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THERMITE POLYNOMIALS, BIORTHOGONAL RATIONAL
FUNCTIONS, AND q-BET\ INTEGRALS

M. E. H. ISMAIL AND D. R. MASSON

Abstract. We characterize the solutions of the indeterminate moment problem
associated with the continuous g-Hermite polynomials when q > 1 in terms
of their Stieltjes transforms. The extremal measures are found explicitly. An
analog of the Askey-Wilson integral is evaluated. It involves integrating a ker-
nel, similar to the Askey-Wilson kernel, against any solution of the <?-Hermite
moment problem, provided that certain integrability conditions hold. This led
to direct evaluation of several q-beta integrals and their discrete analogs as well
as a generalization of Bailey's 6 y/^ sum containing infinitely many parameters.
A system of biorthogonal rational functions is also introduced.

1. Introduction

A basic hypergeometric function, with base q , is

r<^'\bi        'bs    Q>z) = r<t>s{.a\,... ,aT;b\,... ,bs;q,z)

^Q{q,bi,... ,bs)n

where the ^-shifted factorial is

(1.2)
P     n

(ci, ... ,Cp)„ = (ci, ... , cp\ q)n ̂ nil^ -cJ<lk~l)>    n = 0,l, ... ,
j=lk=\

and as usual empty sums are interpreted as 0, empty products as unity. We
will delete " ; q" from the shifted factorial notation (1.2) unless more than one
basis is used in the same formula.
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64 M. E. H. ISMAIL AND D. R. MASSON

R. Askey and J. Wilson [17] introduced the orthogonal polynomials

/i ->\ i u       j\       j.   fq~", abcdqn~l, az, a/z \
(1.3) pn{x;a,b,c.d)= 4</33 ( ab  ac  ad Q,Q\,

with

(1.4) z:=x-sjx2- 1.

The Askey-Wilson polynomials are the most general orthogonal polynomials
that share the properties of the more traditional orthogonal polynomials like
the Legendre polynomials or the spherical harmonics [50]. They are eigenfunc-
tions of a linear second order divided difference operator reminiscent of Sturm-
Liouville operators. The Askey-Wilson polynomials also have a Rodrigues type
representation. Their orthogonality relation is [17], [25]

(1.5)
fn                                                                                 (e2W   e~2ie)   dd
/   p„(cos0; ai, a2,a3, a4)pm(cosd; a{,a2,a3, a4)    )      '    -°° .^

2na2n(a2a3, a2a4, a^a*, g)n(l - a\a2a3aAqn~l)
~ {a{a2, a{ai, axaA, axa2ayaA)n{\ - aia2a3a4q2"-1)

\<j<k<4

provided that |a,| < 1, j = 1, 2, 3, 4, and -1 < q < 1.
About a hundred years ago L.J. Rogers [8], [44], [45], [46] introduced a very

interesting system of polynomials and used it to prove the Rogers-Ramanujan
identities. The polynomial system is {C„(x; f$ \q)}

(1.6) C(cos0, fi\g) = J2 iM^±ei(n-2k)0_
£f0  \Q)k{Q)n-k

The above polynomials have the generating function
oo

(1.7) £c„(cos0, 0 \q)tn = (tfieie , tfie-'^/ite10, te^U.

The C„'s are #-analogs of the ultraspherical polynomials (spherical harmonics)
and contain an important special case, /? = 0, which is a ^-analog of the
Hermite polynomials. For 0 < q < 1 set

(1.8) Hn(x\q):=(q)nCn(x;0\q).

Thus

(1.9) Y^HnicoseU)^— = \l{tei6,te-ieU,
n=o Kq)n

(1.10) Hn{cose\q) = ± Jf"     e^~2^.
f^Q KQ)k\Q)n-kLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Q-HERMITE POLYNOMIALS 65

The C„'s are called the continuous ty-ultraspherical polynomials and the /f„'s
are called the continuous #-Hermite polynomials. The above notation and
terminology first appeared in [14], [15] and has become standard since then.
The measure that the C„'s are orthogonal with respect to was found in [14],
[15] using asymptotic and moment methods and in [17] as the special case
a = -c = \ffi, b = -d = ^/pq of the Askey-Wilson polynomials (1.3).

Rogers solved the connection coefficient problem and the problem of lin-
earization of products of continuous ^-ultraspherical polynomials. He proved

ml\n

(1.11)     Cm{x; p\q)Cn(x; P\q) = Y,"{k, m, n)Cm+n_2k{x; p\q),
k=0

with m An = min(w, n) and

(1.12)
a(k    m    „, _ (P)m-k(P)n-k(Q)m+n-2k(P)k(P2)m+n-k(l ~ Pqm+"-2k)

1   '     '   ' {P2)m+n-2k{q)m-k{q)n-k{q)k{f}q)m+n-k{\ -fi)      "

In particular,

ml\n (   \    t   \

(1.13) Hm(x\q)Hn{x\q) = YJ(n,      /!       ,^ Hm+n_2k{x\q).
^ \q)m-k\Q)n-k{q)k

The key step in establishing (1.5) is the evaluation of the Askey-Wilson inte-
gral

(<7)oof   (e2,'fl,e-2,'*)oo/  H (ajeie, aje-wU   dd
(1.14) °   L !<;<<

= 27i(aia2a3a4)oo/ (ajak)oo,    -1 < ?< 1.

The continuous ^-Hermite polynomials are essentially the special case a =
i = c = rf = 0of the Askey-Wilson polynomials (1.13). This may make
it seem like the H„'s are the lowest level in a hierarchy of a four parameter
family of polynomials. Ismail and Stanton [30] observed that the Askey-Wilson
integral (1.14) actually follows from Rogers's linearization formula (1.13) and
the orthogonality of the continuous c7-Hermite polynomials. The orthogonality
of the continuous ^-Hermite polynomials follows from the Jacobi triple product
identity [3], [7] or from a combination of an asymptotic analysis and a theorem
of Markov [14]. Ismail, Stanton and Viennot [31] developed a combinatorial
theory that leads to combinatorial interpretations of integrals like (1.14) with
an arbitrary number of pairs of factors in the denominator of the integrand.
Their results also give an evaluation of (1.14).

This paper started from an attempt to understand the structure of the contin-
uous #-Hermite polynomials and the Askey-Wilson integral when q > 1. The
three term recurrence relation satisfied by Hn(x \ q) is

2xHn{x | q) = Hn+X{x \q) + (l- qn)Hn-X{x \q),     n > 0.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



66 M. E. H. ISMAIL AND D. R. MASSON

When q > 1 the H„\ are orthogonal on the imaginary axis, so we need to
renormalize the polynomials in order to make them orthogonal on the real axis.
The proper normalization is [12]

(1.15) hn(x\q) = rnHn(ix\l/q)

which gives

ho(x\q) = l,    hi(x\q) = 2x,
(1.16) hn+l(x\q) = 2xhn{x \ q) - q~n{\ - qn)h„-i(x \ q),

n >0,     0<# < 1.

We shall refer to the polynomials hn(x\q) as the # _1-continuous Hermite poly-
nomials, or the <7-1-Hermite polynomials.

The moment problem associated with {hn{x\q)} is indeterminate. To prove
this it suffices to show that the corresponding orthonormal polynomial set {hn(x)
— q"("+i)/4hn(x\q)/y/(q; q)„} is square summable (see [1, Theorem 1.3.1]).
This easily follows from the asymptotics established in (2.9) of Section 2 which
yields \hn(x)\2 < const.\q\n/2. Thus the /j„'s are orthogonal with respect to in-
finitely many probability measures [1], [12], [47]. Among these measures there
is a family of extremal measures {d\f/(x, a)} indexed by a parameter a for
every real a including a = ±oo . For every a e [—oo, oo], the polynomials are
complete in L2(dy/(a, x)). In Section 6 we shall compute the Stieltjes trans-
forms /^ dv^"s> of all extremal measures with respect to which the /z„'s are
orthogonal. The identification of such Stieltjes transforms involves finding four
entire functions A(z), B(z), C(z), D(z), so that

n 17v A(z) - a(z)C(z)       y°° d¥{t-a)
K '    ' B(z)-a(z)D(z)     J^     z-t    ■

For extremal measures a{z) is a real constant. Akhiezer [1] uses iV-extremal
to describe what Shohat and Tamarkin [47] refer to as extremal measures. We
decided to follow the notation of Shohat and Tamarkin [47] throughout this
work.

In Section 5 we compute A(z), B(z), C(z), and D(z). By computing each
of the functions A(z), B{z), C(z), and D(z) in two different ways we are
led to two known quartic transformations for theta functions, see (5.37) and
(5.38), and to two new quartic transformations for 24>\ functions. The new
quartic transformations are stated in (5.46) and (5.47). In Section 6 we invert
the Stieltjes transform (1.17) and find the one parameter family of extremal
measures. The inversion uses properties of theta functions because B(z) and
D(z) are theta functions. The key idea is a representation of a as a quotient
of two theta functions of a parameter n , say. This enables us to find all zeros
of B(z) - oD(z) using addition theorems and product formulas for theta func-
tions. This is reminiscent of the case of trigonometric functions when a = cot z
identifies the zeros of cos</j — a sin^ with the zeros of sin(z — </>). In general
o(z) in (1.17) is a function analytic in the open upper half plane and maps this
region into the closed lower half plane.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Q-HERMITE POLYNOMIALS 67

We shall also evaluate the following analog of the Askey-Wilson integral

(1.18)
/•oo     4 _ _

I(h,t2,h,U)= /     ~\(-tj(Vx2+l+x),tj{Vx2 + l-x))0Ody/(x).
J-°° j=\

This will be done in Section 3. It is interesting to note that our derivation uses
only the integrability of the integrand in (1.18) with respect to dy/ and the fact
that the /z„'s are orthogonal with respect to dy/ .

The measures {dy/} are normalized to have total mass — 1. The extremal
measures are purely discrete. For extremal measures the normalization
^oody/{x; a) = 1 implies the Jacobi triple product identity, while the eval-
uation (3.8) of I(t\ ,t2,t-$, t^) of (1.18) is Bailey's (,¥(> sum- This will also
be discussed in Section 3. Askey [12] proved that the /j„'s are orthogonal on
(-oo, oo) with respect to the measure

( °° 1_1
< VT + x2 ]\[l + 2(2x2 + \)qn+{ + q2n+2] \     dx.

Later Askey [10] evaluated the integral / in (1.18) when dy/(x)/dx is his
weight function. Our analysis gives Askey's second integral from his earlier
weight function. This will be done in Section 7. We shall also consider the
measures dy/ corresponding to the choice

a(z) = c, 9z>0,    with a{z) = <r(z),

where c is a nonreal constant. The above measures are, in some sense, close
to being extremal. When such measures were inserted in (1.18) we were led to
new q-beta integrals.

In Section 3 the integrals (1.18) are used to introduce rational functions {<pn}
biorthogonal with respect to w(x; t\,t2, h, f4) dy/{x),

(1.19)
4

w(x) = w(x;ti,t2,h, U) := JJ(-^(x + Vx2 + 1), tj(y/x2 + 1 -^))oo.
i=\

The biorthogonal rational functions are

p„(sinh£; ti,h,h, U)
(1-20) (q-n,-ht2qn-2,-ht3lq,-hmq \

They satisfy the orthogonality relation

(1.21)

/OO
<Pm{x; h,t2,h, U)<pn{x; t2,t{,t3, t4)w{x)dy/{x) = g„dm>n ,

■ooLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



68 M. E. H. ISMAIL AND D. R. MASSON

where y/ is the probability measure with respect to which the /j„'s are orthog-
onal, w(x) is as in (1.19), and g„ is

_ l + ht2q"-2  {hhhUq-^Yjq, -q2lhU)n{-ht1qn-x)00
(122) \ + ht2q2"-2 (M2^4<T3)«

x   (-tih/q, -tiU/q, -hh/q, -t2U/q, -hUlq)^
(M2^4<7~3)oo

After we showed this work to Mizan Rahman, he kindly pointed out that he
[43] discovered the orthogonality relation (1.21) in the special case when dy/
is the above-mentioned absolutely continuous measure given by Askey in [12].
For a general setting and applications of biorthogonality we refer the interested
reader to the recent book [19].

The spectral theory of orthogonal polynomials is essentially the spectral the-
ory of symmetric second order difference operators or infinite symmetric Jacobi
matrices [51]. The Jacobi matrix associated with (1.16) is

l \  7X\ \amn) >      am,m+l = #m+l, m = ~^ V <7 — 1 >

otherwise am, „ = 0,        m, n > 0.

The operator J is unbounded and closed on I2 but does not have a unique
selfadjoint extension. The extremal measures are precisely the spectral mea-
sures corresponding to orthogonal spectral resolutions of the identity [1]. The
operator 7 is a Schrodinger operator and our analysis seems to the first com-
plete analysis of an unbounded Schrodinger operator not possessing a unique
self-adjoint extension.

In Section 2 we find the Poisson kernel of the /z„'s. We can obtain additional
generating functions using a technique similar to what Ismail and Stanton used
in [30] and was also used by Al-Salam and Ismail in the later work [4].

In Section 4 we indicate how the pointwise asymptotics of rational func-
tions may give a clue about a possible measure with respect to which they are
biorthogonal. This point of view is illustrated by two examples. The first is a
system of biorthogonal rational functions introduced in [6] and the second is
the system {y>„(x ;t\,t2,ti, t*)} of (1.20). In the case of the ^„'s this leads to
a discrete biorthogonality relation, see (4.22), different from the biorthogonality
relation (1.21). Although several explicit biorthogonal systems of biorthogonal
functions are known there is no general theory available for such systems. For
recent biorthogonal systems we refer the interested reader to [5], [41], and [42].

Section 7 contains various applications of the main results of the paper. For
example we combine general results from the theory of the Hamburger moment
problem with our evaluation of the integral in (1.18) to obtain a generalization
of Bailey's (,¥(, sum. This generalization is stated as Theorem 7.5. In addition
we find explicitly a spectral measure dy/ for the continuous ^"'-Hermite poly-
nomials with an absolutely continuous component supported on (-oo, 0] and
an infinite discrete part with masses located in [0, oo). With this measure the
evaluation of I{t\ ,t2,h, U) gives an identity involving a sum and an integral.
We also discuss other identities.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



G-HERMITE POLYNOMIALS 69

Section 8 is devoted to a generalization of the ^¥6 to finitely and infinitely
many parameters. These results are our Theorems 8.1 and 8.2. Chapter 9
contains an alternate derivation of the extremal measures of the <7-1-Hermite
polynomials which uses only the quasiperiodicity of the theta functions. In Sec-
tion 9 we introduce the Askey-Wilson operator whose action lowers the degree
of a (p'-Hermite polynomial by 1 and we also evaluate a new q-beta integral.
We also discover two quadratic transformations for theta functions, see (9.28)
and (9.29).

