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ABSTRACT The energy consumption of the routing protocol can affect the lifetime of a wireless sensor

network (WSN) because tiny sensor nodes are usually difficult to recharge after they are deployed. Generally,

to save energy, data aggregation is used to minimize and/or eliminate data redundancy at each node and

reduce the amount of the overall data transmitted in a WSN. Furthermore, energy-efficient routing is widely

used to determine the optimal path from the source to the destination, while avoiding the energy-short

nodes, to save energy for relaying the sensed data. In most conventional approaches, data aggregation and

routing path selection are considered separately. In this study, we consider the degrees of the possible

data aggregation of neighbor nodes when a node needs to determine the routing path. We propose a

novel Q-learning-based data-aggregation-aware energy-efficient routing algorithm. The proposed algorithm

uses reinforcement learning to maximize the rewards, defined in terms of the efficiency of the sensor-

type-dependent data aggregation, communication energy and node residual energy, at each sensor node

to obtain an optimal path. We used sensor-type-dependent aggregation rewards. Finally, we performed

simulations to evaluate the performance of the proposed routing method and compared it with that of

the conventional energy-aware routing algorithms. Our results indicate that the proposed protocol can

successfully reduce the amount of data and extend the lifetime of the WSN.

INDEX TERMS Wireless sensor networks, routing, data aggregation, Q-learning, network lifetime.

I. INTRODUCTION

A wireless sensor network (WSN) can be defined as a self-

configured and infrastructure-less wireless network used to

monitor and record the physical conditions of an environment

and store the collected data at a central location. WSNs have

received considerable attention for multiple types of applica-

tions because of their low cost, small size and applicability

in diverse fields such as healthcare, military and underwa-

ter monitoring [1]. Recently, the device, network and data

management technologies for WSNs have been extended to

other fields such as smart factories, where sensor nodes are

deployed to collect data on products and machines for smart

factory operations. In smart cities, WSNs can be deployed

to create an efficient service delivery platform for public

and municipal workers and to manage the city resources

efficiently [2], [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongwei Du.

In a WSN, many sensor nodes are deployed over a wide

area to collect observation data and send them to a sink

(or server). Therefore, multi-hop transmission is required to

deliver the collected data successfully to the sink located

beyond the transmission range of the source sensor node.

This requires a collecting sensor node to calculate the optimal

route to the sink. Energy efficiency is a primary challenge

to the successful application of WSNs because nodes have

limited energy and cannot be recharged easily after they have

been deployed. Furthermore, because energy is mostly con-

sumed by the radio device, an energy-efficient design of the

routing algorithm for communication is essential. Most of the

ongoing research on energy-aware routing has two objectives:

to minimize the overall energy consumption on the routing

path and maintain even residual energy levels. Because the

overall energy consumption depends on the distance between

nodes and the number of intermediate nodes, the minimum

hop count path or shortest distance path is generally used

for WSN routing. The residual energy level of each node or
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power drain rate is also considered to avoid path disconnec-

tion and network partition. These measures can prolong the

network lifetime because energy is dissipated more equally

among all nodes [4], [5].

Because the data being collected by multiple sensors in a

given area are based on common phenomena, there is likely

to be some redundancy in the source data. Data aggregation

as a form of ‘‘in-network-processing’’ in WSNs is widely

used to collect data in an energy-efficient manner by elimi-

nating redundancy and minimizing the number of transmis-

sions or data size. In many WSN applications, the actual

measured raw data at each sensor node may not need to be

delivered in the exact same form to the sink. The raw data

can be abstracted or compressed in networks. Depending on

the monitoring purposes of applications, various aggregation

techniques can be used, such as abstracting as {mean, vari-

ance}, maximum value, minimum value, lossy compression,

feature domain reduction and data prediction. The efficiency

of data aggregation increases when the correlation among the

data collected by various sensors is high [6], [7].

Various machine learning technologies have been used to

effectively capture the dynamic features such as node topol-

ogy changes, restricted energy conditions, event detection

and communication costs of WSNs for their energy-efficient

operation. Among them, reinforcement learning (RL) is par-

ticularly suitable for problems that include a long- versus

short-term reward trade-off. It provides a framework for a

system to learn from its previous interactions with its envi-

ronment and to select its actions efficiently in the future.

RL-based routing protocols can determine the optimal path

as an adaptive method for complex network conditions and

quality of service requirements [8]–[10].

Most previous studies on energy-efficient routing path

selection typically consider communication energy with hop

counts and the distance to the sink node to reduce the overall

network-wide energy consumption and/or residual energy

level at each sensor node to distribute the energy burden

equally. However, distributing the possible routes to reduce

the overhead of specific sensor nodes may conflict with the

objective of minimizing the network-wide energy consump-

tion. Notably, the optimization goals do not consider the

possibility of data aggregation through the path. Furthermore,

data aggregation and routing path selection are considered

separately in conventional approaches [11]–[14].

In this article, we propose an RL-based energy-aware rout-

ing algorithm for obtaining a global optimum path to mini-

mize the overall energy consumption and prolong the lifetime

of theWSN.We define the degrees of the possible data aggre-

gation of neighbor nodes when a node needs to determine

the routing path. Because data from various sensor types

(e.g., vibration measurement sensor and temperature sen-

sor) may not show strong correlation, they cannot be aggre-

gated together. Therefore, we define sensor-type-dependent

aggregation rewards. We propose a novel Q-learning-based

data-aggregation-aware energy-efficient routing (Q-DAEER)

algorithm, in which each sensor node reinforces to determine

the optimum path that can maximize the rewards by consid-

ering the sensor-type-dependent data aggregation level of the

neighbor node, the residual energy, communication cost with

distance and hop count to the sink. In this way, the sensor

nodes can determine the optimum next hop node using their

updated Q-values based on the rewards.

