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ABSTRACT
The high computation cost is one of the key bottlenecks for adopting
deep neural networks (DNNs) in different hardware. When client
data are sensitive, privacy-preserving DNN evaluation method,
such as homomorphic encryptions (HE), shows even more compu-
tation cost. Prior works employed weight repetition in quantized
neural networks to save the computation of convolutions by mem-
orizing or arithmetic factorization. However, such methods fail
to fully exploit the exponential search space from factorizing and
reusing computation. We propose Q-gym, a DNN framework con-
sisting of two components. First, we propose a compiler, which
leverages equality saturation to generate computation expressions
for convolutional layers with a significant reduction in the number
of operations. Second, we integrate the computation expressions
with various parallelization methods to accelerate DNN inference
on different hardware. We also employ the efficient expressions to
accelerate DNN inference under HE.

Extensive experiments show that Q-gym achieves 19.1% / 68.9%
more operation reductions compared to SumMerge and original
DNNs. Also, computation expressions from Q-gym contribute to
2.56× / 1.78× inference speedup onCPU /GPU compared toOneDNN
and PyTorch GPU on average. For DNN evaluation under HE, Q-
gym reduces the homomorphic operations by 2.47× / 1.30× relative
to CryptoNet and FastCryptoNet for HE tasks with only 0.06%
accuracy loss due to quantization.

CCS CONCEPTS
• Computing methodologies→ Parallel algorithms.
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1 INTRODUCTION
Deep Neural Networks (DNNs) are becoming the de-facto solutions
for various computer vision tasks [14, 33]. However, due to the
large computation and storage cost of convolutional layers, DNNs
are difficult to be integrated with many computation environments,
such as mobile devices. To mitigate the computation and storage
constraints for efficient DNN deployment, mainstream approaches
include Quantizing DNNs [66, 68, 70] and leveraging DNN spar-
sity [23, 35, 36].

One key characteristic of quantized DNNs (QNNs) is weight rep-
etition, i.e., weights in different layers are repetitions of a small
number of 𝑄 unique ones (e.g., {−0.18, 0, 0.18} and 𝑄 = 3). Lever-
aging such a regularity, a state-of-the-art approach SumMerge [43]
reduces computation by two measures: i) Factorization – for exam-
ple, factorizing a dot-product 𝑎𝑥 +𝑏𝑦+𝑎𝑧+𝑎𝑤 to be 𝑎(𝑥 +𝑧+𝑤) +𝑏𝑦
and ii) Computation reuse – for instance, when computing two
dot products 𝑟0 = 𝑎𝑥 + 𝑎𝑦 + 𝑎𝑧 + 𝑎𝑤 and 𝑟1 = 𝑏𝑥 + 𝑎𝑦 + 𝑏𝑧 + 𝑏𝑤 ,
SumMerge first calculates a partial sum 𝑒0 = 𝑥 + 𝑧 +𝑤 and reuses it
in the downstream computations (𝑟0 = 𝑎𝑒0 + 𝑎𝑦, 𝑟1 = 𝑏𝑒0 + 𝑎𝑦).

While SumMerge indeed reduces the computation, it may not
fully exploit weight repetition. As shown in Figure 1, while Sum-
Merge leverages partial sums, it cannot reuse partial products (e.g.,
𝑏𝑦, 𝑐𝑧), leading to sub-optimal reduction. The underlying reason
is straightforward: finding the best strategy to reduce the cost of
an arithmetic expression is a combinatorial optimization problem,
and the simple greedy heuristics leveraged by SumMerge may be
insufficient.

Another technique for reducing the cost of convolutions is Wino-
grad [31] which uses fast FFT to reduce computation operations
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Figure 1: Comparison between Q-gym and a state-of-the-art
approach SumMerge [43] with an example. (a) SumMerge
first factorizes each individual dot-product and then per-
forms greedy searches for the partial sum that can be reused
by different activation groups. Partial products (𝑏 ·𝑦, 𝑐 · 𝑧) are
not reused. (b) Q-gym leverages both partial sums and partial
products (e.g., 𝑒10 as a partial sum and product, is reused in
the follow-up computation of 𝐹0 and 𝐹2).

in convolutional layers. Although this can have a significant effect
on the number of operations, it does not take advantage of weight
reuse and so does not achieve optimal reduction.

In this paper, we propose Q-gym, a framework to accelerate
DNN inference by fully exploiting weight repetition. Q-gym comes
with two components: a compiler that finds smart ways to reduce
addition and multiplication counts in DNN evaluation, and a set of
downstream tasks that leverage the compiled output to reduce its
wall-clock time.

Q-gym’s Compiler. To reuse both partial sum and product
results, our compiler aggressively explores the search space by
leveraging a data-structure called e-graph [15, 38] that represents
a large number of equivalent expressions in a compact manner
(Figure 2). Thanks to its compact representation, the search space
is easier to navigate. To identify the optimal solution in the search
space, our compiler performs three steps. (i) Following equality
saturation [63], we expand the e-graph by repeatedly applying a
set of rewrite rules (Table 2). (ii) Then, we extract the optimal com-
putation expressions using integer linear programming (ILP) [52].
(iii) With large convolutional layers, e-graph expansion hardly satu-
rates. In order to fully explore the search space with such layers, we
employ a pulsed searching [27] algorithm, which iteratively applies
the first two steps until convergence of the computation cost. In the
simple example illustrated in Figure 1, our compiler identifies its
optimal solution. For large convolution layers, Q-gym can still find
more optimized solutions compared to the greedy-based method.

We also discover that the input activations overlap during the
‘sliding’ computation of weight kernels. That means computations
can be reused between the sliding convolutions. With the proposed

powerful searching algorithm, our compiler identifies a better solu-
tion by leveraging an extended search space compared with Sum-
Merge [43] and Winograd [31].

Q-gym’s Downstream Tasks. With the reduced DNN opera-
tions generated by our compiler, we can accelerate multiple down-
stream tasks, such as DNN evaluation on CPU/GPU and DNN
evaluation under Homomorphic Encryption (HE) [19].

We propose an acceleration scheme to exploit the parallelism and
locality in CPU/GPU to coupewith Q-gym’s efficient expressions. In
particular, by replacing the inner-dot product of a convolution layer
with our expressions, we can exploit the reduction in operations
to yield speedup. With different configurations in parallelization,
our acceleration scheme can fully utilize the computation resource
available. Our acceleration scheme can also effectively integrate
with other parallelization schemes, such as loop tiling, vectorization,
and multithreading.

We also propose to use Q-gym’s efficient expressions for DNN
evaluation under HE for preserving data privacy. It is compati-
ble with mainstream HE libraries while significantly reducing the
evaluation overhead.

Experiments. Extensive experiments show that our framework
effectively accelerates various DNN applications. For QNN where
the number of unique weight (𝑄) 𝑄 ≤ 12, Q-gym reduces the
number of FLOPs (#FLOPs) 1 by 68.9% / 19.1% compared to naïve
QNN / SumMerge on average. On CPU (𝑄 ≤ 3), Q-gym achieves a
speedup of 1.83× / 2.56× compared to SumMerge / OneDNN [2]. On
GPU (𝑄 ≤ 3), Q-gym achieves a speedup of between 1.64× / 1.78×
relative to SumMerge / PyTorch GPU [40]. For DNN evaluation
under HE, Q-gym shows 59.5% / 22.9% HE operation reduction
compared to CryptoNet [19] and Faster CryptoNet [13] with only
-0.06% accuracy reduction due to quantization.

Summary. We summarize our contributions as follows:
• We propose Q-gym, a framework for quantized neural net-
works that can yield efficient computation dataflow for vari-
ous downstream applications.
• Q-gym leverages an iterative searching algorithm, e-graph
representation, ILP formulation, and elaborated search space
to accelerate QNN inference.
• We implement back-end frameworks of Q-gym for multiple
sub-domains for QNNs deployment tasks, such as CPU / GPU
inference and HE applications. We combine Q-gym with
other acceleration schemes and HE protocols.
• We corroborate Q-gym’s general applicability and superior
performance across various quantized DNN models.

