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Abstract—During network planning phase, optimal network
planning implemented through efficient resource allocation and
static traffic demand provisioning in IP-over-elastic optical net-
work (IP-over-EON) is significantly challenging compared with
the fixed-grid wavelength division multiplexing (WDM) network
due to increased flexibility in IP-over-EON. Mathematical opti-
mization models used for this purpose may not provide solution
for large networks due to large computational complexity. In this
regard, a greedy heuristic may be used that intuitively selects
traffic elements in sequence from static traffic demand matrix
and attempts to find the best solution. However, in general, such
greedy heuristics offer suboptimal solutions, since appropriate
traffic sequence offering the optimal performance is rarely
selected. In this regard, we propose a reinforcement learning
technique (in particular a Q-learning method), combined with
an auxiliary graph (AG)-based energy efficient greedy method to
be used for large network planning. The Q-learning method is
used to decide the suitable sequence of traffic allocation such
that the overall power consumption in the network reduces.
In the proposed heuristic, each traffic from the given static
traffic demand matrix is successively selected using Q-learning
technique and provisioned using the AG-based greedy method.

Index Terms—Elastic optical network, Reinforcement learning,
Power consumption.

I. INTRODUCTION

With the increase in adoption of data-intensive services,
such as ultra-high-definition video streaming, cloud gaming
and virtual and augmented reality video streaming, global IP
traffic is anticipated to increase 3-fold from 2017 to 2022 [1].
With the increase in communication network traffic, global
energy consumption in the network is expected to grow to a
staggering level of 21% of the global electricity consumption
by 2030 [2]. Achieving energy-efficiency in communication
networks is not practicable without paying due attention to
the energy efficiency in optical backbone networks. In view
of this, in this paper, we focus on energy efficiency in optical
backbone networks.

We aim to minimize the power consumption (PC) in optical
backbone network during network planning phase through
efficient resource allocation and traffic provisioning taking into
consideration the expected (static) traffic demands of node
pairs. Elastic optical network (EON) architecture enabling the
flexible grid (spectrum) allocation and use of flexible transpon-
ders [i.e., sliceable bandwidth variable transponders (SBVTs)],
orthogonal sub-carriers and adaptive modulation schemes is
considered to be prospective next-generation optical backbone
network architecture [3, 4]. EON allows coexisting of multi-
ple lightpaths with different capacities, spectrum, maximum
transparent reaches (MTRs) and related PCs at SBVT in

each unidirectional fiber1. In IP-over-EON architecture, IP
layer is integrated with EON, and access network traffic from
multiple sources are groomed through electrical layer traffic
grooming in IP-core routers for onward transmission through
EON [5]. Energy efficiency in the network can be improved
by exploiting the flexibility and reconfigurability of IP-over-
EON. In the network planning phase, resource and traffic
provisioning are implemented employing static traffic demand
matrix, which is typically obtained from the long-term average
traffic demands of node pairs or a predetermined percentile of
the peak traffic demands between the nodes.

In IP-over-EON, intelligent traffic provisioning may be
considered as one of the approaches to improve energy ef-
ficiency in the network. The complexity to obtain the opti-
mal network planning increases many-fold for IP-over-EON
compared with the fixed-grid wavelength division multiplexing
(WDM) networks due to increased flexibility in IP-over-
EON. To provision traffic demands (elements) from the static
traffic demand matrix, a mathematical optimization model
may be used for optimal network planning [6–8]. However,
the optimization model may not provide solution for large
networks in presence of all related constraints due to large
computational complexity. Thus, a greedy heuristic may be
used that intuitively selects one traffic demand at a time (i.e.,
at each step) and routes the traffic [7, 9]. The process is
repeated for all traffic elements in the traffic demand matrix
with the traffic elements selected in a sequence, as the heuristic
attempts to obtain the best solution. However, the greedy
heuristic has only one chance to select and route a traffic,
and never reviews the decision taken at an earlier step. It may
offer the best performance for specific traffic sequence(s) only,
and any other traffic sequence will yield suboptimal solution.
As for example, Zhao et al. show that different sequences of
traffic demands, such as traffic demands with decreasing order
of data-rate requirement or decreasing order of the number
of fiber links along the shortest path between the source and
destination (SD) nodes may change the network performance
in terms of the maximum allocated sub-carrier indices on a
fiber [10]. Thus, in the planning phase, there lies opportunity
for optimization of network performance by deciding the best
sequence of static traffic demands to be selected. If in a given
network with N number of nodes, traffic demands exist among
all nodes in the static traffic demand matrix, i.e., N(N -1)
number of traffic exist (excluding the diagonal elements), there
can be [N(N -1)]! numbers of possible sequences following