This work is the first where an indeterminate moment problem is solved
completely and all extremal measures are computed explicitly. Other recent
works dealing with specific indeterminate moment problems are [37], [18] and
[22]. We were fortunate to study the #-1-Hermite moment problem because
the B and D functions in (1.17) were theta functions and we were able to take
advantage of the rich theory of theta functions including addition and product
formulas. Indeed theta functions saved the day.

Some of the results of this work were announced in [29].

2. Generating functions

The main results of this section are formulas (2.4), (2.8), which are the build-
ing blocks of the rest of this work.

It is easy to see that

(2.1) (l/q;l/q)j = (q;q)j(-l)jq-JU+l)/2.

Substitute from (2.1) into (1.10) and then apply (1.15) to obtain the explicit
representation

(2.2) hn(x\q) = J2,  .iQ)"      {-\)kqk^n\x + yfx^\)n-2k.
^ \q)kKQ)n-k

To derive a generating function for {hn(x\q)} multiply (2.2) by t"qn l2/{q)„
and add for n > 0. The result after replacing n by n + k is

™tnan2/2 ~     tn+ka(n2+ki)l2,X)k -5 ^K(x'q)=.£. W   {x+v^TTr •
The right-hand side can now be summed by Euler's formula

(2.3) E«n(n-1)/27# = U)oo.
»=o {q)n

Thus we have established the generating function
~   tnan{n-\)/2 - -

<2-4)   E ~\a—M* Iq) = (-'(* + v*2 +1), t(Vx2 + 1 -*))«,,
«=o      [q)n

since l/{Vx2 + 1 + x) = Vx2 + 1 -x.
We now derive a Poisson kernel for {h„(x | q)} from Rogers's linearization

formula a la Ismail and Stanton [30]. Another derivation is in [2]. Replace x
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



70 M. E. H. ISMAIL AND D. R. MASSON

by ix and q by \/q in (1.13) and use (2.1) and (1.15). The result is

(») hm(x\q)   (■>) hn(x\q)
q        {Q)m    q        (q)n

(2.5) mAn n_m+(M} + ̂ M) + C-M)

= E-(n\ (n\-777\-hm+n-2k(x\q).^ {qikKQlm-kKQln-k

Multiply (2.5) by smt" and sum over m and n for m > 0, n > 0. Using
(2.4) we see that the left side sums to

(s(x + Vx2+ 1), s{Vx2 + 1 - x), -t{x + y/x2 + 1), f(-\/.x2 + 1 - x))oo-

On the other hand, the right side, after interchanging the m and n sums with
the k sum, then replacing m and n by m + k and n + k, respectively,
becomes

00 ~mtn ,  .    , . °°   (vt\k„(k2)-k

£ re'<;)+fi)/,"+"w'')£^r--
m;/I=0WmW« ^=0    [q)k

Now (2.3) and rearrangement of series reduce the above expression to

(-st/q)oo £ hj(x | q) E t/tX-^)+(V)-

At this stage we found it more convenient to set

(2.6) s = R(y + Vy2 + l),     t = -RWy2+\-y),
and
(2.7) x = sinh £,,    y — sinh fy.

The above calculations lead to

(-Rei+", Re"-*, Re*-", -Re-t-iU/itf/qU
00 j    nt(n-j)(    \\n„(j-2n)i

= E M«w» * I *)*VU-^ E '    Jwg   -•
This establishes the following theorem.

Theorem 2.1. The Poisson kernel {or the q-Mehler formula) for the continuous
q~x-Hermite polynomials is

E ^(sinh £ | <?)/i„(sinh " \ qf ,.      R"
(2.8) to {q)"

= (-ReZ+», -Re-*-*, Re*-", Re"^)00/{R2/q)00.

The Poisson kernel is the left-hand side of (2.8) with R replaced by qR,
but we rescaled it to make the result nicer. We can obtain additional generating
functions using a technique similar to what Ismail and Stanton used in [30]
and was also used by Al-Salam and Ismail in the later work [4]. These generat-
ing functions are ^-analogs of what typically follows from the Kibble-Slepian
formula, [23], [33], [36], [48]. Louck [36] pointed out that the Kibble-SlepianLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Q-HERMITE POLYNOMIALS 71

formula follows from the invariance of the Laplacian under the orthogonal
group while Slepian [48] used the Fourier transform to prove the same result.
Neither technique has been developed yet for ^-series. In the absence of a
<7-Kibble-Slepian formula the multilinear generating functions may be of some
interest in themselves and may point out where to look for a ^-analog of the
Kibble-Slepian formula. The details will appear elsewhere.

The bilinear generating function (2.8) can be used to determine the large n
asymptotics of h„(x\q). To see this let £ = n and apply Darboux's asymptotic
method. The result is

(2.9)

h2n^mbc\\q)q<n-^2 « ^[(-y/qe2*, -y/qe~^, y/q, y/q; qU

+ {-^"{Vqe24, Vqe-2*, -Vq, s/q; q)oo±

Thus

(2.10)

h2n{sinh£\q) » —^— [( - y/qe7*, -y/qe'24 , y/q, y/q; q)oo

+ {y/qe24, sfqe-2*, -y/q, -y/qiq)^],

and

(2.11)

hln+l{sinh£\q) «-[{-\/qe2i, -y/qe~2i, y/q, y/q;q)oo

- {y/qe2i, y/qe'24, -y/q, -y/q; q)x\.

We shall comment on (2.10) and (2.11) in Section 9.
Another application of (2.8) is to compute the discrete masses of the extremal

measures from the knowledge of their spectrum. The details follow (6.29).

3. Some biorthogonal rational functions

As we pointed out in the introduction the orthogonality of the Askey-Wilson
polynomials (1.3) easily follows from the evaluation of the Askey-Wilson inte-
gral (1.14). To prove the biorthogonality of the rational functions (1.19), we
first evaluate the integral (1.18), namely

/ = I{h ,h,h, U)

:= /      ~\{-tj{x + Vx2+l), tj{Vx2 + l -*))«,dy/{x),

where the h„'s are orthogonal with respect to dy/, provided that the integral
in (3.1) exists. One such y/ is a jump function p. of Section 6 with jumps at

(3.2) xn = i(<r"-,/2-0n+1/2),   " = 0,1,...,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



72 M. E. H. ISMAIL AND D. R. MASSON

with masses

(3.3)

p{±xn + 0+) - p{±xn - 0+) = ^\fh (1 + q2»+l)q2»2+»,
^\q ■> q )<x>

n = 0, 1,....

The value of / is given in (3.8). The orthogonality relation for {h„{x | q)} is

/oo M* I q)hn{x | <?) rf^(jc) = q-"{n+l)/2{q)„Sm,n.
-oo

In Section 6, we shall prove that dp is an extremal measure for {hn{x | <?)} .

Theorem 3.1. The integral I{t\, t2, ti: t4) of (3.1) is given by (3.8).
Proof. From (2.5) we obtain

_ ^ g-*+(2)+("r*)+("7*MT*)

*a(w-»-2*)     •+(>)+('-;)+(«+«-*-./)

x       E      TvwvTi—^-^w+/i+i-2fc-2;(^k)-jr^     {q)j(q)s-j(q)m+n-2k-j

Multiply both sides by tr[ts2tft1q^)hr{x)l{q)r, integrate with respect to dy/{x),
then add the results for all m, n, r, s > 0. The orthogonality relation (3.4)
forces m + n + s - 2k - 2j to equal r and all the other terms contribute zeros
to the sum. Thus j - -k + (m + n + s - r)/2. The sums of integrals of the left
sides is I{t\, t2, tj, t*) as can be seen from (2.4) and the Lebesgue convergence
theorem. Therefore we have

°° Jk2) + {m2k) + {"~2k)-{'"+"2~2k) + {~k+(m+2+S~r}/2)i =    y^    a-
k.mnr s=0   (^k(^)m-k(q)n-k{q)-k+(m+n+s-r)/2

(*+Cw-«-»)/2)+(-t+(«.«+'-*)/2)+ik_(r+M+|,+i)/2
x  1_

{q)k+(s+r-m-n)l2(Q)-k+(m+n+r-s)l2

*{q)m+n-2kq-(m+n+r+s)l2t\Wtn4.

Replace m and n by m + k and n + k, respectively, to get

oo /k\ + /{m+n+s-r)/2\ + nr+s-m-n)/2\ + nm+n+r-s)/2\

/=     V     —ql-!-!-.-
k  M,tr,!=0 (<l)k{q)m{q)n{q)(m+n+s-r)l2{q)(r+s-m-n)l2

ln\ /j-mn-k-(m+n+r+s)/2
„  \q)m+nq__frtstm+k,n+k
X — fl'2'3       '4      •

{q)(m+n+r-s)/2License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Q-HERMITE POLYNOMIALS 73

The above multisums can be greatly simplified by the introduction of the new
summation indices

(3.5)
a:= {m + n + s-r)/2,    /? := {m + n + r -s)/2,    y := {r + s - m - n)/2

instead of n, r, s, so our new summation indices are k, m, a, /?, y. Clearly

(3.6) r = P + y,    s = a + y,n = a + fi-m.
Thus

~         a^+{X)<2)<2)+m^m-a-^-k-a-^
I = >-

k,m,7^fi,y=o   (^k(q)m{q)a+i}-m(q)a{q)y(q)p

x {q)a+pt\      l2     h       '4

The y sum is (-t\t2/q)00 while the k sum is {-ht4/q)oo. This follows from
(2.3). This reduces / to a triple sum. Now replace a + /? by p to express /
as

//H*/f, -hWt)- = t^««> t $^><->
p=0      KQ)p m=0 WmWp-m

x ^{q)P{t2lh)a    ,„_„,
t (<lUq)p-a

To evaluate the above triple sum we need to identify it with a Poisson kernel
for {hn{x | q)} . This identification can be achieved by setting

(3.7) tx = y/qTe4,    t2 = -y/qTe^,     t3 = -Ry/qe"',     t4 = R\/qen'.

This leads to

^ (RT)Pq(')I/{-tit2/q, -tiU/qU = 22      f'y_       hp{sir\b £ \ q)hp(sihh tj | q)
„=o      [q,p

_ (-RTet+i, -RTe-t-i, RTeZ-i, RTet-^oo
{R2T2/qU

_ i-tiU/q, -hh/q, -hh/q, -t2t4/g)oc
{tit2ht4/q3)oo

Therefore
-

(3.8) I(ti,t2,t3,t4)=       J]    {-tjtk/qU   /(^2^4<T3)oo.
_\<j<k<4

This completes the evaluation of (3.1) and the proof of Theorem 3.1 is complete.

It is clear that (3.8) gives a summation theorem for a combination of basic
hypergeometric functions.  To identify the functions involved we expand the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



74 M. E. H. ISMAIL AND D. R. MASSON

right side of (3.1) using (3.2) and (3.3). The result is

2{q2 ; q2)ooI{t\ ,h,h, t4)/{q; q2)^
oo     4

= E n(-0<r"~1/2. o«n+1/2)oo?2,,2+B(i + Q2n+l)
n=0j=\

+ a similar term with {t\, t2, t3, t4) replaced by (—1\, -t2, ~t$, -t4).

= ri(-^"1/2,^1/2)ooE   IT (7fZl^"   (ht2hk/q3ni+q2n+l)
7=1 «=0 [j=l     (tJq      )n

+ a similar term with (fi, t2, t3, t4) replaced by {-t\, -t2, -r3, -t4).

Therefore

2^:S°°m ,t2,h, U) = Yli-tjq-"2, tjq^U
\q  > q )(x> ._.

^        f-q, iqV2, -iqy2, -q^/h, -q^/h, -qW/t3, -q^/U, q
807 1, iq1'2, -iqV2, W'2, t2q^2, t^l2, t4qV2, -q

q, tihhUq-3)

+ interchange tj with —tj, j = 1, 2, 3, 4.

This gives the summation formula

(3-9)

Y[(-tjq-l/2, tjq^U

v f-q, iqV2, -iqV2, -q^/h, -q3'2/t2, -q3'2/h, -q^2/t4, q
X 807 V iql/2, -iql/2, hq1'2, t2q>/2 , t^l2 , t4q1'2 , -q

q, tihhtrf-3)

+ a similar term with tj replaced by -tj, 1 < j < 4.

^f'f?00       II    i-tjtk/QU   {ht2ht4q-')-J.
[q , q Joo   L,<J<fc<4

We shall discuss other summation theorems that arise from (3.8) in Sections 7
and 8. See also (3.18).

We now prove the biorthogonality of the rational functions (1.20).  Recall
that

(3.10)
m(e;nh?.t    t    t    t\       a  (q~n,-t\hqn-2,-hhlq,-txt4lq \
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Theorem 3.2. The functions {q>n} satisfy the biorthogonality relation (1.21) with
g„ as in (1.22).
Proof. Consider the integrals

j        _ f°° _<Pn(x; h,t2,t3, t4)_
m'"'    J-oo {-t2{x + y/x2 + 1), t2{y/x2 + 1 - x))m

(3.11) 4 _ _
x n(-(/(* + Vx2+ 1), tj{\/x2 + l-))oody/{x).

We have

Jm,n - E- {q,ht2ht4q-3)k-q I{hQ  ' hq   ' '3' U)

= {-hU/q, -t2hqm-x ,-t2t4qm-x ,-Ut2am-\-hhlq, -^4/<?)oo
{tlt2t3t4q"'-3)00

(q-n,-ht2qn-2,ht2t3t4qm-l \
X^2[     tlt2ht4q-\-txt2q^ q>q)-

The ^-analog of the Pfaff-Saalschiitz theorem is [25, (11.12)],

(112) >+>{c,abcq*-Vc    q'q)~  {c,c/ab)n-
Therefore Jm t „ can be summed. The answer is

_ {-txh/q, -tiU/q, -hUjq, -hhqm-y, -t2hgm~x, -f2*4gm~1)oo
{hhhUq^U

x i-hUq-"-1, q-m)n
{t\t2t3t4q-i, -q2-m-»ltxt2)n

Clearly Jm; „ = 0 if m < n and

j      _ {-hh/q, -hU/q, -hUjq, -ht2gn~l, -t2hqn~x , -frfrg""1)
(M2*3'4<7_3)oo

{-q2lht4, q)n  „(„-T)/2(   t t't t\*
X   {-Ut2q«-X)n q {~ht2hU) ■

Therefore
/■OO

/     9m{x; h,t2,t3, t4)(p„{x; t2,h,t3, t4)w{x)dy/{x)
J — OO

_  (-flfrg""2 , <T" , -frfr/g , -t2t4/q)n „„ ,       e
(q, hhhUq 3)n

where

(3.13)
4

w{x) = w{x;h,t2,t3, tA) = ]\{-tj{x + Vx2 + l), tj{Vx2+ 1 -x))oo.
;'=i

Using the /„,„ we establish the biorthogonality relation (1.21).
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In Section 6 we shall prove that the /z„'s are also orthogonal with respect to
probability measures dy/{x; a) with masses

(3.14)
y/{xn + 0+, a) - y/{xn - 0+ , a)

= a4"q"(2"-l\l+a2q2n)/{-a2, -q/a2, q; </)«,,     n = 0, ±1, ... .

where, see (6.26) and (6.30),

(3.15) xn = ±(q-n/a-aqn),    n = 0,1,2,....

