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Most nonlinear ordinary differential equations exhibit chaotic attractors which have singular 
local structures at their bifurcation points. By taking the driven damped pendulum and the Duffing 
equation, such chaotic attractors are studied in terms of the q-phase transitions of a q-weighted 
average A(q), (-oo<q<oo) of the coarse-grained expansion rates A of nearby orbits along the 
unstable manifolds. We take their Poincare maps in order to obtain the expansion rates A and their 
spectrum g\(A) explicitly. It is shown that q-phase transitions occur at crises in the differential 
equations. Just before the crises, qp-phase transitions occur due to the collisions of the attractors 
with unstable periodic orbits. Numerical values of the transition points qp thus obtained agree fairly 
well with theoretical predictions. q.-phase transitions occur just after the crises where the chaotic 

. attractors are suddenly spread over chaotic repellers. Thus it turns out that the q-phase transitions 
of A(q) are useful for characterizing the chaotic attractors of differential equations at their bifurca­
tion points. 

§ 1. Introduction 

In the analysis of dissipative dynamical systems, most attention has been given to 
the characterization of chaotic attractors. In particular, scaling properties of chaotic 
attractors have been studied from the metric and the dynamic point of view. l )-6l In 
a series of papers,7)-l2l we have. shown for universal maps such as the logistic and 
Henon maps that the singular local structures of chaotic attractors created at their 
bifurcations produce remarkable linear slopes in the spectrum ¢(A) of the coarse­
grained expansion rates A of nearby orbits along the unstable manifolds, which bring 
about the q-phase transitions of the q-weighted average A(q) of A. 

Let us summarize the theoretical framework developed in the previous pa­
pers.7l -

I2l Let {Xm}, (m=O, 1,2, ... ) be a chaotic orbit on a chaotic attractor generated 
by a 2d (i.e., two-dimensional) Poincare map Xm+l = F(Xm), and define the coarse­
grained expansion rates 

(1'1) 

for large n, where ih(Xm) is the local expansion rate of nearby orbits at Xm along the 
unstable manifold. We assume that the attract or is ergodic. Then as n->oo, An(Xo) 
converges to a positive Liapunov number Aoo for almost all initial points Xo within the 
basin of attraction of the chaotic attractor. The probability density for An(Xo) to 
take a value around A is given by 

P(A; n)=<8(An(Xo)- A», (1·2) 

where 8(g) is the 8-function of g and < ... > denotes the long-time average 
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q-Phase Transitions in Chaotic Attractors of Differential Equations 1125 

N-1 

(C(Xo»=lim(I/N) ~ C(Xt) . (1·3) 
N-"" t=O . 

Then peA; n) would take the scaling form13) 

peA; n)=exp{ - n¢(A)}P(A""; n) (1·4) 

for n ~ 00, where ¢(A) ~ ¢(A "") = O. This defines the spectrum ¢(A) which is a con­
cave function and describes the fluctuations of An(Xo) around A"". Numerically, the 
probability density (1· 2) was computed for a finite n by taking a large but finite N in 
the long-time average (1·3). Then ¢(A) was approximated by 

¢n(A)= -(I/n)ln[P(A; n)/P(A""; n)] 

with A""=(An(Xo». 

(1·5) 

In order to describe large fluctuations of A explicitly, we also used the dynamic 
partition function 

Zn(q)= fdA peA; n)exp{-n(q-l)A} , 

and the temporal scaling exponents2
)-6) 

(-oo<q<oo) (1·6) 

(1· 7) 

(1· 8) 

The functions (1· 5) ~ (1· 8) are called the dynamic structure functions. Inserting (1· 4) 
into (1·6) and taking the largest integrand for large n, we obtain the variational 
principle 

<1>n(q)=min{¢(A)+(q-l)A} (1·9) 
A 

for large n, where ¢'(A)=I-q leads to an approximation A(q) for A",,(q). 
At the bifurcation points such as crises,14) chaotic attractors have singular local 

structures, so that ¢(A) has a linear slope st=l-qt, (t=a, /3, ... ) which brings about 
the q-phase transition of A",,(q) at q=qt. 10

) Each phase of the q-phase transition 
represents different local structures of the chaotic attractors. For example, the 
qp-phase transition is caused by the collision of the chaotic attractor with an unstable 
periodic orbit {8i} at a crisis point which is accompanied by the accumulation of 
heteroclinic ot homoclinic tangency points at the periodic orbit.9),10) Then the two 
phases of the qp-phase transition represent the hyperbolic structures and the tangency 
structures, respectively. . 