Q-gym is the first framework to fully exploit weight repetition
to accelerate privacy-preserving DNN inference. Also, this is the
first work that applies the idea of equality saturation to simplify
the arithmetic of DNN computation.

2 BACKGROUND
Background on CNN. While Q-gym is broadly applicable to any
DNNs that can be represented by dot-products, we focus on deep
convolutional neural networks [21, 32] (referred to as DNNs in the

1The number of FLOPs in this paper refers to the total number of adds and multiplies
for computing a convolution layer.
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rest of the paper) as examples in this paper to make our proposal
more concrete.

DNNs are commonly used for image classification [21, 30], object
detection [48, 49], and image segmentation [50]. A convolutional
layer implements a set of weight kernels to detect features in the
input image. A weight kernel is defined by a set of weights,𝑊 ,
and a bias term, 𝐵. Each convolutional layer applies 𝐾 kernels of
dimension𝑅×𝑆×𝐶 on the input with dimension𝐻×𝑊 ×𝐶 , resulting
in output feature maps with dimension (𝐻 −𝑅+1) × (𝑊 −𝑆 +1) ×𝐾 .
𝐶 denotes the number of input channels. 𝐻 and𝑊 denote input
height and weight. 𝑅 × 𝑆 denotes kernel shape. Formally, suppose
the input activation is 𝐼𝐴 and weight is 𝐿, then the output activation
𝑂 of this convolution operation is the dot product between input 𝐼𝐴
and parameters 𝐿, added by the bias 𝐵, and followed by a non-linear
activation function 𝑔(·). For a layer with a unit stride, this can be
represented as:

𝑂 (𝑥,𝑦, 𝑘) = 𝑔(𝐵 +
𝐶−1∑︁
𝑐=0

𝑅−1∑︁
𝑟=0

𝑆−1∑︁
𝑠=0

𝐿(𝑟, 𝑠, 𝑐, 𝑘) · 𝐼𝐴(𝑥 + 𝑟,𝑦 + 𝑠, 𝑐)) (1)

For a quantized DNN (QNN), we denote the number of unique
weights as 𝑄 . For a sparse DNN, we denote the sparsity ratio – the
ratio between the number of non-zero weights and the number of
parameters – as 𝑆𝑝 .
Background on Homomorphic Encryptions. A broad range of
applications, such as medical [26, 45], and fraud detection [5, 41],
require privacy and confidentiality in client data. Homomorphic
Encryption (HE) [18] is an ideal solution for such applications.
When using HE for DNN inference, theModel vendors provide DNN
model𝑀 and evaluation function 𝑓 that computes2which satisfies
𝐸 (𝑥𝑖 )2𝑀 = 𝐸 (𝑓 (𝑥𝑖 , 𝑀), 𝑘𝑝𝑢𝑏 ). After the cloud completes the model
inference, the client can decrypt (𝐷) the result using the private
key 𝑘𝑝𝑟𝑖 through Eq.(2). In this way, both parties can keep their
data private during the DNN evaluation.

𝑓 (𝑥𝑖 , 𝑀) = 𝐷 (𝐸 (𝑓 (𝑥𝑖 , 𝑀), 𝑘𝑝𝑢𝑏 ), 𝑘𝑝𝑟𝑖 )) . (2)

The key bottleneck of applying HE on DNN is that homomor-
phic multiplications and additions are extremely computationally
expensive [13, 25]. An evaluation of CryptoNet [19] requires 250
seconds on the MINST dataset. The inference time of DNN under
HE is proportional to the number of HE operations [13] (Detailed
in Sec. 5.2).

In this paper, we identify that exploiting weight repetition can
greatly reduce the computation overhead for popular HE protocols.
The efficient evaluation function 𝑓 from Q-gym reduces the number
of HE operations by up to 2.47× / 1.30× compared to the state-of-
the-art methods (FastCryptoNet/CryptoNet).

3 MOTIVATION
In this section, we discuss the motivations for proposing Q-gym.
Weight Quantization is Not Fully Explored.Weight quantiza-
tion is a widely-used method to reduce the storage and computation
overhead for deploying DNNs (See Section 7). Most existing works
for QNN acceleration, such as BitFusion [54] and FLIM [58], lever-
age the shorter bit width of weights to accelerate eachmultiplication
and addition. However, we identify that weight repetition features

Table 1: Comparison betweenmethods that reduce QNN com-
putation costs by leveraging weight repetitions. *The tempo-
ral reuse scheme is described in Section 4.5.

Methods Algorithms
AGR SumMerge Q-Gym

Evaluated Hardware CPU CPU CPU+GPU+HE
HE Application × × ✓
Temporal Reuse* × × ✓

Bypass partial product × × ✓
Average FLOPs Reduction <49.8% 49.8% 68.9%
Max CPU/GPU Speedup - 3.1× / 1.6× 5.9× / 3.1×

in QNNs are not fully explored for computation reduction in exist-
ing works. Specifically, we can bypass computations by factorizing
the computation or reusing partial results. (Figure 1).
PreviousWorks EmployingWeightRepetition is Sub-optimal.
Activation group reuse (AGR) [22] is the first method that exploits
weight repetition for efficient inference. The dot-product between
input and each weight kernel will be factorized into expressions
with reduced multiplications (Figure 1(a)). The operands of fac-
torized expressions formed activation groups and common sub-
expressions between groups can be shared to reduce computation.
Starting from the first activation group, AGR greedily extracts the
maximum overlapping term between the first and the rest of the
terms in the activation groups. Then, it recursively searches the
second term and so on.

SumMerge [43] also adopts factorization and activation grouping
schemes. Different from AGR, SumMerge (1) iterates all activation
groups pairs and generates shared ‘sub-computation’ terms be-
tween activation groups in the activation grouping phase and (2)
employs a "maxscore" – defined as the number of times each ‘sub-
computation’ term appears across activation groups – to determine
the sub-computation terms to be reused across. SumMerge iterates
between (1) and (2) until no shared sub-computation terms are left.

However, SumMerge is inefficient in the following aspects. i)
SumMerge is still a greedy heuristic. Extracting the sub-computation
term with the best ‘maxscore’ in each iteration may not be the op-
timal solution. ii) Factorization can guarantee an upper bound on
multiplications (𝑄 · 𝐾) for the convolution layer 𝐿. However, the
search space of SumMerge is limited, as it only searches for com-
mon sub-expressions between activation groups. In other words,
SumMerge does not fully exploit the search space of potential com-
putation reuse. For example, it does not reuse the computed result
to bypass partial products (e.g., 𝑏𝑦, 𝑐𝑧 in Figure 1). Also, with the
increase of𝑄 , the performance of SumMerge drops drastically (Sec-
tion 6.1) as the size of each activation group reduces. iii) With the
increasing size of weight kernels, the computation of “maxscore”
is extremely expensive and incurs a large compilation time. In Fig-
ure 1, SumMerge and AGR yield the same results. In Table 1, we
summarize the comparisons between Q-gym and AGR/SumMerge.
Applying Weight Repetition in Acceleration is Non-trivial.
As shown in Eq.(1), the computation of a convolution layer involves
6 loops (𝐻,𝑊 , 𝑅, 𝑆,𝐶, 𝐾 ), and how to parallelize the computation has
been a long-time problem [12, 46, 54]. Themost common techniques
involve 1) using loop tiling [54] to get better data locality. 2) Multi-
threading and 3) SIMD vectorization.
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These techniques cannot be directly used in our scenario as
Q-gym changes the computation dataflow between the input and
weight kernels. In this paper, we carefully design our parallelization
scheme so that we can combine the efficient arithmetic compiled
from Q-gym with the common acceleration methods on general-
purpose hardware (Detailed in Sec. 5.1).