Since the evaluation of / in (3.1) only used the integrability of the integrand
with respect to a measure that the /z„'s are orthogonal with respect to, we can
then replace dy/ in (3.1) and (1.21) with dy/ of (3.14) and (3.15). A straight-
forward calculation shows that (3.8) is equivalent to

(3.16)
Y[)=\{atj, -tj/aU
{q, -qa2, -q/a2)^

x y (-ga/*i, -qa/h, -ga/h, -qa/t4; q)„ \+a2q2n 3
t {ati,at2,at3,at4;q)„ \ + a2   U 2 3 *q

-«,^J-';.)-lsns4(-,A/«:«)-
The above identity is precisely the 6 V6 summation formula of Bailey, formula
(11.33) in [25],

(3.17)
( gal/2, -gal/2,b,c,d,e qa2 \

eW6 \a1'2, -a1'2, ag/b, ag/c, ag/d, ag/e   q'' bcde)
{g,ag, g/a, ag/bc, ag/bd, ag/be, aq/cd, aq/ce, aq/de)^
{aq/b, aq/c, aq/d, aq/e, q/b, q/c, q/d, q/e, qa2lbcde)00 '

The r¥r function is

p-")      *fe::::;thz)=5z"n|tf'
with the shifted factorial defined for all n by

(3.19) {a;q)„ = {a;q)00/{agn;g)00.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



q-hermite polynomials 77

4. Symmetries and asymptotics

Recall the Sears transformation for a terminating balanced 4<f>3 [25], formula
(HI. 15),

,   fq~",A,B, C \^{    D,E,F q>q)

{E/A,F/A)n (   q~",A,D/B,D/C \
~      {E,F)n     A  403 \D, Aqx-"IE,Aqx-"IF     q'q)'

provided that ABCql~" = DEF. We now apply the transformation (4.1)
to (3.10) with A = -t\t2qn'2 and D = txt2t3t4q-'i and find the alternate
representation

,„(sinh£; h,t2,h, U) = l-*-n^l?>f-"fl*)n{-tlt2rq^
v    ,   f q~n ,-ht2q"-2 ,-t2t3q~2 ,-t2t4q~2 \
X403l     hhht4q-\t2q-xe-t,-t2q-^      q>q)

~[  hl2> q {tle-Z,-tieZ)n

xp„(sinh£; t2q~x, hq,t3, t4).

In terms of the functions

(4.2)
y/„{mvhtl ;h,t2,t3, t4) := qn{t\e~4 , -*i£?{)„0>„(sinh<![; tx,t2,t3, t4)

the above symmetry relation is

(4.3) Msinh£ ;h,t2, t3, t4) = y/„(sinh£; t2/q ,txq,t3, t4).

Ismail and Wilson [32] established the generating function

E{ac, ad)n „    . , ,.
.Tenth ™x:"•"•c-d)

(4.4) "=°
,   fa/z,b/z \    ,   (cz,dz ., \

= 2^{     ab Q>«zt)2fo{   cd        Q,at/z).

Now choose the parameters a, b, c, d in (4.4) as

a = txq~x y/uu,    b = q-2t2yft3U,    c = e^ q / y/hU,
(4'5) j e   , j- /—!-d = -eiq/y/t3t4,     z = -\Jt3jt4.
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This transforms (4.4) to the generating function

E(he~4, -txe^)„    , . . „ . _
^-'     '   />„(sinhg; tx,t2,t3, t4)t"

„=0 W ' ~q  /'3M)m

(4-6)       -« (""':&^2 h -"""«)

Observe that the symmetry relation (4.3) also follows from (4.6).
In [32], Ismail and Wilson derived the asymptotic formula

i a -71 i u ji       /    /   \n(az >°Z, CZ, rfz)oo(4.7)        p„(x;a,6,c,rf)«(fl/zri^-^-^-^-,     |z|<l,

where z = x - y/x2 - 1, .x £ [-1, 1]. With the parameter identification (4.5),
we obtain from (4.7)

<9„(sinh<^; h,t2,t3, t4)

(4-8) ,   , , ,„y„(-tih/q, -hhjq2, -qe^/U, gef/r4)oo
~ (— l\l4q)   -;—;-5-;-jt-,

{t3/t4, ht2t3t4q-*, txe~Z, -tie*),*

valid for \t3\ < \t4\.
The asymptotics of polynomials orthogonal on a compact set contain a wealth

of spectral information on the spectrum and the spectral measures of the polyno-
mials. For example, under certain conditions, see Freud [24], Nevai [38], Szego
[50], Grenander and Szego [26], a polynomial system {5„(x)} orthonormal on
[-1, 1] will have the asymptotic development

sn{x)*z-"/D{z),    xeC/[-l,l],
(4-9) rr~^z :— x - v xl - 1,     as n —> oo.

The weight function w{x) is given by

(4.10) w{x) = (1 - x2)~l/2 lim D{rew)D{re-ie).
r—f\~

There is little hope in having results as precise as (4.9) and (4.10) in the case
of biorthogonal rational functions. One reason is that the measure that the
functions are orthogonal with respect to is not unique. However the asymptotics
of biorthogonal rational functions may still provide a glimpse of a measure with
respect to which they are biorthogonal. One good example to illustrate this point
is the biorthogonal rational functions {Rn{x; a, fi ,y ,S; q)} of Al-Salam and
Verma [6],

(4.11) Rn{x;a,f},y,5;q)=34>2 (^' £j]*''^~"      q , g) .
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Al-Salam and Verma [6] proved the biorthogonality relation

(4.12)
f°° (fiy/q)n
/     w{x)Rn{x;a, p, y,d; q)Rm{x;S, y, p, a; q)dqx = KK     '   ' Sm>n,

where A" is a certain constant [28], p. 226, and

(4.13) w{x) = {axq, Sxq)00/{qax/P, qdx/y)^.

The integral in (4.12) is the bilateral ^-integral

/oo oof{x)dqx := (1 - g) J2 g"t/(0 + /(-g")]-
-°° -oo

The form of w(x) given in [6] contains obvious misprints corrected in (4.13).
We shall first determine the asymptotic behavior of the i?„'s and indicate how
the biorthogonality relation (4.12) could have been suggested by the asymptotics
of the i?„'s.

To determine the large n behavior of Rn we identify R„ as a special Askey-
Wilson polynomial. Choose

(4.15) a = y/a~py~j5,     z = y/pd/ay,    b = 0,
c = q~ly/pyd/a,     d = qx\Ja8JPy,

in (1.3). Now (4.7) yields

(^;".#.r.*;«)-(?),(#.ff..4)-/(^.f«.)-.
as n -> oo, provided that \pd\ < \ay\ (that is \z\ < 1). If \PS\ > \ay\ we
replace z in (4.15) by y/ay/pS and obtain

(4.17)

Rn{x;a,p,y,d;q)*pn(^,y-,qxfy    j'(jg , ^ , axq}     ,

as n -* oo if \PS\ > \ay\.
It is clear that the asymptotic relations (4.16) and (4.17) suggest the weight

function (4.13).
We now consider the functions {<pn}. The asymptotic formula (4.8) suggests

the weight function

w(sinh<^) =&>(sinh<j;; tx,t2,t3, t4)

(4-18) (txe-<,-tiet, t2e~t,-tie*),*
{qet/t3, -qe~i/t3, qet/t4, -g*?-<7*4)oo'

With proper interpretation this does turn out to be a weight function. Since the
corresponding measure is discrete it must be related to co{x) dx . Let a{x) be
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a jump function with jumps

(4.19) a{xn{a) + 0+) - a{xn{a) - 0+) = 2a,     ^^K    ,
(g, -qa1, -q/a2)oo

at x = xn{a) where

(4.20) x„(a) = \{q~nla - aqn),     xn{a) = sinh(^„(a)).

The x„(a)'s are the same as the spectral points of the g_1-Hermite polynomials,
see (6.27). The term cosh{£n{a)) is a constant multiple of dx^ .

Before we prove the biorthogonality of the r?„'s we need to evaluate the total
a> mass.
Theorem 4.1. We have the evaluation

(4.21)
J(ti ,t2,t3, t4) := /     co[x) da{x) = ---J   -       -——.

J-oo (tihhtt/q^oRj^iatj, -tj/a)^
Proof. It is clear from (4.20) that e^^ = q~"/a. Hence

(g, -qa2, -g/a2)oo J{h ,h,t3, t4)

= y^ {a2qn + q-n){'aqntx, -txg-"/a, aqnt2, -t2q-n/a)00
t    (g1_"Ms, -aq»+x/t3, qx~"/at4, -ag^/t^

{atx, -h/a, at2, -h/a)^
{g/at3, -ag/t3, q/at4, -aq/t4)oc

x   w (iaa'~i^a'-aa/ti,-aq/t2,-aq/t3,-aq/t4        txt2t3t4\
6     \ ia,-ia, atx, at2, at3, at4 q'     qi    J'

We now apply the (,¥e sum (3.17) and establish (4.21).
Theorem 4.2. The rational functions {q>n} satisfy the biorthogonality relation

(4.22)

/OO
(pm{x; h,t2,t3, t4)<pn{x; t2,tx,t3, t4)w{x)da{x) = gnSm,n,

-oo

where co{x), a, and gn areas in (4.18), (4.19)-(4.20), and (1.22), respectively.
Proof. As we did in Section 3, consider the integrals

j      .     f°° <Pn(sinhci;tx,t2,t3,t4) „,„.„u ^ ^  ,„Jmn;=\     ———-——--<u(sinhc)rfa(«).
y-oo      {-t2e<, -t2e «)w

From this, (1.22), and (4.20) it follows that

i      _s^(<l~n,-ht2qn-2,-ht3lq, -txt4/q)k  k        k
Jm,n = 2^-,   t i * t „-3\-q J\hq ,hq ,h,U)

t0 (*' WihUq 3)k
_ {-hU/q, -t2t3qm-y, -t2t4qm-x, -txt2am-1, -txt3/q, -hU/qU

{Uhhhqn-^oo
y   ,   (q-\-txt2qn-2,txt2t3t4qm~^ \
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Again we sum the 3<j>2 by the g-analog of the Pfaff-Saalschutz theorem (3.12).
The rest of the proof parallels the proof of Theorem 3.2 and will be omitted.

Al-Salam and Ismail [5] proved that the rational functions Rn and S„ ,

(4.23)
n,        u       <\       j. {g-n,g~l/2txz,tx,abtxt2g"-i \
Rn(z; a, b,tx,t2):= 4cf>3^    £1/2^/^ ^/f «,«J,

(4.24) Sn{z;a,b, tx,t2):= Rn{z;b, a, t2, tx)

satisfy the biorthogonality relation

(4.25)
1    f     r{r\R <?\~<rTAdz      {abq, abtxt2gn-{, g)n ■

-J^__K{z)Rn{z)Sm{z)-=      {abhh)2n{hhq-%     ^2q     )Sn,m

where the weight function K{z) is

(4.26)
.     _ (gl'2z,gl'2/z,agi/2t2z,bgl/2tx/z, atx, bt2,q,abq, txt2/g;g)oo
{Z>     {aq1'2z,bqi/2/z,q-l/2t2z, q~l/2tx/z, tx,t2,aq, bq,abtxt2; g)^'

If rn{z) and sn{z) denote the biorthonormal functions then, as was observed in
[5], (4.7) shows that z~n r„{z) and z~" s„{z) converge uniformly on compact
subsets of {z : \z\ > g1/2} to p{z) and a{z), respectively. Furthermore

lim p{reie) a{reie) = l/K{e'e).
r—»1

This is the exact analog of (4.9) and (4.10).

5. Computation of entire functions

Following the notation in [47] we consider polynomial solutions of a three
term recurrence relation
(5.1) (on+l{z) = (z - an+x)(o„(z) - P„co„-X(z),     n > 0.

Two linear independent solutions {Pn{z)} and {Q„{z)} can be generated using
(5.1) from the initial conditions

(5.2) Q0{z) = l,     Qx{z) = z-ax,     Po{z) = 0,     Px{z) = fi0.

It is assumed that

(5.3) an is real,       n > 0, P„ > 0, n > 0.

Starting with the polynomials {Q„{z)} such that (5.3) holds we can define a
positive linear functional L on the space of polynomials by L(Q„) = S„,o-
The functional L can be represented as an integral with respect to a positive
measure, normalized to have a total mass 1, since Qo — 1. This measure will be
unique if and only if the corresponding moment problem has a unique solution,
that is when we have a determinate moment problem. In the indeterminate case
the totality of probability measures {dy/(t; a)} that solve the moment problem
can be indexed by functions a{z) analytic in the upper half plane 3z>0 and
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satisfying 3er(z)<0for^z>0. Furthermore, there exist entire functions
A{z), B{z), C{z), D{z), such that

A{z) - a{z)C{z)      [~ dy/{t;a)
1 ' ' B{z)-a{z)D{z)     ;_„,    z-t    ■

In fact A{z), B{z), C{z), D{z) are uniform limits, on compact subsets of
C, of An{z), Bn{z), C„{z), D„{z), respectively, where

(5.5) An+X{z) = [P„+1(z)P„(0) - Pn+x{0)Pn(z)]{p0px ■■■pn)-x,

(5.6) Bn+x{z) = [Qn+x{z)Pn{0)-Pn+x{0)Qn(z)]{poPx---pn)-1,
(5.7) Cn+X{z) = [Pn+x(z)Qn{0) - Qn+l{0)P„{z)]{p0px ■ • • A,)"1,
(5.8) Dn+x{z) = [Qn+x{z)Qn{0)-Qn+x{0)Qn(z)]{PoPi---Pn)-1.

The purpose of this section is to construct the entire functions A{z),
B{z), C{z) and D{z) explicitly in the case of the ^"'-Hermite polynomials
{hn{x\q)}. This is achieved by determining the large n behavior of Pn{z)
and Qn{z) and then use it to compute the limits of A„(z), Bn{z), C„{z), and
D„(z).

We first need to put the recurrence relation in (1.16) in monic form. Set

(5.9) Qn{x) = 2-"hn{x\q).

The Q„'s satisfy (5.2) and (5.3) with

(5.10) a„ = 0,     pn=X-g-"{\-gn),     «>0,     0<g<l,     p0 = 1.

It is easy to see that when an = 0 for all n then (5.1) and (5.2) imply

(5.11) 22«+i(0) = 0,     P2«(0) = 0,

(5.12) Q2„{0) = {-\)npxp3--p2n-X,     P2n+i{0) = {-l)nPoP2---p2n.

