
Received August 13, 2019, accepted September 9, 2019, date of publication September 13, 2019,
date of current version September 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941229

Q-Learning Algorithms: A Comprehensive
Classification and Applications

BEAKCHEOL JANG , (Member, IEEE), MYEONGHWI KIM ,

GASPARD HARERIMANA , (Member, IEEE), AND JONG WOOK KIM , (Member, IEEE)
Department of Computer Science, Sangmyung University, Seoul 03016, South Korea

Corresponding author: Jong Wook Kim (jkim@smu.ac.kr)

ABSTRACT Q-learning is arguably one of the most applied representative reinforcement learning
approaches and one of the off-policy strategies. Since the emergence of Q-learning, many studies have
described its uses in reinforcement learning and artificial intelligence problems. However, there is an
information gap as to how these powerful algorithms can be leveraged and incorporated into general artificial
intelligence workflow. Early Q-learning algorithms were unsatisfactory in several aspects and covered a
narrow range of applications. It has also been observed that sometimes, this rather powerful algorithm learns
unrealistically and overestimates the action values hence abating the overall performance. Recently with the
general advances of machine learning, more variants of Q-learning like Deep Q-learning which combines
basic Q learning with deep neural networks have been discovered and applied extensively. In this paper,
we thoroughly explain how Q-learning evolved by unraveling the mathematical complexities behind it as
well its flow from reinforcement learning family of algorithms. Improved variants are fully described, and
we categorize Q-learning algorithms into single-agent and multi-agent approaches. Finally, we thoroughly
investigate up-to-date research trends and key applications that leverage Q-learning algorithms.

INDEX TERMS Reinforcement learning, Q-learning, single-agent, multi-agent.

I. INTRODUCTION

Recently reinforcement learning [1] has received consider-
able attention, with many successful applications in various
fields such as game theory, operations research, informa-
tion theory, simulation-based optimization, control theory,
and statistics. Reinforcement learning, which is an area of
machine learning, is becoming a major tool in computational
intelligence as a technique, in which computers make their
own choices in a given environment without having a clue of
historical or labeled data [2]. Artificial intelligence will con-
tinue to drive cross-cutting innovations and the possibilities of
future use of reinforcement learning will grow tremendously
and new variants of will be introduced [3].
Reinforcement learning is a strong learning algorithm that

learns the optimal policy through interaction with the envi-
ronment without the model of the environment [4]. It uses an
agent that learns the value function for a given policy through

The associate editor coordinating the review of this manuscript and
approving it for publication was Alba Amato.

interaction with the environment to predict an optimal solu-
tion and based on the value function, it continuously devel-
ops and learns the optimal policy [5]. The most commonly
used method in reinforcement learning applications is the
Temporal-Difference (TD) learning [6] which exploits a com-
bination of the Monte Carlo [7] method of measuring value
through the experience without a model and the advantages of
dynamic programming [8], which can estimate the value by
using only current estimates. Q-learning uses an off-policy
control that separates the deferral policy from the learning
policy and updates the action selection using the Bellman
optimal equations and the e-greed policy [9]. Unlike other
reinforcement learning algorithms, Q-learning has simple
Q-functions, hence it has become the foundation of many
other reinforcement learning algorithms [10]. However, early
Q-learning algorithms were impeded by the reward storage
issue [11]. As the number of actions increases, the available
storage space becomes insufficient, precluding the solution
of the problem. In other words, for complex learning prob-
lems with large state-action environments, it is difficult to

VOLUME 7, 2019
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 133653

https://orcid.org/0000-0002-3911-5935
https://orcid.org/0000-0001-8036-4434
https://orcid.org/0000-0003-4761-562X
https://orcid.org/0000-0001-8373-1893

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

achieve effective learning. In addition, the state storage space
for multi-agent environments becomes larger than that of
single-agent environments, and this storage takes up much,
if not all, of the computer memory [12]. Hence, the computer
cannot provide the correct answer. Many Q-learning algo-
rithms have been developed to solve this problem in various
environments.
With the importance of reinforcement learning algorithms,

many researchers have presented survey papers as well as
classification studies many of which focused only on rein-
forcement learning in general [13]–[15].
One of the most popular algorithms for single-agent

environments is deep Q-learning [16] developed at Google
in 2016. In this paper we analyze algorithms for solving
Q-learning problems in multi-agent environments. Modu-
lar Q-learning [17] is a multi-agent Q-learning algorithm
in which a single learning problem is divided into sev-
eral parts and a Q-learning algorithm applied to each. Ant
Q-learning [18] is a method in which agents share reward
values with each other, like a colony of ants discarding
lower reward values and solving problems using higher val-
ues. This allows facilitates the action’s reward values to
be obtained efficiently in a multi-agent environment. Nash
Q-learning [19] is a modification of the basic Q-learning
algorithm that is suitable for multi-agent environments.
In the early days of reinforcement learning, Q-learning

was applied to the domain of process control [20], chemi-
cal process, industrial process automatic control, and in the
field of airplane control [21]. Currently, Q-learning is used
in the field of network management [22] mainly for the
optimization of routing and the processing of reception in
network communication. With the advent of AlphaGo, active
research is underway in the field of game theory [23]. Rein-
forcement learning through trial and error has characteristics
very similar to those of the human learning process [24].
Hence, Q-learning is performing extremely well in the field
of robotics. Especially in autonomous vehicles, drone, and
humanoid robots [25].
In this paper, we thoroughly explore how Q-learning

evolved by unraveling the mathematical complexities behind
it as well its flow from reinforcement learning family of algo-
rithms. Improved variants are fully described, and we clas-
sified into single-agent and multi-agent approaches. Finally,
we extensively investigate up-to-date research trends and key
applications that leverage Q-learning algorithms to various
domains.

A. ORGANIZATION OF THIS PAPER

This paper is structured as follows. Section II intro-
duces background knowledge and genesis of Q-learning.
In Section III, we analyze and classify various Q-learning
algorithms. In section IV we cover the latest research trends,
as well as recent applications. Section V investigate related
works on Q-learning. Finally, in Section V, we present our
conclusions.

II. BACKGROUND KNOWLEDGE

Reinforcement learning has evolved as shown in Fig.1. The
sequential behavior decision problem that is the basis of
reinforcement learning is defined by the Markov decision
process (MDP) [26] which describes an agent that introduces
the concept of the value function for learning, and the value
function is linked to the Bellman equation. First, reinforce-
ment learning uses MDP and the value function to construct
the Bellman equation, then Q-learning is applied to solve the
Bellman equation problem. To maximize the efficiency of
reinforcement learning, it is important to choose an efficient
algorithm that solves the Bellman equation [27]. This section
describes MDP, the value function and the Bellman equation.

A. MARKOV DECISION PROCESS

MDP is the mathematical definition of the sequential action
decision problem. The environment is probabilistic, which
means that the state of the transition and the compensation are
random after the action is performed. The rules for selecting
actions to be performed in a specific state are called policies,
and reinforcement learning algorithms can be formulated
using MDP [28].

1) STATE

The state is a set S of agent observable states. State means
‘‘observation of your situation’’ [29].

2) ACTION

An action is a set of possible actions A in a state S. Usually,
the actions that an agent can do are the same in all states.
Therefore, one set of A is represented [30].

3) STATE TRANSITION PROBABILITY MATRIX

The state transition probability is a numerical representation
of the movement of an agent from one state S to another
state S ’when taking action A. For MDP, the following states
and compensation are dependent only on the current state
and actions. Thus, the probability of the next state to be
compensated by the next compensation and magnitude is
given by [31]. The probability is:

Pass′ = P[St+1 = s′|St = s,At = a] (1)

where (1) Pass′ is the probability contained in the matrix P of
moving to state s’ when action a is performed in state s, and
t denotes the time.

4) REWARD

The reward is the information given to the agent in the envi-
ronment so that it can be learned by the agent. When the state
is s and the action is a at time t , the reward that the agent
receives is:

Ra
ss′ = E[Rt+1|St = s,At = a] (2)

where (2) Ra
ss′ is the definition of the reward function. t is the

time, and E is the expected value for the reward to be given as

133654 VOLUME 7, 2019

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

FIGURE 1. The flow of reinforcement learning.

action a occurs when it moves from a state to s’. The agent can
express the compensation value as an expected value because
it can give different reward even if the same action is taken
in the same state depending on the environment. When the
agent makes an action A in state S, the environment informs
the agent of the next state S’ in which the agent intends to go
into and the reward it will receive. It is at time of t + 1 that
the environment informs the agent.
Therefore, the compensation to be received by the agent is

represented by Rt+1.

5) DISCOUNT FACTOR

The concept of a discount factor was introduced in response
to problems arising from compensation operations. After the
agent acts in each state, it gets compensation. As time goes,
the value of reward decreases, introducing the concept of
depreciation. Depreciation has a value between 0 and 1, and
the amount of compensation the agent receives over time is
reduced [31].

6) POLICY

When an agent arrives at a certain state, it determines the
action using the policy

π (a|s) = P[At = a|St = s] (3)

where (3) π is the probability of policy that the agent chooses
a in state at time t. Finally, reinforcement learning learns
better policies than the current one to obtain an optimal
policy [32].