1In this paper, unless stated otherwise, a fiber represents a bidirectional
fiber with two unidirectional fibers in the opposite directions.
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which the traffic demands can be provisioned. Therefore,
the search space is significantly large for moderate to large
value of N . An analogy can be made between this problem
and finding the shortest Hamiltonian path problem, which is
considered to be NP-hard. A Hamiltonian path ensues that
travelling along the path, all nodes in the graph are visited only
once, similar to provisioning all traffic elements only once.
However, one important difference between the two problems
is that for the shortest Hamiltonian path, the distance between
any two nodes (i.e., the related cost in traversing between the
nodes) is fixed irrespective of the order (i.e., sequence) of
traversal of the nodes, whereas in case of network planning
problem, the cost value is not fixed, and it depends on the
existing network condition, i.e., the existing lightpath status,
resource availability etc.

Reinforcement learning (RL) is a category of machine
learning (ML) technique that may be used to make a sequence
of decisions. Watkins first propose Q-learning algorithm [11],
which is an RL technique, and the convergence of the al-
gorithm is proved in [12]. Gambardella et al. propose Q-
learning based algorithms in a weighted complete graph to find
the shortest Hamiltonian tours, analogous to determining the
sequence of static traffic demands to be selected for optimal
provisioning [13]. For efficient network planning, we explore
a Q-learning based technique, which is a reward based trial
and learn method and does not require any labeled data.

In this paper, we explore energy-efficient network planning
for IP-over-EON using static traffic demands by deciding the
best sequence of traffic to be provisioned using Q-learning
technique combined with a greedy heuristic. Each traffic from
the given static traffic demand matrix is successively selected
using Q-learning technique and provisioned using greedy
heuristic. The process is repeated for the traffic demand matrix
for multiple times, and the best network planning is identified.
We use an auxiliary graph (AG)-based energy-efficient greedy
heuristic to provision the selected traffic with the least increase
in PC. For identification of traffic sequence, Q-learning based
algorithm is used, where an agent predicts an action, i.e., the
next traffic to be provisioned from the past experiences, and
gains reward based on the PC needed for provisioning. From
the received rewards, the agent tries to develop the optimal
policy that helps to decide the best sequence for energy-
efficient traffic provisioning. The performance of the proposed
Q-learning and AG based energy-efficient network planning
for IP-over-EON heuristic, referred to as QAG-ENP-IoE, is
assessed with realistic network setting. Moreover, we also use
virtualized elastic regenerators (VERs) to enhance flexibility,
connectivity, and improving energy efficiency in the network.

In Section II, related literature are presented. Next, in
Section III, a brief description of IP-over-EON architecture and
PC model for network equipment are presented. In Section IV,
the proposed heuristic is described, while in Section V the
performance of the heuristic is studied. Finally, Section VI
concludes the paper.

II. RELATED WORK

Klinkowski et al. propose an integer linear programming
(ILP) based optimization model to solve routing and spectrum

allocation (RSA) problem with the objective to minimize
the use of spectrum resources, i.e., frequency slots (FSs)
for optimal network planning in EON using static (offline)
traffic demands [14]. Since the optimization model is NP-
hard, a greedy heuristic is proposed for large problem size
where traffic demands are allocated in the decreasing order of
requested FSs. Zhang et al. propose a heuristic to maximize
optical layer traffic grooming in IP-over-EON facilitating
simultaneous generation/termination of multiple lightpaths of
different capacities, FSs and MTRs by a single SBVT, so
as to minimize the overall PC [7]. The proposed heuristic
provisions traffic in descending order of the requested band-
width. The authors in [9] propose an AG-based heuristic for
energy efficient network planning in IP-over-EON, where the
sequence of traffic to be processed is determined following
the descending order of traffic bandwidth. Furthermore, a
pruning strategy is used to further reduce the PC wherever
possible. Ramaswami et al. propose an mixed ILP (MILP)
model for network planning in fixed-grid WDM networks [15].
The MILP model is further decomposed into virtual topology
design and traffic routing sub-problems, and the solution from
the first sub-problem is provided as input to the second sub-
problem so as to improve computational tractability for large
networks. Zhao et al. explore an ILP formulation to solve
nonlinear impairment-aware RSA problem for EON with the
objective to reduce the maximum index number of FSs to be
used on a fiber [10]. In this regard, simulated annealing based
heuristic is also explored for large problems following three
different traffic demand ordering policies, viz., decreasing
order of traffic demands, decreasing order of the number of
links along the shortest paths, and decreasing order of the
product of shortest path length and traffic demand [10]. In [16],
with reference to dynamic traffic provisioning in IP-over-EON,
different job scheduling strategies (i.e., identifying sequence
of traffic demands) are adopted based on the bandwidth and
holding time criteria, and their impact on the overall energy
efficiency is studied.

