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Abstract

For basic discrete probability distributions, − Bernoulli, Pascal, Poisson, hypergeo-
metric, contagious, and uniform, − q-analogs are proposed.

1 Introduction

q-analogs of classical formulae go back to Euler, q-binomial coefficients were defined by
Gauss, and q-hypergeometric series were found by E. Heine in 1846. The q-analysis was
developed by F. Jackson at the beginning of the 20th century, and the modern point of
view subsumes most of the old developments into the subjects of Quantum Groups and
Combinational Enumeration.
The general philosophy of q-analogs is that of a deformation, with the deformation

parameter q being thought of as close to 1. This point of view is certainly not all-
encompassing; for example, representations of Quantum groups when q is a root of unity
are of independent interests; more importantly, the q-pictures sometimes possess proper-
ties singular in (q − 1) or otherwise not regularly dependent on (q − 1); regularization of
divergent/infinite (q = 1)−quantities is another useful feature of q-analogs... the list goes
on.
The typical example is

lim
x→∞[x] =

1
1− q

, |q| < 1, (1.1)

where

[x] = [x]q =
qx − 1
q − 1 (1.2)

is the q-analog of a number (or object) x. (A quick introduction to the q-calculus is
available from many sources, e.g. Chapter 2 in [6].)
More examples of such sort will be found below in this paper, the 1st one in a series

devoted to a q-probabilities. In the next 6 sections we look at q-analogs of Bernoulli,
Pascal, Poisson, hypergeometric, contagious, and uniform distributions, respectively. It is
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surprising how many new effects appear compared to the classical theory at q = 1. For
example, even for the Bernoulli distribution, the profound classical differences between
finite and infinite number of trials are mitigated when q enters the picture, so that one
can write down the probability (formerly zero) of many individual events of infinite type,
such as

(1−· p)∞ = �∞
i=0 (1− pqi), |q| < 1, (1.3)

the probability of coming up with all “tails” during an infinite number of coin flips; the
probability of coming all tails during n coin flips is

(1−· p)n = �n−1
i=0 (1− pqi). (1.4)

More generally, the probability of coming up with precisely κ heads during an infinite
number of coin flips is

pκ

(1− q)...(1− qκ)
(1−· p)∞, κ ∈ N. (1.5)

The six probability distributions discussed in this paper are all discrete, univariate,
basic, and relatively simple. More classical distributions can be found in [1, 3-5].

2 q-binomial distributions

Suppose we have a random variable ζ − “2-sided coin” − which takes two values: 1 with
probability p, and 0 with probability

p′ = 1− p. (2.1)

After n throws, the total sum accumulated,

ξn = ζ1 + ...+ ζn, (2.2)

obeys the Bernoulli distribution

Pr(ξn = κ) =
(
n

κ

)
pκp′n−κ, 0 ≤ κ ≤ n. (2.3)

As a q-analog of this distribution we take (with 0 < q < 1)

Pr(ξ̄n = [κ]) =
[
n

κ

]
pκ(1−· p)n−κ, 0 ≤ κ ≤ n, (2.4)

where[
x

κ

]
=

[
x

κ

]
q

=
[x]...[x− κ+ 1]

[κ]!
, κ ∈ N, (2.5a)

[
x

0

]
= 1,

[
x

s

]
= 0, s ∈̄ Z+, (2.5b)
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are the q-binomial coefficients, and

[0]! = 1; [κ]! = [1]...[κ], κ ∈ N, (2.6)

are the q-factorials.
To justify formula (2.4), we need to prove that

n∑
k=0

[
n

κ

]
pκ(1−· p)n−κ = 1, ∀p. (2.7)

This formula follows from the following identity:

n∑
κ=0

[
n

κ

]
pκ(1−· v)n−κ =

n∑
κ=0

[
n

κ

]
(p−· v)n−κ, (2.8)

when v = p; here

(a+̇b)n := �n−1
i=0 (a+ qib), n ∈ N, (a+̇b)0 := 1. (2.9)

Formula (2.8) is, in turn, the b = 1-case of the general formula

n∑
κ=0

[
n

κ

]
aκ(b+̇v)n−κ =

n∑
κ=0

[
n

κ

]
bκ(a+̇v)n−κ. (2.10)

To prove formula (2.10), let us use the easily checked by induction on m Euler’s formula

(x+̇y)m =
m∑

j=0

[
m

j

]
xm−jyjq(

j
2). (2.11)

Then the LHS of (2.10) can be rewritten as

∑
κ,

[
n

κ

]
aκ

[
n− κ

�

]
bn−κ−vq(

�
2), (2.12L)

while the RHS of (2.10) can be similarly rewritten as

∑
s,

[
n

s

]
bs

[
n− s

�

]
an−s−vq(

�
2), (2.12R)

and these two double sums bijectively coincide, for each fixed �, when s is identified with
n− �− κ.
Now, to calculate the expectation values of powers of ξ̄n, we use the easily proved by

induction on m ∈ N formula

(
x

d

dqx

)m

=
m∑

κ=1

1
[κ− 1]!