Hence

(5.13) A2n+x{z) = A2n{z) = {-\)n-xP2n{z)l[pxp3---p2n_x\,

(5.14) B2n+X{z) = B2n{z) = {-l)"-lQ2n{z)/[pxp3-- ■ p2n.x],

(5.15) C2n+X{z) = C2n+2{z) = {-l)"P2n+x{z)/[p0p2- ■ ■ p2n],
(5.16) D2n+l(z) = D2n+2(z) = {-\)nQ2n+x{z)l[pop2---p2nl

In the case of {hn{x \ g)} we have, in view of (5.9),

(5.17) A2n(z)={     > q   P2n{z),  C2n{z)=K     \n2.n2q-Pm-M,\q,q)n (gz, gz)«-l

(-l)"~la"2 (_l)"-lfl«("-l)
(5.18) B2n{z)=y     [     q   h2n{z\q),  D2n(z)=\>q-A2»-i(z|g).(q,qz)n Ag >g )*-i

We now compute the strong asymptotics of {hn{x\g)} using Darboux's
method, [50], [39]. The application of the method of Darboux requires a gener-
ating function having singularities in the finite complex plane. The generating
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function (2.4) is entire so we need to find a generating function suitable for the
application of Darboux's method. To do so, set

(5.19) hn{x\g) = g-"2'\y/g; s/g)nsn{x).

In terms of the s„'s, the recurrence relation in (1.16) becomes

(5.20) (1 - q^+^2)sn+x{x) = 2xq^+l^'2sn{x) - (1 + qnl2)sn.x{x).

Therefore, the generating function
oo

G{x,t):=YlSn{x)t"
0

transforms (5.20) to the g-difference equation

„,      .      l + 2xg'/4f-;V/2G{x,t) =-Y_-^—G{x,y/qt).   ■
By iterating the above functional equation we find

G(x,t)={ta'ff)"G{x,q"'h).
\  I > q>n

Since G{x, t) -» 1 as / -» 0 we let n -» oo in the above functional equation.
This establishes the generating function

(5.21) p'W^SiqU00'

where
(5.22)

a = -{x + Vx2 + l)g1/4 = -g'/V ,     p = {y/x2 + l- x)qx'A = g1^"4.

The t singularities with smallest absolute value of the right side of (5.21) are
t = ±i. Thus Darboux's method gives

(5.23) *(*) * (^/^y^oo (_}. + (-/a ,-/^;Vg)oo
V       ; V  ; 2(g;g)oo     V 2(g;g)0O

Therefore
(5.24)

^n(xlg)«g-"2(^;;^°°(-l)"[(m, ijff; v^oo+ (-ia, -iP\s/q)oo],

h2n+i{x\q) ^-"-'^^^"(-ir1(5.25) +U   '   ' 2(g;<?)0O  v     ;

x [(ia, ip ; y/q)^ - {-ia, -ip ; y/q)^].

It is now clear that the functions B{z) and D{z) can be found from (5.18)
and (5.25). This provides a representation of B{z) and D{z) as sums of
two terms. The two term sums in B{z) and D{z) can be simplified to single
terms using quartic transformations. Next we shall give direct proofs of this
simplification and discuss the connection with quartic transformations at the
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Observe that the three term recurrence relation in (1.16) implies

,s„y 4x2hn{x\q)=hn+2{x\q) + [q-"-\l+q)-2]hn{x\q)(j.2b)
+ ql-2n{l-q"){l-q»-l)hn-2{x\q).

Askey and Ismail [16] studied the polynomials {vn{z; p; a, b, c)} , or simply
{vn}, generated by

(5.27) v0 = l,    Vl = (a-z)/(l-p),
(5.28)

{l-pn+1)vn+x = {a-zpn)vn-{b-cpn-l)vn_x,    n>0,    0<p<l.

The w„'s are Al-Salam-Chihara polynomials when q > 1 [22]. It is easy to see
from (5.26), (5.27), and (5.28) that the polynomials {r„{y)} ,

rn(y) := h2n{x | g)g"("-'/2)(-l)7(g2; g2)„ ,    y := {4x2 + 2)y/q,

satisfy (5.28) with z = y, p - q2, b = 1, c = g, a = (1 + q)/y/q . Askey and
Ismail [16] established the generating function

(5.29) Wfr^a.&.c^fT      ~    P   +f/,     •
V ' ^      V ' -I1 [ 1 - flf/7" + 6f2/?2"

Therefore we obtain the generating function

(5.30)
fU2.fr I g)r   f)„n(n-xm _ fr ri-(4x2 + 2)?g2^/2 + rV"+n
^(g2;g2)/   ;* HI   i-(i + g);g2«-'/2 + ;2g4«

Applying Darboux's method to (5.30) we establish the alternate asymptotic re-
lationship

(5.31) h2n{x | g) a ^  /f      [Jt1 - (4*2 + 2)^"+1 + q4"+2l-
[q,q joo n=0

This yields
oo

B(x) = - (g; g2)-2 I][l - H*2 + 2)g2n+1 + g4n+2](5-32) „x=0

= -{q;q2)^{qe24,qe-24;q2)oa.

Similarly we can use (5.26), (5.27) and (5.28) together with (1.16) to prove that
(5.33)

vn{q^2{Ax2 + 2); g2; q1'2 + g"1'2, 1, g3) = j^J—-j^h2n+x{x \ q).
(z.x)(q  , q )n

Now (5.29) gives

(5.34)
f^ Wifrlg) „(B+1/2) fj l-(4x2 + 2)/g^3/2 + ̂ V"+3
f^(g2;g2)„     J* „n0   i-(i+^-'/2 + /¥"   '
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Finally we apply Darboux's method to (5.34) and derive the asymptotic formula

(5.35) h2n+x{x | g) « (   *   * riH - (4x2 + 2)q2n+1 + ^"+41-

Formula (5.35) is just what we need to combine with (5.18) in order to find
D(z). The answer is

oo

D{x) =      X      Y[[l - {4x2 + 2)q2n+2 + g4n+4]
(5.36) {q ' q)°° »=o

-_(a2e2i   a2e-2i-a2){q;q)Jq       ,Q 'q)°°-
Note that the orthonormal polynomials are {h„{x \ g)g"("+1)/4/V(g; g)«} ■

From (5.31) and (5.35) it is now clear that the sum of squares of absolute
values of the orthonormal hn's converges for every x in the complex plane.
This confirms the indeterminacy of the moment problem, [47], Corollary 2.7,
p. 50. Observe that (5.25) and (5.35) lead to the identity

(5.37)
{y/q; g)oo[(ig1/V , -iql'*e-< ; y/q)oo + {-iql/4qi , iql'*e~< ; Vg)oo]

= 2(g^,ge-2«;g2)0O/(g;g2).

Similarly (5.24) and (5.25) imply

(5.38)
{y/q; g)oo[(/g1/V, -ig'/V*; y/qU - (-/V'V , iql'4e~4 ; y/q)^]

= -4*g'/4 sinh£ {q2e* , q2e~24 ; q2)00/{q; g2)^.

The identities (5.37) and (5.38) give explicitly the real and imaginary parts of
the function {iqllAel*, -iql^4e~i; y/q)oo and are instances of quartic transfor-
mations. When (5.37) and (5.38) are expressed in terms of theta functions, see
(6.20) and (6.21), they give the formulas in Example 1, p. 464 in [52].

Next we determine the large n asymptotics of Pn fr). Following the notation
in [16], the numerator polynomials {h*{x \ q)} satisfies the difference equation
in (1.16) and the initial conditions

(5.39) Ao*fr|g) = 0,    hUx\q) = 2.

We then have

(5.40) Pn(x) = 2-"h*n(x\q).

In order to find a generating function for {h*{x | g)} we mimic the renormal-
ization (5.19) and let

(5-41) h*„(x | q) = q-"2l\y/q; y/q)nsl{x).
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The 5*'s also satisfy (5.20) but s^{x) = 0, ^fr) = 2g'/4/(l - y/q). The gener-
ating function

oo

G*{x,t) = Y,s*n{x)tn
0

transforms the recurrence relation (5.20) to

_,.      .      l + 2xg1/4?-r2g1/2 ^x     2g'/4rG*{x, t) =-^—^-*— G*{x, y/qt) + f^-p.

The solution to the above g-difference equation with G*{x, 0) = 0,

9G*,      . ».  ,-^-fr,0 ,=Q =sx{x)
is

E,:fr)^ = 2g'/4zE(7'^;^)"g"/2.
Now Darboux's method gives

^fr|g)«-g(1-"2)/4(yg;v/g)oo/"+1

(5.42) x [2</>i(-/av/g> -iPVq; -y/q~; y/q, y/q)
+ (-l)"+120i(^yg, iPy/q; -Vq; y/q, y/q)l

In order to simplify the right side we need to go back to the recurrence re-
lation in (1.16) and obtain separate generating functions for {ii^fr |g)} an(l
{^2n+ifrl#)} as we did for the /7„'s. Then /z*'s will satisfy (5.26). The r„'s
defined above (5.29) satisfy

(1 - q2n+2)rn+x{y) + (1 - q2"-l)rn{y) + {yq2n - (1 + g)/y/g)rn{x) = 0.

The polynomial {r*{y)} satisfies the same recurrence relation but r^{y) = 0,
and r\{y) is the coefficient of y in rx{y). This is the notation of [16]. Thus
r*{y) — _1/(1 _ g2) • It is now easy to see that

ffn(n-l/2)(_n«„-l/2
r*»{y) = q    4x{q2.q2)n-*2„fr|g).     y:={4x2 + 2)Vq.

Therefore

h*2n{x\q) = 4x(g2; g2)„g1/2(-l)"g-"("-1/2)<(^; g2, (1 +g)A/g. 1. «)•

Askey and Ismail [ 16] established the generating function

^ „ *< us -t      ^ «rr    i - ytpj + ct2p2J
Etnvn(z;p;a,b,c)=l_at + bt2Y,p"\ll_atpJ+l+bt2p2j+2>
n=0 n=0       j=0

from which it follows that

(5.43)
h*2n{x \q) « 4x(-l)"+1g-"2T^-(g2; g2)oo2</'i(g^, g^"24; g3; g2, g2)-
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We now come to the asymptotics of /z^+ifr Ia) ■ Set

w„(g3/2(2 + 4x2)) = (-l)V(n+1/2)>4+.fr | q)/{q3; q2)n.

Thus (5.39) and (1.16) show that Wo and wx are

w0{y) = 2,     wx{y) = 2[q-l/2{l+q2)-y]/{l-qi),

with
y := g3/2(2 + 4x2).

Furthermore (5.26) implies

{l-q2n+3)wn+x{y) + [q2"y-{l+q)/y/q]wn{y) + {l-q2n)wn_x{y) = 0,   n > 0.

Set
oo

W{y,t):=YJWn{y)tn.
o

The three term recurrence relation of the u;„'s is equivalent to the g difference
equation

W{y ,t){\-t{\+ q)/y/q + t2} - {g - ty + g2t2}W{y, g2t)

= (1 - q)w0{y) + (1 - q3)twx{y) + t[y - {I + q)/y/q]w0{y).

Therefore, with x = sinh<^, y becomes 2g3/2 cosh 2£ and we have

q(l-tVqe*)(l-tyfiIe-X) 2 2(1 - g)
"^'   t} {l-ty/q)(l-t/y/q) W{y'   Q    t)+{l-t/y^Y

By iteration we obtain

E w«(y)ttt = -^7t4 3<M^v/g, te-*y/q, q2; tq"2, tq"2; q2, q).
„=o y-t/y/q

This establishes, via Darboux's method, the limiting relation

wn{y) « 2(1 - q)q-"l2 2<)>x{ge2i , ge"2^ ; g; g2 , g),

which implies

(5.44)
A2*„+1 fr | g) « 2(g ; g2)oo(- l)"g-"<"+1> 201 (ge24 , ge"* ;q;q2,q).

From (5.17), (5.40), and (5.43) we see that

w,(it;ft^'yJ'il';,''rt
Similarly (5.17), (5.40), and (5.44) imply

C2«W *lni9ll? 2h{<ie2i,qe-2S;q;q2,q).
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This evaluates A{x) and Cfr) as

\A{X) = (Tg9)^   2^qg2i ' «-* >q3>q2> «'>(5.45) { (/     9M,q)co
C ̂  = ;qJqnt 2</>. (ge*, qe-24; g; g2, g).

. \q , q too

Also by combining (5.42) with (5.43) and (5.44) we discover the quartic
transformations

^(ig'/V, -iql/4e~4; -q1'2; q1'2, q1'2)

{5M) -201(V/4^,-ig1/V;-g1/2;g,/2,g,/2)

4/xg3/4 (g2; g2)oo      , ,    2i       -2£     3     2     2i
= (g-i)(g'/2;g'/2)oo2^l(gg   ' ^    ; * ; * ' * }'

and
2^,(ig1/V, -iq^e^; V/2; g'/2, g'/2)

(5.47) + 2<Mig1/4e-«, -^"V; -g"2; g1'2, g"2)

= (gW^fe20,(^'^2f;^^'^
The above quartic transformations are new. In a private communication Mizan
Rahman found direct proofs of (5.46) and (5.47) using the theory of basic
hypergeometric functions.

6. Extremal measures
As we mentioned in Section 5 the solutions to the moment problem are

{y/{t, a)}, where a is analytic in Sz > 0 such that %o{z) < 0 if 3z >0.
Furthermore

A{z) - a{z)C{z)       [°° dy/{t;a)
1 ' ' B{z) - a{z)D{z)     J^     z-t    ■

where A{x), B{x), Cfr), D{x) are as in (5.32), (5.36), and (5.45), see also
(6.11). An alternate representation of Cfr) is given in (6.10).

The cases a = 0 and a = -00 of (6.1) are of special interest. They are

-4xg(g2;gU       ,,    y.   qe-2i.   3.   2     21
(g^,g^;g2)oo201^    ,q      ,q ,q ,q)

_  / ,    x = sinh£,    x^O,
J—oo x — t

and

= /     ——,     x = sinh <;,     x ^ 0,
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Q-HERMITE POLYNOMIALS 89

where
p{x) = y/{x, 0),    v{x) = y/{x, oo).

Recall the Perron-Stieltjes inversion formula [47], [49]

J — oo    z        '

if and only if

(6.5) 2ni [y/{v) - y/{u)] = lim / [F{t - ie) - F{t + ie)] dt,

and y/ is normalized by

y/{u) = ^[y/{u+) + y/{u~)].

Since the right sides of (6.2) and (6.3) are meromorphic functions of x, then
both dp and dv are discrete measures. In this case the inversion formula (6.5)
shows that the measures involved are supported on the poles of the respective
right-hand sides and the masses equal the corresponding residues. Thus the
support of dp consists of all x's at which e±2i = g2"+1, that is supp dp —
{±x„ , n = 0, 1, ...} where

(6.6) xn = ^{q-"-l'2-qn+l'2),     « = 0, 1,2, ... .