4 COMPILER DESIGN
4.1 Overview
As discussed in Section 3, the previous method of SumMerge [43]
with a greedy heuristic cannot fully explore the search space and
fails to maximize computation reuse. We propose Q-gym that lever-
ages equality saturation (Section 4.2) to resolve the limitations of
SumMerge. Q-gym’s compiler incorporates a two-phase design: ex-
ploration and extraction. During the exploration stage (Section 4.3),
Q-gym applies a set of rewrite rules on the computation expressions
represented in an efficient data structure that can compactly repre-
sent a large number of equivalent expressions. For the extraction
stage (Section 4.4), Q-gym formulates the selection of expressions as
an ILP problem and finds more low-cost solutions compared to the
greedy method. To handle an even larger search space, Q-gym also
uses a pulsed searching algorithm [27] that iterates the exploration
and extraction until convergence (Section 4.5). We also observe that
inputs are overlapped during the sliding window computation of
output. As such, we propose a temporal reuse search space that can
further reduce the operations (Section 4.5).

4.2 Equality Saturation
Equality saturation [57, 62] is a method to resolve the exponential
time and space requirement of traditional graph rewriting. Lever-
aging the efficient data structure e-graph underlying the equality
saturation, the rewriting can be applied to the e-graph simultane-
ously without interfering with each other. Also, the e-graph is a
compact representation of equivalent representations, which re-
solves the memory space limitation in traditional rewriting. In this
paper, we propose to use the idea of equality saturation to reduce
QNN operations. Many other applications leveraging equality satu-
ration are discussed in Section 7.

In this subsection, we introduce the e-graph and the rewriting
rules applied in Q-gym.
E-graphs. An e-graph is a data structure that compactly represents
equivalent expressions. An e-graph contains a set of e-classes and a
set of e-nodes. Each e-class represents a set of equivalent terms that
can be computed from any of its e-node children. Each root e-class
represents the final computed term from the input and a weight
kernel.

Figure 2(a) shows an e-graph that represents the computation of
an input ([𝑎, 𝑏]) and two simple weight kernels ([𝑥, 𝑥] and [𝑥,𝑦]).
The expressions that compute these computations are given at the
bottom of the graph, defining e8 and e6 respectively. After applying
rule rewriting (Table 2) to saturation (defined in Section 4.3), the
e-graph will be expanded to Figure 2(b).

In Q-gym, an e-node is one operator (i.e., ‘*’ and ‘+’) associated
with two operands. The input value of each e-node’s operand is a
child e-class. Formally,

(i) An e-graph represents a term if any of its e-classes do.

Table 2: Rewrite Rules used in Q-gym for DNN arithmetic
simplification. 𝑒𝑖 denotes an e-class.

Description Source Target
Mult Commutative 𝑒𝑖 × 𝑒 𝑗 𝑒 𝑗 × 𝑒𝑖
Add Commutative 𝑒𝑖 + 𝑒 𝑗 𝑒 𝑗 + 𝑒𝑖
Add Associative I (𝑒𝑖 + 𝑒 𝑗 ) + 𝑒𝑘 𝑒𝑖 + (𝑒 𝑗 + 𝑒𝑘 )
Add Associative II 𝑒𝑖 + (𝑒 𝑗 + 𝑒𝑘 ) (𝑒𝑖 + 𝑒 𝑗 ) + 𝑒𝑘
Mult Distributive (𝑒𝑖 + 𝑒 𝑗 ) × 𝑒𝑘 𝑒𝑖 × 𝑒𝑘 + 𝑒 𝑗 × 𝑒𝑘
Mult Factorise 𝑒𝑖 × 𝑒𝑘 + 𝑒 𝑗 × 𝑒𝑘 (𝑒𝑖 + 𝑒 𝑗 ) × 𝑒𝑘

(ii)An e-class represents a term if any of its equivalent child e-nodes
do. All terms represented by an e-class are equivalent.

(iii) An e-node 𝑓 (𝑐0, 𝑐1) represents a term 𝑓 (𝑒0, 𝑒1) if each e-class
𝑒𝑖 represents 𝑐𝑖 .

In Figure 2(b), ‘e13’ is an e-class that represents both 𝑏 + 𝑎 and
𝑎 + 𝑏. In Figure 2(a), the e-node marked in red represents the term
𝑥 ∗ 𝑎 as e-classes 𝑒0 and 𝑒1 represent 𝑥 and 𝑎.
Rewrite Rules. In equality saturation, we expand the egraph using
a set of rewrite rules given in Table 2. The set of rewrite rules states
the equivalence between each pair of computation arithmetic ex-
pressions. During e-graph exploration, rewrite rules will be applied
to the e-graph. Specifically, we search for a pattern (source pattern)
in the input e-graph that is equivalent to another subgraph pattern
(target pattern). Q-gym begins rewriting the e-graph after all the
applicable rules are searched.

Note that some of the rewrite rules do not create any new e-class
to the e-graph (e.g. the commutative rules). However, they may
allow other rules to be applied in the computation (e.g. factoriza-
tion). Also, these rules increase the connections between e-nodes
and e-classes, which enables the extraction phase to find better
expressions for computation reuse.

4.3 Exploration Phase
As discussed in Section 4.1, in the first stage of equality saturation,
we expand the e-graph using a set of rewrite rules. For example,
the exploration phase expands the e-graph from Figure 2(a) to
Figure 2(b).

An e-graph is initialized from the input expressions (Figure 2(a)).
Then, we search the source pattern of each rewrite rule in the e-
graph. If a match is found, it returns the e-class and corresponding
substitution (target pattern) to the ‘match list’ 𝑈 .

Once all the (e-class, substitution) pairs are found, we begin to
modify the e-graph in the ‘match list’ simultaneously. Each pair of
modifications (i.e., e-class and substitution pair) may create a new
e-class/e-node in the graph unless the e-class/e-node already exists.

An e-graph is called saturated if no more e-class/e-node can be
created. The exploration phase will stop when one of the following
three conditions is met: 1) The e-graph is saturated. 2) The maxi-
mum exploration iterations limit𝑚𝑎𝑥_𝑒𝑥𝑝𝑙𝑜𝑟𝑒_𝑖𝑡𝑒𝑟 is reached. 3)
The maximum e-node limit𝑚𝑎𝑥𝑒𝑛𝑜𝑑𝑒 is reached. Note that the e-
graph for Q-gym is finite though possibly very large. Long-running
explorations are prevented by 𝑚𝑎𝑥_𝑒𝑥𝑝𝑙𝑜𝑟𝑒_𝑖𝑡𝑒𝑟 and 𝑚𝑎𝑥𝑒𝑛𝑜𝑑𝑒 .
The pseudo-code of the exploration phase is shown in Algorithm 1.

4.4 Extraction Phase
After the exploration phase, the selection of different e-nodes or
e-classes from the root node may yield different computation ex-
pressions (e.g., Extraction #1 and #2 in Figure 2(b)). The extracted
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Figure 2: An example of (a) e-graph initialization and (b) e-graph after expansion using rules in Table 2. With different e-
class / e-node selected, we can extract different equivalent computation expressions from an expanded e-graph.

Algorithm 1 Equality Saturation.

Input: Starting e-graph 𝐺 ; A set of rewrite rules 𝑅; Max
e-node limit 𝑚𝑎𝑥𝑒𝑛𝑜𝑑𝑒 ; Max exploration iterations
𝑚𝑎𝑥_𝑒𝑥𝑝𝑙𝑜𝑟𝑒_𝑖𝑡𝑒𝑟

Output: Explored e-graph 𝐺 ; Nodes selected 𝐿𝑛𝑜𝑑𝑒 ; Objective
value 𝑐𝑜𝑠𝑡 .

1: 𝑖 ← 0
2: while 𝑖 < 𝑚𝑎𝑥_𝑒𝑥𝑝𝑙𝑜𝑟𝑒_𝑖𝑡𝑒𝑟 do
3: 𝐺 ′ ← 𝐺 , 𝑖 ← 𝑖 + 1,𝑈 ← ∅ // match list
4: 𝑈 ←𝑈

⋃
Rule_Searching(𝐺, 𝑟 𝑗 ) for 𝑟 𝑗 in 𝑅

5: 𝐺 ← Applying_Rules(𝐺,𝑢 𝑗 ) for 𝑢 𝑗 in𝑈
6: if 𝐺 == 𝐺 ′ or 𝑛𝑢𝑚_𝑛𝑜𝑑𝑒 (𝐺 ′) ≥ 𝑛𝑚𝑎𝑥 then
7: break; // Saturate or max node limitation reached
8: end if
9: end while
10: 𝐺, 𝐿𝑛𝑜𝑑𝑒 , 𝑐𝑜𝑠𝑡 ← Extraction(𝐺)
11: return 𝐺, 𝐿𝑛𝑜𝑑𝑒 , 𝑐𝑜𝑠𝑡

expressions are equivalent to the input term which is guaranteed
by the feature of e-graph. The goal of the extraction phase is to
select the best-represented term for each root e-class according to
a cost model.