It would be important to see how the above idea of the q-phase transitions 
developed for simple 2d maps such as the Henon map is also valid for the ordinary 
differential equations which are the usual description of dynamical laws in the 
physical science. We shall take the driven damped pendulum and the Duffing equa­
tion. Since the ,1r(Xm)'s in (1·1) are defined for 2d maps, we shall take the Poincare 
maps for these differential equations. We shall numerically obtain the dynamic 
structure functions at some crises and clarify that the. qp- and qs-phase transitions 
occur just before and after the crises, respectively. 
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1126 Tomita, Hata, Horita, Mori, Morita, Okamoto and Tominaga 

In § 2 two crises of the driven damped pendulum are studied. In § 3 we describe 
results for the Duffing equation. The last section is devoted to a short summary and 
some remarks. 

§ 2. Driven damped pendulum 

We consider the equation of motion for the driven damped pendulum 

ii + yO +sin8=a cos(Qt) , (2·1) 

where 8 is the pendulum angle, y is the damping constant, a and Q are the amplitude 
and angular frequency of the driving periodic torque. This equation also gives a 
useful model for the radiofrequency-driven Josephson junctions and the charge den­
sity wave in semiconductors, and it has recently been studied extensively for various 
values of the parameters a, y and Q to clarify its chaotic behaviors.15H7

) 

The phase space of the system is the 3d Euclidean space spanned by x= 8, y= 0 
and rp=Qt (mod 2Jr) with 

j; = y, y = - yy - sin x + a cos rp , 

if;=Q. (mod 2Jr) 

(2'2a) 

(2·2b) 

Therefore any orbit in this phase space intersects the rp=O plane at time tm=2Jrm/Q, 
(m=O, 1, 2, ... ) so that the rp=O plane provides the Poincare section with intersections 
Xm={X(tm), y(tm)}, leading to a Poincare map X m+1=F(Xm). 

First we take y=l/,f15, Q=O.65 and a in the vicinity of a crisis value 

3.5 (a) (b) 

~S1 
S2 " ." 

I',,, 

0 
,";' 

,.,:1 

\50 
-1.= 

-Jr 0 n .-n o 
Fig.1. Chaotic attractor of the pendulum (2'1) near the crisis point a=aw""O.728384 with r=l//f5 

and Q=O.65. The period·3 saddles are shown by crosses X. (a) Just before the crisis (a=aw-O). 

(b) Just after the crisis (a=aw+O). 
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q-Phase Transitions in Chaotic Attractors of Differential Equations 1127 

aw::::,::O_728384_ For a slightly less than aw, there is a three-time rolled attractor whose 
Poincare section is a confined three-band attractor shown in Fig. l(a). At a=aw the 
attractor touches the stable manifold of an unstable periodic orbit {So, S1, S2} with 
period (27[/£2) x 3 which is indicated by crosses x in Fig. 1. This crisis is homoclinic.14

) 

As a increases beyond aw, the attractor is widened like Fig. l(b). 
In order to obtain the dynamic structure functions ¢12(A), An(q) and (In(q), we 

have to consider the Poincare map X m+1 = F(Xm) and get the local expansion rate 
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Fig. 2. Dynamic structure functions for the pendulum (2·1) around the crisis point a= aw with r=l 
/./I5 and Q=0.65. (a) Farfrom the crisis, where a=0.728, n=18, N=1.28 x 105. (b) Just before the 
crisis, where a=0.7283832, n=21, N=1.6X106

• (c) Just after the crisis, where a=0.7288, n=100, 
N=3.2x105. 
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ilr(Xm) along the unstable manifold at X m. Therefore, taking an initial point 
Xo={x(to), y(to)} and a unit vector {~(to), 71(to)}, we numerically integrate the vari­
ation equations 

~=71 , 

~ = - Y71-{cos x(t)}~, 

(2 0 2c) 

(2 0 2d) 

until t1 = 27r/Q, and then take ,h(Xo)=ln{I~(t1)lz+171(t1)lzy'z. Then we again integrate 
(2°2) starting from the point {X(t1), y(t1)} and the unit vector {~(t1)/exp[,MXo)]' 71(t1) 
/exp[/h(Xo)]} till tz=(27r/Q)x2. Then we obtain {x(tz), y(tz)} and ilr(X1)=ln{I~(tz)IZ 
+ 171(tz)lzYlz. If we repeat this process, then the vector {~(tm), 71(tm)} will become 
tangent to the attractor which lies on the closure of an unstable manifold, so that we 
can get the local expansion rate ,h(Xm)=ln{I~(tm+l)l2+171(tm+l)lzy'z along the unstable 
manifold. Using this Ih(Xm), we obtain the coarse-grained expansion rates (1°1) and 
the dynamic structure functions from the formula summarized in § I. 

Figure 2(a) shows the dynamic structure functions far from the bifurcation point 
a=aw. The crosses + for An(q) represent the largest-term approximation obtained 
from the variational principle (1 0 9). The q-weighted variance 6n(q) has only one 
peak at q=qa~I.8I. This peak would diverge as n-HD , ensuring that A",(q) exhibits 
the qa-phase transition at q=qa due to the homoclinic tangencies on the chaotic 
attractor. g,n(A) has a linear slope sa=l-qa~ -0.8I. 