B. VALUE FUNCTION

For the agent to calculate the reward that he will receive in
the future it has to consider which action he will perform.
The criterion that determines which policy is a better policy
is the value function. The value function is the sum of the
rewards that are expected to be received when following the
policy from the current state [32] as follows:

vπ (s) = Eπ [Rt+1 + γ vπ (St+1)|St = s) (4)

where (4) the expectation equation Vπ (s) is the expected
value Eπ , Rt+ 1 is the reward value to be awarded next and
l is the discount factor. (4) provides the state value function
that computes the sum of the rewards to be received when the
state is given. It allows the agent to determine a better state.

Next, there is the action value function that considers the
state and action. the agent uses the Q-function as a criterion
for selecting the action. The Q-function is defined as follows

qπ (s, a)=Eπ [Rt+1+γ qπ (St+1,At+1|St=s,At+1=a) (5)

The relationship between the Q- function and the value func-
tion is expressed as the following equation.

vπ (s) =
∑

a∈A

π (a|s)qπ (s, a) (6)

For all actions, the value of the Q-function plus the policy
is added together. The Q-function and the value function are
expressed as Bellman equations. The Bellman equation is
an equation representing the relationship between the value
function of the current state and the value function of the
next state.

VOLUME 7, 2019 133655

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

C. BELLMAN EQUATION

1) BELLMAN EXPECTATION EQUATION

The value function represents the expected value of a state.
The value function of a state is the sum of the reward to
be received when the agent moves to the next state and is
affected by the current agent’s policy. The Bellman equation
that reflects the policy, expresses the relationship between the
‘value function of the present state and the value function of
the next state [32], [33].

vπ ′ (s) =
∑

a∈A

π (a|s)(Rt+1 + γ
∑

s′∈S

Pass′vπ (s
′)) (7)

(7) is the Bellman expectation equation.
∑
a∈A

π (a|s) is the

probability policy to do the action.
∑
s′∈S

Pass′ is the state transi-

tion probability matrix. As in (4) and (5), Rt+1 is the reward,
γ is the discount factor

2) BELLMAN OPTIMALITY EQUATION

Reinforcement learning is to find the optimal policy in the
problem defined by theMDP. The policy is determined by the
value function, and the policy that gives the greatest expecta-
tion for all policies is the optimal policy. The Bellman optimal
equation is the policy that receives the optimal value using
the value function. The following is the Bellman optimal
equation.

v∗(s) = max
a

Eπ [Rt+1 + γ v∗(St+1)|St = s] (8)

where (8) max
a

Eπ the maximum expected value among the

policies that agents can receive. Reinforcement learning cal-
culates the problem defined by MDP using the Bellman
expectation equation and the Bellman optimal equations.

III. CLASSIFICATION OF Q-LEARNING ALGORITHMS

In this section, we describe Q-learning algorithms and
classify them as single-agent and multi-agent algorithms.
We fully describe the most popular of them and Fig. 2 pro-
vides an extensive classification.

A. SINGLE-AGENT

1) BASIC Q-LEARNING

In contrast to previous algorithms which did not differen-
tiate behavior from learning, Q-learning uses an off-policy
method to separate the acting policy from the learning policy.
As a result, even if the action selected in the next state was
mediocre, the information was not included in the updating
of the Q-function of the current state, and the dilemma is that
it is a wrong choice [32]. However, since Q-learning uses off-
policy, it solves the dilemma. Equation for the Q-value is as
follows:

Q(s, a)← Q(s, a)+ α[R+ γ maxQ(s′, a′)− Q(s, a)] (9)

where (9) α is the learning rate and has a value between
0 and 1. R is a reward and is the reduction rate of the reward
as time passes.

The Q-value Q (S, A) of the action for the current state
S is updated with the sum of existing value Q (S, A) and
the equation which determines the best action in the current
state. Q-learning is continued by updating the Q-value for
each state continuously using the above equation. Before
starting Q-learning, rewards are present in the Q-table. If an
agent selects an action through a policy in the starting state,
then it moves to the next state using (1). This process is
repeated several times so that the overall Q-value converges
to a specific value where the Q-table is used to solve a given
problem [33]. Q-learning combines dynamic programming
and Monte Carlo methods, which have been used to solve
the Bellman equation. This approach has become the basis
of many reinforcement learning algorithms because unlike
other methods, Q-learning is simple and exhibits an excel-
lent learning ability in single-agent environments. However,
in Q-learning, a value is updated only once per action. There-
fore, it is difficult to effectively solve complicated problems
in a large state-action environment because thesemany states-
actions might not been experienced previously. Moreover,
because the Q-table for rewards is preset, a considerably large
amount of storage memory is required [34]. In a multi-agent
environment with two or more agents, a large state-action
memory is required, which leads to problems. For this reason,
basic Q-learning algorithms are disadvantageous because
they cannot accomplish effective learning in a multi-agent
environment.

2) DEEP Q-LEARNING

Google Deep Mind developed deep Q-learning, which com-
bines Convolution Neural Networks (CNN) with basic
Q-learning. Q-learning employs an approximation function
using a CNN when it becomes difficult to express the value
function for every state [16] Deep Q-learning combines two
approaches in addition to the value approximation using a
CNN [35]. One is an experience replay, and the other is
the target Q technique. The value approximation using a
neural network is highly unstable, and the experience replay
stabilizes this.

In the experience replay approach, all states, actions, and
rewards are affected by previous states. That is, there exist
correlations between states, actions, and rewards. Owing to
these correlations, the approximation function cannot learn in
a stable manner. The experience replay stores the experience
in a buffer and randomly extracts the learning data, which
eliminates correlations [36].

The target Q technique prepares the target network and Q
network separately. It obtains the target value using the target
network and causes the Q network to learn based on the target
value, which reduces correlations [52].

The key idea behind deep Q-learning is that it uses the
experiential replay to combine Q-learning with an artificial
neural network (CNN) [52]. The agent generates samples
(s, a, r, s’) interacting with the environment. Various environ-
ments and samples are possible. If the agent learns from the
samples created according to the situation, then the learning

133656 VOLUME 7, 2019

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

FIGURE 2. Classification of Q-learning algorithms.

VOLUME 7, 2019 133657

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

may flow in an unusual direction owing to the correlation
between the samples. To solve this problem, deep Q-learning
collects many samples. When CNN learns, samples that are
stored in the memory are arranged randomly and extracted
as often as possible. However, using too much memory can
cause the learning speed to decrease.

3) HIERARCHICAL Q-LEARNING

Hierarchical Q-Learning is designed to solve the prob-
lems that arise when the state-action space of Q-learning
increases [53].
Hierarchical Q-Learning improves basic Q-learning by

adding hierarchical processing to the existing Q-learning
system. The idea of Hierarchical Q-learning began with a
method designed for the hybrid control of a robot navigation
system. The main concept behind hierarchical Q-learning is
the concept of the abstract action, which divides the action of
the agent into a higher level and lower level [54].
For example, when the actions that the agent can choose

are up, down, left, and right, and the goal is to reach the
target point, the movement to the target point is contained
in the higher level, and the movements of up, down, left, and
right make up the lower level. This hierarchical division of the
agent’s action is called the abstract action [55]. Conventional
Q-learning encounters many problems in solving complex
environments. The hierarchical Q-learning algorithm solves
complex problems using the abstract action, which speeds up
the processing time for complex problems.

4) DOUBLE Q-LEARNING

Double Q-learning was developed to solve the problem that
Q- learning does not perform well in a stochastic environ-
ment. In a stochastic environment [56], Q-learning is biased
because the action value of the agent is overestimated. Con-
ventional Q-learning does not search for any new optimal
value after a certain time, but repeatedly selects the highest
value among existing values.
Hasselt developed double Q-learning, which solves this

problem of Q-learning [57], [37]. Double Q-learning divides
the valuation function of Q-learning that determines the
action to prevent the deviation of the value in the Q-learning
algorithm. The existing algorithm is the same as Q-learning.
Equation (9) is divided into two equations, and the value
is selectively and randomly derived. The algorithm is as
follows [56]:

QA(s, a)←QA(s, a)+α(s, a)(R+γQB(s′, a′)−QA(s, a))

(10)

QB(s, a)←QB(s, a)+α(s, a)(R+γQA(s′, a′)−QB(s, a))

(11)

Double Q-learning has two Q-functions and Each
Q-function is updated with the value of another Q-function.
The two Q-functions are important to learn from a separate
set of experiences, but both value functions are used to choose
the action.

Double Q-learning has been actively developed and
combined with deep Q-learning to develop double deep
Q-learning. Double deep Q-learning has also improved the
performance of deep Q- learning by preventing optimistic
predictions and divergences of Q-values that express future
values.

5) OTHERS

In addition, there are various algorithms that utilize
Q-learning in a single-agent environment. Typical exam-
ples are incremental multistep Q-learning [58], asynchronous
stochastic approximation Q-learning [59], and Bayesian
Q-learning. Incremental multistep Q-learning is a combina-
tion of Q-learning and Temporal-Difference learning, which
is efficient for delayed reinforcement learning. The incre-
mental multistep Q-learning algorithm performs significantly
better than basic Q-learning in terms of the number of
tasks. It can also serve as a basis for developing vari-
ous multiple time-scale learning mechanisms, which are
essential for applications of reinforcement learning to real-
world problems [60]. Asynchronous stochastic approxima-
tion Q-learning analyzes the characteristics of convergence
of the Q-learning algorithm. Bayesian Q-learning uses a
Bayesian approach to obtain a Q-value. Thus, an agent can
make decisions based on accurate information [61].