Musumeci et al. discuss different application areas in optical
networking domain, such as path computation, dynamic traffic
prediction, failure management, and quality of transmission
(QoT) estimation, where ML techniques can be used [17].
Salani et al. present an ML classifier based QoT estimator
to estimate parameters in transmission reach constraints of an
ILP model, in order to solve the routing, modulation format
and spectrum assignment problem [18]. Following iterative
approach, the method excludes lightpaths with poor QoT as
estimated by the ML classifier, until either a feasible solution
for all lightpaths is found, or the upper limit of iteration count
is reached. In [19], to achieve a fast network recovery from an
IP node failure in IP-over-EON, a Q-learning based recovery
algorithm is presented. Kiran et al. propose algorithms based
on Q-learning to solve path selection and wavelength selection
in optical burst switch (OBS) networks with objective to
minimize the burst loss probability [20]. The algorithm is used
to select path and wavelength from a set of pre-computed paths
and a set of wavelengths, respectively. In case of IP node
failure in 5G and beyond 5G (B5G) IP-over-optical network,
Gu et al. use Q-learning based algorithm to re-configure the
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optical layer in view of service recovery, without requiring to
re-route the affected traffic flows individually [21]. The pro-
posed method helps in mitigating exhaustive IP forwarding and
routing requirement. To the best of our knowledge, identifying
the sequence of traffic for network planning in IP-over-EON
using any ML technique has not been studied till date.

III. NETWORK ARCHITECTURE AND PC MODEL FOR
NETWORK EQUIPMENT

The IP-over-EON architecture has a partial mesh topology
where nodes are connected with fibers, and fibers have inline
optical amplifiers installed with a fixed span (regular interval)
of distance L. As shown in Fig. 1, at each node, a post-
amplifier is connected with the outbound unidirectional fiber,
whereas a pre-amplifier is connected with the inbound uni-
directional fiber. An optical amplifier placed at a location is
composed of two unidirectional amplifiers operating at oppo-
site directions, along with the related electronic circuit. Thus,
optical amplifiers are treated as bidirectional. We consider the
following PC model for an optical amplifier that each optical
amplifier has a constant overhead PC of PAO

along with a
fixed PC of PAd

for each unidirectional amplifier [9, 22]. As
shown in Fig. 1, each node has one IP core router where each
port has a fixed capacity of CR and a fixed PC of PR [9,
23]. Each router port is connected to a SBVT that is equipped
with multiple sub-transponders with each sub-transponder sup-
porting transmission/reception of one lightpath. Each lightpath
is characterized by multiple attributes, such as the capacity,
the MTR, the number of data-slots and the required PC
at SBVT. We consider that different lightpath transmission
options are available at SBVT following Table I where each
data-slot is considered to be of 12.5 GHz [9, 24, 25]. PC to
transmit/receive a lightpath at SBVT is considered to be half
of the PC of an active sub-transponder [7, 9]. Each SBVT is
connected to an add-drop port of a bandwidth variable optical
cross-connect (BV-OXC). A BV-OXC has the same PC model
as that of the OXC used in fixed-grid WDM networks. The PC
in a BV-OXC is considered to be (135.d+150) W for 100%
add-drop facility, where d is the physical degree of the node
accommodating the BV-OXC. Some of the nodes may also
have one or more VERs [26, 27] connected to BV-OXC for
4R-regeneration (re-shaping, re-timing, re-amplifying, and re-
modulation) of lightpaths and merging of FSs when routes of
multiple lightpaths after regeneration are the same. A VER
consists of a splitter, a coupler and an array of spectrum
selective regenerators (SSRs) [26, 27]. We consider that PC in
a VER depends on the lightpaths being regenerated through
SSRs, where PC for lightpath regeneration is same as the
summation of the PC for termination and generation of the
same type of lightpath through sub-transponders in SBVT (as
shown in Table I) [24]. We consider that overhead PC for
each SSR is PVS

, and the number of SSRs used in a VER
depends on the number and type of lightpaths regenerated.
The overhead PC for each VER is considered to be PVO

[8].
The total PC in a VER is the summation of the PC for the
SSRs used and the overhead PC [8].
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Fig. 1: An IP-over-EON node architecture.

