templates identified by threading and combined with generic

energy terms with the goal of building a protein model that is

closer to native structure than that provided by the best tem-

plate.70–73. These basic principles outlined for template-based

protein structure prediction also hold for ligand docking.

By analogy, ligand poses provided by FINDSITELHM can be

considered as the averaged template structures, whose accuracy

is subsequently improved in constrained low-resolution docking

simulations using Q-DockLHM. Here, the lower resolution

description is of importance in that it averages high-resolution

structural details and dramatically improves the tolerance to re-

ceptor structure deformation.27,28,41,69 Overall, our results sug-

gest that the use of an evolution-based approach followed by

adequate low-resolution modeling is capable of achieving satis-

factory performance in protein–ligand recognition with a great

potential for proteome-scale applications.
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