B. MULTI-AGENT

1) MODULAR Q-LEARNING

Modular Q-learning was introduced to overcome the prob-
lem of basic Q-learning’s inefficiency in multi-agent sys-
tems [62]. As the number of agents increases, the number of
dimensions of the state space for each agent increases expo-
nentially in [62], [63]. This may cause an explosion in the
amount of memory and number of states. Modular Q-learning
solves the large state-space problem of Q-learning by decom-
posing a large problem to be learned into smaller problems
and applying Q-learning to each sub-problem. In the action
selection stage of the agent, each learning module provides
Q-values for actions of the current state. A mediator module
selects the best action to be taken by executing the action of
the learning module. As a result, a reward value is derived
from the environment and stored in each module, and the
Q-function value is newly updated, as follows:

a← argmax
n∑

i∈ 1

Qi(s, a) (12)

where a is an action and denotes the Q-value. It is difficult to
guarantee the convergence of Q-values in all states through
infinite repetitions, which yields a function that produces
the optimal result for the Q-value and chooses the action
that maximizes the function. Modular Q-learning solves the
problems of existing Q-learning approaches by not apply-
ing Q-learning directly to the multi-agent system, but rather
dividing the system into modules for each agent, perform-
ing Q-learning on individual modules, and collecting the

133658 VOLUME 7, 2019

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

learning results to determine the optimal action. However,
modular Q-learning uses fixed modules assigned by the engi-
neer, and when combining them it also uses a simple fixed
method known as the greatest mass (GM) approach. There-
fore, the main disadvantage of this approach is that it is
difficult to efficiently learn in an environment that changes
rapidly. Various algorithms have been developed to solve the
problem of modular Q-learning [64].

2) ANT Q-LEARNING

Ant Q-learning combines an ant system (AS) with
Q-learning. AS is an algorithmic representation of ants choos-
ing their paths back to their nest after finding food [18]. Ants
secrete pheromones as they walk. They ignore weak acidity
paths, and the path with the highest acidity is determined
as the final path [65]. Ant Q-learning extends existing ASs.
Unlike in the usual Q-learning method, learning here is per-
formed using a set of cooperating agents. Cooperating agents
exchange AQ-values with each other. The goal of Ant-Q is to
learn an AQ-value that can achieve a stochastically superior
target value [66].
Unlike basic Q-learning, ant Q-learning learns using sev-

eral agents. The advantage of ant Q-learning is that it is
possible to effectively find the value of the reward for a certain
action in a multi-agent environment because agents in ant
Q-learning cooperate with each other. The disadvantage of
ant Q-learning is that its result can become stuck in a local
minimum because agents only choose the shortest path [67].

3) NASH Q-LEARNING

Nash Q-learning is a variant of the Q-learning algorithm that
is suitable for multi-agent environments [19]. In a multi-
agent environment, all actions of all agents should be con-
sidered. When there are n agents, the Q-value is Q (S, A1,
A2, . . .An) instead of Q (S, A). Taking this into consideration,
the function of Nash Q-Learning is obtained by modifying
equation (9) [42] as follows:

Qt(s, a1, a1 · · · an) = (1− at−1)Qt(s, a1, a1 · · · an)

+ at−1[γt−1 + βNash Qt−1(s
′)] (13)

where s is the current state, a is the action of the nth agent, and
t represents the time. To obtain the Nash Q-value, the learning
rate must first be determined, and the rate of decrease for
reward should also be determined. Furthermore, represents
the reward value at time t . The value of β is between 0 and 1.
Nash Qt+1 (s′) is defined as follows:

Nash Qt−1(s
′) = π1(s

′) · π1(s
′) · . . . πt−1(s

′) (14)

where (14) is the reward value determined by the Nash theory
when an agent takes an action in state s’. In a multi-agent
environment, the information on different agents is not shared
between the agents. Thus, agents must derive information
about other agents by themselves.
The Q-values of other agents is obtained through learning

[43]. Nash Q-learning predicts the actions of other agents

and allows agents to determine actions that maximize the
sum of the reward values of actions. The advantage of Nash
Q-Learning is that its complexity is relatively low because it
does not require any additional inference algorithm but uses
the same algorithm to predict the actions of other agents.
However, this approach is computationally intensive. The big
drawback is that it requires a lot of time owing to a large
amount of computation.

4) SWARM-BASED Q-LEARNING

In a typical Q-learning algorithm, if the learning prob-
lem is complex, it takes a lot of time to find the optimal
answer. In addition, in a multi-agent environment, the answer
often cannot be found or takes a lot of time. Swarm-based
Q-learning uses Particle Swarm Optimization (PSO) to find
the optimal solution. PSO can quickly find a globally optimal
solution for multiple module functions with a wide solu-
tion space. There are some studies that improve the perfor-
mance of reinforcement learning by combining PSO with
Q-learning, Salsa, and ant colony. In this paper, we discuss
swarm-based Q-learning [68].
In the existing multi-agent reinforcement learning, general

Q-learning is used for each agent to search the optimum
answer through individual learning, and information-based
learning was performed based on the information exchanged
between agents [69]. Swarm-based Q-learning solves the
problem by combining the above two methods. In previ-
ous algorithms for multi-agents, each agent learned indi-
vidually using a general Q-learning algorithm [70] whereas
swarm-based Q-learning exchanges information regularly
during learning for each agent and learns based on the
exchanged information. The Q-value of each agent is updated
based on the update equation of PSO, and the agent can
select the optimal policy because it learns based on the
exchanged information. Swarm-based Q-learning also sets
up the agent in advance to save time in complex environ-
ments. The swarm-based Q-learning algorithm selects a good
Q-value, and the agent updates the information using the
good Q-value. PSO is based on social behavior, and each
agent updates its own candidate solution using each optimal
solution and the optimal solution of all agents.

5) OTHERS

In addition, there are various algorithms that utilize
Q-learning in a multi-agent environment. The Self-Other-
Modeling (SOM) method, agents use their own policies to
predict and update the actions of other agents [71]. SOM
Q-learning predicts hidden states of other agents from their
actions.
Like existing hierarchical Q-learning, one task is divided

into several tasks and is then divided into hierarchi-
cal tasks [72]. At the same time, this method increases
the number of episodes using Stochastic Temporal Gram-
mar (STG) [73]. The concept of STG is that there exists a
temporal relationship between two other tasks, and STG sum-
marizes time shifts among various tasks using probabilistic

VOLUME 7, 2019 133659

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

grammatical models to capture time relations. STGs inter-
act with hierarchical Q-learning algorithms using modified
switch and guidance policies. However, STGs rely on human
guidelines and require more time and effort at each training
phase [73].
Finally, [74] applied Deep Q-learning to multi-agent

environments. Deep-neural-network-based algorithms have
contributed greatly to extending single-agent reinforcement
learning to multi-agent reinforcement learning [75]. The sce-
nario of the collaboration and competition is designed by
changing the reward for each agent, and the single-agent
environment is extended to the multi-agent environment with
an emphasis on the overall observation of the discrete space
and each agent. Trust Region Policy Optimization (TRPO)
has also been extended to multi-agent environments using
parameter sharing [76]. Like these, there have been
many studies on reinforcement learning in multi-agent
environments.

IV. RESEARCH TREND AND KEY APPLICATIONS

With current innovative environment the momentum of new
trends in the use of Q-learning is so extensive-learning is
currently applied in many intelligent systems like operations
research, robotics and industrial process control. In this chap-
ter we explore these rich areas of applications andmore recent
innovations that involve Q-learning.

A. RESEARCH TRENDS

In this section, we investigate the latest research trendsmainly
to improve some aspects of Q-learning algorithms.
In reinforcement learning, it is well known that in some

stochastic environments, a bias in the estimation error can
gradually increase the approximation error leading to large
overestimations of the true action values. AWeighted Estima-
tor (WE)method [77] has been studied to reduce this variance
and to randomly process many variables natively.
Similarly, a corrupt reward MDP (CRMDP) [78] was

developed to overcome the possibility of impairment of the
actual reward function. A reward for existing Q-learning can
be compromised by bugs or malfunctions. The reward func-
tion may also be compromised by improperly modifying the
reward mechanism by the agent. CRMDP solved the problem
of reward and corruption in various agents by extendingMDP
with a corrupt reward function and defining formalities and
measurement methods.
There is a reward shaping [79] study to overcome the

time-consuming disadvantages of Q-learning using delayed
feedback or reward. Reward shaping is a method of obtain-
ing results faster by integrating domain knowledge into
Q-learning. Reward shaping was applied to multi-agent
as well as single-agent systems. Similarly, a method
for handling false information in a single-agent system
and plan-based reward shaping for solving conflict in a
multi-agent system has been developed. It is based on the
abstract MDP method and reward shaping, ignoring the

inaccurate part of the agent’s knowledge and, as a result,
enables more accurate learning [80].

There is also new research that greatly improves the reward
policy of the multi-agent environment by difference reward
and potential reward formation. Differential reward Counter-
factual as Potential (CaP) was used, and the potential-based
reward was applied to various multi-agent systems. Dif-
ferential Reward Incorporating Potential (DRIP) formed a
differential reward system basing on the potential reward.
Combining these two approaches yielded superior results
than the agent using only the difference reward [81].