The residue of the left-hand side of (6.2) at x = x„ is
-2(g-"~'/2 - q"+l'2)q{q2 ; g)^ 20,(g~2" , q2n+2 ; g3 ; g2 , g2) x - x„

(g2n+2; g2)oo(g-2"; g2)«(g2; g2)oo *-S. l - g2^1^'

The 20i can be summed by the g analog of the Chu-Vandermonde sum (2.31),
[25], (II.6). This shows that the aforementioned residue is

{q-n-X/2 _ g«+./2)g(g3 ■ q2)oo(g-.-l/2 + q»+m)

2(g2"+2;g2)oo(g-2";g2)«(g3;g2)oo        q        [q      ,q>n

which can be simplified to

^(g;g2)oo(i + g2"+1)g2,,2+7(g2;g2)oo.

Similarly we calculate the residue at —xn . Therefore

/oo hm{x I q)hn{x | g) dp{x) = q-n{n^2{q)nSm,n ,
-oo

where dp is supported at ±x„ ; n = 0, 1,... , xn is as in (6.6) and

(6.8)
p{±xn + 0+) - p{±xn - 0+) = }q2q\  (1 + g2"+1 )q2"2+n ,    n = 0, 1, ... .

2{q , qz)oo

The inversion of (6.3) is somewhat similar. The residue at x = 0 follows from
the g binomial theorem (2.28). The calculation of the remaining residues willLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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be simplified if we use the following iterate of the Heine transformation, (III. 3)
in [25],

(6.9) 2Ma, b; c; q, z) = (abzlc><*)<*> 2<f>x{c/a, c/b; c; q, abz/c)
{z; q)oo

to transform the 24>x in Cfr). This gives

(6.10) C{x)=2Me-24,e2i;q;q2,q2).

Now (6.3) takes the simplified form

//:ii\ (g'>g)oo ,   -  _w      v 2       2i [°°  dv{t)

The calculation of the residues of the left-hand side in (6.11) is now straight-
forward and will be omitted. The result is: dv is a purely discrete measure
supported at 0, ±yn , n = 0, I, ... ,

(6.12) y„ = ^(g-n-I-gB+1),    n = 0,1,2,....

The masses are given by

i/(0+)-L(0-) = (g;g2)oo/(g2;g2)oo,

(6.13) u{±yn + 0+) - v{±y„ - 0+) = }*l?h  (1 + q2"+2)q2»2^ ,
^■yq , q loo

n = 0, 1, 2, ... .

It is of interest to verify directly that dp and dv are probability measures.
It is also interesting to see what (6.2) and (6.3) are really saying. The total mass
of dp is

I 2\ °°
;Vq t E(i + g2n+1)g2"2+",
{q2;q2)ooto

that is
/ 2x ["  OO OO / 2\ oo
\Q', Q  )oo     V^g2n2+n,y^    (2n-l)«    _   jg', g  joo   y^    2n2+n

(q2>q2^[h nTX \        (q2>q2^to

This can be summed from the Jacobi triple product identity, (11.28) in [25],
namely

oo

(6.14) ^g/c2z/c = (g2,-gz,-g/z;g2)oc.
— OO

Thus the total fx mass is

%.9*t (g4, -g2. -g; g4) = %\q*t (g4; g4)oo(-g; g2)oo = 1.
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The total v mass is
(    2\   r    °°
.(g2;,g2).°°      1 + £(1 + ?2»+2)?2»2+3»+I
(g   > g  )oo 0

,    21   r    °°

/ 0\ OO / 0\ oo
(gig )oo  V^ _2«2-« _   (gig )oo  V n2"2+" = 1

~(g2;g2)oo£^ (g2;g2)oo£^

as before. This verifies that both dp and dv are probability measures.
It is known from the theory of moment problem that the entire functions A ,

B, C, D satisfy the Wronskian identity

A{x)D{x) - B{x)C{x) = 1.
In the present case this identity is equivalent to

4x2g(g2e^, q2e-2S ; q2U 2i 2i.   3.   2     2
-7-j—„w. ^212-20i (g<?   , g<?      , g , g , g J

(1 -g)(g;g2)20

(gg^ , gg"24 ; g2)oo     ,   ,   2«    „-2{ . _ . -2     „2i _ i"l-1„   „   „i\-2<P\{e^,e   ^,q,q , g ) - 1.
(g, g;g2)oo

This follows from the nonterminating form of the g-Chu-Vandermonde sum,
formula (11.23) in [25],

(6.15)
Ma,b;c;q,q) + {J/^ ^» ^ 2», WC bq/c; q2/c;q,q)

= {q/c, abq/ciq)^
{aq/c, bq/c;q)oo'

We now discuss qualitative properties of the extremal measures, so we con-
sider a £ [-oo, oo]. It is clear from (5.4) that in general, the extremal measures
are discrete and are supported at the zeros of B{x) - oD{x). These zeros are
all real and simple. It is interesting to note that the /z„'s are symmetric, that
is h„(-x) = (-l)"A„fr), but the masses of the extremal measures are symmet-
ric about the origin only when a = 0, ±oo. This is so because the Stieltjes
transform /^ ^^ of a normalized symmetric measure {dy/{-t) = dy/{t))
is always an odd function of x but it is clear that A{x) and D{x) are odd
functions but B{x) and Cfr) are even functions.

Let {x„(a)}?°00 be the zeros of B{x) - oD{x) arranged in increasing order

(6.16) -.. <x_„(cr)< o-_„+i(er) < ••• < x„{a) < xn+x{a) <■■■ .

The zeros of D{x) are {x„(-oo)}^°00 and are labeled as

•■ • < x_2(-oo) < x_i(-oo) < Xo(-oo) = 0 < xi(-oo) < •• • .

In general it is known that xn{a) is a real analytic strictly increasing function
of a and increases from x„(-oo) to x„+i(-oo) as a increases from -oo
to +oo.   Furthermore the sequences {xn{ax)} and {x„{a2)} interlace whenLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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ax±a2. This is part of Theorem 2.13, page 60 in [47]. A proof is in [49], see
Theorem 10.41, pp 584-589. In the case we are interested in (6.12) and (6.6)
give

(6.17) xn{-oo) =-{q~" - qn),     x„(oo) = x„+,(-oo),

*n(0)=^(g-"-1/2-g"+1/2),   «>0,

(6.18) x_„(0) = x„_i(0),     «>0.

We know that B{z)/D{z) is a meromorphic function with only real zeros and
poles. We shall prove later that B{z)/D{z) is increasing on any open interval
whose end points are consecutive poles of B{z)/D{z). For a e (-oo, oo)
define r\ — r\{a) as the unique solution of

(6.19) cj - B{sinh n)/D{smhrj),    0 = x0(-oc) < sinh//< xi(-oo).

We define //(±oo) by

//(-oo) =0,     //(oo) = Xi(-oo) = x0(oo) = (g_1 - g)/2.

The next step is to invert (6.1) and find y/{t, a) explicitly. The approach
followed here uses product formulas for theta functions. An alternate derivation
will be given in Section 9. We follow the notation in Whittaker and Watson
[52], Section 21. Recall that the four theta functions have the infinite product
representations [52], Section §21.3,

*»<*> =2g1/4sinz(<72, q2e2", q2e~2i*; q2)^,

M^)={q2,-qe2,z,-qe-2lz;q2)0o,

,r ^ i?2(z) =2qi/4cosz{q2,-q2e2i2, -q2e~2iz ; q2U,
("•21) i       •>• tiM?) ={l2, qe2,z, qe~2,z; q2)^.

It is clear that l?(sinh<j;) and Z)(sinh<j;) are theta functions. Indeed

(6.22) Z>(sinhO = a,(tf)/[2/g1/4(g; g)00(g2; g2)^],

(6.23) 5(sinh£) = -i54(^)/[(g; g)oo(g; g2)oo-

With the choice of a made in (6.19) the Stieltjes transform of dy/{t, a)
becomes

(6.24)
,4(sinhg)-(TC(sinh£) _ ,4(sinh£)fl(sinh tj) - fl(sinh ?/)C(sinhg)
£(sinh£) - cr£>(sinh£) ~~ B{sinhcl)D{sinhri) - 5(sinhf7)£>(sinh<^)'
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Theorem 6.1. The cross product fi(sinh<^)i)(sinh77)-5(sinh//)Z)(sinh^) has the
infinite product representation

(6.25)
J5(sinh^)D(sinh?7) - 5(sinhr7)I>(sinh^)

-1        °°
= J](l - 2ag" sinh£ - a2g2")(l + 2a~lqn+l sinh£ - q2n+2a-2),

2a{q; q)x    .

where n and a are related by (6.19) and

(6.26) a = e~i.
Proof. The relationships (6.22) and (6.23) show that the above cross product is

[2ig'/4(g; g)2X)(g, g2; q^ocr'iMiQMi") - Wl)MiZ)l
The product formula, [52], p. 488

My ± z)My ? z)f>2{Wm = My)My)Mz)Mz) ±My)My)Mz)Mz),
enables us to reduce the left-hand side in (6.25) to

rj2(;(£ + ri)/2)UKZ + »7)/2)fli(»0? - i?)/2)^4(i(^ ~ f )/2)
2iy/q{q;q)lc{q2,-q,-q2;q2)20

The infinite product representations (6.20) and (6.21) simplify the latter expres-
sion to

2 sinh((£ - V)/2) cosh((£ + r,)/2){-qe^, -qe~^, qe^ , qe^; q)00/{q; q)x,

which simplifies further and we obtain (6.25).
Therefore the zeros of the left side of (6.25) are

(6.27) x„(a) = ^(g-"a-1-ag"),    « = 0,±1,...,

From, (6.19) it is clear that 0 < n < -Inq, hence

(6.28) g<a<l.

In fact there is no loss of generality in assuming g < a < 1 in (6.27) since
the set of zeros is invariant under replacing a by aqj , for any integer j. An
extremal measure dy/{x, a) will be supported at {xn{a) \ - oo < n < oo} . To
find the mass at x„(er) we either compute the residue of either side of (6.24)
or apply Theorem 2.13, page 60 in [47]. The aforementioned theorem asserts
that the mass concentrated at x„(er) is 1 / Y^LoPk{xn{<?)), where {pk{x)} are
the orthonormal polynomials. Set

(6.29) mn — mass concentrated at x„{a).

In our case, the orthonormal polynomials are {qn^n+x^4h„{x | q)/y/(q; q)n}-
Thus

oo

m„ = l/E^(fe+1)/2^frfl(<T))/(g;g)fc.
fc=0License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



94 M. E. H. ISMAIL AND D. R. MASSON

The series on the right-hand side is a special case of the Poisson kernel (2.8).
Therefore

mn = \/{-qx-2"a-2, -a2q2n+x, q; qU.

After routine manipulations we obtain

(mn = fl4v(2»-i)(1 + a2q2n)/{-a2, -q/a2, q; q)x,     n > 0,
\m-.„ = a-4«+2g«(2«-l)(1 + q2n/a2y(_a2 ( _g/a2 , g ; g)QO ,       n > 0.

Both cases can be consolidated in single form, namely

(6.30)
mn = a*nqni-2n-x\\ + a2q2")/{-a2, -q/a2, q; q)x,    n = 0, ±1, ±2, ....

This establishes the orthogonality relation

oo

(6.31) Y,  mnhr{xn{a)\q)hs{xn{a)\q) = q-^+x^28r,sl{q;q)r,
n=—oo

the masses m„ are given by (6.30), the mass points {x„(ct)} are as in (6.27).
Recall that the measures are normalized to have a total mass equal to unity.

Therefore

{-qa2, -qaT2, q; q)^

- YV*   "(2*-l)(l+a2g2")   ,   y-    -4n   n(2n-\)(a2 + Q2n)
~2^     q l+a2     +^        q \+a2

n=0 n=\
1      r oo oo

= _JL_     ^a4ngn(2n-l)+^a4n+2gn(2„ + l)

—oo —oo
+ E a4n+2qn{2n+x) + Y\ a4"qn{2"~X)

-l -l
.      r oo oo

= —L_    ya4n   n(2n-l) + ya4n+2   n(2n+l)
l+a2   ^ ^

.—oo —oo

Observe that the first and second sums above are the even and odd parts of
X)-oofr2/v/g)'1g"2/'2' respectively. Therefore J^°oody/{x, a) — 1 is equivalent
to the summation theorem

oo

(6.32) J22z"p"2 = {p2,-pz,-p/z;p2)O0.
—oo

Clearly (6.32) is the Jacobi triple product identity (6.14). It is important to note
that we have not used (6.32) in any computations leading to (6.32) and as such
we obtain the Jacobi triple product identity as a by-product of our analysis.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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We now give an alternate derivation of the masses in (6.30). This alternate
calculation will be used in Section 7 to analyze other spectral measures for the
/Vs. From (5.32), (5.36), (5.45), and (6.10) we get

^(sinh<^)D(sinh//) - fl(sinh//)C(sinh£)
_ 4g sinh£ sinh//(g2; g2)^    2 2„     2    2n     2,

(6.33) " (i-g)(g;g2)oo(g;g)oo (q     ,q       'q)o°

x ^{qe24, qe'24; q3; q2, q2)

+ {qe2r> , qe-2" ; q2U{q; g2)~2 20, {e24 ,e~24;q;q2, q2).

When x = xn{a), a becomes an where ein = q~n/a, with a as in (6.26).

Theorem 6.2. When e^n = q~"/a then

(6.34) A{sinhc;)D{smhri) - fl(sinhj/)C(sinh£) = (-l)"a2V\
Proof. Apply (6.33) to see that the left-hand side of (6.34) is

{a2qn-q-n)q{a-2,q2a2;q2)O0 ,_2     ,     x+2n232     2)
-{l_q){q.q2)2oo-20i(g       la,q      a,q,q,q)

+ {qa2;q'f2;2q2)°° 2h{q-2nla2,q2"a2;q;q2,q2),
\g, q /oo

which reduces to

q{a2q"-q-"){a2q2,a-2;q2)0O x_2n , 2     x+2n 2     3     2     2i
-{x_q){q.q2)lo-20i(g       la ,q      a,q,q,q)

{qa2,q/a2;q2)oo
+ {a2q2"+x,qx-2"/a2;q2)00

_ {qa2, q/a2, g, g~2"/a2, a2g2" ; g2)^
"  {q,q, \/q,qx-2n/a2,a2q2n+x;q2)00

X20i(g'-27a2,g1+2"a2;g3;g2,g2)

upon the application of the nonterminating q analog of the Chu-Vandermonde
sum (6.15). After straightforward simplification we see that the 20i's cancel
and we obtain (6.34).

The extremal measures arise when a{z) is a real constant. Since a{z) =
a{J), we cannot take a{z) to be identically equal to a nonreal constant. This
suggests that the next step is to consider

(6.35)
a{z) = ae~i&, 3z>0,     o{z) = aeif), 3z<0,   for a > 0, 0 < p < n.