Many extraction methods for equality saturation have been pro-
posed, such as greedy algorithms [39] or ILP solutions [60, 61]. One
of the key differences between simplifying DNN arithmetic and pre-
vious works of equality saturation (Section 7) is that multiple root
nodes co-exist during the extraction phase. That is because each
weight kernel (𝑘, 𝑘 ∈ {0, ..., 𝐾}) in layer 𝐿 yields different output
activation results (𝑂 (𝑥,𝑦, 𝑘)).

In this section, we discuss two strategies to extract low-cost
expressions from an expanded e-graph.
Notations. Let 𝑖 be an e-class where 𝑖 = 0, ..., 𝑁 − 1. Let𝑚 be an
e-node where𝑚 = 0, .., 𝑀 − 1. Let𝑚.𝑜𝑝 denote the operator of the
e-node and𝑚.𝑟0 /𝑚.𝑟1 denote the operands of the e-node. Let 𝑟𝑜𝑜𝑡
be the set of root e-classes.

Let 𝑒𝑖 and 𝑛𝑚 denote a binary integer which indicates if the
corresponding e-node 𝑖 and e-class𝑚 is selected or not.

Let 𝑚.𝑟0 denote the child e-class of operand 𝑟0 in e-node 𝑚,
and let 𝑐ℎ𝑖𝑙𝑑 (𝑖) denote the set of child e-nodes of e-class 𝑖 , i.e.,
{𝑚 |𝑚 ∈ 𝑐ℎ𝑖𝑙𝑑 (𝑖)}.
Cost Model. In this paper, we define our cost model for an e-node
𝑚 as Eq.(3).

𝑐𝑜𝑠𝑡 (𝑚) =


𝐶𝑎𝑑𝑑 , if𝑚.𝑜𝑝 = +
𝐶𝑚𝑢𝑙𝑡 , if𝑚.𝑜𝑝 = ×
0, otherwise

(3)

Here, 𝐶𝑚𝑢𝑙𝑡 and 𝐶𝑎𝑑𝑑 are constant values. 𝑚.𝑜𝑝 indicates the
operator associates with the e-node𝑚. On an Intel i7-8700K CPU,
the latency ratio between floating-point (FP) multiplication and FP
addition is 3:5. And their reciprocal throughput ratio is 1:2 [17].
Assuming the computation units are fully-pipelined, we choose
𝐶𝑚𝑢𝑙𝑡 = 2 and 𝐶𝑎𝑑𝑑 = 1 to make the generated arithmetic expres-
sions more suitable for the deployed hardware. We report com-
plexity for DNN computation as FLOPs, i.e. the sum of additions
and multiplications, which are the most commonly used metrics to
evaluate the computation complexity of DNN models.

Note that a more complicated and accurate cost model (e.g.,
dynamic cost) may better characterize the deployed hardware and
it is left for future work.
Greedy Extraction Algorithm.We first experiment with a greedy
extraction strategy. Q-gym computes the subgraph cost of each
e-node using the cost model given in Eq.(3). For each e-class, Q-
gym selects the e-node with the smallest subgraph cost. Then, the
computation expression for each root e-class is determined.

Note that greedy extraction is not guaranteed to extract the
graph with the minimum cost. That is because the e-nodes are
selected locally in each eclass to minimize the subgraph cost and it
fails to consider the potential computation sharing between e-nodes
whose subgraphs may be overlapped.
ILP Extraction Algorithms. Alternatively, we can also formulate
the selection of e-classes/e-nodes as an integer linear programming
problem. The objective of ILP is to optimize the cost of arithmetic
operations:
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 : 𝑓 (𝑥) =
𝑀−1∑︁
𝑚=0

𝑐𝑜𝑠𝑡 (𝑚) · 𝑛𝑚 (4)

The constraints of the ILP are listed below:
(1) All the root e-classes (𝑟𝑜𝑜𝑡 ) should be included as they repre-

sent the final computation results:

𝑒𝑖 = 1,∀𝑖 ∈ {𝑖 |𝑖 ∈ 𝑟𝑜𝑜𝑡} (5)
(2) Also, we need constraints to say that if an e-class 𝑖 is included,

then at least one of its child e-nodes is included. Otherwise, the
term represented by the selected e-class cannot be reached.

𝑒𝑖 ≤
∑︁

𝑚∈𝑐ℎ𝑖𝑙𝑑 (𝑖)
𝑛𝑚 (6)

(3) For each e-node𝑚 selected, the child e-class of each operand
must be included. This guarantees that the input to the e-node is
not empty.

𝑛𝑚 ≤ 𝑒𝑚.𝑟0, 𝑛𝑚 ≤ 𝑒𝑚.𝑟1 (7)

To recap, the ILP optimization problem can be defined as mini-
mizing Eq.(4) which is subject to constraints Eq.(5 - 7).

4.5 Pulsed e-graph Searching
When the size of a weight kernel is large, the e-graph can hardly
reach saturation during the exploration phase due to hardware
memory limitations. To resolve this issue, we propose an efficient
searching algorithm by iteratively conducting exploration and ex-
traction. Specifically, Q-gym expands the e-graph until the number
of e-nodes or exploration steps reached its predefined limits (i.e.,
𝑚𝑎𝑥𝑒𝑛𝑜𝑑𝑒 ,𝑚𝑎𝑥_𝑒𝑥𝑝𝑙𝑜𝑟𝑒_𝑖𝑡𝑒𝑟 ) and extracts the lowest-cost compu-
tation expressions using the ILP or greedy methods. Next, Q-gym
will explore a new e-graph starting from the last generated compu-
tation expressions as shown in Algorithm 2. Our results show the
pulsed searching algorithm can significantly reduce the computa-
tion cost throughout iterations (Section 6.1).

Algorithm 2 Pulsed e-graph Searching

Input: Input expressions 𝑒𝑥𝑝𝑟𝑖 ; Set of rewrite rules 𝑅; Max
node count𝑚𝑎𝑥𝑒𝑛𝑜𝑑𝑒 ; Max searching epochs 𝐸𝑝𝑜𝑐ℎ𝑠

Output: Output expressions 𝑒𝑥𝑝𝑟𝑜 ; Final e-graph𝐺 ′; Selected
node list 𝐿′

𝑛𝑜𝑑𝑒
1: 𝑐𝑜𝑠𝑡 ′ ←∞
2: 𝐺 ← Initialize_Egraph(𝑒𝑥𝑝𝑟𝑖 ) // Initialize e-graph 𝐺
3: for 𝑖 in 0, ..., 𝐸𝑝𝑜𝑐ℎ𝑠 do
4: 𝐺, 𝐿𝑛𝑜𝑑𝑒 , 𝑐𝑜𝑠𝑡 ← Equality_Saturation(𝐺, 𝑅,𝑚𝑎𝑥𝑒𝑛𝑜𝑑𝑒 )
5: 𝐺 ← 𝑅𝑒𝑏𝑢𝑖𝑙𝑑_𝑒𝑔𝑟𝑎𝑝ℎ(𝐺, 𝐿𝑛𝑜𝑑𝑒 ) // Remove all unselected

nodes
6: if 𝑐𝑜𝑠𝑡 ≤ 𝑐𝑜𝑠𝑡 ′ do 𝐺 ′, 𝑐𝑜𝑠𝑡 ′, 𝐿′

𝑛𝑜𝑑𝑒
← 𝐺, 𝑐𝑜𝑠𝑡, 𝐿𝑛𝑜𝑑𝑒 ,

7: end for
8: 𝑒𝑥𝑝𝑟𝑜 ← rebuild_expressions(𝐺 ′, 𝐿′

𝑛𝑜𝑑𝑒
) // rebuild output ex-

pressions from e-graph
9: return 𝑒𝑥𝑝𝑟𝑜 ,𝐺

′, 𝐿′
𝑛𝑜𝑑𝑒

Temporal search space. Q-gym also observes that when 𝑅 =

𝑆 ≥ 2, given a convolutional layer, the input activation overlaps
in temporal dimensions when computing 𝑂 (𝑥,𝑦, 𝑘) and 𝑂 (𝑥,𝑦 +
1, 𝑘). That means computation reuse can also be applied between

Figure 3: An illustration of temporal reuse search space. 𝑡𝑝𝑟
denotes computations that are explored together. The gray
area is the overlapping area of inputs across timesteps. The
red / green / orange squares denote the same convolutional
layer in different time steps.
the computation of different 𝑂 . As shown in Figure 3, if Q-gym
searches two continuous convolution operations together, Q-gym
can potentially find better computation expressions with lower cost
in QNNs. We define the number of convolution operations searched
together as timesteps 𝑡𝑝𝑟 .