The existing model-free algorithm is often unable to con-
verge to the optimal policy owing to the perturbation of the
parameters. The model-free algorithm allows the learning
process to be performedmore reliably and quickly using Con-
stant Shift Values (CSV). It has been generalized to handle
large-scale work and its superiority has been proved through
a comparison with a representative MDP [82]. In addition,
research on the new Inverse Reinforcement Learning (IRL)
is underway by setting a different function of the reverse
learning reinforcement learning that is effective in explaining
the behavior of a professional by observing a series of demon-
strations different from the existing IRL algorithm [83].

Off-Environment Reinforcement learning (OFFER) has
been developed to simultaneously optimize policy and pro-
posal distribution for environmental variables in areas with
abnormal Significant Rare Events (SRE) in the physical envi-
ronment that do not appear in simulations [84].

In addition, robust adversarial reinforcement learning
(RARL) [85] was developed to overcome the gap between
simulations and real environments and the scarcity of data,
and to apply it to unstable systems. In addition, through
the experiments of the ATARI game and PAC-MAN, HRA
obtained better results than humans. However, it has the
disadvantage that its performance is not confirmed in other
environments except for the specific area [86]. Similarly,
PBRS-MAXQ is proposed as a new algorithm by integrating
Potential Based Reward Shaping (PBRS) and Hierarchical
Reinforcement Learning (HRL) [87].

P-MARL focused on the environment that had a significant
impact on agent decisions. P-MARL leverages information
about future changes in the environment to reach successful
solutions in grid scenarios [88]. In addition, it can usefully
interact in real environments, reducing human supervision
costs and being applied to state-of-the-art RL systems [89].
Based on human psychology, both non specialists and experts
are effective, and research on putting human knowledge into
Q-learning agents for speed improvement is underway [90].

Finally, many studies have been conducted to improve the
performance of Q-learning in multi-agent systems.

A new architecture, FeUdal Network (FuNs) [91], which
uses MANAGER and WORKER modules, was developed
by applying hierarchical Q-learning. FuNs was able to solve
various problems by separating the multilevel end-to-end
learning. In addition, FuNs is efficient for transfer and
multitasking learning and can be used to learn new and

133660 VOLUME 7, 2019

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

complex technologies. There is also a HAMQ-INT [92] algo-
rithm with excellent performance in the taxi domain, and the
much more complex RoboCup Keep away domain, which
utilizes hierarchical Q- learning. HAMQ- INT automatically
discovers and utilizes internal transitions within Hierarchies
of Abstract Machines (HAM) to verify performance in the
benchmark taxi domain RoboCup Keep away domain.
In addition, there is Deep Multi-Agent Q-learning [93],

which combines the experience replay to solve the problem
of multiple agents and converts the success of deep learn-
ing in single-agent Q-learning into multi-agent settings. In
deep multi-agent Q-learning, the importance sampling and
the value function were adjusted to successfully combine
experiential regeneration. This is utilized in a wide range of
nonstationary educational problems such as classification.
Next, there is the Group-LASSO Fitted Q-Iteration

(GL-FQI) [94]. which improves performance by simultane-
ously learningmultiple tasks and using similarity in multitask
Q-learning. GL-FQI is made by extending the Group-LASSO
and FQI algorithms and shares a useful set of functions that
improve the performance of single-task learning.
There is also a resource abstraction [95] that provides

an autonomous and decentralized solution by applying
multi-agent Q-learning to very complex, large-scale real
congestion statements. In addition, researchers developed a
swarmMDP framework for multi-agent systems by applying
reverse reinforcement learning [96].

B. RECENT ADVANCES

Owing to the effectiveness of the Q-learning algorithm,
it has been applied to various domains such as industrial
processes, network process, game theory, robotics, opera-
tion research, control theory, and image recognition. In this
section, we describe various applications that leverage the
recent advances of Q-learning. Table I summarizes key areas
that currently utilize Q-learning techniques

1) CONTROL OF INDUSTRIAL PROCESS

The field of process control, which represents the begin-
ning of reinforcement learning, is still one of the most
active application areas of Q-learning. This is because the
Q learning methods that mimic the way humans are trained
through trial and error can be akin to industrial process
control [97]. Q-learning was adopted to improve the perfor-
mance of the on-line learning control system [98]. The online
learning control system using Q-learning has strengthened
measures for judging incorrect points from an external envi-
ronment and improving future performance and has become
a successful candidate for the design of online learning
control [99], [100].

2) COMPUTER NETWORKING

There has been much research to apply Q-learning in the field
network process control. Wireless sensor networks should
monitor rapidly changing dynamic behaviors that are caused
by external factors or by system designers. To improve the

adaptability to changing situations and eliminate the need for
system redesign, Q-learning is used to improve performance
[101]. Network control using the Q-learning algorithm has
inspired many practical solutions that maximize resource
utilization and extend network life. In recent years, an antisys-
tem has been applied to pre-networking to enable monitoring
and object tracking in a wide range of environments [102].
In addition, the combination ofMocha, a robust system recog-
nition optimization method for system problems [103], and
the combination of an online control system and a wireless
sensor network has enhanced the performance of wireless
sensor network applications [104].

3) GAME THEORY

In game theory, Google Deep Mind has played a significant
role. Deep Mind applied deep Q-learning to games helping
arcane games to find optimal moves by themselves, and as
a result the system was able to outperform humans [105],
[106]. Based on this, much research has been carried out in
game theory. In an online multiplayer game, it is possible to
learn in real time using the data measured along the trajectory
of a player, thereby optimizing the game’s performance and
developing a human-agent feedback loop.

Furthermore, in stochastic cooperative game theory, a
Q-learning algorithm is used to maximize the total profit
of the system. Recently, Q-learning algorithms have been
adopted in mobile application games. As mobile applica-
tions become more popular, they have suffered from lim-
ited resources like channels hence causing, delay [107].
The combination of game theory and Q-learning has enabled
the efficient distribution of resources, yielding improved per-
formance. In addition, research is being conducted to improve
performance by utilizing Q-learning in large-scale games
with insecure information [108], [109].

4) ROBOTICS

Robotics is the most active field to which Q-learning is
applied. Q-learning in robotics provides frameworks and
toolkits for designing sophisticated and difficult engineer-
ing behavior. Through Q-learning, autonomous robots have
achieved considerable growth in behavioral technology with
minimal human intervention. However, many studies are in
progress to overcome the complicated problems of the exist-
ing Q- learning algorithm and its inability to operate with
multiple agents.

By seamlessly exchanging information between tasks,
a fully integrated approach within the reinforcement
learning framework has greatly enhanced robot con-
trol capabilities [110]. In recent years, Q-learning has
been applied to study robots’ emotions and to facilitate
mobile robots operating in people’s living environments.
Robot problems have also influenced the development
of Q-learning. The combination of robotics and rein-
forcement learning has tremendous potential in future
research [111], [112].

VOLUME 7, 2019 133661

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

TABLE 1. Recent Q-learning applications.

5) OPERATIONS RESEARCH

Operation Research (OR) is a discipline that deals with the
application of advanced analytical methods to make bet-
ter decisions using math, business, and computer science.
Results of OR problems are used in a wide range of engi-
neering management and public systems. In this section,
we investigate various studies that utilize Q-learning for the
latest OR problem solving. Reference [113] improved the per-
formance of the scheduling method that solves Dynamic Job
Shop Scheduling (DJSS) problem considering random work
and machine failure by using Q-learning. DJSS focused on
selecting an appropriate scheduling method or optimization
parameter.
Q-learning has also been used in demand management

problems [114]. Load management problems dynamically
adjust the electricity demand in response to grid signals to
reduce Demand-Side Management (DSM) for preliminary
markets, frequency recovery, and expensive household usage.
For efficiency of the management problem, it is necessary

to disperse peak loads to other load times. As efficiency
increases, operational costs are diminished, and the num-
ber of blackouts is reduced [114]. This gives consumers
and producers the ability to manage with minimal effort.
The Q-learning approach enables retailers to quickly iden-
tify real-time information they need and provides demand
management capabilities by making reliable decisions about
trusted customers without classifying future customers from
the appropriate clusters. Building load management using
reinforcement learning has chosen intuitive clustering tech-
nology based on learner’s results and improved elasticity of
demand, learner’s load scheduling, and consumer targeting
decomposition techniques. It is also used as a tool for market
research [115].

Q-learning has also been used for optimization problems
for device placement [116]. Device placement can be grouped
into learning to divide a graph across available devices.
It makes traditional graph partitioning into a natural base-
line. Adaptation methods for optimizing the arrangement of

133662 VOLUME 7, 2019

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

TABLE 2. Related papers and their limitations addressed by the current work.

devices for neural networks have been studied [117]. This
arranges devices by using the sequence placement model and
considering computation in a neural network.

As a result, this approach learns characteristics of the
environment including complex tradeoffs between compu-
tation and communication in hardware, and overcomes the

VOLUME 7, 2019 133663

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

placement designed by the human expert and highly opti-
mized algorithmic solvers in a variety of tasks including
image classification, language modeling, and machine trans-
lation. This model has been trained to optimize the execution
time of the neural network [118].