TABLE I: Multiple transmission options for sub-transponder
of an SBVT and VER [9, 24, 25]

Capacity
(Gbps)

MTR
(km)

Data
Slot

PC
(W)

Capacity
(Gbps)

MTR
(km)

Data
Slot

PC
(W)

40

600 1 154.8

100

600 1 198
1900 1 183.6 1900 1 270
2500 2 183.6 2500 2 270
3000 3 183.6 3000 3 270
4000 4 183.6 3500 4 270

200

500 1 333

400

500 4 432
600 2 333 600 6 432
750 3 333 750 8 432

1900 4 432 1900 10 630
2200 5 432 2200 12 630
2500 6 432 2500 14 630

IV. PROPOSED HEURISTIC: QAG-ENP-IOE

A. Problem Description

In the proposed heuristic, our objective is to minimize
the overall PC in an IP-over-EON with the given network
topology and static traffic demands of node pairs. The outcome
(solution) of the heuristic is to determine the network resources
(viz., IP core router ports, SBVTs and VERs) to be provisioned
at the appropriate node locations, the setting up of lightpaths
and allocation of traffic demands through lightpaths (i.e.,
traffic routing). The PC in the network is also computed. Typ-
ically, for this purpose, mathematical optimization models are
used for small networks, whereas greedy heuristics are used for
large networks. In this study, Q-learning technique integrated
with a greedy heuristic is explored for large networks so as to
reduce the overall PC as estimated using any greedy heuristic.
The greedy heuristic we use for this purpose is discussed in
the following.

B. Greedy Heuristic

We use modified AG-based energy-efficient network plan-
ning for IP-over-EON (mAG-ENP-IoE) heuristic (Algo-
rithm 1) based on [9] as the greedy heuristic. Using the
heuristic we provision the selected traffic demands, one at a
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time, in an energy-efficient manner. A brief description of the
heuristic is presented in the following.

For a given traffic demand, first, we determine the capacity
of the lightpath (that may required to be set up) as the
closest (equal or higher) transmission rate supported by an
SBVT with reference to the traffic demand. Thereafter, with
reference to the traffic demand we construct an AG (Fig. 2),
as also described in [9]. In this regard, we consider a physical
node to be composed of an electrical layer auxiliary node
(AN) AE , and multiple optical layer ANs, viz., A1, A2, etc.,
corresponding to different available transmission options in
SBVTs. AG (Fig. 2) is constructed using different types of
edges, viz., transmission edges, Tx/Rx edges and lightpath
edges. Transmission edge is set up between two similar type
optical layer ANs located at two different physical nodes if the
required FSs for possible lightpath set up are available in the
connecting fiber. The transmission edge weight is represented
by the PC of optical amplifiers to be used on the fiber.
Tx/Rx edge is set up from (to) an electrical layer AN to
(from) an optical layer AN within the same physical node
if the sub-transponder with required capacity is available at
SBVT. The related edge weight is represented by the PC of IP
core router and SBVT to originate (terminate) the lightpath.
Lightpath edge is set up between two electrical layer ANs
located at two different physical nodes if free capacity in the
existing lightpath between the two physical nodes is available
to provision the traffic demand. Lightpath edge weight is
represented by the PC to accommodate the traffic demand to
an existing lightpath. As for an example, in Fig. 2, we show
three physical nodes A, B and C, with distances between A
and B, and B and C of 1500 km and 900 km, respectively [9,
24]. We consider availability of only two transmission options
in the network with MTRs of 1000 km and 1500 km. We show
several AG edges: Tx/Rx edges (viz., AE-A1, AE-A2 etc.),
lightpath edge (viz., AE-BE) and transmission edges (viz.,
A2-B2, B2-C2 etc.)