( κ−1∑
s=0

[
κ− 1
s

]
(−1)sq(s2)[κ− s]m−1

)
xκ

(
d

dqx

)κ

, (2.13)
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where

df

dqx
:=

f(qx)− f(x)
(q − 1)x (2.14)

is the q-derivative:

d

dqx
(xs) = [s]xs−1. (2.15)

In particular, for m = 2, we get

(
x

d

dqx

)2

= x
d

dqx
+ qx2

(
d

dqx

)2

. (2.16)

Applying the operator
(
p
d

dqp

)s∣∣∣∣
v=p

, s = 1, 2, to formula (2.8), we obtain

< ξ̄n >= E(ξ̄n) =
n∑

k=0

[κ]
[
n

κ

]
pκ(1−· p)n−κ = [n]p, (2.17)

< ξ̄2
n >= E(ξ̄2

n) =
n∑

κ=0

[κ]2
[
n

κ

]
pκ(1−· p)n−κ = [n]p+ qp2[n][n− 1], (2.18)

where we used the obvious relation

d

dqp
(p+̇v) = [�](p+̇v)−1. (2.19)

From formulae (2.17) and (2.18) we find that

V ar(ξ̄n) =< ξ̄2
n > − < ξ̄n >2 = [n]p(1− p). (2.20)

Notice that formulae (2.4), (2.17), (2.18), (2.20) have a well-defined limit as n → ∞:

Pr(ξ̄∞ = [κ]) =
1
[κ]!

(
p

1− q

)κ

(1−· p)∞, (2.21)

< ξ̄∞ >=
p

1− q
, (2.22)

< ξ̄2
∞ >=

p

1− q
+ q

(
p

1− q

)2

, (2.23)

V ar(ξ̄∞) =
p(1− p)
1− q

. (2.24)

So far, we have treated the random variable ξ̄n as an object in its own right. Let us now
turn to the representation of ξ̄n as a sum of n “coin” throws, as reflected in the classical
formula (2.2). This sum-formula (2.2) remains intact under q-deformation. However, for
general q, the random variables ζ̄i’s are no longer independent or identically distributed.
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More precisely, let

ζ̄1 =

{
1, with probability p,
0, with probability 1− p.

(2.25)

For κ ∈ N, suppose the random variables ζ̄1, ..., ζ̄κ have already been defined. Denote by
ακ = ακ(ζ̄1, ..., ζ̄κ) the number of zeroes appearing among the values of the random vari-
ables ζ̄1, ..., ζ̄κ. The random variable ζ̄κ+1 takes the values 0, q0, ..., qκ, with the conditional
probabilities

Pr(ζ̄κ+1 = 0|ακ = r) = 1− qrp, 0 ≤ r ≤ κ, (2.26a)

Pr(ζ̄κ+1 = q|ακ = r) = δ
κ−rq

rp, 0 ≤ r ≤ κ. (2.26b)

For example,

Pr(ζ̄2 = 0|ζ̄1 = 0) = 1− qp, (2.27a)
Pr(ζ̄2 = 0|ζ̄1 = 1) = 1− p, (2.27b)
Pr(ζ̄2 = 1|ζ̄1 = 0) = qp, (2.27c)
Pr(ζ̄2 = q|ζ̄1 = 1) = p. (2.27d)

By induction on κ, it is easily seen that if the last before ζ̄κ+1 non-zero value appearing
among ζ1, ...ζ̄κ was q, then ζ̄κ+1 can take only the values 0 and q+1 with non-zero prob-
abilities; if all the ζ̄1, ..., ζ̄κ took value 0, then ζ̄k+1 takes only the values 0 and 1 with
non-zero probabilities.
A better description of the same distribution is possible, if instead of conditional prob-

abilities we work with joint ones. Denote by 0r the event of r in a row appearances of
zeroes, r ∈ Z+, and similarly by