5 Q-GYM’S DOWNSTREAM TASKS
To exploit the efficient computation expressions generated by our
compiler, we test Q-gym’s performance on various downstream
DNN applications.

5.1 Accelerating CNN on CPU and GPU Systems
The generated efficient expressions from Q-gym can be used to
accelerate CNN inference on CPU/GPU. In this subsection, we
detail how to use the generated expressions to yield speedup in
DNN inference on CPU/GPU.
Mapping Expressions to Code. As shown in Eq.(1), the con-
volution operation iterates over 6 dimensions (𝐻,𝑊 , 𝑅, 𝑆,𝐶, 𝐾 ). In
Q-gym, we unroll the inner for-loop over (𝑅, 𝑆,𝐶, 𝐾) dimensions.
Specifically, the computation over (𝑅, 𝑆,𝐶, 𝐾) for weight layer 𝐿
yields𝐾 output results (i.e.,𝑂 (𝑥,𝑦, 𝑘), 𝑘 ∈ {0, ..., 𝐾}). We replace the
unrolled computations with Q-gym’s efficient expressions through
a common function call. The weight value is hardcoded in the func-
tion; so we don’t need to load weights during the inference. The
output 𝐾 results from naïve loops over (𝑅, 𝑆,𝐶, 𝐾) and Q-gym’s
function call are identical. Note that the convolutions across input
dimensions𝐻,𝑊 are still repeated in each iteration, so the computa-
tion of different output pixels shares the same efficient expressions.
No code generation compiler is used.
Combination ofQ-gymwith ParallelismMethods. By treating
the computations along (𝑅, 𝑆,𝐶, 𝐾) as an atomic function, we can
easily adapt the efficient computation expressions with (i) loop
tiling, (ii) multithreading, and (iii) vectorization, respectively. In
Figure 4, we illustrate how to combine the computation of our
generated expressions with (i)(ii)(iii).

(i) For loop-tiling, we first split the input activations into tiles
with a size of ℎ𝑡 ×𝑤𝑡 ×𝐶 to utilize data locality. We exhaustively
scan all the possibilities of ℎ𝑡 and select the one that achieves the
lowest latency. (ii) For multithreading, we split the 𝑤𝑡 into 𝑁𝑡ℎ𝑟
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Figure 4: The parallelization mechanism in Q-gym with loop
tiling, multithreading, and vectorization. (a) We split the
input into small tiles for better data locality. 𝑞 is an iterator
over input tiles. (b) We apply SIMD vectorization along ℎ𝑡 of
each tile to reduce the number of loops. We also split the tile
along𝑤𝑡 dimension into 𝑁𝑡ℎ𝑟 groups and (c) 𝐾 kernels into
𝐾𝑡ℎ𝑟 groups. Each group with is handled by different threads.
𝑁𝑡ℎ𝑟 ×𝐾𝑡ℎ𝑟 is the total number of threads. 𝑝, 𝑡 are iterator over
𝑤𝑡 and ℎ𝑡 . For simplicity, we set 𝑟 = 𝑠 = 1 in this figure.
threads to parallelize the computation over𝑤𝑡 . For GPU that allows
1024 threads, we further split the weight kernels along 𝐾 dimen-
sions into 𝐾𝑡ℎ𝑟 groups (Figure 4(b)). Dividing weight kernels along
𝐾 dimensions can also reduce the instructions loaded to each core
as there is no data dependency across weight kernels. (iii) Vector-
ization is applied on ℎ𝑡 dimensions to reduce the number of loops
along ℎ𝑡 as shown in Figure 4. Each addition and multiplication
in Q-gym’s expressions are compiled into SIMD instructions that
operate on different inputs and the same weights. We automate the
vectorization by using the ‘#pragma omp’ from openMP.

To evaluate Q-gym on CPU, we run two threads per physical
core (e.g., 12 threads in total on an Intel i7-8700K processor) to
ensure that each core has sufficient instruction-level parallelism
(ILP) to fully exploit the available memory bandwidth (𝑁𝑡ℎ𝑟 = 12
and 𝐾𝑡ℎ𝑟 = 1). The size of SIMD slots for CPU can be 4/8 (i.e., AVX-
2/-512) for FP32. To evaluate Q-gym on GPU, we employ a larger
𝐾𝑡ℎ𝑟 ×𝑁𝑡ℎ𝑟 to exploit the maximum number of threads allowed on
a GPU (1024 threads for NVIDIA 2080 GPU, detailed in Section 6.2).
We implement the CNN acceleration software for Q-gym’s efficient
expressions using C and CUDA, by employing the parallelization
methods shown in Figure 4. The code is compiled with gcc -O3 on
CPU and nvcc on GPU. The corresponding evaluation results on
GPU and CPU are described in detail in Section 6.2.

5.2 Accelerating HE for DNNs
We identify that the low-cost computation arithmetic from Q-gym’s
compiler significantly reduces the evaluation time of DNN under
homomorphic encryption (HE) as discussed in Section 2. The gen-
erated computation dataflow can be easily combined with different
HE libraries (i.e.,HELib [4], SEAL [53]) by simply replacing the
evaluation function 𝑓 with the expressions compiled from Q-gym
without any modifications to the encryption protocol. Note that

Q-gym does not increase the depth of multiplication in HE; so it will
not affect the correctness of the output result. We evaluate Q-gym’s
efficient expressions using two popular HE protocols (BGV [10] /
BFV [16]). We also verify the correctness of the Q-gym’s expres-
sions using HELib/SEAL. HELib/SEAL with BGV/BFV schemes are
also used to implement the CryptoNet/FastCryptoNet, respectively.

Note that the runtime of DNN inference under HE is linear to the
number of HE operations. Specifically, there are four types of HE
operations in DNN inference: (i) plaintext (PT)-ciphertext (CT) ad-
dition, (ii) ciphertext-ciphertext addition, (iii) plaintext-ciphertext
multiplication, and (iv) ciphertext-ciphertext multiplication. Be-
cause the wall-clock time for executing different types of HE op-
erations is library dependent and is highly relevant to the other
settings (e.g., key size, machine settings), in this paper, we use the
number of HE operations (HOPs) for comparison. This metric is
commonly used for other privacy-preserving DNN methods, such
as FastCryptoNet [13].

6 EVALUATION
In this section, we evaluate the performance of our compiler design
in reducing QNN computations (Section 6.1) and the performance
of Q-gym in accelerating various DNN applications (Section 6.2).

6.1 Algorithm Analysis
Experimental Setup. We implement the algorithm of Q-gym
in Rust from egg [62], an open-source equality saturation library.
During the e-graph extraction phase, we use Gurobi [1] as the ILP
solver. We also reimplemented SumMerge in Python with loop
parallelism as the baseline. The compilation time is tested on Intel
Core i7-8700K CPU with 6 physical cores. This machine has 32/32
KiB of L1 instruction/data cache, 256KiB of L2 cache per core, and
12 MiB of shared L3 cache (Detailed in Table 3).