Next, using the AG, the shortest path, i.e., the path with
the minimum PC between the electrical layer ANs of the SD
nodes of the traffic demand is determined. If any path is not
available, the traffic demand is split into two traffic elements
between the same SD pair, such that at the least one traffic
element becomes the closest transmission rate supported by
an SBVT, and the algorithm starts again from Line 1 for
possible provisioning of each split traffic one by one. If a path
is available and the path consists of one or more lightpath

Optical Layer-1 
(MTR:1000km)

Electrical Layer

Optical Layer-2 
(MTR:1500km)

Tx/Rx Edge Transmission Edge Lightpath Edge

AE

A1

A2

BE

B1

B2

CE

C1

C2

A B C1500km 900km

Fig. 2: An example auxiliary graph [9, 24].

edges, the traffic is groomed with the current traffic in the
existing lightpath(s). On the other hand, if the path consists
of one or more Tx/Rx edges, new lightpath(s) are set up with
due consideration of possible utilization of VER in the path
to improve energy-efficiency. Finally, the traffic demand is
accommodated and the increase in PC due to provisioning of
the traffic demand through the path is computed. If the traffic
demand is provisioned fully, true is returned; else, false is
returned.

Algorithm 1: Modified AG-based energy-efficient net-
work planning for IP-over-EON (mAG-ENP-IoE)

1 Set the capacity of lightpath that may need to be set
up between SD node pair.

2 Construct AG.
3 Find shortest path between SD node pair.
4 if no path available then
5 Split traffic demand into two traffic elements and

start again from Line 1 to provision all split
traffic.

6 else
7 if Lightpath edge(s) appear in the path then
8 Groom traffic element in the existing

lightpath(s).
9 end

10 if Tx/Rx edge(s) appear in the path then
11 Set up new lightpath(s).
12 end
13 Accommodate traffic.
14 end
15 Compute PC due to traffic flow through the path.
16 if traffic provisioned fully then
17 return true
18 else
19 return false
20 end

C. Q-Learning

The main idea of Q-learning is to develop a policy to
take certain actions based on the state of an environment or
system. In Q-learning based algorithms, agents learn the policy
based on rewards received by taking actions in different states,
and the objective is to maximize the overall reward. Thus,
to maximize the overall reward, agent focuses on long-term
rewards rather than focusing only on the immediate reward.
Next, we discuss Q-learning [28] in the following in brief.

There are three sets in Q-learning, viz., the set of states S
in the environment, the set of actions A from which an agent
can take an action, and the set of rewards R which comprises
the reward received by the agent for each action. At each step
t, agent is in a representative state s ∈ S in the environment
where the agent takes an action a ∈ A forming a state-action
pair (s, a). For action a taken in the state s at step t, the agent
in the next step (i.e., t+1) reaches to state s′ ∈ S and receives
reward Rt+1 ∈ R. At step t the expected overall reward (Gt)
is the summation of all future rewards:
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Gt = Rt+1 +Rt+2 +Rt+3 + ... (1)

However, it may happen that in order to gain immediate high
reward the agent may fail to win distant future high reward.
Thus, rather than optimizing Eq. (1), discounted summation is
optimized [Eq. (2)]. Here, γ ∈ [0, 1] represents the discount
rate; having value close to 0 shows the focus of agent is on
short term rewards and value close to 1 shows focus on long
term rewards.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

= Rt+1 + γGt+1

(2)

The probability of selecting an action at a particular state
is determined by the policy function, i.e., following policy π
at step t on state s, the probability of selecting action a is
π(a|s). The merit of any state for policy π, i.e., the value of a
state if policy π is followed, can be determined by state-value
function vπ using Eq. (3), where Eπ denotes the expected
value of random variable when agent follows policy π and St
denotes the state at step t.

vπ(s) = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s

]
(3)

Similarly, merit of any action at a state for policy π, i.e.,
the value of an action under policy π can be determined by
action-value function qπ using Eq. (4), where At denotes the
action at step t. This shows the quality of taking an action at
a state, also known as the Q-function, and the obtained value
is referred to as Q-value for the state-action pair.

qπ(s, a) = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s,At = a

]
(4)

A policy π can be said to be better than any other policy π′

if and only if vπ(s) ≥ vπ′(s),∀s ∈ S. The optimal state-value
function v∗(s), where v∗(s) = maxπ vπ(s),∀s ∈ S shows the
highest expected reward by any policy at each state. Simi-
larly, the optimal action-value function, or optimal Q-function
q∗(s, a), where q∗(s, a) = maxπ qπ(s, a),∀s ∈ S, a ∈ A
shows the highest expected reward by any policy for each
possible state-action pair.