The extremal measures correspond to the cases p — 0, n. The spectral mea-
sures associated with the function a of (6.35) will be found explicitly in the
next section.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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7. Applications

An orthogonality relation of a sequence of orthogonal polynomials or func-
tions is usually equivalent to the explicit evaluation of a series or a definite
integral. There is a hierarchy of orthogonal polynomials indicated in Askey's
Tableau [34], and most books on special functions include a similar list of
summation formulas and explicit evaluations of integrals. The intertwining of
orthogonality relations and explicit sums and integrals is well illustrated in the
excellent book [25]. The discovery of a new orthogonality relation may lead to
new summation theorems [25], Section 7, or shed new light on known identi-
ties. The analysis we used in Section 6 led naturally to the Jacobi triple product
identity, being /f^ dy/{t, a) = 1. In retrospect, this may not be very surprising
because the orthogonality of {Hn{x\q)} follows from the Jacobi triple prod-
uct identity, as was realized in [3] and [7]. This indicates that the g-Hermite
polynomials for 0 < g < 1, or g > 1 exist at the level of the Jacobi triple
product identity. A g analog of the Askey Tableau is in preparation. It has the
g-Hermite polynomials at the bottom of the chart with the g-Racah and Askey-
Wilson polynomials at the top. Ismail and Stanton [29] realized the power of
Rogers's linearization formula (1.13) by combining (1.13) with the orthogonal-
ity of {Hn{x | g)} to evaluate the Askey-Wilson integral which is the key step
in establishing the orthogonality of the Askey-Wilson polynomials. Thus the
linearization formula of Rogers (1.13) provides a magic lift from the bottom
level of a g-Askey's tableau to its top level.

Convinced of the power of (1.13), we embarked upon the task of identifying
the summation theorems behind the evaluation of the integral (1.18) and (6.1).
We already saw in Section 3 that the evaluation of I{tx ,t2,t3, t4) for general
extremal measures is equivalent to Bailey's sum of a very well-poised 6 %,
stated in (3.17). The full ^We sum is an interesting sum near the top of the list
of explicit sums.

In Section 5 of [10], Richard Askey pointed out that Rogers [45, page 30],
actually found the sum of a very well-poised 60s • This is the special case b = a
of Bailey's 6 % sum. Askey and Ismail [ 13] used the identity theorem for ana-
lytic functions to prove Bailey's 6W6 from the 605 summation theorem. Thus,
the solution of the Hamburger moment problem associated with {h„{x \ q)} is
very rich, and when we combined the classical theory of indeterminate Ham-
burger moment problems with the linearization formula of Rogers we were led
to the 6^6 in a natural and straightforward way.

Next we consider (6.1) with rj in the extended real number system. The use
of (6.24), (6.25), (6.10), and (5.45) imply

2-^f){a2 , q2/a2 ; q2U 20, (g^ , g,"2* ; q'; q2, q2)

+ {qa2, q/a2 ; q2U 2<f>x{e24 , e~2i ;q;q2,q2)

(1 -qg^)(l + ae~i){aqei, -aqe~^, -qe^/a, qe^/a; q2)^
2a{l + a2){-qa2, -q/a2, q; q)x

X l£X + {aq»-q-»la)ir
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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After some manipulations we obtain the quadratic transformation formula

' q{a{\~-q)] {a'' q2/a2; q2)°° Mqe*' qe~2i ;q';q2> q2)

+ {qa2, q/a2; g2)oo2<p\(e2i, e'24;q;q2, g2)
(7.1)       I        = {age*, -age-*, -qei/a, qe^/a; q2)^

{-qa2,-q/a2,q;q)QO
x y> (iaq, -iaq, a^, -a^; g)» q4„ 2n2

t, (~ia, ia, -qae~Z, qaei; q)„

So far we have only discussed the extremal measures and they all are purely
discrete. We now discuss other measures which are not extremal. Askey [12]
found an absolutely continuous measure with respect to which the hn's are
orthogonal. He proved

p     /.(sinh^l^Msmh^g) =       q)nq-nin+l)/2S
J-cc {- Ing)(g, -qe2*, -qe-2*)^

With dy/{x) = [(-lng)(g, -qe21-, -qe'2*)^-1di\ in (1.18) we immediately
get

(7.3)
/*°° nt-l(-^/^> tie~4)ood^ -r-r

Askey gave a proof of (7.3) in [10]. Although the Stieltjes transform of Askey's
measures must have the form (6.1) we do not know the corresponding function
a explicitly. It is interesting that (7.3) follows from (7.2) for free from our
evaluation (3.8). It is worth noting that Askey's measure is a discrete analogue
of the exremal measures. To see this use (2.8) and the fact

oo

mn = l/J2gk(k+l),2h2k(x„(<T))/(q;q)k
k=0

to see that m„ is a constant multiple of \/{-qe2in, -ge~2,*")oo , where x„(er) =
sinh(J„ .  We also note that one can prove formula (7.3) directly by making a
change of variable v = e~^ , write the resulting integral as S-oo /Jj+i > replace
v by wqi , interchange integration (which is now on [q, 1]) and summation,
then evaluate the sum using the 6^6 sum (3.17) [27]. It is not surprising that
the eV6 sum is what is behind (7.3), since after all, the evaluation of the 6%
sum is equivalent to (3.8) when dy/ in (1.18) is any extremal measure.

In Section 6 we found it useful to parameterize the extremal measures using a
parameter n, instead of the parameter a, where a = 5(sinh rj)/D{smh n). We
will utilize this idea and obtain one additional measure for the g_1 Hermite
polynomials.

Theorem 7.1. Let
(7.4)

f{z) := -{q; q2)00B{z)/[{q2; q2)00D{z)]

= z~x{qe24 , qe'2* ; q2)00/(q2e24, q2^24 ; q2)x ,        z = sinh£.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Then the function f{z) is a meromorphic function that maps the open upper half
plane to the open lower half plane. Furthermore f{y/z) is analytic in the open
upper half plane and maps it to the open lower half plane.
Proof. It is clear from (5.32) and (5.36) that f{z) is meromorphic and its
only essential singularity is at z = oo. We derive a Mittag-Leffler expansion by
integrating f{z)/{z -x) over a suitable contour, [52], Section 7.4. Littlewood's
asymptotic formulas, [35] show that the boundedness conditions sufficient for
the application of this method are satisfied. The poles of / are at the points
xn = (q~n - g")/2, n = 0, ±1, ..., so the corresponding values of e^ are
gT" . Since / is an odd function the residues at ±(q~" - g")/2 are equal. The
residue at x„ = {q~" - q")/2 is

(qn + q-")(ql-2n , g1+2" ; g2)oo/(g-" - g")

2(g2-2";g2)„_1(g2,g2"+2;g2)0O

(g1"2", q2)n(q; ql+2n ; g2)oo g-"(g~" + g")      (q;q2)lo   q~n + g"
" (q-2n;q2)n(q2,q2n+2;q2)oo 2 "(g^g2)^        2      '

The residue at x = 0 is the case n = 0. Therefore we have the Mittag-Leffler
expansion

(75)   m-(«2;«2)l\-:+h~  2
, r        i i        i]

X[z- (g-« - g")/2 + z + (g-« - q")/2\ J •

Now (7.5) implies 3 f{z) is a positive multiple of Sz when z is the open
upper (lower) half planes. This completes the proof.

Note that (7.5) simplifies to

(76) /(z)=  (g;g2)-   [l + V       «r + Q-")z
[     ' J[ '     (q2;q2)lo [z+^z2-(g--g")2/4   "

Another Proof of Theorem 7.1. We prove (7.6) directly by writing the right-hand
side as

z{q;q2)200^      (g" + g-")/2 -2z{q;q2)l^ q"{l+q2n)
(42;q2)2ootoz2-(q-"-qn)2/4     to2;*2)2*  tl-2(2z2 + W + «4n

= ~4z(g;g2)^ / iq, -iq, e^, -e«, e~*, -e^ \
~ (q2;q2)20(\-e2i){l-e-2i) m \i, -i, -qe~*, qe~<, -qe*, qe<   q,qJ-

Using the ^¥6 sum (3.17) and the fact (-g; g)oo(g; g2)oo = 1 we simplify the
last expression to become f{z) and the proof of (7.6) is complete.

Theorem 7.2. Let g{z) be an analytic function in the open upper half plane and
maps that region into itself. Then, for any indeterminate moment problem, theLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2-HERMITE POLYNOMIALS 99

functions
(7.7) h{z) := -B{g{z))/D{g{z)),    w{z) := -C{g{z))/A{g{z))

are analytic in 3z > 0 and map it into the closed lower half plane.
Proof. Let  y/(t;0)  and  y/{t; -oo)  be the extremal measures corresponding
to  a - 0  and a = -oo; respectively.   Clearly  \[y/{t;Q) + y/{t;-oo)]  is
a solution of the same moment problem so its Stieltjes transform must be
[A{z) - a{z) C{z)]/[B{z) - a{z)D{z)], for a suitable function a{z). Thus

A{z) - a{z)C{z) _ 1   r° dy/{t;0)     ]_  C°° dy/{t;-oo)
B{z) - a{z)D{z) " 2 ;_„    z - f    + 2 /_«„      z - /

i r^z)   cfr)i
2[5(z) + Z)(z)J-

This gives <t(z) = -B{z)/D{z), and this a must satisfy 3 ct(z) < 0 if 0 <
3 z , see [47], Theorem 2.12, page 57. This proves the first part of our assertion.
To prove the second part, first observe that the computation of B{z) and D{z)
dealt with solutions to (5.1) satisfying the initial conditions (5.2). It is easy to
see that the moment problem associated with

wn+x{z) = {z - an+2)wn{z) - pn+xw„-x{z)

is indeterminate if the moment problem associated with (5.1) is indeterminate.
Furthermore the functions B{z) and D{z) for the moment problem associated
with {wn{z)} are Cfr) and A{z), respectively, of the moment problem arising
from (5.1). This follows from (5.5)—(5.8). Thus the second part of the theorem
follows from the first part.

It is clear that Theorem 7.2 can be useful in constructing explicit measures for
indeterminate moment problems from the knowledge of A{z), B{z), C{z),
D{z). The next Theorem will be useful in finding the absolutely continuous
component of dy/, for a general indeterminate moment problem, from the
Stieltjes transform of dy/ as given in (6.1).

Theorem 7.3. Let a in (6.1) be analytic in 3z > 0 and map it into 3ct(z) < 0.
In addition, assume a{z) = a{z). If y/{x, a) does not have a jump at x and
a{x± iO) exist then
,7R. dy/{x;a) a{x - i0+) - a{x + i0+)
1     ; dx 2ni \B{x) - a{x - iO+)D{x)\2'
Proof. The inversion formula (6.4) implies

dy/{x;a) _ _\_ lA{x) - a{x - i0+) Cfr) _ A{x) - a{x + i0+) Cfr)"
dx      ~ 2ni  [B{x)-a{x-iO+)D{x)     B{x) - a{x + iO+)D{x)_

which equals the right-hand side of (7.8), since A{z)D{z) - B{z)C{z) = 1 for
all z.

To illustrate the usefulness of Theorems 7.2 and 7.3 we consider two exam-
ples. In the first example we choose a{z) in Theorem 7.2 as

(7-9) g(z):=l[,z + c__L_   ,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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for real c and b > 0, so that a in (6.1) is <7i(z),

(7.10)
ax{z) = -B{{bz + c-{bz + c)~x)/2)/D{{bz + c-{bz + c)~x)/2).

In the second example we choose the a{z) to be a2{z),

(7.11) a2{z) := -B{b^)/D{byTz) = {fn)'ffi00 f(byfz),        b > 0.
\g ; g   Joo

Theorem 7.4. Let F{z) denote either side of (6.1). /f F has an isolated pole
singularity at z = u then

(7.12) Res[F(z) at z = u] = Res [D{z)[B{z)[ a{z)D{z)] at z = u  .

Proof. At a z = u pole of ^(z), a{u) = B{u)/D{u), so that

Af,A    n(u\r(„\     Au)D(u) - B{u)C{u) 1A(u) - a{u)C{u) =-W)-= -^,

and the theorem follows.

Theorems 7.3 and 7.4 show that the explicit form of A{z) and Cfr) may
not enter directly into the computation of the isolated masses or the absolutely
continuous component of d y/. It is important, however, to note that the qual-
itative behavior of A{z) and Cfr) influence the nature of the spectrum and
the spectral measure dy/.

Example 1. a = ax. Apply (6.25) with a = e'n - bz + c, b > 0, and c is real.
The zeros of 5(sinh<^)Z)(sinh//) — B{sinh n)D{sinhi;) are still given by (6.27)
except for the fact that a is now bx + c. Thus the zeros of the aforementioned
quantity are solutions of

x = X- \q~n{bx + c)~x - qn{bx + c)] ,

that is, they satisfy

(7.13) b{2 + bqn)x2 + 2c{l + bqn)x + qnc2 - q~n = 0.

Let x„ y i, x„ y 2 be the roots of the above equation, so that

_-c{\ +bqn)- y/c2 + 2bq-" + b2

(7,4, X"A=~ J<2+^_'
_ -c(l + bq") + y/c2 + 2bq-n + b2

X"'2~ b{2 + bq")

The extremal measures correspond to the case b = 0. It is clear from (7.11)
that x„,i -► -oo as b -* 0 but x„)2 -» (q~"/c - qnc)/2 as b -» 0. Thus as
b —► 0 the masses located at xn 3 x disappear. Next we compute the residues.
When a was a constant the singular term in the Stieltjes transform of dy/ in
a neighborhood of x = xn> i, for n > 0 was 1/[1 - 2ag" sinht^ - a2q2n]. TheLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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contribution of this factor to the residue is
l-       _x — xnj_

x-*xnJ 1 - 2ag" sinh^ - a2q2n '

that is -\/{2aqn). When a is bx + c the same factor contributes
. • x    xn >j

x^x7j 1 - 2{bx + c)qn sinh£ - {bx + c)2q2n '

that is
-q-"/2 _ {2aqn)-x _ -q~n 1

2bx + c + qnb{bx + c)~    2 + bqn - c/{bx + c)~    2a   2 + bq" - c/a'
Therefore the residue at x = xnj is mn/[2 + bqn - c/a] where m„ is given
by (6.30) and a must be replaced by bx„yj + c. When n < 0, the singular
factor in the Stieltjes transform in the neighborhood of x„j comes from

1/[1 + 2g"a-1 sinh£ + g2"aT2].

This contributes

x-*xnJ 1 + 2qna~x sinhtl - q2na-2

to the residue at x = xnj . When a was a constant, this contributed a{2qn)~x
but now it contributes the value of the above limit, that is

a bx„tj + c
2q"{2 + bqn){bx„yj + c)-c'

Thus for all n the mass at x„j is

ih (bxn,j + c)4n+x
m".At>'c)-{2 + bq"){bxnj + c)-c

(7.15) ^ q"(2n-x)[l + {bxn,j + c)2q2»]
(-{bx„ j + c)2, -q{bxntj + c)~2, g; g)oo '

« = 0,±1,±2,...,7 = 1,2.