0a(0)q00a(1)q1...0a(k−1)qκ−10a(κ), a(·) ∈ Z+, (2.28)

the event of a(0) of zeroes followed by q0 = 1 followed by a(1) zeroes ... Now set

Pr(0a(0)q0...qκ−10a(κ)) := (1−· p)
∑κ

0 a(s) �κ−1
i=1 (pq

∑i
0 a(s)); (2.29)

for κ = 0, formula (2.29) is to be understood as

Pr(0a) = (1−· p)a, a ∈ N. (2.29′)

Let us now verify that the “microscopic” formulae (2.29) imply the “macroscopic”
formula (2.4). Denote

|a(i)| =
i∑

s=0

a(s). (2.30)

We have to verify that

∑
|a(κ)|=n−κ

(1−· p)n−κpκ �κ−1
i=0 q|a(i)| =

[
n

κ

]
pκ(1−· p)n−κ, (2.31)
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which is equivalent to the q-counting formula

∑
|a(κ)|=n−κ

�κ−1
i=0 q

|a(i)| =
[
n

κ

]
. (2.32)

(For q = 1, we recover the classical result: the number of solutions in nonnegative integers

of the equation a(0) + ...+ a(κ) = n− κ is
(
n

κ

)
. )

We shall prove formula (2.32) by the double induction on N := n − κ and κ, in the
form

∑
|a(κ)|=N

�κ−1
i=0 q

|a(i)| =
[
N + κ

κ

]
. (2.33)

Now,

�κ−1
i=0 q

|a(i)| = qa(0)qa(0)+a(1)|...qa(0)+...+a(κ−1) = q
∑k

0(k−s)a(s) (2.34a)

= qκ|a(κ)|q−
∑k

0 sa(s). (2.34b)

Therefore, the identity (2.33) becomes

∑
|a(κ)|=N

q−
∑k

0 sa(s) = q−Nk

[
N + κ

κ

]
. (2.35)

For N = 0, formula (2.35) becomes 1 = 1 no matter what κ is. For κ = 0, formula (2.35)
is true by definition (2.29′); for κ = 1, formula (2.35) becomes

∑
a(0)+a(1)=N

q−a(1) = q−N

[
N + 1
1

]
,

which is obviously true for all N . Suppose formula (2.35) is true for the pairs (κ,N = n)
and (κ− 1, N = n+ 1). Consider the pair (κ,N = n+ 1). Let’s divide the set of the a’s
with |a(κ)| = n+1 into two groups: those with a(κ) > 0 and those with a(κ) = 0. For the
1st group, the set ā(0) = a(0), ..., ā(κ−1) = a(κ−1), ā(κ) = a(κ)−1, satisfies |ā(κ)| = n,
so that, by the induction assumption,

∑
q−

∑κ
0 sa(s) =

∑
|ā(κ)|=n

q−
∑κ

0 sā(s)−κ = q−κq−nκ

[
n+ κ

κ

]
. (2.36)

The 2nd group has effectively κ− 1 a’s, so that again, by the induction assumption,
∑

q−
∑κ−1

0 sa(s) = q−(n+1)(κ−1)

[
n+ κ

κ− 1
]
. (2.37)

We thus have to check that

q−κ(n+1)

[
n+ κ

κ

]
+ q−(n+1)(κ−1)

[
n+ κ

κ− 1
]
= q−(n+1)κ

[
n+ 1 + κ

κ

]
, (2.38)
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which is equivalent to[
n+ κ

κ

]
+

[
n+ κ

κ− 1
]
qn+1 =

[
n+ 1 + κ

κ

]
, (2.39)

which is obviously true.
Notice that for a(κ) =∞, formulae (2.29) become

Pr(0a(0)q0...qκ−10∞) = pκ(1−· p)∞q
∑κ−1

0 (κ−s)a(s), (2.40)
Pr(0∞) = (1−· p)∞. (2.40′)

As in the classical theory (cf [10] p. 59), we can calculate the probability of observing
≤ κ (< n) zeroes in n trials:

Pr(αn ≤ κ) =
κ∑

i=0

[
n

i

]
pn−i(1−· p)i = [n]

[
n− 1
κ

] ∫ p

0
xn−1−κ(1−· qx)κdqx

= (
∫ p

0
xn−1−κ(1−· qx)κdqx)/(

∫ 1

0
xn−1−κ(1−· qx)κdqx). (2.41)

Similarly, the probability of ≤ � (< n) non-zeroes in n trials is

Pr(αn > n− �) =
∑

i=0

[
n

i

]
pi(1−· p)n−i = 1− [n]

[
n− 1
�

] ∫ p

0
x(1−· qx)n−1−dqx.