Hence, for any state-action pair (s, a) at step t, the expected
reward for selecting an action a at state s following optimal
policy is the summation of expected reward for taking action
a at state s (i.e., Rt+1) and the maximum expected discounted
reward that can be achieved from any possible next state-action
pair (s′, a′).

i.e., q∗(s, a) = E

[
Rt+1 + γmax

a′
q∗(s

′, a′)

]
(5)

Eq. (5) is known as Bellman equation for q∗. In this study,
Q-learning method is used to learn the optimal Q-value for
each state-action pair in order to find the optimal policy. In
Q-learning, iteratively Q-values are updated for each state-
action pair using Bellman equation to converge Q-function
towards the optimal Q-function (q∗). This approach is known
as value iteration. Thus, from optimal q∗, optimal policy can

be determined, as at any state s action a can be found using
Q-learning algorithm that maximizes q∗(s, a).

Over the time the agent goes through multiple episodes
(iterations). In each episode, agent takes action at every step
based on the highest Q-value of the present state (i.e., performs
exploitation), and updates state and Q-value accordingly until
the stopping criteria of the episode is met. Initially, Q-values
for all state-action pair are maintained at zero value, and
thus agent explores different states (i.e., performs exploration).
To balance between exploration and exploitation, initially
exploration rate (ε) is typically set to 1 and gradually de-
cayed (having decay rate ε∆) with increase in episodes. The
exploration rate may be determined following Eq. (6), where
εmin and εmax are set to 0 and 1 respectively. At each step,
a random number [0, 1] is generated and compared with ε
to select between the exploration or exploitation modes. In
exploration mode, an action is selected randomly and this
strategy is referred to as epsilon greedy strategy.

ε = εmin + (εmax − εmin)e
−ε∆·episode (6)

How quickly agent discards the already learned Q-value is
controlled by the learning rate α ∈ [0, 1]. Lower the learning
rate, more slowly the agent updates the Q-value. Thus, from
Eq. (5), for state-action pair (s, a) at step t, the new Q-value,
as shown in Eq. (7) is computed as the weighted sum of the
previous Q-value and the learned value.

qnew(s, a) = (1− α)q(s, a)
+ α

[
Rt+1 + γmax

a′
q(s′, a′)

] (7)

D. QAG-ENP-IoE

In Algorithm 2, we present QAG-ENP-IoE heuristic where
we sequentially identify a traffic using Q-learning technique
and provision it using the AG-based greedy heuristic (i.e.,
mAG-ENP-IoE). Here, at a given episode, a state signifies
the number of traffic that already have been provisioned, and
action signifies taking attempt to provision the next traffic.
First, all parameters are initialized: all Q-values are set to
zero, the total number of actions and the maximum number
of steps per episode are made equal to the total number of
traffic to be provisioned (i.e., all non-zero elements in the
traffic demand matrix), the total number of states is made
equal to the total number of traffic to be provisioned added
with two (representing the initial state when no traffic has
been provisioned and the final state when all traffic have been
provisioned), and the total number of episodes, α, γ, εmin,
εmax and ε∆ values are provided.

For each episode, the agent first initializes the starting state
to zero and doneF lag to false. The execution of the current
episode is terminated (stopped) in case all traffic have been
provisioned or a given traffic cannot be provisioned. If any of
these two conditions is met, doneF lag is set to true. Next, for
each step, first, the action based on exploration or exploitation
is decided. A random number [0,1] is generated and compared
with ε. In case the random number is greater than ε, an
unprovisioned traffic is selected based on the maximum Q-
value at the current state. Otherwise, an unprovisioned traffic
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Algorithm 2: Q-learning and AG-based energy-
efficient network planning for IP-over-EON (QAG-
ENP-IoE)

1 Initialize all parameters.
2 for episode← 0 to totalEpisodes-1 do
3 state = 0, doneFlag = False
4 for step← 0 to maxStepsPerEpisode− 1 do
5 explorationRateThreshold = random.uniform(0,

1)
6 if explorationRateThreshold > ε then
7 action = action having max Q-value in

current state except already taken actions.
8 else
9 action = select random action except

already taken actions.
10 end
11 Use Algorithm 1 to provision traffic.
12 if trafficProvisioned then
13 reward = -(increment in overall PC)
14 if allTrafficProvisioned then
15 doneFlag = True
16 reward += R
17 end
18 else
19 doneFlag = True
20 reward = -P
21 end
22 update Q-value using Eq. (7)
23 state += 1
24 if doneFlag then
25 break
26 end
27 end
28 update ε using Eq. (6)
29 end

is selected through uniform random distribution. Next, attempt
is made to provision the selected traffic using mAG-ENP-IoE
(Algorithm 1). If the traffic is provisioned successfully, the
incurred reward is the negative of the increase in PC, else
reward is -P , where, P represents a very large number used
as penalty. Reward is considered to be negative as our problem
to reduce PC is a minimization problem. Now, for unsuccessful
traffic provisioning or in case all traffic have been provisioned,
doneF lag is set to true. Additionally, in case all traffic can be
provisioned, a high reward R is added to the existing reward.
Next, corresponding Q-value is updated following Eq. (7) and
state value is increased by one. If doneF lag is true then
the current episode ends. After completion of each episode, ε
value is updated following Eq. (6).