This article is organized as follows: In Section II, we review

the existing energy-aware routing protocols for the WSN.

In Section III, we present our proposed system model for

WSN routing. In Section IV, we discuss Q-DAEER algo-

rithm. We present the simulation results in Section V and

conclude this article in Section VI.

II. RELATED WORK

Routing is essential inWSNs to support reliable data transfer,

achieve low latency and provide energy-efficient operation.

Wireless communications consume significant amount of

power for transmitting sensed data from sensor nodes to

sink nodes. However, the power consumption has become

a limiting factor because most sensor nodes are powered

by batteries. Sensor nodes used in wireless networks have

limited computational capability and cannot have full infor-

mation about networks so that it is very difficult for nodes

to calculate the optimum route to the destination quickly.

Even when a node is able to obtain the optimum routing path,

the path may not remain optimum over time owing to various

types of changes in the sensing environment, for example,

the node movement, instable wireless channel condition and

dynamic energy status of sensor nodes. Conventional ad hoc

routing protocols can be classified into proactive and reactive

protocols [15]. In proactive routing, routes are computed even

when they are not needed and stored in a routing table at

every node. Therefore, the routing table maintenance over-

head is large and limits the scalability of this routing pro-

tocol. In reactive routing, routes are computed only when

they are needed, and sensor nodes store routes only for their

neighbors. However, this protocol may increase latency for

sensed data delivery. To overcome these problems, many

studies on finding the optimum routing path with low energy

consumption are underway.

Mohemed et al. [16] addressed the hole problem in WSNs

using two distributed, energy-efficient and connectivity-

aware routing protocols. They used two different proto-

cols in local and global environments. This technique can

decrease the overhead of topology reformation and pro-

long the network lifetime. Razaque et al. [17] presented the

combined protocol of low-energy adaptive-clustering hierar-

chy (LEACH) and power-efficient gathering in sensor infor-

mation systems (PEGASIS), named P-LEACH. This protocol

can improve the performance by considering the limitation

of cluster-based routing in LEACH and static routing in

PEGASIS. Khan et al. [18] addressed the problem of sensor

node movement in wireless body area sensor networks using

a dynamic routing algorithm. Owing to diverse activities of

humans, the positions of sensor nodes on the human body

change every second. Therefore, packet and energy losses
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occur during transmission when nodes use the static rout-

ing algorithm. The authors solved this problem using the

information of the residual energies of nodes, hop count to

sink distance and throughput when nodes select the next hop

node to forward data. Baker et al. [19] applied the GreeDi

routing protocol to the ad hoc on-demand distance vector

(AODV) in vehicular ad hoc networks (VANET), named

GreeAODV, to achieve an energy-efficient routing protocol

in the next hop selection. They modeled city map-based

VANET scenarios and demonstrated that the proposed algo-

rithm was better than the original AODV. Oubbati et al. [20]

proposed an energy-efficient routing protocol, named energy

connectivity-aware data delivery, in the flying ad hoc net-

work. They ensured the connectivity of the proposed routing

protocol by using the information on unmanned aerial vehi-

cles (UAVs), such as their speed and location, to minimize the

packet loss caused by the movement of UAVs.

There are some studies on maximizing data aggrega-

tion and network lifetime. Oubbati et al. [21] addressed

the trade-off between efficient data aggregation and total

link cost minimization. They used a comprehensive weight,

named weighted data aggregation routing strategy, for solv-

ing the trade-off. By overlapping the paths of the nodes

in a cluster-based WSN, they maximized the efficiency

of data aggregation and prolonged the network lifetime.

Ardakani et al. [22] presented a data-aggregation-aware

efficient-routing algorithm in which the mobile agent

received data from sensor nodes and aggregated and trans-

mitted the data to the sink. They solved the delay and packet

loss in routing protocols using the movement scheme of

the mobile agents. Haseeb et al. [23] addressed the secu-

rity issues in applying the conventional routing algorithm to

a large-area Internet of things. They proposed light-weight

structure-based data aggregation routing, which is a secure

protocol that uses in-route data aggregation for routing data

in the conventional routing protocols. Yazici et al. [24] pre-

sented a fusion-based framework to reduce the amount of

data to be transmitted over the wireless multimedia sensor

network by intra-node processing. They designed a sensor

node to detect objects using machine learning techniques

and proposed a method for increasing the accuracy while

reducing the data amount. For sensor network routing, a new

cluster-based routing algorithm that consume less power was

presented. Clustering is one of the important techniques

for topology control, effective data aggregation and energy-

efficient routing in WSN.

Many researchers have applied machine learning

techniques to obtain the optimal routing path with low

overhead and cost. Chang et al. [25] applied the k-means

algorithm and a genetic algorithm for multi-objective opti-

mization. The sensor nodes in the network were clustered

using the k-means algorithm. They constructed a fitness

function of the genetic algorithm to maximize the network

lifetime. Thangaramya et al. [26] presented a neuro-

fuzzy-based energy-efficient clustering algorithm. In neuro-

fuzzy, they used a membership function comprising the

communication distance and energy information of nodes

to use the energy-efficient clusters to minimize packet loss.

Guo et al. [27] proposed an energy-efficient routing protocol

based on a reinforcement learning algorithm. The nodes

were reinforced to calculate the optimal routing path using

a reward policy to maximize the energy efficiency and life-

time of the network. Wang et al. [28] used the ant colony

optimization (ACO) algorithm to address the mobile sink

wireless sensor network routing protocol. They proposed

an improved ACO algorithm that considered not only the

time and energy but also the distance between the selected

cluster head (CH) and a mobile sink to calculate the optimum

mobility trajectory.