To measure the performance of Q-gym in reducing computa-
tions, we use the ratio between the number of reduced FLOPs and
the total number of FLOPs (−𝑜𝑝𝑠) as the evaluation metric. For
comparison purposes, we conduct experiments with Q-gym that
use the greedy method during extraction (denoted as Q-gym𝑔𝑑 ).
Also, Q-gym without the pulsed searching algorithm is denoted as
Q-gym−𝑝 (i.e.,𝑚𝑎𝑥𝑒𝑝𝑜𝑐ℎ = 1).

Without specification, we set𝑚𝑎𝑥𝑒𝑛𝑜𝑑𝑒 = 107, epochs𝑚𝑎𝑥𝑒𝑝𝑜𝑐ℎ
to 10,𝑚𝑎𝑥_𝑒𝑥𝑝𝑙𝑜𝑟𝑒_𝑖𝑡𝑒𝑟 = 8, and set the temporal reuse steps (𝑡𝑝𝑟 )
to 0 for Q-gym. For ILP extraction time limitation, we set it to√
𝑅 · 𝑆 ·𝐶 · 𝐾 seconds which is relative to the number of weight

kernels in the convolutional layer.
Comparison of Reduced Operations. Figure 5 compares the
reduction of FLOPs between Q-gym, Q-gym𝑔𝑑 , and SumMerge. We
evaluate the algorithms on QNNs where the weights are generated
synthetically using a uniform distribution. We assume none of the
weights are 0 in the synthesized layers.

The result shows that Q-gym achieves significant computation
reductions compared to SumMerge on quantized DNN with differ-
ent 𝑄 . On average, Q-gym shows 19.1% / 15.5% more computation
reduction than SumMerge in Figure 5. Q-gym also achieves a more
substantial operation reduction compared to Q-gym𝑔𝑑 . As discussed
in Section 4.4, using an ILP solver can find a better solution with a
lower computation cost compared to a greedy heuristic.
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Figure 5: Comparison of reduced operations (−𝑜𝑝𝑠) between (a) Q-gym (b) Q-gym𝑔𝑑 (c) SumMerge over different quantization
schemes (𝑄) and layer sizes (𝑅 · 𝑆 ·𝐶 · 𝐾).

Table 3: CPU/GPU configurations.

CPU Intel i7-8700K, 6 physical Cores , 3.7 GHz, 1 sock-
ets

GPU NVIDIA 2080, 8GB main memory, 1024 maxi-
mum threads

L1 Cache 32KiB 8-way I$, 32KiB 8-way D$, private
L2 Cache 256KiB, 16-way, private
L3 Cache 12MiB, 11-way, shared
TLB L1D 4-way 64 entries, L1I 8-way 128 entries

STLB 12-way 1536 entries
DRAM DDR4, 32GB, 2666MHz, 2 sockets, 6 channels

per socket
Kernel Linux 5.4.0
Software GCC 7.1, PyTorch 1.4.0+cuDNN, CUDA 11.2,

Rust 1.56.1
Q-gym𝑔𝑑 can also outperform SumMerge. On average, Q-gym𝑔𝑑

shows 3.6% more computation reduction across all the kernels
tested in Figure 5 (2.3% / 8.3% on average for 𝑄 = 2 /𝑄 = 3). This is
because e-graph exploration covers a larger search space compared
to searching the common expressions between activation groups.
Compilation Time of Q-gym’s Algorithm.We evaluate the time
for Q-gym to compile a given weight layer into efficient computa-
tion expressions. Figure 6 shows the compilation time of Q-gym.
With the increasing weight dimension and unique weights (𝑄), Sum-
Merge takes a much longer compilation time than Q-gym. That is
because SumMerge checks the overlapping of terms between all ac-
tivation groups for computing the ‘maxscore’ (Section. 3). Also, the
‘maxscore’ is computed many times until no overlapping between
activation groups is found.

With the increase of 𝑄 , the compilation time of Q-gym does not
change a lot due to the e-node/explore step limitation (𝑚𝑎𝑥𝑒𝑛𝑜𝑑𝑒 ,
𝑚𝑎𝑥_𝑒𝑥𝑝𝑙𝑜𝑟𝑒_𝑖𝑡𝑒𝑟 ) andmax epochs (𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠) for pulsed search-
ing. To apply Q-gym in runtime compilation techniques, the users
can choose Q-gym𝑔𝑑 which is much faster compared to Q-gym and
SumMerge.
Sensitivity to the Number of Unique Weights (𝑄) and Layer
Size.With a growing number of weights, the performance of Q-gym
also increases (Figure 5). When 𝑄 = 12, the computation reduction
ratio of Q-gym increases from 38.3% to 62.9% with the growing size
of weights. For SumMerge, the performance eventually converges
at ∼50%. This means the greedy heuristic cannot fully exploit the
computation reuse.

Figure 6: Compilation time for different weight sizes using
SumMerge, Q-gym and Q-gym𝑔𝑑 .

With the growing number of unique weights (𝑄), Q-gym always
shows more computation reduction compared to SumMerge. Specif-
ically, for𝑄 = 2 /𝑄 = 3 /𝑄 = 12, Q-gym shows 21.3% / 27.6% / 11.2%
more computation reduction compared to SumMerge. Note that
SumMerge’s performance decreases with the increase of 𝑄 . This
is because the activation groups in SumMerge are factorized into
smaller sets when 𝑄 is large, offering fewer opportunities for com-
putation reuse.
Sensitivity to Temporal Reuse Steps (𝑡𝑝𝑟 ). Figure 7 shows a
sensitivity analysis of 𝑡𝑝𝑟 on different QNN layers. With larger 𝑅,
more inputs are overlapped across time steps and achieve lower
computation cost when 𝑡𝑝𝑟 ≥ 1. For weight layers where (𝑅, 𝑆) is
(3, 3), (5, 5), (7, 7), Q-gym where 𝑡𝑝𝑟 = 3 shows 4.7, 6.0%, and 6.2%
more computation reduction compares to Q-gym where 𝑡𝑝𝑟 = 0.
With the increasing 𝑡𝑝𝑟 , the overlapping area of input activations
also increases (Figure 3).
Comparison between Q-gym and Winograd. We also compare
Q-gym with temporal reuse against Winograd, a commonly used
technique that leverages fast FFT to reduce computation opera-
tions in convolutional layers. The downside of Winograd is that the
transformation overhead is not negligible, i.e., the storage overhead
of transformation matrices and the computation of input, weight
transformations, and inversions. Also, Winograd has a theoretical
boundary of 75% computation reduction (factor of 4). In this com-
parison, we did not take into consideration the extra computation
for input, weight transformation, and inversion forWinograd. Thus,
the baseline is stronger than what happens in practice.

On average, Q-gym shows 24.2% more computation reduction
compared to Winograd as shown in Figure 7. Note that Q-gym can
be combined with Winograd and we leave it as future work.
Analysis of Q-gym on group convolutions. We also verify if
Q-gym is still working in group convolution layers [51, 59, 67].
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Figure 7: Sensitivity of 𝑡𝑝𝑟 over the reduction of operations
(−𝑜𝑝𝑠) when 𝑄 = 3. Comparison between Q-gym with tempo-
ral reuse to Winograd (denoted as ‘wino’). We assume the in-
put tile size ((𝐻,𝑊 )) for Winograd is (4, 4), (12, 12), (25, 25) for
weights (𝑅, 𝑆) (3, 3),(5, 5),(7, 7), respectively. The correspond-
ing 𝛼 ′ are 2.25 / 10.51 / 19.61 in Winograd [31].