(2.42)

(Formulae (2.41) and (2.42) can be easily proven upon q-differentiation with respect to p
and using the obvious relation

d

dqp
(1−· p)n = −[n](1−· qp)n−1. (2.43)

In the limit n → ∞, this probability becomes
∑

i=0

1
[i]!

(
p

1− q

)i

(1−· p)∞ = 1− 1
1− q

∫ p

0

1
[�]!

(
x

1− q

)

(1−· qx)∞dqx. (2.44)

Many, if not all, classical formulae in probability have q-analogs. Let’s take a look at a
few of such formulae involving higher moments for the Bernoulli distribution.

First, applying the operator pr

(
d

dqp

)r∣∣∣∣
v=p

to formula (2.8) and using the relation

x = [κ]⇒ [κ− i] = q−i(x− [i]), (2.45)

we get

E(�κ−1
i=0 q

−i(ξ̄n − [i])) = pr �r−1
i=0 [n− i], (2.46)

a q-analog of the familiar formula

< ξn(ξn − 1)...(ξn − r + 1) >= prn...(n− r + 1). (2.47)
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Second, let

µ′
r =< ξr

n >, µr =< (ξn− < ξn >)r >, r ∈ Z+, (2.48)

be the moments, around zero and < ξn > respectively, considered as functions of p, n, r.
Romanovsky [9] has proved that

µ′
r+1 = (np+ p(1− p)

d

dp
)(µ′

r), (2.49)

µr+1 = p(1− p)(nrµr−1 +
dµr

dp
). (2.50)

Formula (2.49) has the following q-analog:

µ′
r+1 = ([n]p+ p(1− p)

d

dqp
)(µ′

r). (2.51)

Formula (2.50) has no clear q-analog, in part because the notion of higher central moments
is not unique in q-probability. Certainly, the classical definition

µr = E((ξ− < ξ >)r) (2.52)

is not useful, as the objects

d

dqx
((α+ βx)r) (2.53)

lie outside compact formulae of q-analysis. Two other possible definitions are

µr = E(( ξ −
q
< ξ >)r), (2.54)

where [7]

(a+
q
b)n =

n∑
κ=0

[
n

κ

]
aκbn−κ, n ∈ Z+, (2.55)

and

µr(s) = E((ξ −· qs <ξ >)r). (2.56)

Using the definition (2.56) for the q-Bernoulli distribution (2.4), we find

µr+1(0; p) = p(1− p)(q[n][r]µr−1(1; pq) +
d

dqp
(µr(1; p))), (2.57)

µr+1(−r; p) = p(1− p)(q−r[n][r]µr−1(−r; pq) + d

dqp
(µr(−r; p))). (2.58)

These formulae indicate that the central limit theorem for the q-Bernoulli distribution
may not exist, at least in the classical sense.
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3 q-analogs of negative binomial distributions

The negative binomial distribution, also called Pascal distribution, can be arrived at via
many different routes. Perhaps the simplest one is as the waiting time in a succession of
Bernoulli trials until the appearance of rth non-zero for the first time.
Let’s first consider the case r = 1. Let W be the random variable, waiting time until

first non-zero. By formula (2.29),

Pr(W = j) = Pr(0j−1q0) = (1−· p)j−1qj−1p, j ∈ N. (3.1)

We further q-modify this formula by setting

Pr(W̄ = [j]) = (1−· p)j−1qj−1p, j ∈ N. (3.2)

This is our q-analog of the geometric distribution. Since
∞∑

j=1

(1−· p)j−1qj−1p = 1− Pr(0∞) = 1− (1−· p)∞, (3.3)

we get a q-analog of the formula for the sum of a geometric progression:
∞∑

s=0

(1−· p)sqs =
1− (1−· p)∞

p
. (3.4)

Remark 3.5. Most of the formulae appearing in this paper remain true when q is con-
sidered as a formal variable, or as a complex one (with occasional restrictions of the type
|q| < 1, |q| > 1, etc.) It is only for the sake of probability interpretations that q is
considered to be a real number between 0 and 1.
Formula (3.4) has a finite counterpart.