El Alami and Najid [29] proposed the LEACH-based fuzzy

cluster head selection algorithm. They determine the chance

value using the membership function that consists of residual

energy, expected efficiency and the closeness to base station.

The nodes which have the higher chance value are selected

as CHs in a round. Lee and Teng [30] improve the LEACH

algorithm using fuzzy logic in mobile sensor network. The

change of location of the nodes in network causes packet

losses so they use the membership function that is made

of residual energy, the movement speed and pause time of

nodes. By the membership function, the chance values of all

nodes to elect the CH nodes are calculated. El Alami and

Najid [31] proposed an enhanced clustering hierarchy (ECH)

approach to achieve energy efficiency in WSNs by using

sleeping-wakingmechanism for overlapping and neighboring

nodes. Thus, the data redundancy is minimized and then net-

work lifetime is maximized. Sert andYazıcı [32] proposed the

modified clonal selection algorithm (CLONALG-M) applied

to determine the approximate form of the output membership

functions to improve the performance of rule-based fuzzy

routing. Fuzzy approach is superior to well-defined method-

ologies, especially where boundaries between clusters are

unclear. They derived the optimal solution by using the initial

membership function and iterative experiment.

Some studies have focused on data aggregation-based

energy efficient routing in WSNs. Sensing data routing in

network aggregation provides a better solution in terms of the

reduced number of messages, high aggregation rate and reli-

able transmission. Zhang et al. [33] proposed the data aggre-

gation mechanism supported by dynamic routing. Nodes in

network select the neighbor node as next hop, which has the

minimum value of function that is made of residual energy,

hop count and the size of remained buffer. Li et al. [13]

presented differentiated data aggregation routing (DDAR)

that makes different QoS (Quality of Service) routes to sink

node based on aggregation threshold and aggregation dead-

line. Most of conventional data aggregation-based routing

algorithms are generally utilizing tree structure or hierar-

chical clustering architecture to aggregate the data and to

find out the optimum route to the sink. However, they have

not considered network-wise data aggregation possibilities

and corresponding energy consumption for different sensor

types, in which they depend on type-dependent neighbor
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FIGURE 1. WSN model with multiple sensor types.

relationship and aggregation degrees of paths. To capture

network-wise dynamics, machine learning based adaptive

routing path evaluation mechanism is required. In this arti-

cle, we propose a Q-learning-based routing algorithm to

obtain the best next-hop node to maximize the efficiency of

in-network processing. In addition, the network-wise energy

consumption for communication and the residual energy of

every intermediate node are also considered.

III. PROPOSED MODEL

A. NETWORK MODEL

In this study, we assume that various types of sensors, such

as temperature sensors, humidity sensors and photosensors,

are deployed in a field, as depicted in Fig. 1. Each sensor

type has different sensing intervals based on various operating

requirements. A sensor node stores its observed data and any

received data from its one-hop neighbor nodes in its buffers.

Each node maintains multiple sensor-type-dependent buffers.

The same-sensor-type data among neighbor nodes have

strong correlation. Therefore, the data of the same-type sen-

sors can be aggregated at each node before being forwarded,

as depicted in Fig. 1 [34]. Each sensor node periodically

forwards its stored data to one of its one-hop neighbor nodes

based on the proposed reinforcement-learning-based routing

algorithm; eventually, the data are delivered to the sink node.

A sink node periodically broadcasts a Hello packet with an

incremental sequence number and an initial zero hop count

value. As in the publish/subscribe model in the WSN [35],

a sink node declares its interest in the Hello packet. When

a sensor node receives a Hello packet, it increases the hop

count by 1 and rebroadcasts it to its neighbors. When a sensor

node receives a Hello packet that has the same sequence

number but a larger hop count, it simply discards the packet.

With operation, all sensor nodes in the network always

know the minimum hop count to the sink node. The pro-

posed Q-DAEER is designed to apply to the flat network as

in Fig. 1. However, the concept of Q-DAEER can be extended

to the cluster-based hierarchical network architecture for

inter-cluster routing between cluster heads.

B. FUNCTIONAL MODEL

A schematic of the proposed method is depicted in Fig. 2.

To reduce the energy consumption for environment sensing,

FIGURE 2. Schematic of the proposed system.

sensors periodically sense the environment based on a prede-

fined sensing schedule for each sensor type.When the sensing

timer expires, the sensing module collects the data from the

environment and saves them in its sensor-type queue. Each

node can receive any sensor-type data from its neighbor nodes

through a transceiver and stores the data in the queue for

the corresponding sensor type. Data collection at each node

can be performed during a predefined waiting time for each

sensor type. Depending on the latency requirement for each

sensor type, the waiting time at the queue can be determined.

When the waiting timer expires, the stored data in the queue

are passed to the aggregation module. In the aggregation

module, all raw data of each sensor type measured by the

node itself and collected from neighbor nodes are aggregated

using the aggregation model described in Section III.D. The

aggregated data for each sensor type are forwarded to the

best neighbor node, which is determined using the proposed

Q-learning algorithm (see Section IV). After the neighbor

node receives the data, it responds with the ACK (acknowl-

edgement) packets, which have the status information of

the data aggregation degree, hop count to the sink node,

energy-related values and the location of a node. Based on the

response, the sending node calculates the reward to update the

Q-table for the corresponding sensor type.