Figure 8: Sensitivity of operation reductions (−𝑜𝑝𝑠) over
grouping factors 𝑔. The tested kernel size is (3, 3, 128, 128)
and we set 𝑡𝑝𝑟 = 0.
Traditional convolution layers have a weight dimension (𝑅, 𝑆,𝐶, 𝐾 )
as given in Eq.(1). With group convolution where the grouping
factor is 𝑔, the channel of each weight kernel would be 𝐶𝑔 = 𝐶/𝑔.
The 𝐾 kernels will be separated into 𝑔 groups and each group
has 𝐾𝑔 = 𝐾/𝑔 weight kernels, i.e., each group has a dimension
of (𝑅, 𝑆,𝐶𝑔, 𝐾𝑔). When 𝑔 = 𝐶 , the convolution layer will become a
depth-wise convolution layer. During group convolution, the input
activation can be reshaped into (𝐻,𝑊 ,𝐶𝑔, 𝐿𝑔). Each group of ker-
nels (𝑅, 𝑆,𝐶𝑔, 𝐾𝑔) handles different groups of the input activations
(𝑅, 𝑆,𝐶𝑔) in the same fashion given in Eq.(1). As such, Q-gym can
still handle group convolutions when 𝑅 × 𝑆 ×𝐶𝑔 ×𝐾𝑔 > 1. But with
the increase of 𝑔, the search space decreases, giving Q-gym less
opportunity to reuse computations. As shown in Figure 8, when
𝑄 = 3, the operation reduction drops from 77.1 % of traditional
convolution to 38.9 % for depth-wise convolution layers.

Note that most of the depth-wise or group convolutions are
implemented together with traditional convolutional layers [51, 59,
67]. Also, these models are typically not quantized due to a large
accuracy drop.
Effectiveness of Pulse Searching Algorithm. Figure 9 shows
the operation reductions over different epochs during Q-gym’s
pulse searching. On average, Q-gym with pulsed e-graph searching
can reduce the computation cost by 9.9% compared to Q-gym−𝑝 .
For small kernels, e.g., (1, 1, 32, 32), the computation reduction of
pulse searching is limited due to the relatively small search space.
For large kernels, pulse searching shows substantial performance
improvement over Q-gym−𝑝 . Note that from epochs 5 to 7, the

Figure 9: Computation reductions (−𝑜𝑝𝑠) over the pulsed
searching epochs across different convolutional layers
(𝑅, 𝑆,𝐶, 𝐾).
number of operations is still reducing across different test cases.
However, overall the number of reduced FLOPs becomes negligible
compared to the total FLOPs.

6.2 Evaluation of Q-gym’s Downstream Tasks
Experimental Setup. We evaluate the performance of Q-gym on
an Intel Core i7-8700K CPU (The same machine as Section 6.1) and
an NVIDIA 2080 GPU (1024 max threads), respectively. For CPU
and GPU baselines, we choose to compare against the expressions
generated from SumMerge. We also compare against the state-of-
the-art DNN compiler (OneDNN [2])) for Intel CPU and Pytorch
GPU (v1.4.1) [40] which has a carefully designed cuDNN/CUDA
(v11.2) back-end for performance purposes. All the weights and
input activations are 32-bit floating-point numbers. For all com-
parisons, we set the batch size to be 1 to accommodate the com-
mon configurations used in real-time systems. The implementation
methods of Q-gym for CPU/GPU are described in Section 5.
Performance of Q-gym on CPU. Figure 10 shows the per-layer
speedup with different 𝑄s on the CPU. All experiments assume an
input of dimensions of 𝐻 = 𝑊 = 48. We enable multithreading
(MT) for both Q-gym and OneDNN. For MT implementation in
Q-gym, we set 𝑁𝑡ℎ𝑟 = 12 and 𝐾𝑡ℎ𝑟 = 1 across all layers tested
to maximize CPU resource utilization. For OneDNN settings, we
scan the number of threads from 1 to 12 for each layer and select
the best-performed setting. For SumMerge, we apply the same
MT implementation as Q-gym (Section 5) with the computation
expressions generated from SumMerge. For vectorization, we unroll
the loop along 𝐻 dimensions (unrolled factor = 8).

When 𝑄 ≤ 3, Q-gym shows 2.56× / 1.83× speedup compared to
OneDNN and SumMerge on average across different convolution
layers. Note that 𝑄 ≤ 3 are common settings for QNNs (Table 4).
We observe that when the 𝑄 gets larger, the speedup of Q-gym
over SumMerge decreased due to the relatively lower computa-
tion reduction of Q-gym in large 𝑄 . On real-world DNN models
shown in Table 4, Q-gym achieves 1.49× / 1.77× speedup over Sum-
Merge / OneDNN with an average accuracy loss of 2.12% relative
to the full precision models.
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Table 4: Comparison between Q-gym and SumMerge/OneDNN on CPU performance. ♭TTQ is a sparse and quantized model (one
of the three values is 0. ♮ VGG-small is a derivative architecture based on VGG [56]. ♯ ‘-Ops Gap’ denotes the gap of computation
reduction ratio (−𝑜𝑝𝑠) between Q-gym and SumMerge. The models can be found in the repository [64, 69].

Description Accuracy v.s. SumMerge [43] v.s. OneDNN [2] v.s. PyTorch [40]

DNN Arch Q Dataset Quantized method Full Quantized ♯-Ops Gap (%) CPU MT
Speedup

CPU MT
Speedup

GPU MT
Speedup

AlexNet [30] 2 ImageNet [14] BWN [47] 59.7 55.7 27.1 1.83 1.76 1.03
AlexNet 3 ImageNet ♭TTQ [70] 59.7 55.2 16.7 1.45 1.84 1.42

ResNet-20 [21] 3 CIFAR-10 [28] ProxQuant [6] 91.9 91.3 27.0 1.21 2.31 1.86
♮VGG-small [11] 4 CIFAR-10 LQ-Nets 93.8 93.5 21.9 1.40 1.32 0.95

ResNet-18 2 CIFAR-100 [29] LS-1 [42] 77.8 75.8 27.6 1.55 1.81 1.56
ResNet-18 3 CIFAR-100 LS-T [42] 77.8 76.5 29.8 1.52 1.59 1.20

Figure 10: Per-layer speedup (higher is better) comparison on CPU. The tuple (𝑅,𝑆 ,𝐶,𝐾) denotes the size of different convolution
layers. For OneDNN implementation, we use the official performance profiling tool [3].

Figure 11: Per-layer speedup (higher is better) comparison on GPU.

We also compare the performance of Q-gym on CPU to its theo-
retical peak as shown in Figure 12. Specifically, we assume the two
VPUs (SIMD width is 8) in each core are fully pipelined running
on 3.7GHz. All 6 physical cores are enabled. As shown in Figure 12,
when the kernel size is small, the performance ratio is low. That
is because the threads’ creation and termination overhead are rel-
atively large compared to the computation overhead. For large
kernels, the CPU utilization is also decreasing, this is because large
convolution kernels yield a large number of computation expres-
sions and the data locality between expressions are getting worse.

Performance of Q-gym on GPU. Figure 11 shows the per-layer
speedup on GPU over PyTorch and SumMerge. Regarding the
settings of Q-gym’s parallelization method (Figure 4), we choose
𝐾𝑡ℎ𝑟 = 8192/𝐶 to limit the size of instructions loaded to the GPU
cache. We also set 𝑁𝑡ℎ𝑟 = 1024/𝐾𝑡ℎ𝑟 to maximize the usage of GPU
resources. All runs assume an input of dimensions 𝐻 =𝑊 = 112.

Q-gym shows an average speedup of 1.92× / 1.64× compared
to PyTorch when 𝑄 = 2 / 𝑄 = 3. Also, Q-gym shows an average
speedup of 1.63× when 𝑄 ≤ 3 over the computation expression
from SumMerge. With the increasing size of weight layers, the
performance of Q-gym drops faster than PyTorch due to the larger

Figure 12: Per-layer GOPS and peak GOPS on CPU across
different convolutional layers. The tuple (𝑅,𝐶) denotes the
size of the kernel (𝑅, 𝑆,𝐶, 𝐾) where 𝑅 = 𝑆 , 𝐶 = 𝐾 .
instruction size and memory footprint. Also, for the convolution
layer where 𝐻 and𝑊 are small, Q-gym parallelizes on the 𝐾 di-
mension to maximize the usage of GPU resources. This will reduce
the search space of Q-gym’s compilation phase and reduce the
opportunity for computation reuse.
Performance of Q-gym for HE. As mentioned in Section 5.2, we
compare DNN inference under HE using the homomorphic opera-
tions (HOPs) following previous works [13]. Due to the expensive
computation cost of HOP on real hardware, the inference time of
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HE applications is linear to the number of HOPs regardless of the
hardware or software parallelization schemes.