6) ARTIFICIAL INTELLIGENCE

In addition to the abovementioned fields, many studies using
Q-learning have been conducted and are being applied to
various fields. Q-learning is used in artificial intelligence
quadrotor control [119]. Recently, as the development and
distribution of quadrotors have accelerated, many global
companies such as Google and Amazon have conducted
research for the commercial use of quadrotors. Quadro-
tors have been used and verified in many areas such as
surveillance, navigation and rescue, wildlife protection, and
unmanned mail delivery. Its core technique is to accurately
recognize and track targets, which is indispensable in the
application of quadrotors. Q-learning has contributed sig-
nificantly to the development of drones as a key technol-
ogy in quadrotor control. Many techniques for controlling
quadrotors using Q-learning have been studied. The quadro-
tor is expected to be widely used not only in the mil-
itary and commercial industries but also in the private
sector [120].
Q-learning is also used in the field of image classification.

Image classification is one of the most fundamental research
problems in computer vision. In existing image classification,
Convolutional Neural Networks (CNN) made great achieve-
ments in single-label image classification [121]. In multi-
label image analysis, however, computation cost and spatial
dependence, and modeling between localized regions, are
neglected or oversimplified.
Multi-label image classification is more useful than

single-label image classification because the actual image is
typically annotated to multiple labels, and modeling large
semantic information is essential for high-level image anal-
ysis tasks. Q-learning has made a great contribution in
the analysis of multilevel image classification [122], and
a representative example is a new method for accurate
real-time 3D anatomical landmark detection in Computed
Tomography (CT) scans.
By combining deep Q-learning concepts with multiscale

image analysis, an artificial agent learned the optimal strategy
for finding anatomical structures [123].
Finally, Q-learning is applied in information theory, and

related studies are underway. Recently, Q-learning and infor-
mation theory have been applied to various fields such as
pattern recognition, natural language processing, abnormality
detection, and information theory [124]–[126]. In addition,
a framework has been developed to generate a satisfactory
response based on user’s utterance using reinforcement learn-
ing in a voice interaction system [127], and a high-resolution
prediction system for local rainfall based on deep learning has
been developed [128].

V. RELATED WORKS

Notwithstanding a rich applications perspective of
Q-learning, we did not come across any paper that bestowed
its scope solely on Q-learning and its applications. However
various researches tried to touch on these algorithms in a
general scope of reinforcement learning hence falling short
of various details that Q-learning is built upon. Table II
summarizes the key related limitations that our paper tries
to address. We also reveal the limitations of our paper to
encourage possible further studies.

VI. CONCLUSION

Q-learning algorithms are off policy reinforcement learning
algorithms that try to perform the most profitable action
given the current state. However, these powerful set of algo-
rithms are not fully exploited at their full potential. In this
paper we covered all variants of Q-learning algorithms,
which are a representative algorithm under reinforcement
learning. We distinctively categorized Q-learning algorithms
into single-agent and multi-agent and described them thor-
oughly. With the introduction of a Convolutional Neural
Networks, deep Q-learning came as an improved version of
basic Q-learning. Double Q-learning solves the basic flaw of
basic Q-learning which is the over estimation of the reward
using a maximum function. Modular Q-learning is widely
utilized in the field of robotics and Nash Q-learning is applied
in complex areas such as stochastic games. We also ana-
lyzed recent research trend of Q-learning and thoroughly
investigated how Q-learning is used in various areas. The
improved algorithms might perform poorly while solving
simple problems in a simple environment, but they outper-
form basic Q-learning algorithms when the problem at hand
is complex and under a sophisticated environment. As the
importance of reinforcement learning increases with artificial
intelligence being incorporated in almost all aspects of com-
puting, Q-learning will continue to drive the innovations and
development of intelligent systems.

REFERENCES

[1] D. Chapman and L. P. Kaelbling, ‘‘Input generalization in delayed rein-
forcement learning: An algorithm and performance comparisons,’’ in
Proc. IJCAI, 1991, pp. 726–731.

[2] M. I. Jordan and T.M.Mitchell, ‘‘Machine learning: Trends, perspectives,
and prospects,’’ Science vol. 349, no. 6245, pp. 255–260, 2015.

[3] E. Parisotto, S. Ghosh, S. B. Yalamanchi, V. Chinnaobireddy, Y. Wu, and
R. Salakhutdinov, ‘‘Concurrent meta reinforcement learning,’’ Mar. 2019,
arXiv:1903.02710. [Online]. Available: https://arxiv.org/abs/1903.02710

[4] J. Kober, J. A. Bagnell, and J. Peters, ‘‘Reinforcement learning in robotics:
A survey,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274, 2013.

[5] G. Tesauro, ‘‘Temporal difference learning and TD-Gammon,’’ Commun.
ACM, vol. 38, no. 3, pp. 58–68, Mar. 1995.

[6] J. A. Boyan, ‘‘Technical update: Least-squares temporal difference learn-
ing,’’ Mach. Learn., vol. 49, nos. 2–3, pp. 233–246, 2002.

[7] W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov Chain

Monte Carlo in Practice. Boca Raton, FL, USA: CRC Press, 1995.
[8] M. L. Puterman, Markov Decision Processes: Discrete Stochastic

Dynamic Programming. Hoboken, NJ, USA: Wiley, 2014.
[9] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,

nos. 3–4, pp. 279–292, 1992.
[10] R. Dearden, N. Friedman, and S. Russell, ‘‘Bayesian Q-learning,’’ in

Proc. AAAI/IAAI, 1998, pp. 761–768.

133664 VOLUME 7, 2019

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

[11] A. Lazaric, ‘‘Transfer in reinforcement learning: A framework and a
survey,’’ in Reinforcement Learning. Berlin, Germany: Springer, 2012,
pp. 143–173.

[12] S. A. Murphy, ‘‘A generalization error for Q-learning,’’ J. Mach. Learn.
Res., vol. 6, pp. 1073–1097, Jul. 2005.

[13] Y. Zhang and Q. Yang, ‘‘A survey on multi-task learning,’’ 2017,
arXiv:1707.08114. [Online]. Available: https://arxiv.org/abs/1707.08114

[14] S. Gu, E. Holly, T. Lillicrap, and S. Levine, ‘‘Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,’’
in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), May/Jun. 2017,
pp. 3389–3396.

[15] M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar, ‘‘Bayesian rein-
forcement learning: A survey,’’ Found. Trends Mach. Learn., vol. 8,
nos. 5–6, pp. 359–483, 2015.

[16] T. Hester et al., ‘‘Deep Q-learning from demonstrations,’’ in Proc. 32nd
AAAI Conf. Artif. Intell., 2018, pp. 3223–3230.

[17] C. K. Tham and R. W. Prager, ‘‘A modular Q-learning architecture
for manipulator task decomposition,’’ in Proc. Mach. Learn., 1994,
pp. 309–317.

[18] M. Dorigo and L. M. Gambardella, ‘‘A study of some properties of
ant-Q,’’ in Proc. Int. Conf. Parallel Problem Solving Nature, 1996,
pp. 656–665.

[19] L. Yang, Q. Sun, D. Ma, and Q. Wei, ‘‘Nash Q-learning based equilib-
rium transfer for integrated energy management game with we-energy,’’
Neurocomputing, to be published.

[20] Y. Jiang, J. Fan, T. Chai, J. Li, and F. L. Lewis, ‘‘Data-driven flotation
industrial process operational optimal control based on reinforcement
learning,’’ IEEE Trans. Ind. Informat., vol. 14, no. 5, pp. 1974–1989,
May 2018.

[21] S. G. Khan, G. Herrmann, F. L. Lewis, T. Pipe, and C. Melhuish,
‘‘Reinforcement learning and optimal adaptive control: An overview and
implementation examples,’’ Annu. Rev. Control, vol. 36, no. 1, pp. 42–59,
Apr. 2012.

[22] M. A. Alsheikh, S. Lin, D. Niyato, and H. P. Tan, ‘‘Machine learning in
wireless sensor networks: Algorithms, strategies, and applications,’’ IEEE
Commun. Surveys Tuts., vol. 16, no. 4, pp. 1996–2018, 4th Quart., 2014.

[23] K. G. Vamvoudakis, H. Modares, B. Kiumarsi, and F. L. Lewis, ‘‘Game
theory-based control system algorithms with real-time reinforcement
learning: How to solve multiplayer games online,’’ IEEE Control Syst.,
vol. 37, no. 1, pp. 33–52, Feb. 2017.

[24] T. M. Moerland, J. Broekens, and C. M. Jonker, ‘‘Emotion in reinforce-
ment learning agents and robots: A survey,’’Mach. Learn., vol. 107, no. 2,
pp. 443–480, Feb. 2018.

[25] M. Plappert, M. Andrychowicz, A. Ray, B.McGrew, B. Baker, G. Powell,
J. Schneider, J. Tobin, M. Chociej, P. Welinder, V. Kumar, and
W. Zaremba, ‘‘Multi-goal reinforcement learning: Challenging robotics
environments and request for research,’’ 2018, arXiv:1802.09464.
[Online]. Available: https://arxiv.org/abs/1802.09464

[26] C. C. White and J. D. White, ‘‘Markov decision processes,’’ Eur. J. Oper.
Res., vol. 39, no. 1, pp. 1–16, Mar. 1989.