C. SENSING AND DATA TRANSMISSION MODEL

In this section, we introduce the WSN sensing and data trans-

mission model of the proposed system. In WSN, the sensor

node is composed of a sensor part for monitoring the sur-

rounding environment and a transceiver part for transmitting

and receiving data. It is assumed that each sensor node does

not continuously sense the surrounding environment, and the

required sensing time and sensing interval for each sensor

type are predetermined. The sensing start time at each node

does not need to be synchronized with other nodes so that

10740 VOLUME 9, 2021



W.-K. Yun, S.-J. Yoo: Q-DAEER Protocol for WSNs

FIGURE 3. Data aggregation and transmission system model.

asynchronous sensing method is used. On the other hand,

WSN transceivers generally use multi-mode (e.g., active, idle

and sleep) operation for energy-efficiency, in which there

exists the transceiver wakeup time synchronization issue

with neighbor nodes. In the synchronous transceiver wakeup

method, complex clock synchronization implementation and

high control packet overhead exist. In the asynchronous

method, there is high overhead for obtaining the wakeup

schedules of neighboring nodes in advance and packet deliv-

ery latency can be higher than that of the synchronous

method.

In Fig. 3, it is assumed that each sensor node is equipped

with one sensor type. Notation sti represents sensor node i

with sensor type t . A sensor node can have multiple types of

sensors, as s
t1,··· ,tk
i . There are K different sensor types in the

WSN, and each node has K queues to separately store data

for various sensor types. Note that even if the sensor node

has only one sensor, it should have K queues because it can

be used as a relay node for any type of data. Fig. 3 shows the

process of performing data aggregation on the routing path to

the sink node. It was assumed that st1i node is determined as

the next node on the path to the sink node by the previous

nodes. As depicted in Fig. 3, at the nth time step, sensor

node st1i measures the environment and has the observed

data of sensor type t1, ODt1i (n). It also receives aggregated

data for each sensor type from its neighbor nodes. ADt1j (n)

indicates the aggregated data of type t1 at time step n from

neighbor node j. During time step n, node st1i stores all data

(the received aggregated data and its local observed data) in

sensor type queues Qti (n) , t = t1, · · · , tK . At the end of

time step n, the node aggregates the stored data as ADti (n) ,

t = t1, · · · , tK , and then it forwards the aggregated data of

each type to the selected neighbor nodes.

Fig. 4 illustrates the sensing and transmission of data in the

proposed system model. Generally, to save energy, instead

of continuous sensing, sensor nodes in the WSN sense the

FIGURE 4. Data aggregation models (a) Representative aggregation
(b) Lossy compressive aggregation (c) Lossless aggregation.

environment at a predefined sensing interval. In our model,

we defined the sensing time and sensing interval for each

sensor type t as ST t and SI t , respectively. For data aggre-

gation for in-network processing, each node must wait for

a certain amount of time to possibly receive the same type

of data from the neighbor nodes. A longer waiting time for

data aggregation results in larger latency for data delivery to

the sink node. Because the level of time delay required for

each sensor-type data may be different, the waiting time is

set differently for each type in this model. WT t represents

the waiting time for sensor type t data aggregation. Typically,

WT t is larger than ST t and, during sensing interval SI t ,

we have multipleWT t time steps. All nodes need not be time

synchronized; they can start their schedules independently at

any time. As depicted in Fig. 4, at the nth waiting time step,

if there is a scheduled sensing time, the sti node measures the

environment during ST t and obtains data ODti (n). The node

will wait until the waiting timer expires to receive aggregated

data from its neighbors. In Fig. 4, sti receives AD
t
a (n) and

ADtb (n) from nodes a and b, respectively. At the end of

WT t (n), sti aggregates all stored data of its type t queue

Qti (n) and sends them to the next neighbor. When sti receives

aggregated data from the neighbor before the next sensing

time, the node will wait for aggregated data from neighbors

until the waiting timer expires.

The queue state and aggregated data size of the sti sensor

node at time step n are computed as follows:

Qti (n) = ODti (n) +
∑

j∈Ni

ADtj (n) (1)

ADti (n) = DA
{

Qti (n)
}

(2)

where Ni is the set of neighbor nodes of node i, and DA{ }
is the data aggregation function (explained in Section III.D).
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FIGURE 5. Schematic of sensing and data forwarding procedures (type t data only).

In Eq. (1), if there is no scheduled sensing time for type t at

time step n, then ODti (n) = 0.

The required energy for data transmission is generally

proportional to the size of the aggregated data and the dis-

tance between the sender and receiver if the sensor nodes

can control the transmission power. The required reception

energy depends on the size and decoding of the data. The

required energy for data aggregation is proportional to the

queue state [36].

The total transmission energy required by node i at the nth

time step is

ETXi (n) =
∑

∀t

ADti (n)

B

{

PtxElec + Pamp

(

di−nt∗
dmax

)β
}

(3)

where B is the nominal bit rate; PtxElec is the transmission

power; Pamp is the amplifier power; dmax is the maximum

distance for communication at each node;di−nt∗ is the distance

between node i and the selected next neighbor node for type

t using the proposed routing algorithm, and β is the path loss

exponent (β = 2 for free space).

The total reception energy required by node i at the nth time

step is

ERXi (n) =
∑

∀t

{

ADti (n)

B
PrxElec + ADti (n)EdecBit

}

(4)

where PrxElec is the reception power, and EdecBit is the decod-

ing energy per bit.

The total energy required for data aggregation by node i at

the nth time step is

EDAi (n) =
∑

∀t
Qti (n)EaggBit (5)

where EaggBit is data aggregation energy per bit.