V. PERFORMANCE ANALYSIS OF PROPOSED HEURISTIC

To assess the performance of QAG-ENP-IoE heuristic,
we consider a realistic large network topology, the National
Knowledge Network (NKN) of India with 31 nodes and 81
fibers (Fig. 3) [9]. We consider that inline optical amplifiers are

placed on fibers 80 km apart, and each IP router port supports
400 Gbps. Each sub-transponder of an SBVT and each VER
supports all possible transmission options as presented in
Table I. The PC for each IP core router port, SBVT, BV-
OXC, VER and amplifier are shown in Table II. The maximum
numbers of SBVTs and VERs that can be installed at any
node are considered to be 64 and 3, respectively. Sliceability
of an SBVT and the number of SSRs in a VER are fixed
at 3 and 16, respectively. It is considered that VERs can be
placed only at the top 30% of the nodes with high degrees.
Static traffic demands for all SD node pairs exist, with the
exception of the traffic demands within the same nodes (i.e.,
the diagonal elements of the traffic demand matrix). Traffic
demands are considered to be uniformly distributed within [5,
2X-5] Gbps, where X represents the average traffic demand
(ATD). The following input parameters: α, γ, ε, εmin, εmax,
and ε∆ to be used with QAG-ENP-IoE are given in Table III.
For each ATD, we execute simulation using QAG-ENP-IoE for
ten thousand episodes with a given traffic demand set (matrix),
and the best result is taken. For a given value of ATD, we show
result averaged over ten different traffic demand sets.
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Fig. 3: 31-node NKN, India topology. Links are shown with
different colors to improve readability [9].

TABLE II: PC for different network equipment

Equipment PC

IP core router port PR = 560W, CR = 400 Gbps [23]

SBVT As shown in Table I [9, 24, 25]

BV-OXC 135·d+150, d is physical degree of node [23]

VER Lightpath transmit/receive: Table I
PVS

= 10W, PVO
= 25W [24]

Amplifier PAd
= 30W, PAO

= 140W [22]
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TABLE III: Different parameters for QAG-ENP-IoE

α = 0.1 ε = 1 εmin = 0.01
γ = 0.99 ε∆ = 0.001 εmax = 1

Fig. 4 shows the average overall PC and the PC distribution
among different network equipment (SBVT, IP core router,
amplifier, VER and OXC) using QAG-ENP-IoE for different
ATDs. The overall PC increases with increase in ATD. Fig. 4
also shows that average execution time increases with increase
in ATD. Table IV shows the standard deviations of PC of
different equipment computed for different ATDs. The relative
PC (%) for different equipment are also tabulated in Table V.
In general, PC due to SBVTs predominates the overall PC of
network, followed by PC due to IP core routers, amplifiers,
OXCs, and VERs. Relative PC due to amplifiers decreases
with increase in ATD, since once all amplifiers on fibers
are activated, further increase in PC due to amplifiers cannot
take place. Relative PC due to IP core routers increases with
increase in ATD, since requirement of IP core router ports
increases with increase in ATD.
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Fig. 4: Average PC for different equipment and average
execution time for NKN designed with QAG-ENP-IoE.

TABLE IV: Standard deviation in PC of different equipment
for NKN

X (Gbps) 40 80 120 160 200

Router 1.02 3.2 6.48 12.75 10.42
SBVT 1.01 6.11 6.69 12.11 13.79
Amplifier 0.83 6.48 5.21 5.25 6.07
VER 1.22 1.80 1.45 2.04 1.36
OXC 0 0 0 0 0
Total PC 2.79 11.03 16.81 24.28 21.38

Fig. 5 shows the average number of total lightpaths and
average number of lightpaths with different capacities set up
with different ATDs. With the increase in ATD, more high
capacity (e.g., 400 Gbps) lightpaths are required to be set
up to efficiently accommodate the increasing traffic demands.
Moreover, in general, higher number of lightpaths are set
up with increase in ATD. Since PC at SBVT is higher for