[27] R. S. Sutton, ‘‘Generalization in reinforcement learning: Successful
examples using sparse coarse coding,’’ in Proc. Adv. Neural Inf. Process.
Syst., 1996, pp. 1038–1044.

[28] E. Even-Dar and Y.Mansour, ‘‘Learning rates for Q-learning,’’ inCompu-
tational Learning Theory, D. Helmbold and B. Williamson, Eds. Berlin,
Germany: Springer, 2001, pp. 589–604.

[29] A. R. Cassandra, ‘‘Exact and approximate algorithms for partially observ-
able Markov decision processes,’’ Brown Univ., Providence, RI, USA,
Tech. Rep., 1998.

[30] M. L. Littman, ‘‘Value-function reinforcement learning in Markov
games,’’ Cogn. Syst. Res., vol. 2, no. 1, pp. 55–66, Apr. 2001.

[31] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, ‘‘Policy gra-
dient methods for reinforcement learning with function approximation,’’
in Proc. Adv. Neural Inf. Process. Syst., 2000, pp. 1057–1063.

[32] T. G. Dietterich, ‘‘Hierarchical reinforcement learning with the MAXQ
value function decomposition,’’ J. Artif. Intell. Res., vol. 13, pp. 227–303,
Nov. 2000.

[33] M. Irodova and R. H. Sloan, ‘‘Reinforcement learning and function
approximation,’’ in Proc. FLAIRS Conf., 2005, pp. 455–460.

[34] L. Shoufeng, L. Ximin, and D. Shiqiang, ‘‘Q-learning for adap-
tive traffic signal control based on delay minimization strategy,’’ in
Proc. IEEE Int. Conf. Netw., Sens. Control (ICNSC), Apr. 2008,
pp. 687–691.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing atari with deep reinforce-
ment learning,’’ Dec. 2013, arXiv:1312.5602. [Online]. Available:
https://arxiv.org/abs/1312.5602

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level
control through deep reinforcement learning,’’ Nature, vol. 518,
no. 7540, p. 529, 2015.

[37] H. V. Hasselt, ‘‘Double Q-learning,’’ in Proc. Adv. Neural Inf. Process.
Syst., J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Culotta, Eds., 2010, pp. 2613–2621.

[38] M. A. Wiering, ‘‘QV (lambda)-learning: A new on-policy reinforcement
learning algrithm,’’ in Proc. 7th Eur. Workshop Reinforcement Learn.,
2005, pp. 17–18.

[39] J. Ho, D. W. Engels, and S. E. Sarma, ‘‘HiQ: A hierarchical Q-learning
algorithm to solve the reader collision problem,’’ in Proc. Int. Symp. Appl.
Internet Workshops (SAINTW), Jan. 2006, p. 4 and 91.

[40] C. Chen, H.-X. Li, and D. Dong, ‘‘Hybrid control for robot navigation—
A hierarchical Q-learning algorithm,’’ IEEE Robot. Autom. Mag., vol. 15,
no. 2, pp. 37–47, Jun. 2008.

[41] M. D. Awheda and H. M. Schwartz, ‘‘Exponential moving average Q-
learning algorithm,’’ in Proc. IEEE Symp. Adapt. Dyn. Program. Rein-

forcement Learn. (ADPRL), Apr. 2013, pp. 31–38.
[42] J. Hu and M. P. Wellman, ‘‘Nash Q-learning for general-sum stochastic

games,’’ J. Mach. Learn. Res., vol. 4, pp. 1039–1069, Nov. 2003.
[43] Y. Zeng, K. Xiang, D. Li, and A. V. Vasilakos, ‘‘Directional routing and

scheduling for green vehicular delay tolerant networks,’’ Wireless Netw.,
vol. 19, no. 2, pp. 161–173, 2013.

[44] K.-H. Park, Y.-J. Kim, and J.-H. Kim, ‘‘Modular Q-learning based multi-
agent cooperation for robot soccer,’’ Robot. Auton. Syst., vol. 35, no. 2,
pp. 109–122, 2001.

[45] T. Zhou, B.-R. Hong, C.-X. Shi, and H.-Y. Zhou, ‘‘Cooperative behavior
acquisition based modular Q learning in multi-agent system,’’ in Proc.
Int. Conf. Mach. Learn. Cybern., Aug. 2005, pp. 205–210.

[46] H. Iima and Y. Kuroe, ‘‘Swarm reinforcement learning algorithms—
Exchange of information among multiple agents,’’ in Proc. SICE Annu.
Conf., Sep. 2007, pp. 2779–2784.

[47] T. W. Sandholm and R. H. Crites, ‘‘On multiagent Q-learning in a
semi-competitive domain,’’ in Proc. Int. Joint Conf. Artif. Intell., 1995,
pp. 191–205.

[48] M. Bowling, ‘‘Convergence and no-regret in multiagent learning,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2005, pp. 209–216.

[49] C. Yu, M. Zhang, F. Ren, and X. Luo, ‘‘Emergence of social norms
through collective learning in networked agent societies,’’ in Proc. Int.
Conf. Auton. Agents Multi-Agent Syst., 2013, pp. 475–482.

[50] S. Abdallah and V. Lesser, ‘‘Non-linear dynamics in multiagent reinforce-
ment learning algorithms,’’ in Proc. 7th Int. Joint Conf. Auton. Agents
Multiagent Syst., vol. 3, 2008, pp. 1321–1324.

[51] C. Zhang and V. Lesser, ‘‘Multi-agent learning with policy prediction,’’
in Proc. 24th AAAI Conf. Artif. Intell., 2010, pp. 927–934.

[52] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, and P. Li, ‘‘Energy-efficient
scheduling for real-time systems based on deep Q-learning model,’’ IEEE
Trans. Sustain. Comput., vol. 4, no. 1, pp. 132–141, Jan./Mar. 2017.

[53] A. G. Barto and S. Mahadevan, ‘‘Recent advances in hierarchical rein-
forcement learning,’’ Discrete Event Dyn. Syst., vol. 13, nos. 1–2,
pp. 41–77, 2003.

[54] C. Chen, D. Dong, H.-X. Li, and T.-J. Tarn, ‘‘Hybrid MDP based inte-
grated hierarchical Q-learning,’’ Sci. China Inf. Sci., vol. 54, no. 11,
pp. 2279–2294, Nov. 2011.

[55] D. Rasmussen, A. Voelker, and C. Eliasmith, ‘‘A neural model of hier-
archical reinforcement learning,’’ PLoS ONE, vol. 12, no. 7, 2017,
Art. no. e0180234.

[56] H. van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double Q-learning,’’ 2019, arXiv:1509.06461. [Online]. Available:
https://arxiv.org/abs/1509.06461

[57] C. Schulze and M. Schulze, ‘‘ViZDoom: DRQN with prioritized
experience replay, double-Q learning, & snapshot ensembling,’’ 2018,
arXiv:1801.01000. [Online]. Available: https://arxiv.org/abs/1801.01000

[58] J. Peng and R. J. Williams, ‘‘Incremental multi-step Q-learning,’’ in Proc.
Mach. Learn., W. W. Cohen and H. Hirsh, Eds. San Francisco, CA, USA:
Morgan Kaufmann, 1994, pp. 226–232.

VOLUME 7, 2019 133665

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

[59] J. N. Tsitsiklis, ‘‘Asynchronous stochastic approximation and
Q-learning,’’ Mach. Learn., vol. 16, no. 3, pp. 185–202, Sep. 1994.

[60] T. Yu, B. Zhou, K. W. Chan, L. Chen, and B. Yang, ‘‘Stochastic optimal
relaxed automatic generation control in non-Markov environment based
on multi-step Q(λ) learning,’’ IEEE Trans. Power Syst., vol. 26, no. 3,
pp. 1272–1282, Aug. 2011.

[61] M. Strens, ‘‘A Bayesian framework for reinforcement learning,’’ in Proc.
ICML, 2000, pp. 943–950.

[62] N. Ono and K. Fukumoto, ‘‘A modular approach to multi-agent rein-
forcement learning,’’ inDistributed Artificial Intelligence Meets Machine
Learning Learning in Multi-Agent Environments. Berlin, Germany:
Springer, 1996, pp. 25–39.

[63] T. Kohri, K. Matsubayashi, and M. Tokoro, ‘‘An adaptive architecture for
modular Q-learning,’’ in Proc. IJCAI, vol. 2, 1997, pp. 820–825.

[64] N. Ono and K. Fukumoto, ‘‘A modular approach to multi-agent rein-
forcement learning,’’ inDistributed Artificial Intelligence Meets Machine
Learning Learning in Multi-Agent Environments (Lecture Notes in Com-
puter Science). 1997, pp. 25–39.

[65] H. Kim and T.-C. Chung, ‘‘Solving the Gale–Shapley problem by ant-Q
learning,’’ KIPS Trans., B, vol. 18B, no. 3, pp. 165–172, 2011.

[66] L. M. Gambardella and M. Dorigo, ‘‘Ant-Q: A reinforcement learn-
ing approach to the traveling salesman problem,’’ in Proc. Mach.

Learn., A. Prieditis and S. Russell, Eds. San Francisco, CA, USA:
Morgan Kaufmann, 1995, pp. 252–260.