D. DATA AGGREGATION MODEL

Owing to the high node density in sensor networks, similar

data are sensed by many nodes, which results in redundancy

in the sense data. Using data aggregation techniques, tem-

poral and spatial redundancies can be reduced while routing

packets from the source to the sink [37]–[39].

In this study, we consider three different types of data

aggregation models. The first is a representative aggregation

model, in which the sink node represents only a representative

value. The typical mathematical functions are sum, average,

maximum, minimum or median. In this model, regardless

of the cumulative queue state size, the aggregated data can

have a unit packet size, as depicted in Fig. 5(a). The second

model is the lossy compressive aggregation model. In this

model, the sensed data from multiple sensors can be rep-

resented by the limited size of the feature vector, in which

various types of dimension reduction techniques with infor-

mation loss can be applied. As depicted in Fig. 5(b), when

the queue state is less than the feature vector size of the

transformed domain, the data in the queue are transmit-

ted without further aggregation. The third model is loss-

less aggregation, in which the sink node can reconstruct

the raw data from the aggregated data without any loss.

In this study, we modeled this type of aggregation using a

log function, as depicted in Fig. 5(c). The three different

data aggregation models are represented mathematically as

follows:

DAmodel1
{

Qti (n)
}

=

{

U t
m1 if Qti (n) > 0

0 if Qti (n) = 0
(6)
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TABLE 1. System model parameters.

DAmodel2
{

Qti (n)
}

=











U t
m2 if U t

m2< Qti (n)

Qti (n) if 0 < Qti (n) < U t
m2

0ifQti (n) = 0

(7)

DAmodel3
{

Qti (n)
}

=

{

U t
m3 × log2 (DPi(n) + 1) if 0 < DPi(n)

0 if DPi (n) = 0
(8)

where U t
m1, U

t
m2 and U t

m3 are the unit packet sizes for the

first, second and third models, respectively; DPi(n) is the

number of aggregated data packets in the queue of node i.

The data aggregation model is designed based on theWSN

application objectives and sensor data types. It means that the

actual shapes of models can be different depending on the real

applications and used aggregation methods. Table 1 lists the

system model parameters defined in this study.

IV. Q-LEARNING-BASED DATA-AGGREGATION-AWARE

ENERGY-EFFICIENT ROUTING PROTOCOL

Reinforcement learning methods are essential to solve

optimal control problems using on-line measurements by

interacting with an environment. The objective of RL is to

maximize the reward of an agent by taking a series of actions

in response to a dynamic environment. RL can be applied to

the WSN routing problem because it can capture the dynam-

ics of the network and environment conditions efficiently,

in which the action at each sensor node is the selection of

the next node for forwarding the sensing data to the sink

node. Q-learning is a model-free value-based RL algorithm

that is used to obtain the optimal action-selection policy using

a Q value function. The Q value (quality value) represents

how useful a given action is in gaining some future reward.

Q-learning uses temporal differences (TD) to estimate the

expected Q value through episodes with no prior knowledge

of the environment. Q-learning is defined using an agent, a

FIGURE 6. Q-learning model for the proposed system.

set of states S and a set of actionsA. By performing an action

a ∈ A, the agent transitions from one state to another. The

agent in state s interacts with the environment with action a

to learn the environment, while depending on the outcome,

to acquire reward r . The decision goal for selecting one of

the actions in the given state is to maximize the expected sum

of weighted rewards, which include the current immediate

reward and future discounted rewards [40].

In the proposed Q-learning system for WSN routing,

the agent is considered as a network-wide data flow. In the

conventional single-agent approach, a centralized network

controller acts as an agent that can observe the global condi-

tions of the entire network and control the packet transmission

at each sensor node. This central agent approach requires a

large overhead and makes it difficult to know the status of

the entire network in real time. In the proposed system, there

is no explicit central agent; instead, cooperative informa-

tion exchange among neighbor nodes ensures that each node
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knows the network-wide state transition behaviors. As shown

in Fig. 6, the flow of data in the WSN is an agent, and each

sensor node represents a state. When the type t waiting timer

of sensor node i expires, it must select the next neighbor

node to forward the aggregated data of type t . In this case,

the current state is si; the actions at the current state are the

list of neighbor nodes; the next state will be node sj, to which

the aggregated data of type t are forwarded. The states and

actions are defined as follows:

S = {s1, s2, · · · , sN }

A = {A1,A2, · · · ,AN } , Ai =
{

aj = sj|sj ∈ Nsi
}

(9)

where N is the number of sensor nodes and Nsi is the set of

neighbor nodes of node si.

In Q-learning, the Q-table helps in finding the best action

for each state, in which the action value function Q (s, a)

returns the expected sum of the current and future rewards

when action a is performed at state s. This function can be

estimated through iterative update using the Bellman equa-

tion.

Suppose that the agent selects action a in state s, observes

reward R and enters new state s′. Then the action value

function (Q-value), Q (s, a), is updated as follows:

Q (s, a) = (1 − α)Q (s, a) + α
{

R+ γ · Q
(

s′, a
)}

(10)

where α is the learning rate and γ is the discount factor for

the future reward.

To achieve balance between exploitation and exploration,

the epsilon-greedy strategy is generally used to select action

a∗ in state s, as in Eq. (11). The epsilon-greedy strategy,

in which epsilon refers to the probability of choosing to

explore, exploits most of the time with a small chance of

exploring:

a∗|s =







argmax
a

Q (s, a) with probablity 1 − ǫ

any action a with probability ǫ
(11)

In Q-DAEER, we perform data-type-dependent action

selection and Q-table updating. Fig. 6 depicts a Q-learning

scenario for WSN routing. In state si (sensor node i), suppose

the waiting timer for type t1 expires so that the data inQt1i (n)

aggregate into ADt1i (n). In Fig. 6, the agent takes the best

action that has the maximum action value for type t1 of the

current Q-table. The best action for the given state can be

different for each data type t .