Just before the crisis, another q-phase transition occurs at q=qfJ~ -0.67 as shown 
in Fig. 2(b), which corresponds to the linear slope sfJ~I.67 of g,n(A). This slope is 
thebretically given in terms of the mean expansion r?te Aoo(8i ) of the period-3 saddles 
{8 i } as follows:9l 

Table 1. al(S,),a(S,) and Sp just before the crises in the driven damped pendulum 
(2'1) and the Duffing equation (3·1).") 

Aoo(S,) a,eS,) a(S,) AO 
Sp 

g 
theor exp 

(pendulum) 
a=aw-O 

y=l//I5 0.880 0.676 0.852 1.115 0.45 1.54 1.67 

Q=0.65 

a=am-O 

y=0.22 0.627 0.727 0.954 1.135 0.30 1.58 1.59 

Q=1.0 

(Duffing) 
a=ac-O 

1.310 
y=0.3 

0.847 1.195 1.170 0.41 1.44 1.24 

a) The singularity exponent aleS,) is given by (2·5) for the homoc1inic case. The 
total exponent is a(S,)={i + r(S,)}al(S,) with r(S,)=Aoo(S,)/{Aoo(S,)-lniJI}, 

where iJi=exp(-27ry/Q) for the pendulum (2·1) and iJi=exp(-27rY) for the 

Duffing equation (3-1). 

(2°3) 
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q-Phase Transitions in Chaotic Attractors of Differential Equations 1129 

where g and al(Si) are given by 

g=l + Aoo(Si)/{3Aoo(Si)+2[ln[J[[} , 

al(Si)=O.5+ Aoo(Si)/2[ln[J[[ , 

(2'4) 

(2'5) 

and AO is the value of A at which the extension of the linear part of sb(A) crosses the 
A-axis. J is the Jacobian of the Poincare map, i.e. [J[=exp( -27Cy/Q). The numeri­
cal value sp~1.67 is in good agreement with the theoretical estimatesp=1.54 obtained 
from (2·3), as shown in Table 1. 

Results just after the crisis are shown in Fig. 2(c). (f~(q) has a sharp peak at 
q=qO'~O.91, so that An(q) exhibits a q-phase transition at q=qO' different from the 
above two. This phase transition occurs when the attractor begins to include a 
chaotic repeller. Its intuitive picture is the following. Let us suppose that just 
before a crisis (a=aw-O) there exist an attractor and a chaotic repeller which have 
sb(A) = sbA(A) and sb(A)= sbR(A), respectively, as illustrated in Fig. 3(a). The minima 
of sb(A) are sbA(AAoo)=O and sbR(AROO) = TR-I>O, where TR is the mean lifetime of the 
orbits around the repeller. Just after the crisis (a=aw+O) the attractor extends over 
the repeller and becomes a larger attractor, so that sb(A) has a new linear part with 
a slope SO' to connect sbA(A) and sbR(A) in the way shown in Fig. 3(b). This linear slope 

</1 (A) 

A 

Fig. 3. Schematic illustration of if>(A) just before 
and after a crisis. In (a), if>(A) of anattractor 
and a chaotic repeller are shown. In (b), as a 
result of the crisis, the attractor and the repel­
ler merge so that if>(A) comes to have a linear 
slope s. which induces the. q.-phase transition 
of A(q) at q=q.=l-s •. 

brings about a qO'-phase transition with 
qO'=l-sO'. 

Second, we take y=O.22, Q=l. 
These parameters were used in Ref. 14), 
and a CriSIS occurs at a=am 
=2.6465274···. Just below am there are 
two attractors with rotation numbers 
p=<e>/Q=l and p=-l. However, 
these two attractors must have the same 
scaling structures due to the symmetry 
of Eq. (2'1), since Eq. (2'1) is invariant 
under 8---7-8, Qt---7Qt + 7C. At a=am, 
the two attractors simultaneously touch 
the stable manifolds of the two unstable 
period-6 orbits whose expansion rates 
are identical with each other due to the 
symmetry. Just past a=am the two 
chaotic attractors merge to form a lar­
ger phase-unlocked attractor. Figures 
4(a) and (b) illustrate the attractors just 
before and after the crisis, respectively. 
The orbital structure just before a=am 
with its basin boundary is shown in Fig. 
4(c). The points in the black region are 
attracted by the attractor with p= -1, 
while the points in the white region are 
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Fig. 4. Chaotic attractors of the pendulum (2'1) near the crisis point a=am""2.6465274 with ,=0.22 
and Q= 1. The period-6 saddles are shown by X's. (a) Just before the crisis. (b) Just after the 
crisis. (c) Basin boundary for the attractor. The points in the white region are attracted by the 
attractor with p=1. (d) Schematic illustration of the homo clinic tangencies of the. unstable 
manifold (solid line) and of the stable manifold (dashed line) of the period-6 saddles (crosses!. In 
(c) and (d) a part of the attractor with p=l is shown. 