[67] C. F. Juang and C. M. Lu, ‘‘Ant colony optimization incorporated with
fuzzy Q-learning for reinforcement fuzzy control,’’ IEEE Trans. Syst.,

Man, Cybern. A, Syst. Humans, vol. 39, no. 3, pp. 597–608, May 2009.
[68] H. Iima and Y. Kuroe, ‘‘Swarm reinforcement learning algorithms based

on Sarsa method,’’ inProc. SICE Annu. Conf., Aug. 2008, pp. 2045–2049.
[69] W. Lu, Y. Zhang, and Y. Xie, ‘‘A multi-agent adaptive traffic signal

control system using swarm intelligence and neuro-fuzzy reinforcement
learning,’’ in Proc. IEEE Forum Integr. Sustain. Transp. Syst. (FISTS),
Jun./Jul. 2011, pp. 233–238.

[70] J. Kennedy, ‘‘Swarm intelligence,’’ in Handbook of Nature-Inspired and
Innovative Computing. Boston, MA, USA: Springer, 2006, pp. 187–219.

[71] R. Raileanu, E. Denton, A. Szlam, and R. Fergus, ‘‘Modeling oth-
ers using oneself in multi-agent reinforcement learning,’’ Feb. 2018,
arXiv:1802.09640. [Online]. Available: https://arxiv.org/abs/1802.09640

[72] T. Shu, C. Xiong, and R. Socher, ‘‘Hierarchical and interpretable
skill acquisition in multi-task reinforcement learning,’’ Dec. 2017,
arXiv:1712.07294. [Online]. Available: https://arxiv.org/abs/1712.07294

[73] C. Gretton, ‘‘Gradient-based relational reinforcement learning of tempo-
rally extended policies,’’ in Proc. ICAPS, 2007, pp. 168–175.

[74] X. Chu and H. Ye, ‘‘Parameter sharing deep deterministic policy gra-
dient for cooperative multi-agent reinforcement learning,’’ Oct. 2017,
arXiv:1710.00336. [Online]. Available: https://arxiv.org/abs/1710.00336

[75] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, ‘‘Dueling network architectures for deep reinforce-
ment learning,’’ Nov. 2015, arXiv:1511.06581. [Online]. Available:
https://arxiv.org/abs/1511.06581

[76] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, ‘‘Learning to
communicate with deep multi-agent reinforcement learning,’’ in Proc.

Adv. Neural Inf. Process. Syst., D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, Eds., 2016, pp. 2137–2145.

[77] C. D’Eramo, A. Nuara, M. Pirotta, and M. Restelli, ‘‘Estimating the max-
imum expected value in continuous reinforcement learning problems,’’ in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 1840–1846.

[78] T. Everitt, V. Krakovna, L. Orseau, M. Hutter, and S. Legg, ‘‘Rein-
forcement learning with a corrupted reward channel,’’ May 2017,
arXiv:1705.08417. [Online]. Available: https://arxiv.org/abs/1705.08417

[79] M. Grześ, ‘‘Reward shaping in episodic reinforcement learning,’’ in Proc.
16th Conf. Auton. Agents MultiAgent Syst. (AAMAS), 2017, pp. 565–573.

[80] K. Efthymiadis and D. Kudenko, ‘‘Knowledge revision for reinforcement
learning with abstract MDPs,’’ in Proc. Int. Conf. Auton. Agents Multia-
gent Syst. (AAMAS), 2015, pp. 763–770.

[81] S. Devlin, L. Yliniemi, D. Kudenko, and K. Tumer, ‘‘Potential-based
difference rewards for multiagent reinforcement learning,’’ in Proc. Int.
Conf. Auton. Agents Multi-Agent Syst. (AAMAS), 2014, pp. 165–172.

[82] S. Yang, Y. Gao, B. An, H.Wang, and X. Chen, ‘‘Efficient average reward
reinforcement learning using constant shifting values,’’ in Proc. AAAI,
2016, pp. 2258–2264.

[83] A. M. Metelli, M. Pirotta, and M. Restelli, ‘‘Compatible reward
inverse reinforcement learning,’’ in Proc. Adv. Neural Inf. Process.

Syst., I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., 2017, pp. 2050–2059.

[84] K. A. Ciosek and S. Whiteson, ‘‘OFFER: Off-environment reinforcement
learning,’’ in Proc. AAAI, 2017, pp. 1819–1825.

[85] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, ‘‘Robust adversarial
reinforcement learning,’’ Mar. 2017, arXiv:1703.02702. [Online]. Avail-
able: https://arxiv.org/abs/1703.02702

[86] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and
J. Tsang, ‘‘Hybrid reward architecture for reinforcement learning,’’ in
Proc. Adv. Neural Inf. Process. Syst., I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., 2017,
pp. 5392–5402.

[87] Y. Gao and F. Toni, ‘‘Potential based reward shaping for hierarchical
reinforcement learning,’’ in Proc. 24th Int. Joint Conf. Artif. Intell., 2015,
pp. 3504–3510.

[88] A.Marinescu, I. Dusparic, A. Taylor, V. Cahill, and S. Clarke, ‘‘P-MARL:
Prediction-based multi-agent reinforcement learning for non-stationary
environments,’’ in Proc. Int. Conf. Auton. Agents Multiagent Syst.

(AAMAS), 2015, pp. 1897–1898.
[89] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei,

‘‘Deep reinforcement learning from human preferences,’’ in Proc.

Adv. Neural Inf. Process. Syst., I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., 2017,
pp. 4299–4307.

[90] A. Rosenfeld, M. Cohen, M. E. Taylor, and S. Kraus, ‘‘Leverag-
ing human knowledge in tabular reinforcement learning: A study of
human subjects,’’ May 2018, arXiv:1805.05769. [Online]. Available:
https://arxiv.org/abs/1805.05769

[91] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg,
D. Silver, and K. Kavukcuoglu, ‘‘FeUdal networks for hierarchical rein-
forcement learning,’’ Mar. 2017, arXiv:1703.01161. [Online]. Available:
https://arxiv.org/abs/1703.01161

[92] A. Bai and S. Russell, ‘‘Efficient reinforcement learning with hierarchies
of machines by leveraging internal transitions,’’ in Proc. 25th Int. Joint
Conf. Artif. Intell. (IJCAI), 2017, pp. 19–25.

[93] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr, P. Kohli, and
S. Whiteson, ‘‘Stabilising experience replay for deep multi-agent rein-
forcement learning,’’ Feb. 2017, arXiv:1702.08887. [Online]. Available:
https://arxiv.org/abs/1702.08887

[94] D. Calandriello, A. Lazaric, and M. Restelli, ‘‘Sparse multi-task rein-
forcement learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 819–827.

[95] K. Malialis, S. Devlin, and D. Kudenko, ‘‘Resource abstraction for rein-
forcement learning in multiagent congestion problems,’’ in Proc. Int.

Conf. Auto. Agents Multiagent Syst. (AAMAS), 2016, pp. 503–511.
[96] A. Šošić, W. R. KhudaBukhsh, A. M. Zoubir, and H. Koeppl, ‘‘Inverse

reinforcement learning in swarm systems,’’ in Proc. 16th Conf. Auton.
Agents MultiAgent Syst. (AAMAS), 2017, pp. 1413–1421.

[97] C. A. Coker,Motor Learning and Control for Practitioners. Evanston, IL,
USA: Routledge, 2017.

[98] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, ‘‘Optimal
and autonomous control using reinforcement learning: A survey,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2042–2062, Jun. 2018.

[99] J. Si and Y.-T. Wang, ‘‘Online learning control by association and rein-
forcement,’’ IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 264–276,
Mar. 2001.

[100] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, ‘‘Continuous control with deep rein-
forcement learning,’’ 2015, arXiv:1509.02971. [Online]. Available:
https://arxiv.org/abs/1509.02971

[101] H. Al-Rawi, M. Ng, and K. Yau, ‘‘Application of reinforcement learning
to routing in distributed wireless networks: A review,’’ Artif. Intell. Rev.,
vol. 43, no. 3, pp. 381–416, 2015.

[102] R. GhasemAghaei, M. A. Rahman, W. Gueaieb, and A. El Saddik, ‘‘Ant
colony-based reinforcement learning algorithm for routing in wireless
sensor networks,’’ in Proc. IEEE Instrum. Meas. Technol. Conf. (IMTC),
May 2007, pp. 1–6.

[103] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, ‘‘Federated
multi-task learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4424–4434.

[104] M. I. Khan, K. Xia, A. Ali, and N. Aslam, ‘‘Energy-aware task scheduling
by a true online reinforcement learning in wireless sensor networks,’’ Int.
J. Sensor Netw., vol. 25, no. 4, pp. 244–258, 2017.

[105] K. Madani and M. Hooshyar, ‘‘A game theory–reinforcement learning
(GT–RL) method to develop optimal operation policies for multi-operator
reservoir systems,’’ J. Hydrol., vol. 519, pp. 732–742, Nov. 2014.

133666 VOLUME 7, 2019

B. Jang et al.: Q-Learning Algorithms: A Comprehensive Classification and Applications

[106] B. Gao and L. Pavel, ‘‘On the properties of the softmax function
with application in game theory and reinforcement learning,’’ 2017,
arXiv:1704.00805. [Online]. Available: https://arxiv.org/abs/1704.00805

[107] S. Ranadheera, S. Maghsudi, and E. Hossain, ‘‘Mobile edge computa-
tion offloading using game theory and reinforcement learning,’’ 2017,
arXiv:1711.09012. [Online]. Available: https://arxiv.org/abs/1711.09012

[108] J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel, ‘‘Multi-
agent reinforcement learning in sequential social dilemmas,’’ in Proc.