The action value of action a in state s is represented as a

vector, as in Eq. (12), to capture sensor-data-type-dependent

expected rewards for each action:

Q (s, a) =











Qt1 (s, a)

Qt2 (s, a)
...

QtK (s, a)











(12)

where K is the number of sensor types. The best action for

type t data forwarding in the given state s is defined as

follows:

at∗|s = argmax
a

Qt (s, a) (13)

As depicted in Fig. 6, after taking the action (forwarding the

aggregated data of type t) in the current state s, the agent

state changes to the new state s′(the receiving sensor node

of the forwarded data); the rewards are given to the current

state s; the Q-table of the action taken for state s is updated.

Because our Q-learning process is not controlled centrally

and is performed in a distributed manner at each sensor node,

the current state node s does not have the Q-table of the

next state to update its Q-table using Eq. (10). In addition,

state s does not explicitly know the reward for the action

taken. In the data-aggregation-aware energy-efficient routing,

rewardR for the action in Eq. (10) represents the effectiveness

of data aggregation and energy efficiency at the next node

selection, and it is computed at the next state (next node).

Therefore, in this study, when the next node responds the

receipt of the aggregated data to the sender it also includes

its maximum Q-values and the computed reward R.

Because the agent acts based on the Q-value updated after

the reward, it is essential to set the reward policy to determine

an optimum solution for the Q-learning algorithm. We define

reward R for the proposed routing algorithm as a function of

rewards for the data aggregation degree, node energy status

and hop count to the sink node. The data aggregation reward

for type t , r tDA, is defined as in Eq. (14), and it is computed

by the next node s′ after it sends the received ADts(n) data to

its queue Qt
s′
(n) and aggregates the queued data of type t into

ADt
s′
(n).

r tDA =















Qt
s′
(n)

ADt
s′
(n)

− 1 if
Qt
s′

(n)

ADt
s′

(n)
− 1 < rmaxDA

rmaxDA else
Qt
s′
(n)

ADt
s′
(n)

− 1 ≥ rmaxDA

(14)

where rmaxDA is the maximum reward for data aggregation.

In s′, when the data aggregation degree (ratio between the

raw and aggregated data sizes) for type t is high, reward r tDA
is also high. The data aggregation reward is type dependent.

When node s forwards the type t data, r tDA can be computed

directly. However, the aggregation rewards for other t ′ types

cannot be computed directly because node s did not send

other types of data at this time step. In this study, we estimate

the expected rewards for other types. The estimation of the

expected reward for other t ′ types, r̂ t
′

DA, is simply defined as

the most recent r t
′

DA at node s′. The data aggregation reward

vector (RDA) for all data types is defined using (15).

RDA =

















r tDA =
Qt
s′

(n)

ADt
s′

(n)
...

r̂ t
′

DA = r t
′

DA

(

n−
)

=
Qt

′

s′

(

n−
)

ADt
′

s′

(

n−
)

















(15)
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FIGURE 7. Example scenario for the proposed Q-DAEER learning process.

where t is the data-type node s sent and n− is the most recent

time step at which node s′ computed r t
′

DA.

We have defined the type-independent energy status

reward. The energy status reward (RE ) is defined as follows:

RE =
Er
s′

(n)

Er
s′

(0)
−

(

ds−s′

dmax

)β

(16) (16)

where Er
s′

(n) and Er
s′

(0) are the residual energies of the next

node s′ at the nth and 0th time steps, respectively; ds−s′ is

the estimated distance between nodes s and s′ ( estimated

at node s′ using any distance estimation techniques);dmax is

the maximum transmission range of the sensor nodes; and

β is the path loss exponent (in free space β = 2). When

the remaining energy of the next state node is relatively

large and the distance between the next and current state

nodes is short (which means that the energy requirement for

transmission is low), the action selection is efficient in terms

of energy. Consequently, the energy state reward increases.

This reward policy can reduce the energy consumption of the

entire network and increase the network lifetime by evenly

distributing the energy consumption at each node.

To forward data to the sink, the reward should be smaller

than the maximum Q-value of the parent hop count node.

However, the fixed reward for all nodes in the network has

a higher probability of backwarding the nodes that are away

from the sink. An additional discount factor for the reward of

the nodes is necessary to prevent backwarding. Reward R for

action a in state s is finally computed as follows:

R =

{

ηHs × (RDA+RE × E1) if s′is not a sink

Rs × E1 else
(17)

where Hs is the hop count of node s, E1 is the K -dimensional

vector with all 1s, Rs is the sink node reward and η is the

discount factor for the reward in range [0, 1].

When node s receives reward R, it needs to update its

Q-table. To update its action value function Q (s, a),

it requires Q
(

s′, a
)

of the next state node. As explained

previously, in our proposed mechanism, when the next node

s′ receives an aggregated data packet, it replies with the

ACK packet, in which the reward vector R of Eq. (17) and

maxQ
(

s′, a
)

vector are included. Therefore, node s can

update its Q-table based on the ACK packet information. The

maxQ
(

s′, a
)

vector includes the maximumQ-value for each

data type at the next node s′ as follows:

maxQ
(

s′, a
)

=















max
∀a

Qt1
(

s′, a
)

max
∀a

Qt2
(

s′, a
)

...

max
∀a

QtK
(

s′, a
)















(18)

The general Q-table update rule of Eq. (10) can be represented

in vector form as follows:

Q (s, a) = (1 − α)Q (s, a) + α
{

R+ γ + maxQ
(

s′, a
)}

(19)

Fig. 7 illustrates a scenario for the proposed Q-DAEER learn-

ing procedure.