For the baseline comparison, we choose CryptoNet [19], a dense
DNN model that is trained on MNIST [32]. FastCryptoNet [13],
a follow-up work of CryptoNet that leverages sparsity to bypass
HOPs. We use a trained dense QNN and a trained sparse QNN to
compare with the baselines separately. The model architectures
are the same as FastCryptoNet (a slight variant of CryptoNet). We
apply Q-gym to compile the models for HOPs comparison.

As is shown in Table 5 and 6, Q-gym achieves 59.5% and 22.9%
HOPs reduction relative to CryptoNet and FastCryptoNet. Mean-
while, the models trained using INQ achieve almost the same ac-
curacy (-0.11%/-0.02%) compared to CryptoNet / FastCryptoNet.
Besides, Q-gym reduces the PT-CT multiplication by 10.8× / 1.87×
which is the computation bottleneck of DNN inference under HE.

Deploying Q-gym on Small Devices. During code generation,
Q-gym unrolls the inner convolution loops and replaces them using
efficient computation expressions. As such, the compiled binary size
is larger than the one using naive loops. For small architectures (e.g.,
mobile devices) with a small instruction cache, the large number
of instructions may decrease the performance of Q-gym. On those
devices, Q-gym can be employed using an alternative option by
leaving the computation expressions in the “interpreted form”, i.e.,
we load the expressions during inference and compute the output
accordingly, which is the way implemented in SumMerge [43].
Q-gym would then still be more efficient than the “interpreted”
SumMerge due to better performance in reducing operations. On
our experiment architectures, Q-gym’s deploying method is better
and we use the same way to evaluate SumMerge in this paper.

7 RELATEDWORK
This section discusses previous works related to our study.
Quantized Neural Networks. Neural network quantization [64,
68, 70] is a promising technique to compress and accelerate DNNs.
The reduced bit width enables low-bit width multiplication [54] to
speed up the inference. Jung et al. introduced parameterized quan-
tization intervals and optimized them to minimize task loss [24].
Han et al. used k-means clustering as a method of quantization to
share weights [20]. Zhou et al. proposed a rule-based non-uniform
quantization by leveraging a logarithmic distribution [68]. [64, 70]
optimize the quantization clipping range during model training.
Beyond the computer vision tasks, quantization can also be applied
to BERT [55, 65] for NLP tasks. Q-gym can be applied to all these
quantization models to reduce the computations of QNNs.
Equality Saturation Applications. The key idea of Q-gym is
equality saturation [57, 60]. It has also been widely used in various
domains, such as simplifying CAD design, rewriting DNN archi-
tectures, improving the accuracy of floating-point expressions and
doing semantic code search [37, 39, 44, 63]. In this paper, we con-
tribute to the iterative searching algorithm and elaborated search
space to better reduce the computation in DNN. This is also the first
work that applies equality saturation to accelerate homomorphic
encryption for quantized DNNs inference.
Acceleration of Homomorphic Encryptions for DNNs. Since
the first Fully HE scheme was proposed by Gentry et al. [18]. Many
acceleration methods for FHE have been proposed, such as Leveled

Table 5: A breakdown of HOPs for each layer between Q-
gym and CryptoNet. The dense model for Q-gym uses 2-
bit INQ [68] where 𝑄 = 4. The model architecture (same
as FastCryptoNet) for Q-gym is a slight variant of CryptoNet.
We set 𝑡𝑝𝑟 = 0 for all layers’ compilation. Fully-connected
(FC) layers can be treated as special convolutional layers
(conv) where 𝑅, 𝑆 , 𝐻 ,𝑊 are 1. ‘Act’ denotes activation layers.

CryptoNet

Layer Hops PT-CT
Adds

CT-CT
Adds

PT-CT
Mults

CT-CT
Mults

Conv-1 42,757 845 20,956 20,956 -
Act-1 845 - - - 845
Pool-1 6,845 - 6,845 - -
Conv-2 309,905 1,250 154,350 154,350 -
Pool-2 8450 - 8450 - -
FC-1 241192 100 120546 120546 -
Act-2 100 - - - 100
Fc-2 1990 10 990 990 -
Total 612,129 2,205 312,137 296,842 945

Accuracy 99.17
Q-gym

Conv-1 25,350 1,690 15,717 7,943 -
Act-1 5,070 845 1,690 1,690 845
Pool-1 6,845 - 6,845 - -
Conv-2 118,975 1,250 105,225 12,500 -
Pool-2 - - 8450 - -
FC-1 82097 100 76997 5000 -
Act-2 600 100 200 200 100
Fc-2 477 10 427 40 -
Total 247,864 3,995 215,551 27,373 945

Accuracy 99.06

Table 6: Comparison between Q-gym and FastCryptoNet. As
FastCryptoNet is a sparse model 𝑠𝑝 = 6.63% and applied 2-bit
INQ quantization [68], Q-gym uses a sparse and quantized
model (𝑄 = 4) for evaluation accordingly. Sparse ratio 𝑠𝑝 is
set to be the same as Fast CryptoNet.

FastCryptoNet

Layer (𝑠𝑝) Hops PT-CT
Adds

CT-CT
Adds

PT-CT
Mults

CT-CT
Mults

Conv-1 8,619 1,690 3,042 3,887 -
Act-1 5,070 845 1,690 1,690 845
Pool-1 6,845 - 6,845 - -
Conv-2 22,950 1,250 10,850 10,850 -
Pool-2 8450 - 8450 - -
FC-1 14,354 100 7,077 7,177 -
Act-2 600 100 200 200 100
Fc-2 306 10 148 148 -
Total 67,194 3,995 38,302 23,932 945

Accuracy 98.73
Q-gym

Conv-1 6,760 1,690 2,704 2,366 -
Act-1 5,070 845 1,690 1,690 845
Pool-1 6,845 - 6,845 - -
Conv-2 18,150 1250 10550 6350 -
Pool-2 8450 - 8450 - -
FC-1 5,724 100 3383 2241 -
Act-2 600 100 200 200 100
Fc-2 192 10 131 51 -
Total 51,791 3,995 33,953 12,798 945

Accuracy 98.71

Somewhat HE (SWHE) [7, 9, 10]. Many advances [8, 16, 25] leverage
SWHE to do privacy-preserving DNN inference. CryptoNet [19] is
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the first work to use SWHE for DNN inference. FastCryptoNet [13]
leverages DNNmodel sparsity to accelerate CryptoNet. Many other
works have aimed at improving the computation efficiency of non-
linear layers [34] or computing SWHE in a SIMD fashion [25]. These
methods are orthogonal to the computation reduction generated
from Q-gym and can be combined to further improve the efficiency
of HE DNN inference. Note that Q-gym does not tamper with
the security of HE. The input is kept private all the time and no
information is leaked.

8 CONCLUSION
This paper proposes Q-gym, a DNN framework that accelerates
quantized DNNs by exploiting the weight repetition characteris-
tic. Q-gym proposes a compiler and a set of acceleration schemes
for various DNN applications. For the compiler, Q-gym employs
the idea of equality saturation and represents the DNN computa-
tion into an e-graph and applies a set of rewrite rules to explore
equivalent expressions. After the exploration, we extract the lowest-
cost computation expressions from the e-graph by formulating the
selection of nodes in the e-graph into an integer linear program-
ming problem. By iteratively conducting exploration and extraction
and leveraging a temporal search space, we can further reduce the
computation operations compared to previous works.

Leveraging the reduced computation, Q-gym can accelerate a
set of DNN applications. We build QNN inference kernels on CPU
and GPU with carefully designed parallelization schemes and com-
bine the efficient expressions from Q-gym with multi-threading,
vectorization, and loop tiling. Q-gym also proposes to combine the
reduced expressions into DNN inference flow under homomorphic
encryption. Experiments show significant speedups and operation
reductions in those applications compared to the state-of-the-art
methods.
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