16th Conf. Auton. Agents Multiagent Syst., 2017, pp. 464–473.
[109] C.-Y. Wei, Y.-T. Hong, and C.-J. Lu, ‘‘Online reinforcement learning

in stochastic games,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4994–5004.

[110] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van Hasselt,
andD. Silver, ‘‘Successor features for transfer in reinforcement learning,’’
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 4055–4065.

[111] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, ‘‘Towards
vision-based deep reinforcement learning for robotic motion con-
trol,’’ 2015, arXiv:1511.03791. [Online]. Available: https://arxiv.org/abs/
1511.03791

[112] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, ‘‘Target-driven visual navigation in indoor scenes using
deep reinforcement learning,’’ in Proc. IEEE Int. Conf. Robot. Automat.
(ICRA), 2017, pp. 3357–3364.

[113] J. Shahrabi, M. A. Adibi, and M. Mahootchi, ‘‘A reinforcement learning
approach to parameter estimation in dynamic job shop scheduling,’’
Comput. Ind. Eng., vol. 110, pp. 75–82, Aug. 2017.

[114] S. Ahmed and F. Bouffard, ‘‘Building load management clusters using
reinforcement learning,’’ in Proc. 8th IEEE Annu. Inf. Technol., Electron.
Mobile Commun. Conf., Oct. 2017, pp. 372–377.

[115] E. Mocanu, P. H. Nguyen, W. L. Kling, and M. Gibescu, ‘‘Unsupervised
energy prediction in a Smart Grid context using reinforcement cross-
building transfer learning,’’ Energy Buildings, vol. 116, pp. 646–655,
Mar. 2016.

[116] A. Mirhoseini et al., ‘‘Device placement optimization with reinforce-
ment learning,’’ in Proc. 34th Int. Conf. Mach. Learn., vol. 70, 2017,
pp. 2430–2439.

[117] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, ‘‘Device placement
optimization with reinforcement learning,’’ 2017, arXiv:1706.04972.
[Online]. Available: https://arxiv.org/abs/1706.04972

[118] M. Qiao, H. Zhao, S. Huang, L. Zhou, and S. Wang, ‘‘Optimal chan-
nel selection based on online decision and offline learning in multi-
channel wireless sensor networks,’’ Wireless Commun. Mobile Comput.,
vol. 2017, Dec. 2017, Art. no. 7902579.

[119] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, ‘‘Control of a quadrotor
with reinforcement learning,’’ IEEE Robot. Autom. Lett., vol. 2, no. 4,
pp. 2096–2103, Oct. 2017.

[120] R. Polvara, M. Patacchiola, S. Sharma, J. Wan, A. Manning, R. Sutton,
and A. Cangelosi, ‘‘Autonomous quadrotor landing using deep rein-
forcement learning,’’ 2017, arXiv:1709.03339. [Online]. Available:
https://arxiv.org/abs/1709.03339

[121] T. Chen, Z.Wang, G. Li, and L. Lin, ‘‘Recurrent attentional reinforcement
learning for multi-label image recognition,’’ 2017, arXiv:1712.07465.
[Online]. Available: https://arxiv.org/abs/1712.07465

[122] D. Burke, D. Jenkus, I. Qiqieh, R. Shafik, S. Das, and A. Yakovlev, ‘‘Spe-
cial session paper: Significance-driven adaptive approximate computing
for energy-efficient image processing applications,’’ in Proc. Int. Conf.
Hardw./Softw. Codes. Syst. Synth. (CODES+ ISSS), Oct. 2017, pp. 1–2.

[123] F.-C. Ghesu, B. Georgescu, Y. Zheng, S. Grbic, A. Maier, J. Hornegger,
and D. Comaniciu, ‘‘Multi-scale deep reinforcement learning for real-
time 3D-landmark detection in CT scans,’’ IEEE Trans. Pattern Anal.

Mach. Intell., vol. 41, no. 1, pp. 176–189, Jan. 2019.
[124] A. Achille and S. Soatto, ‘‘Information dropout: Learning optimal repre-

sentations through noisy computation,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 40, no. 12, pp. 2897–2905, Dec. 2018.

[125] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, ‘‘Information theoretic MPC for model-based rein-
forcement learning,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA),
May/Jun. 2017, pp. 1714–1721.

[126] J. T.Wilkes and C. R. Gallistel, ‘‘Information theory, memory, prediction,
and timing in associative learning,’’ in Computational Models of Brain
and Behavior, A. Moustafa, Ed. New York, NY, USA: Wiley, 2017.

[127] Y. Ning, J. Jia, Z. Wu, R. Li, Y. An, Y. Wang, and H. Meng, ‘‘Multi-
task deep learning for user intention understanding in speech interaction
systems,’’ in Proc. 31st AAAI Conf. Artif. Intell., 2017.

[128] X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-K. Wong, and
W.-C. Woo, ‘‘Deep learning for precipitation nowcasting: A benchmark
and a new model,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 5617–5627.

[129] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
‘‘A brief survey of deep reinforcement learning,’’ pp. 1–16, 2017,
arXiv:1708.05866. [Online]. Available: https://arxiv.org/abs/1708.05866

[130] J. García and F. Fernández, ‘‘A comprehensive survey on safe reinforce-
ment learning,’’ J. Mach. Learn. Res., vol. 16, no. 1, pp. 1437–1480, 2015.

[131] V. S. Borkar, ‘‘Learning algorithms for risk-sensitive control,’’ in Proc.
19th Int. Symp. Math. Theory Netw. Syst. (MTNS), vol. 5, 2010,
pp. 1327–1332.

[132] A. Gosavi, ‘‘Reinforcement learning: A tutorial survey and recent
advances,’’ Inf. J. Comput., vol. 21, no. 2, pp. 178–192, 2009.

BEAKCHEOL JANG (M’17) received the B.S.
degree from Yonsei University, in 2001, the M.S.
degree from the Korea Advanced Institute of Sci-
ence and Technology, in 2002, and the Ph.D.
degree from North Carolina State University,
in 2009, all in computer science. He is currently an
Associate Professor with the Department of Com-
puter Science, SangmyungUniversity. His primary
research interests include wireless networking, big
data, the Internet of Things, and artificial intelli-

gence. He is a member of the ACM.

MYEONGHWI KIM received the B.S. degree in
computer science from Sangmyung University,
Seoul, South Korea, in 2019, where he is currently
pursuing the M.S. degree with the Department of
Computer Science. His research interests include
machine learning and computer networks.

GASPARD HARERIMANA received the B.S.
degree in computer engineering from Ethiopian
Defense University, in 2008, and the M.S. degree
in information technology from Carnegie Mel-
lon University, in 2015. He is currently pursu-
ing the Ph.D. degree with the Department of
Computer Science, Sangmyung University, Seoul,
South Korea, where he is also a Research Assis-
tant. He was a Staff and a Researcher with the
Rwanda’s Ministry of Defense, Kigali, Rwanda,

and a Visiting Lecturer with the Adventist University of Central Africa,
Kigali. His research interests include computer networks, big data, and
machine learning with an emphasis on deep learning.

JONG WOOK KIM (M’17) received the Ph.D.
degree from the Computer Science Department,
Arizona State University, in 2009. He was a
Software Engineer with the Query Optimization
Group, Teradata, from 2010 to 2013. He is cur-
rently an Assistant Professor of computer sci-
ence with Sangmyung University. His primary
research interests include data privacy, distributed
databases, query optimization, and machine learn-
ing. He is a member of the ACM.

VOLUME 7, 2019 133667

	INTRODUCTION
	ORGANIZATION OF THIS PAPER

	BACKGROUND KNOWLEDGE
	MARKOV DECISION PROCESS
	STATE
	ACTION
	STATE TRANSITION PROBABILITY MATRIX
	REWARD
	DISCOUNT FACTOR
	POLICY

	VALUE FUNCTION
	BELLMAN EQUATION
	BELLMAN EXPECTATION EQUATION
	BELLMAN OPTIMALITY EQUATION

	CLASSIFICATION OF Q-LEARNING ALGORITHMS
	SINGLE-AGENT
	BASIC Q-LEARNING
	DEEP Q-LEARNING
	HIERARCHICAL Q-LEARNING
	DOUBLE Q-LEARNING
	OTHERS

	MULTI-AGENT
	MODULAR Q-LEARNING
	ANT Q-LEARNING
	NASH Q-LEARNING
	SWARM-BASED Q-LEARNING
	OTHERS

	RESEARCH TREND AND KEY APPLICATIONS
	RESEARCH TRENDS
	RECENT ADVANCES
	CONTROL OF INDUSTRIAL PROCESS
	COMPUTER NETWORKING
	GAME THEORY
	ROBOTICS
	OPERATIONS RESEARCH
	ARTIFICIAL INTELLIGENCE

	RELATED WORKS
	CONCLUSION
	REFERENCES
	Biographies
	BEAKCHEOL JANG
	MYEONGHWI KIM
	GASPARD HARERIMANA
	JONG WOOK KIM