1) At node s, the waiting timer of type t1 expires at time

step n, and then node s aggregates data in queueQt1s (n)

to ADt1s (n).

2) Node s selects action a2 (node s
′) that has the maximum

Q-value for type t1 of state s Q-table.
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3) Based on action a2, node s forwards the aggregated data

to node s′.

4) Node s′ calculates reward vector R.

5) Node s′ derives maxQ
(

s′, a
)

vector from its Q-table

in the form of Eq. (18).

6) Node s′ replies to ACK including
{

R,maxQ
(

s′, a
)}

.

7) Node s updates Q (s, a) vector using Eq. (19).

Table 2 shows the complexity and overhead analysis of the

proposed algorithm compared with two other WSN routing

methods. The first compared algorithm is the shortest path

routing using the proposed data aggregation model at each

node on the path. The second one is the shortest path routing

without data aggregation. The analysis has been conducted

in terms of complexity, queue management overhead, control

message overhead and time delay.

V. SIMULATION RESULTS AND PERFORMANCE

EVALUATION

In this section, we evaluate and analyze the performance

of the proposed Q-DAEER routing protocol in terms of its

energy consumption, network lifetime, average hop count and

decrease in data size. We implemented the simulation envi-

ronments using MATLAB R2019a to compare the proposed

routing algorithm with the conventional routing algorithms.

The simulation parameters and values used in this study are

listed in Table 3. We used the random-type grid topology

for the WSN, in which sensor nodes were deployed in the

form of a grid, as depicted in Fig. 8 (an example topology),

and each sensor node had only a single-type sensor module

that is randomly selected. The characteristics of the three

types of sensor modules are summarized in Table 4. 77 sensor

nodes were deployed in the sensing area. The initial energy

level of nodes followed a uniform distribution with [2J, 2.5J].

The maximum transmission range of nodes was assumed to

be 150 distance units (du). The unit packet sizes for data

aggregation model-1, −2 and −3 given by Eqs. (6)–(8) were

proportional to the observed data size by each sensor type.

The transmission, amplification and reception powers were

200 mW, 500 mW and 200 mW, respectively. The nominal

bit rate for nodes was 6 Mbps and the energy consumptions

for decoding and data aggregation were 40 nJ and 20 nJ per

bit, respectively. The observed packet sizes, sensing intervals

and waiting timers of all sensor types are listed in Table 4.

We implemented two conventional energy-aware WSN

routing algorithms shown in Table 2 for performance compar-

ison. In the shortest path routing (SPR) without data aggrega-

tion, to minimize energy consumption, a sensor node in the

network selects the next neighbor node that has a least hop

count to the sink. This results in a minimum distance between

the source node and the sink node. In the shortest path rout-

ing with data aggregation (SPRwDA), when a sensor node

receives the aggregated data from other nodes, the node waits

until the waiting timer expires to minimize the transmission

overhead. Then it aggregates all received and locally observed

data together using the proposed aggregation procedure, and

FIGURE 8. Energy consumption for nodes (a) Energy consumed per time
unit (tu) (b) Average energy consumed.

it forwards the aggregated data to the next node using the

shortest path routing.

We performed the simulation until half of the nodes of

the one-hop neighbors of the sink were dead or some nodes

in the network were isolated so that they could not transmit

data to the sink. We compared the performances in terms of

network-level energy consumption, number of dead nodes,

network lifetime, average hop count and decrease in data

size. Network-level energy consumption is the sum of ener-

gies consumed by all the sensor nodes. The number of dead

nodes represents the number of sensor nodes with depleted

energies. Network lifetime indicates the elapsed time until

half of the nodes of the one-hop neighbors of the sink are

dead or some nodes in the network are isolated so that they

cannot transmit data to the sink. Average hop count is the

average of the hop counts required to reach the sink node,

which also approximately represents the delay from the data

source to the sink node. Decrease in data size represents the

amount of the reduced data size owing to data aggregation

through the routing path. It represents the efficiency of data

aggregation of a routing algorithm. In the simulation study,

model-1, model-2 andmodel-3 represent the data aggregation

models given by Eqs (6), (7) and (8), respectively.
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TABLE 2. Complexity and overhead analysis.

TABLE 3. Simulation parameters.

The comparative results of network-level energy consump-

tion are depicted in Fig. 9. Fig. 9(a) shows the results at

each time step tu (time unit). In the SPR and SPRwDA,

the energy consumption at every time step is almost constant

because they use the shortest routing path and it is only

determined by the current network topology. Since SPRwDA

uses the proposed data aggregationmethod before forwarding

data at each node, it can be seen that the energy used is

lower than that of SPR. In the proposed Q-DAEER method,

the energy consumption of each sensor node in the WSN

using the proposed routing algorithm is dynamic owing to the

policy-based dynamic reward update rule. Initially, the energy

consumption of the proposed method is higher than that of

the conventional algorithms because each node needs to learn

the optimal path. However, after learning, the nodes spent the

least energy for all three data aggregation models. Fig. 9(b)

shows the total average energy consumptions for all time

steps. We can see that the proposed algorithm consumed the

least energy compared with two other algorithms. In data

aggregation model-1, the efficiency of data aggregation is the

highest so that its average energy consumption was the lowest

among all the models. For three data aggregation models,

FIGURE 9. Wireless sensor network simulation environment.