Theorem 7.5 (A generalization of the 61^6 sum). Let   {x„yj\n   =   0, ±1, ±2,
...; j = \ ,2} be as in (7.13) and define £„yj through x„)7 = sinh<^„ j.  If
\txt2t3t4\ < g3, b > 0, and c is real, then

y-   y^ nLi(^"{"^-^"j;g)°o
ffXn~oo(-(bX">J+Cy> -^(bxnJ + c)-2;q)oo

(7.16) ,, {bxnJ + c)4"+'g"(2"-')[l + q2n{bxnJ + c)2]
{2 + bq"){bxnJ + c)-c

-(«J^,). n (-w/fit)-
V  1   j.  3 *i i/oo ,<r<i<4

Proof The identity (7.16) is (3.8) when dy/ is the discrete measure in Example
1, provided that the bilateral infinite series in (7.16) converges. If b = 0, (7.16)
is the 6 y/% sum, as noted earlier. The convergence of the series is established
as follows.  First observe that for large positive n, x„yX < 0 < xn2 and as
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n -> +00, xn>i ss -q-"'2/y/2b, x„;2 ~ qn/2/y/2b. With x„j = sinh£„)7, we

find e1"-1 ss -q~nl2l\j\ and ^",2 « 1~nl2l\j\ ■ This observation then implies
that when 7 = 1 and n —> -00 the summand in (7.16) is

= OdtihtsUq-3)"/2.
One can similarly handle the case j = 2. On the other hand x„j —> —c/6 as
« —> -00. Thus the bilateral infinite series converges when j = 1, 2, provided
that |*i*2*3*4| < g3 • This completes the proof.

We shall have more to say about (7.16) in Section 9.

Example 2.  a = a2, see (7.11). In this case

r°   <*>(*;   ̂ 2)   =  A{z)D{by/l) + C{z)B{by/z-)
Loo        Z-t B{z)D{by/z~) + D{z)B{by/z~Y

Using (6.25) with sinh// = -byfz, b > 0 we get

(7.18)

B{z)D{by/z-) + D{z)B{by/z-) = 2(gg."g)oo(^+C > "^ - ^"*"C , "^ i «)oo ,

where

(7.19) z = sinh£,     sinh£ = byfz.

We will measure the argument of a complex number z as —71 < argz < n . It
is clear from (7.5) and (7.18) that cr2(z) is single-valued across the positive real
axis and

(7.20)
a2(x - i0+) - <x2(x + *0+) = o2{\x\e->*) - <r2(|x|0 =     ^5/ f )o°     .

by/\x\{q2; q2)x

For x < 0 the derivative of y/ is

(7.21)
dy/{x; a2)

dx
=_(g;g2)ool(gVc,g2e-2C;g2)ool2_
~ nby/\x~\{q2; q2U{b2 + \x\)\{qe^, -qe^, qe~^, -qe^; q)^2'

From the general theory of moment problems we know that the poles of the
right side of (7.17) are real and simple. If z = u is such a pole then the
corresponding value of £ will be real if z > 0 but will be purely imaginary if
z < 0. It is clear, however, from (7.18) that B{z)D{by/z) + D{z)B{by/z) / 0
if £ is real and £ is purely imaginary. Therefore the zeros of the right-hand
side of (7.18) are nonnegative, so £ > 0 and £ is real. This shows that the
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zeros coincide with the roots of

(7.22) eiH = g"\        « = 0, ±1, ±2, ....

Obviously ei+l° — q~" if and only if

(7.23)
(z + y/z2 + \)(byfz + Vl + b2z) = q~n ,        —^n = 0, ±1, ±2.

For n > 0, equation (7.23) has a unique solution z — xn since its right-hand
side strictly increases from 1 to oo as z increases from 0 to oo . Equation (7.23)
has no solutions if n < 0 for the same reason. When z = x„ , let £„ and £„
be the corresponding values of £ and £ ; respectively. Thus e1-" = qne~in. We
apply Theorem 7.4 and find that the residue of the right-hand side of (7.17) at
z — xn, n > 0, is

lim _2 (z - x„) (g; q)00e^D{by/^)/D{z)_
«-«. (g-»; q)„ (1 - g»e*+C) (g, g"+1, -g-"e-% , -^+1^24,; g)oo ■

In view of the following alternate expression for D{z),

n, 1     ^(g2^,g-^;g2)ooDiZ) = -WTqU-'

the above limit is

lim , Z ~ X"z->jc„ 1 - qnei+l-

_2g£"(g; g)00gc"~i;"(g2~2"g~2^ , q2ne2i"; g2)^_

X (qn+X, -q-«e-V* , g , -q"+xe^n; g)x {g-n ■ q)n {q2e2i„ j e-2A„. q2)<x •

After some simplifications we find that the point mass at x — x„, being the
residue at z = x„ , is given by

(7.24, M„:=Massatx„ = ;iS?-^^__,

with An = {d£/dz + dC/dz)\x=Xn. Thus

1 b2
(7,25) An = c^shTn + sinh(2£„)"

If n = 0 then z = 0 is the only solution to (7.23). On the other hand z = 0 is
not an isolated singularity of the right-hand side of (7.17). We have not been
able to show that x = 0 does not support a discrete mass. We strongly believe
that x = 0 is not a discrete mass point. One reason for this belief is that if we
formally substitute n — 0 in A„ then we find A0 —> 00, hence Mo - 0.

We now discuss the spectral measures corresponding to the choice of a in
(6.35). For £ in the open upper half plane define

a{z) := -B{Q/D{Q, 3z > 0,     o(z) = ~a~{z).
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The above representation is an alternate representation for a{z) of (6.35). The
mapping z = sinh // is a one-to-one mapping of the strip

(7.26) D:= {//: 0 < 3 n < n/2} U {//: 3 // = n/2, Re n < 0},

onto the half plane 3z > 0. Taking into account that B{z) is an even function
and D{z) is an odd function we then rewrite a{z) as

(7.27) ct(z) :=B(-sinh//)/£>(-sinh//),  3z >0,     a{z) = a{z).

If we denote the corresponding spectral measure by dp{t; n) then

^(z)£>(sinh/?) + C(z)^(sinh/?)      [°° dp{t; /?)
1 '    j       5(z)D(sinh//) + D(z)5(sinh//)     ./_„«,    z-t    '     *fc

To find p first observe the left-hand side of (7.28) has no poles as can be seen
from (6.25). Thus dp is absolutely continuous. In addition (7.8) yields

dp{x; n) _   5(sinh r])D{sinhJj) - fi(sinh7/)Z)(sinh //)
dx      ~~ 2ni \B{x)D{- sinh //) - D{x)B{- sinh n)\2'

After applying (6.25) and some simplifications we obtain

(7.29)
dp{x; /?) _ e2r" sin//2cosh/?i(g, -qe2''' , -qe-2i')cx>\{qe2iri2)oc\2

dx n\{eZ+i, -en-i, -qe^-t, qe~^-n ■ ̂ )00|2
x = sinh£, r\ = nx + in2.

Therefore we have established the following g-beta integral

(7.30)
f°° U4i-A-tiei,tie-i)00
/       77-;- , \   -      ,     i     „  COSh£ dt\J-ooKet+n, -en-i, -get-'', ge-i-i)^2

=_Kg-2"' ni<j<fc<4(-Wg)°°_
sin r\2 coshnx{q, txt2t3t4q~i , -qe2^ , -ge~2''')°o|(ge2"'2)oo|2"

The g-beta integral (7.30) is new.
Observe that as n2 —► 0 the integral in (7.30) diverges and the right-hand

side of (7.30) also diverges. If we multiply (7.30) by sinz/2 then let n2 —► 0
then the left-hand side will become a eW6 function while the right-hand side
will give its sum. This is expected since the case when a is a real constant leads
to the 6^6 sum.

Askey [ 10] proved that the polynomials

i7 3n   d fsinh<?) - .*, (q~" ' 4"+3/'i'2*3*4 , g^A., -qe^/h \
(7.31)   />„(sinh£) - 4^       -q2lht2,-q2t.t3,-q2lht4 q'Q)

satisfy the orthogonality relation

,_ „,      f°° /7m(sinh£)p„(sinh£)n4=1(*^"f, -*y^)oc
(7.32       /     -——-f-w-d£ = M„dm,n,7,^ (- In g)(g, -qe2* , -qe-2*)^License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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m, n = 0, 1,... , N, with

M =(q-n,qn+3/txt2t3t4, -q2/t2t3, -q2/t2t4)n
{q4/txt2t3t4, -q2/txt3, -q2/txt4)„

(7.33) r
X   (g'l/'l)" II      (-0^/^)oo     /(*l*2*3*4g"3)oo,

_\<j<k<4

(7.34) |*1*2*3*4| <q3+2N.

It is clear that the orthogonality relation (7.32) only uses the moments of the
measure involved. This implies

/oo 4pm(sinh£)p„(sinh£) JJfoe-*» -tje4)00dy/{x) = Af„<5m>„ ,■°° y=i

where d^ is a probability measure and {h„{x\q)} are orthogonal with respect
to dy/ . The restrictions on m, n are 0 < m, n < N such that the left-hand
side of (7.35) exists. It is interesting to note that (7.34) must be satisfied due to
the positivity condition on the coefficients in the three term recurrence relation,
see [16], [17], and [25]. It is not difficult to see that (7.34) is the only restriction
required when dy/ is an extremal measure as given in (6.27), (6.31). Askey's
proof of (7.32) starts from (7.3) and is similar to the proof of orthogonality of
the1 Askey-Wilson polynomials as given by Askey and Wilson in [17].

8.  A 6y/s   SUM WITH INFINITELY MANY PARAMETERS

Let dp{x) be a discrete probability measure with a finite or infinite support.
Define g{z) by

(8.1) g{z):=bz + c- H ^1, b>0,c&R.
J-oo z-t

It is clear from (8.1) that g{z) maps the open upper half plane into itself and
that g{z) is meromorphic with only real poles. Choose a{z) in (6.1) as

(8.2) a{z) := -B{g{z))/D{g{z)).

Let us denote either side of (6.1) by F{z; a), that is

ro,i A{z)D{g{z)) + B{g{z))C{z)      p dy/{t;a)
{-> l   'a)     B{z)D{g{z)) + B{g{z))D{z)     J_x    z-t   ■

Thus F{z; a) is meromorphic and its poles are solutions of

(8.4) ae4 = qn,        n = 0, ±1, ... ,

where

(8.5) z = sinh£, g{z) = sinh//, a = en.
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In other words the poles of F{z; a) are the roots of

(8.6)
[g{x) + yjl + g2{x)] [x + y/\ + x2] = qn ,        n = 0, ±1,  ±2,  ....

The representation (8.1) shows that when x is real, the graph of g{x) consists
of branches, and g'{x) > 0 on each branch. Thus g strictly increases with
x on any branch of g. Therefore for any fixed n (8.6) has solutions {x„j} ,
where j enumerates the roots for a given n . We shall arrange the x's so that

(8.7) x„ j < x„j+x.

Theorem 8.1 (A 6y/6 sum with finitely many parameters). Assume that g{z) is
a rational function and let x„j beasabove. Define q„j and £„>7 by g{xnj) =
sinh//„ j and xnj = sinh£„ j . If |*,| < 1,  1 < j < 4, and |*i*2*3*4| < g3 then

~   aff;g"(2"-1>(l-rg2"fl2J) cosh/?n,7
jn^oo (-a2n,j,-q/a2nJ;q)oo  coshqnJ + g'(xnj)cQsh£nj

4

(8-8) x Y[ {tme-^->, -tme4"-'; qU
m=\

={tt{q;q)-T.a,   n (-wg;^.(*l*2*3*4g   J,g)oo ,<"<4

The proof consists of two parts. The first part involves computing the residues
of F{z;a) while the second part establishes the convergence of the series in
(8.8). The second part of the proof will be divided further into two cases
depending on whether b > 0 or b = 0.

Proof Part 1. With a{z) as in (8.2) we apply Theorem 7.4 and obtain

r^(z)-tr(z)c(z)i       r     i/flfr)     i
[B{z) - a{z)D{z)\ [B{z) - a{z)D{z)_

\ D{g{z))/D{z) 1
[B{z)D{g{z)) + D{z)B{g{z))_

= -     [ D{-g{z))/D{z) 1
[B{z)D{-g{z)) + D{z)B{-g{z))_ ■

From that above equality, (5.32), (5.36), and (6.25) we find that F{z; a) and

,89i      _2a(g; g)^ sinh n{q2e2i, q2e~2''; g2)^_
sinh£ {aei, ae~^, qe-t\/a, -qeU" ; q)ao{q2e2*, q2e~2*; g2)^

have the same residues at the poles of F{z;a). We have already calculated
the residues of the expression (8.9) when a and // were constants. Now a
depends on z . When n > 0 the only difference in the new calculation is that
when computing
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we should take into account that a is no longer a constant. When a were a
constant, the above limit came out to be cosh£ but now it becomes , + ffiJL^ •
Since a = g{z) + -^1 + g2{z), a calculation gives

da _ ag'{z)coshtl
dt; cosh n

Thus we divide the masses in (6.30) by 1 + ar1^ , that is 1 + g'(^^°s^"'f .
Similarly we see that the masses in (6.26) must also be multiplied by the same
factor when n < 0. Thus Theorem 8.1 will follow if we prove that the double
series on left-hand side of (8.8) is absolutely convergent.

Proof, Part 2. The case b > 0. Let sx < s2 < ■ ■ ■ < sk be the poles of g{z) and
define So and Sjt+i to be -oo and oo; respectively. For every r y equation
(8.6) has a unique solution in {sr, sr+x) and

(8.10)     -oo = So < x„to < sx < x„ti < • •• < sk < x„tk < sk+x — +00.

It is clear from (8.6) that x„>7 is a strictly decreasing function of n for every
fixed j . Furthermore x„ j■, —> Sj• + 0+ as n —> 00, for all j. On the other hand
xnj —* Sj+X as n -> - 00, for all j. As n —> 00 we see from (8.5) and (8.6)
that anj sa q"/[Sj + JI + s2]. Hence, for j > 0, we have

{-q/a2nJ; q)x = 0{{-q/a2nJ;q)2n) = 0{q^x-2n\sj + y/VVsj)2").

The left side of (8.8) is of the form

k       00E E cj.„.
j=0 n=-oo

The above analysis shows that Ylk=i S^lo Cj.n converges absolutely. The idea
behind the proof of Theorem 7.5 will establish the absolute convergence of
YlT=o Co,n ■ Similarly as n —> -00 ,

an,j « qH/[sj + \Jl+s2]   for j <k.