TABLE V: Relative PC (%) for NKN designed with QAG-
ENP-IoE

X (Gbps) 40 80 120 160 200

Router 23.85 29.37 34.04 37.37 38.17
SBVT 46.89 45.33 44.82 43.34 43.4
Amplifier 22.29 17.97 15.4 14.56 14.03
OXC 6.02 4 3.01 2.53 2.21
VER 0.95 3.33 2.72 2.2 2.18
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Fig. 5: Average number of total lightpaths and average number
of lightpaths with different capacities set up for NKN designed
with QAG-ENP-IoE.

high capacity lightpaths compared with low capacity lightpaths
(Table I), and higher number of lightpaths are set up with
increase in ATD, more PC occurs with increase in ATD (as
shown in Fig. 4). Similarly, with increase in ATD, requirement
of different equipment also increases, as reflected in Fig. 6.
As VERs are used only for regeneration and used only at the
top 30% of the nodes with high degrees, the average number
of VERs used in the network is very less compared with other
equipment.
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The performance of QAG-ENP-IoE is compared with the
following different heuristic methods:

(i) Shortest path network planning with traffic provisioning
in descending order (SP).

(ii) Network planning using mAG-ENP-IoE with traffic pro-
visioning in descending order (D-GH).

(iii) Network planning using mAG-ENP-IoE with traffic pro-
visioning in ascending order (A-GH).

(iv) Network planning using mAG-ENP-IoE with traffic pro-
visioning following node indices [starting from the first
element to the last element of traffic demand matrix]
(I-GH).

In Fig. 7, we show the average PC for network designed
with SP, D-GH, A-GH, I-GH, and QAG-ENP-IoE. SP heuristic
first explores the existing lightpaths with free capacity for
provisioning the selected traffic. In case, such lightpaths are
not available, a new lightpath is set up following the shortest
distance path between SD node pair of the traffic, and the
traffic is provisioned through it. In all cases (i.e., all ATD
values), PC for network designed using SP is the highest as the
method does not consider PC during network designing. With
40-120 Gbps ATD, D-GH, A-GH and I-GH offer almost 4-
15%, 0-15% and 5-12% improvement in average PC compared
with SP, respectively. Network designing is not feasible using
D-GH, A-GH and I-GH for none of the considered traffic
demand matrices with ATD of 200 Gbps, since resources are
exhausted at one or more locations. These three methods can
provide solution for only one traffic demand matrix with ATD
of 160 Gbps, due to exhaustion of resources. QAG-ENP-IoE
learns the best sequence for energy-efficient network planning.
Even though the heuristic may fail to provide feasible solution
for a given traffic demand matrix in some cases (out of the
given ten thousand episodes) due to paucity of resources,
the heuristic eventually can always successfully provision the
entire traffic demand matrix. The heuristic comes up with
an optimal sequence, i.e., a policy that provisions traffic for
energy-efficient IP-over-EON. QAG-ENP-IoE offers 1-23%,
5-7%, 1-7% and 1-9% improvement in PC values compared
with SP, D-GH, A-GH and I-GH methods, respectively. In
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Fig. 7: Average PC for network designed with SP, D-GH, A-
GH, I-GH and QAG-ENP-IoE.

.

Fig. 8, the average number of feasible solutions, i.e., the
average number of success per 1000 episodes are plotted.
Initially, the number of success is low, and in general, the
number of success increases with increase in the index of 1000
episodes.
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Fig. 8: Average number of success per 1000 episodes.

VI. CONCLUSION

In this paper, network planning implemented through ef-
ficient resource and static traffic demand provisioning for
energy-efficient VER-assisted IP-over-EON is explored. We
propose RL (in particular, Q-learning) and AG-based heuristic
for energy-efficient resource allocation and traffic provision-
ing. Even though the heuristic may fail to provide feasible
solution for a given traffic demand matrix in some cases
(out of the given ten thousand episodes) due to paucity of
resources, the heuristic eventually can always successfully
provision the entire traffic demand matrix. Simulation results
show the increase in PC with the increase in ATD (i.e., the
traffic volume). The PC in SBVTs and IP core routers is found
to predominate over the PC in other equipment. The proposed
heuristic offers up to 23% and up to 9% improvement in PC
compared with SP and AG-based greedy heuristics (viz., D-
GH, A-GH and I-GH) respectively.
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