TABLE 4. Sensor type dependent parameters for simulation.

the propose Q-DAEER can reduce energy consumption by

67%∼32% compared with SPR and by 25%∼5% compared

with SPRwDA.

The comparisons of the numbers of dead sensor nodes over

time and the average network lifetime are shown in Fig. 10.

In the case of SPR, it can be seen that the number of dead

nodes increases faster than other methods due to high energy

consumption. The data aggregation model-3 exhibits a faster

node dead time when compared with the other two models

because, as in Fig. 9(b), model-3 consumes more energy

when compared with the other models. Fig. 10(b) depicts the

network lifetimes when half of the nodes near the sink are

dead or some of the nodes are isolated. In data aggregation

model-1, the network lifetime using the proposed method

is approximately 6.8∼2.5 and 1.55∼1.29 times longer than

VOLUME 9, 2021 10747



W.-K. Yun, S.-J. Yoo: Q-DAEER Protocol for WSNs

FIGURE 10. Numbers of dead sensor nodes and network lifetimes
(a) Number of dead sensors per time unit (tu) (b) Network lifetimes.

those of SPR and SPRwDA, respectively for three data aggre-

gation models.

Fig. 11 shows the average hop count of data packets from

the data source node to the sink node. The average hop

count at each time unit is depicted in Fig. 11(a). In SPR

and SPRwDA, because each sensor node forwards data to

the neighbor that is closest to the sink node, the average hop

count is almost constant and lower than that of the proposed

Q-DAEER regardless data aggregation models. However,

near the end of the simulation, the average hop counts of SPR

and SPRwDA increase slightly because some nodes become

dead owing to the depletion of their energies. In contrast,

the proposed Q-DAEERmethod demonstrates a higher initial

average hop count for reinforcement learning. In Q-learning,

before the Q-table is stabilized and used, the agent needs

to explore more paths. The average hop count in the pro-

posed method decreases significantly after the initial learning

period. Each sensor node dynamically learns the optimal

routing path in terms of not only the hop count but also the

energy consumption and data aggregation degree on the path.

The Q-DAEER algorithm may choose longer paths to obtain

higher expected rewards by achieving more data aggregation

and energy saving. Therefore, for three data aggregation

FIGURE 11. Comparison of hop count averages (a) Average hop count per
time unit (tu) (b) Average hop count.

models, the average hop count of Q-DAEER is approximately

25%∼35% higher than those of SPR and SPRwDA.

A comparison of the decrease in data sizes in the network

is presented in Fig. 12. Fig. 12(a) shows the decrease in the

data size at each time unit. Because SPR does not perform

data aggregation, the reduced data size is zero. In SPRwDA,

the reduction in the data size is almost similar at each time

step for roughly the first half of the network lifetime; after-

ward, it increases suddenly. Because SPRwDA utilizes the

shortest path, the energy of some nodes close to the sink

node depletes, eventually causing these nodes to stop func-

tioning. This causes data from sensor nodes to concentrate

in the remaining nodes, which can significantly reduce the

data size. Therefore, the decrease in the data size increases

in the second half of the simulation. However, as shown

in Fig 9, this accelerates the energy shortage among the

overloaded nodes and shortens the network lifetime. In the

proposed Q-DAEER algorithm, the rewards that are given by

the neighbor nodes consider the energy level and degree of

data aggregation so that nodes always dynamically determine

the best path. The results indicate that the proposed algo-

rithm can obtain a more optimal path to improve energy and

data aggregation efficiency compared with the conventional
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TABLE 5. The results of grid and random topologies for 100 and 400 sensor node cases.

FIGURE 12. Comparison of data size reduction due to data aggregation
(a) Per time unit (tu) decrease in data size due to aggregation (b) Average
decrease in data size.

method. As depicted in Fig. 12(b), the proposed algorithm

achieved approximately 20%∼10% higher data reduction

ratio compared with SPRwDA for three aggregation models.

We applied a random topology in addition to the grid

topology in the previous experiments in the sensor deploy-

ment topology, and also verified the scalability of the pro-

posed algorithm by increasing the number of nodes to

100 and 400. Table 5 shows the experimental results with the

compared methods. As we can see, the proposed Q-DAEER

method consumed less energy and achieved longer network

lifetime for both of random and grid topology at even dense

node conditions.

VI. CONCLUSION

In this article, we proposed a Q-learning-based data-

aggregation-aware energy-efficient routing (Q-DAEER)

algorithm. To calculate the best path to maximize the lifetime

andminimize energy consumption of the network, we defined

a reward policy that considered the energy level, distance,

hop count and the degree of data aggregation at each node.

For efficient data aggregation at each node with different

sensor types, we presented a data aggregation and system

model in which sensor-type-dependent queue management

and transmission schedule control were used. The reward

functions defined in this study captured the changes in

the energy node, neighbor relationship and type-dependent

data aggregation dynamics of each node. In the proposed

Q-DAEER algorithm, we incorporated a data-type-dependent

action selection and Q-table updating algorithm. To demon-

strate the applicability of the proposed algorithm to various

data aggregation scenarios, we defined three different data

aggregation models. We compared the performance of the

proposed algorithm with that of the conventional routing

protocol in terms of its energy consumption, network lifetime,

average hop count and degree of data aggregation. The

results indicate that the proposed algorithm can obtain a

more optimal path to improve energy and data aggregation

efficiencies when compared with the conventional method.

We demonstrated that the proposed Q-DAEER protocol can

successfully reduce the overall data transmission load and

extend the lifetime of the wireless sensor network.
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