attracted by that with p=l. Their basin boundaries are the stable manifolds of the 
two unstable period-6 orbits which collide with the attractors at a=am. Then, as 
illustrated in Fig. 4(d), the tangency points {Xj } accumulate at {8 i } marked by the 
crosses as j~ ±oo. Hence the crisis is homoclinic. This orbital structure is similar 
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Fig. 5. Dynamic structure functions for the pendulum (2'1) near the crisis point a=am with y=O.22 
and 2=1. (a) Just before the crisis, where a=2.6462, n=lS, N=1.2SX105

• (b) Just after the 
crisis, where a=2.6475, n=100, N=1.2Sx105

• 

5 

5 

to the first case. Indeed, as shown in Fig. 5, a qp-phase transition with qp~ -0.59 
occurs just before the crisis and a qO'-phase transition with qO'~0.89 occurs just after 
the crisis. The slope Sp ~ 1.59 of the linear part of ¢in (A) in Fig. 5(a) is in good 

. agreement with the theoretical value sp=1.58 obtained from (2·3), as listed in Table 1. 

§ 3. The Duffing equation 

In this section we deal with chaotic attractors of the Duffing equation 

(3'1) 

This is a mathematical model for a series-resonance circuit, containing a saturable 
inductor, and for a point particle in a potential well VCx)=x4/4 subjected to friction 
and an external periodic force. Ueda was the first who found a chaotic behavior of 
this equation18) and his chaotic attractor is well known as "a Japanese Attractor".19) 

We consider a crisis which occurs at a=ac~10.5242, y=0.3. Namely, as a is 
increased to ac with y=0.3, a three-band attractor approaches and collides with the 
period-3 saddles {Si}, (i=O, 1, 2). The orbital structures and the dynamic structure 
functions at the crisis are shown in Figs. 6 and 7, respectively. It is found that a 
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(a) 

s~ 
(b) 

x i 
... .' I 

~) 
2.5 x 3.5 

Fig. 6. Chaotic attractor of the Duffing equation (3·1) near the crisis point a= ac"'" 10.5243 with r=0.3, 
together with the period-3 saddles {So, SI, S2} marked by three x's. (a) Just before the crisis. (b) 
Just after the crisis. 
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Fig. 7. Dynamic structure functions for the Duffing equation (3·1) near the crisis point a=ac with 
r=0.3. (a) Just before the crisis, where a=10.5242, n=18, N=3.2X105. (b) Just after the crisis, 
where a=10.55, n=30, N=3.2X105. 
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q-Phase Transitions in Chaotic Attractors of Differential Equations 1133 

qp-phase transition with qfJ~ -0.24 occurs in addition to the qa-phase transition just 
before the crisis. The agreement between the theory and the numerical experiment 
for the slope sfJ=l ~qfJ is satisfactory, as listed in Table 1. Just after the crisis a 
qO'-phase transition occurs at q=qO'~0.74. 

§ 4. A short summary and some remarks 

In the present paper we have studied the q-phase transitions of the q-weighted 
average A(q) of the coarse-grained expansion rates A for the ordinary differential 
equations, such as the driven damped pendulum and the Duffing equation. By taking 
the Poincare maps of the differential equations, we have used the formalism for the 
q-phase transitions established for 2d maps. Numerically, it has been found that, 
although the chaotic attractors are much more complicated than those of simple 2d 
maps such as the Henon map, the qp- and qO'-phase transitions occur in addition to the 
qa-phase transition just before and after the crises, respectively, in the same way as 
in the Henon map. Therefore, the q-phase transitions must be universal phenomena 
and observable even in other physical systems such as fluids. 

The slopes SfJ of ¢(A) just before the crises are listed in Table I, where the 
agreement between theory and numerical experiments is satisfactory. On the other 
hand, the slopes SO' of the qO'-phase transition cannot be estimated theoretically except 
for type I intermittent chaos of a piecewise-linear Markov map12) and the 3-band 
crisis of an asymmetric tent map.20) Therefore, to obtain a theoretical expression for 
SO' is an important problem and will be discussed elsewhere. 

The q-weighted average a(q) of the singularity exponents a of the natural 
invariant measure is closely related to Aoo(q), so that if a q-phase transition occurs for 
Aoo(q) at a value q=qt, then a q-phase transition also occurs for a(q) at a value q=qT 
given by 

(4 ·1) 

as was studied for the Henon map in Ref. 21). Therefore, it is important to study the 
q-phase transitions of a(q) for differential equations, which will be reported on a 
future occasion. 
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