This implies the convergence of Yl'jZo 52T=o Q:.-« • Finally X)^=o^o,-n can
be proved to converge absolutely by an argument similar out proof of Theorem
7.5.%This completes the proof of Case 1.

Proof Part 2. The case b = 0. In this case we lose one of the mass points
because g{x) -tcasx-* ±00. The rest of the proof is identical to the proof
in the first case.

Theorem 8.2 (A 5% sum with infinitely many parameters). Assume that p in
(8.1) has infinitely many points of increase. Letx„j, nnj and £„j be as in
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Theorem 8.1. If |*,-| < 1,  1 < j < 4, and |*i*2*3*4| < g3 then

y    ^   <Jg"<2"-1>(l+g2"<j,-) COSh/?n,7

jn^oo  (-"Ij'-l/rtj'l)™   coshqnJ + g'{xnj)coshclnj

4

(8-11) x H (*„*-«"•>, -'m^-;g)oo
m=l

= (ttlVa-T.a)     II  (-Wg;g)oo,(*l*2*3*4g   3.«)=c,^<4

provided that the double series in (8.11) converges.

To prove Theorem 8.2 we proceed as in the proof of Part 1 of Theorem 8.1,
then use the Perron-Stieltjes inversion formula. The details are straightforward
and will be omitted.

We believe that Theorem 8.2 is valid without assuming that the double series
in (8.11) converges. It is very likely that the remaining assumptions imply the
convergence of the double series in (8.11).

9. Remarks

We first give an alternate derivation of the extremal measures of Section
6 using only the quasiperiodicity of theta functions and Theorem 7.4. This
approach has two advantages. First it may be applicable to other polynomials
since it only assumes that B{z) and D{z) are quasiperiodic of the same period.
Secondly it illustrates the usefulness of Theorem 7.4. It is worth pointing out
that the only functions having a period and a real period are essentially theta
functions, see Section 10 in [40].

Recall that with the parameterization (6.19), that is

a = 2?(sinh //)/Z)(sinh //),

the extremal measures are supported at the zeros of

(9.1) <D(z) := 5(z)£>(sinh //) - £>(z)5(sinh //).

Thus z = sinh // is a mass point. Now assume that B{z) and D{z) are
quasiperiodic functions satisfying

(9.2) 5(sinh(£ + u)) = /(£)5(sinh£),    Z)(sinh(£ + «)) = /(£)Z)(sinh£).

If B{z) and D{z) are theta functions ?9(zsinh£; q) then /(£) = -q~xe2* and
u = - ia q [52]. From (9.2) we see that <J>(sinh£) vanishes at £ = // + ««,« =
0, ±1, ... , and the corresponding values of z ; say {x,,}^ , are

(9.3) xn = Ue^e" - e-"ue-i).

When u = -In g equation (9.3) is (6.27). In order to show that all the zeros
of (9.2) are given by (7.3) we only need to show that there exists a unique point
of the form (9.3) in each open interval formed by two consecutive zeros of
B{z). This is the case since the graph of D{x)/B{x) resembles the graph ofLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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tanx and D{x)/B{x) = a has a unique solution in any open interval formed
by two consecutive poles of D{z)/B{z). Furthermore the masses at xn can be
found from the residue of the Stieltjes transform of the extremal measure at xo
(= sinh //) in the following manner. First apply the quasiperiodicity property
(9.2) to (9.1) and obtain

"n-l
(9.4) <&(sinh(£ + nu)) =   Y[f(t + ju)   <D(sinh£).

Thus Theorem 7.4 shows that the mass at x„ is

Res -=-z—> _ ,—r at z = x„[D{z)<!>{z)

= cosh(z/ + nu) Res f^'Vff^'I "^ * « - *" •v '        L        0(sinh(£ +««)) '
cosh(/? + nu) [       £>(sinh//) '

"n":01/2('/+;'")        b(sinh£)<D(sinh£)      s     \
cosh(// + hm)

— -i-w0>
cosh/? n;:0/2('/+;")

where Wo is the mass at x = sinh n. Let mn be the mass at. x„ . Thus we
have proved

(9 51 m cosh(// + /IK)
^       ' " ~~ -Z-n«-l   n,-r-m0-cosh// n"^)/2^ +J")
To calculate wo we either have to compute the residue at z = sinh // directly
from Theorem 7.4 or use the normalization 2^oo mn = 1 • The latter approach
leads to

oo n—1

(9.6) mo = cosh///   ^cosh(// + n«)/ |~J f2{n + jm)   .
-oo 7=0

In the moment problem associated with g^'-Hermite polynomials u = — \nq
and /(£) = -q~x e2* . In this case formula (9.5) is (6.30) and we have found
an alternate and simpler derivation of (6.30).

We now explore some of the consequences of our explicit computation of the
Stieltjes transforms of solutions of the g_1-Hermite polynomials. In view of
Theorem 7.2 we may choose a{z) as

(9.7) a{z) = -5(sinh //(z))/Z)(sinh //(z)),

where sinh // = sinh(z/(z)) maps the upper half plane into itself. This gives

A{z)D{sinh//) + C(z)£(sinhn) _   f°° dy/{t;n)
B{z)D{sinh //) + D{z)B{sinh n) ~ J^    z-t   '

From (6.25), (5.32), (5.36), and (5.45) we obtain

(9.8) r dw}t't,) = 2/Y(£, //)//>(£, //),
J-oo       Z ~ *
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where

(9.9)

*«?» *) ■■= ^^'C/^IC^^00 sinh£20,(g^, qe-24; g3; g2, g2)
\i/q, q too

-e"{qe2", qe~2"; g2)^ 20i{qe2i, qe'24 ;q;q2,q2),
and

(9.10) £>(£, n) := {e^, -*'"«, -g^"", qe~^; q)x.

When a is a real constant then n is a real constant and (9.8) becomes

(9.11)
f>_eie4"iq2"2{l+e2iq2n)_ _
t i-e2", -qe-2"; g)oo(l - 2g"^" sinh£ - q2"e2i) lC' mi   ^' n)m

With a = ei the identity (9.11) takes the form

(9.12)
y^ (iaq, -iaq, ae*, -ae~4; q)na4n 2n2
t (ia, -ia, -aqe~i, aqei; q)„

= (-qa2, -q/a2; g)oofr2 - 2asinh£ - 1)
{aei, -ae~Z, -qe^/a, qe^/a; q)x

x [2(g2,^g>2;g2)oo sinh(,20l(g^       -« . g3   g2     2)
(i/g;g2)oo

-a(ga2, g/a2; g)oo 20i(qe24, qe'24;q;q2,q2)  .

It is easy to see that the left side of formula (9.11) corresponds to the limiting
case fi-»oo,e-too,(/-»oc,/-ioo of

(9.13)
/        iga, -iqa,aei,-ae~4,   ab,   ac,   ad, af q2  \

m \ia, -ia, -aqe^, aqe$, -aq/b, -aq/c, -aq/d, aq/f   q' bcdf) '

where a = en. The %y/% transformation, (111.38) in [25], expresses the 8^8 in
(9.13) as a sum of two g07 functions. It is not clear how to establish (9.12) by
performing the appropriate limits on the aforementioned g y/% transformation.
It is important however to to note that the & Vs of (9.12) contains four additional
free parameters, namely b, c, d, and /. This leads us to conjecture that the
Stieltjes transform of

4
Y[{-tj(x + Vx2+l),tj{y/x2+l - x))oo dy/{x; n)

when // is a real constant is indeed a multiple of an $y/$ of the form (9.12)
where b, c, d, f are multiples of l/*i, l/*2, l/*3, l/*4 . The factor which
is multiplied by the 8y/g is a quotient of products of infinite products. We do
not know how to prove the latter assertion in general at this time. To see thatLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Q-HERMITE POLYNOMIALS 111

this conjecture holds for extremal measures apply (6.27) and (6.30) to get, after
some simplification,

2an4=ifr0> -tj/a; g)oo
_(a2 + 2asinh£- 1) {-qa2, -q/a2; q)^

x       (iqa, -iqa, -aq/tx, -aq/t2, -aq/t3, -aq/t4, -ae'Z, ae1-,
8     \       ia,   -ia,   atx,   at2,   at3,   at4,   aqe^,   -aqe~^

txt2t3t4\

One can derive a continuous analog of (9.11) by choosing // e D, D as in
(7.26) and use the measure dp of (7.29). The result is

(9.15)
/°° cosh u du

.00\(eu+i, -ei-", -qeu~", qe~u~*; q)^2 sinh£- sinh u

_2ne~2"'N{^, /?)_
~ sin //2 cosh //, £>(£, n) (g, -qe1**, -qe~2**; q)oo\(qe2'*2; g)oo|2"

In (9.15) // = //i + ir\2. The case r\2 = n/2 is of particular interest because the
integrand in (7.30) simplifies. In (7.30) put

(9.16) e" = e"l+*2 = rein/2.

This gives

[°° n4=i(-0^, tje-l; q)^    cosh£ d<j
{9A1) J-oo (~r2e2i, -r2e~^, -g2/-2e*, -q2r~2e-^; q2)x

= 2nr~x ux<J<k<4(-tjtk/q; g)oo
(-g, *i*2*3*4g"3, ~r2, -gr~2; g)oo(g2; g2)oo'

The special case r = q1/4 of (9.17) is particularly interesting. It is

f°° n4=i(-Qg{, tje-i ; g)oc    cosh£ del
(918)        7-00        (-g'/V^-g'/^-^jgU

2^g-'/4 Ylx<j<ks4(-tjtk/q; g)oc
(-g, *l*2*3*4g-3, -g-1/2, ~q-X'2; g)oo(g2; g2)oo'

The special case r = qi/4 turns out to be equivalent to the case r = q[/4 .
One can yet find another g-beta integral by choosing g in (7.7) as
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where b > 0 and 3c > 0. Set

(9.20) sinh n = g{z),     z = sinh £.

Now (7.7), (9.20), and (6.25) imply

(9.21)
D(sinhz/)[5(z)-(7(z)Z)(z)]

e* -e~* + 2sinh£.    ,,„ „ *        f „ * A
=-tttt^ta—(qe   ' ~qe   'qe     > ~<i^~*; g)oo.

■

An alternate representation of the right-hand side of (9.21) is

(9.22)
D(sinh//)[fi(z)-<r(z)Z>(z)]

= -8{Ztl+^H ft^1 - 2(lnS(z)e" - g2"^)(l + 2q"g{z)e-<- q2^24).
\q, qjoo      -

We denote by z/* the limiting values of n{z) as 5z -> 0* . Clearly when x is
real then

[ct(x - *0+) - a{x + iO+)]\D{g{x + z0+))|2
= D{g{x - i0+)) B{g{x + i0+)) - 5(g(x - *0+)) Z)(g(x + *0+)).

Apply (6.25) with // replaced by r\~ and £ replaced by //+ to arrive at

(9.23)
ct(x - z0+) - a{x + i0+) = {-qe*++*~ , -qe~*+-"~ , qe""-"', qe"*'"' ; qU

sinh n+ - sinh n~
X{q;q)oo\D{x + i0+)\2-

Therefore (7.8) gives

(9.24)
dy__ 3c (g, -qe"++"~ , -qe~*+-*~ , qe"+~"   , qe" +*+; qU
dx ~ n | sinh£ + sinh n\2       \{qe*++Z, -qe*+-Z, qe~*+-Z , -qeZ~*+ ; g)oo|2

It is clear from (9.24) that dy//dx > 0 for all real x since

{-qe*++"~ , - qe~"+~"~ , qe*+~"~ , qe"~+*+ ; g;oo

= |(-gc"++"",ge""+''+;g)0O|2.

The expression (9.24) defines dyi/dx implicitly through n+ and //" , so we
now provide an alternate expression which exhibits the dependence on x ex-License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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plicitly. The sought expression is

(9.26)
dy/ _      3c {q; g)oo
dx      n |fr + bx + c|2

yr        [1 + 4g"(l + g2")[/3x + c|2 + 2g2"(l - 4SR(*3x + c)2)]
* H |[l-4g«(l+^2")x(/3x + c) + 2g2"(l-2(/3x + c)2 - 2x2)]|2'

Formula (9.26) follows from (9.24) by regrouping the terms in the infinite prod-
ucts.

It is important to observe that formulas (9.24) and (9.26) hold true for gen-
eral functions g{z) which are discontinuous almost everywhere across the real
x axis. The functions q± are such that g{x ± /0+) = sinh(//±). Thus any
function g{z) which is analytic in the open upper half plane and maps it into
itself and g(z) = g{z), and whose boundary values g{x ± *0+) are differ-
ent for almost all real x gives rise to a spectral measure for the g-1-Hermite
polynomials whose absolutely continuous component is

(9.27)
dyt_= Sg(x + /0+)(g;g)oo

.   .-.      dx n \x + g(x)\2

■fi        [1 4- 4g"(l + g2")|gfr)|2 + 2g2"(l - 4iRg2(x))]
1=1 |[i Z 4q"{\ + q2")xg{x) + 2g2«(l - 2{g{x))2 - 2x2)]\2'

i We now reconsider (2.10) and (2.11) in view of (5.31) and (5.35). Comparing
(2.10) with (5.31) and (2.11) with (5.35) we establish the quadratic transforma-
tions

(V/V^-g'/^.g'/2,^2^
(9.28) +(g1/Vi,g1/2^,-g,/2,-g1/2;g)0O

=_2_{ae24   ae-^-q2)2(q,q;q2)JQ     ,Q        '*Jo°'

and

H^V^-g1'2,*-*, g1/2,g1/2;g)oc

(929) -(g1/2^,g1/2,e-«,-g1/2,-g1/2;g)oo

g1/2sinh2£      2  2{      2<?_*      2)2
(q,q;q2)JQ       '? ' Q Jo°"

It is worth recording the analog of the Askey-Wilson operator [17] for the
g~'-Hermite polynomials. Define

(9.30)
nx fl  i      g(ql/2ei) - g(q~x/2ei) . , „      , «,     ,. ,
S'f{x) :=   (g'/2-g-'/2)cosh£  '        X = SmH' 8{e) = f(X)-
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We next derive an analog of the differential recurrence relation H'n{x) =
2nH„-X{x). To do so apply 3q to the generating function (2.4) and obtain

E ^—TTTy-%hn{x\q) = 2q{-te&, **"«)«,.
»=o     [q)n

An easy calculation shows that the right-hand side of the above equality is

2t{-tqx'2ei,tqx/2e-i)00/{l-q).

The above expression can now be expanded in a series of g~'-Hermite polyno-
mials using (2.4). Upon equating coefficients of like powers of * we establish
the relationship

f/7-«/2 _ z/"/2)
(9.31) 2qhn{x\q) = 2yq       _*1/2;|/z^frlg).

It is well known that one cannot formally differentiate asymptotic expansions.
One can, however, apply 2q to an asymptotic expansion since 3)q does not
involve a limiting process. For example one can obtain (5.31) from (5.35) and
vice versa by applying 3tq to either one and obtain the other.
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