N∑
s=0

(1−· x)sqs =
1− (1−· x)N+1

x
. (3.5)

This relation is easily checked by induction on N .
For general r ∈ N, the probability that the rth non-zero occurs at exactly the jth trial,

j ≥ r, is, by formulae (2.29), (2.30), (2.33):∑
|a(r−1)|=j−r

Pr(0a0q0...0a(r−1)qr−1) =
∑
(1−· p)j−rprqr(j−r)q−

∑r−1
0 sa(s)

= (1−· p)j−rprqr(j−r)q−(j−r)(r−1)

[
j − r + r − 1

r − 1
]

= (1−· p)j−rqj−rpr

[
j − 1
r − 1

]
. (3.6)

Since the probability of having exactly � non-zeroes during an infinite number of trials is,
by formula (2.21),

1
[�]!

(
p

1− q

)

(1−· p)∞, (3.7)
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the probability of having < r non-zeroes is, therefore,( r−1∑
=1

1
[�]!

(
p

1− q

))
(1−· p)∞. (3.8)

Thus,

∞∑
s=0

(1−· p)sqs

[
r − 1 + s

s

]
= p−r

(
1− (1−· p)∞

r−1∑
=0

1
[�]!

(
p

1− q

))
. (3.9)

This identity can be gotten directly from formula (3.4) by applying the operator
(

d

dqp

)r−1

to it.
Notice that formulae (3.3) and (3.9) show that our q-distributions do not sum up to 1

and therefore have to be re-scaled. For example, formula (3.2) becomes

Pr(W̄q = [j]) =
1

1− (1−· p)∞ p(1−· p)j−1qj−1, j − 1 ∈ Z+. (3.10)

Remark 3.11. Formula (3.6) could have been arrived at via one of the standard routes
as the conditional probability of having r − 1 non-zeroes at the 1st j − 1 throws, with
probability

[
j − 1
r − 1

]
pr−1(1−· p)j−r by formula (2.4), followed by a non-zero appearing at

the jth throw, with probability qj−rp by formula (2.26b).
We conclude this section by re-visiting the “problème de parties”, one of the first

problems in probability discussed and solved by Fermat and Pascal in their correspondence.
In essence, we want to find the probability that a non-zeroes appear before b zeroes in the
Bernoulli trial of a+ b− 1 throws. This can happen in either one of the b ways, when the
ath non-zero appears at the (a+ �)th trial, 0 ≤ � ≤ b−1. By formula (3.6), the probability
of this is (j = a+ �, r = a):

(1−· p)qpa

[
a+ �− 1
a− 1

]
, (3.12)

so that the total probability is

P1 = pa
b−1∑
=0

[
a+ �− 1
a− 1

]
(1−· p)q. (3.13)

Similarly, the event that b zeroes appear before a non-zeroes can happen in one of the a
ways, when the bth zero appears at the (b + �)th trial, 0 ≤ � ≤ a − 1. The probability of
this event is, by formula (2.26a):[

b+ �− 1
b− 1

]
p(1−· p)b−1(1− qb−1p) =

[
b+ �− 1
b− 1

]
p(1−· p)b. (3.14)

Thus, the total probability of b zeroes appearing before a non-zeroes is

P2 = (1−· p)b
a−1∑
=0

[
b+ �− 1
b− 1

]
p. (3.15)
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Since P1 + P2 = 1, we find

pa
b−1∑
=1

[
a+ �− 1
a− 1

]
(1−· p)q + (1−· p)b

a−1∑
=0

[
b+ �− 1
b− 1

]
p = 1, ∀a, b ∈ N, (3.16)

an identity which is not immediately obvious.
The same probability P1 can be calculated differently, as the outcome, out of a+ b− 1

trials, of a+ s non-zeroes, 0 ≤ s ≤ b− 1. Thus,

P1 =
b−1∑
s=0

[
a+ b− 1
a+ s

]
pa+s(1−· p)b−1−s, (3.17)

and we arrive at another nonobvious (even for q = 1) identity

pa
b−1∑
=0

[
a+ �− 1

�

]
(1−· p)q =

b−1∑
s=0

[
a+ b− 1
a+ s

]
pa+s(1−· p)b−1−s. (3.18)

4 q-Poisson distribution

One of the shortest derivations of the Poisson distribution consists of considering, as
Poisson originally did, the limit

n → ∞, pn → λ (4.1)

in the Bernoulli distribution:

Pr(ξ = κ) =
(
n

κ

)
pκ(1− p)n−k =

n...(n− k + 1)
κ!

λκ

nκ
(1− λ

n
)n−κ → λκ

κ!
e−λ. (4.2)

The q-picture is more interesting. First, for |q| < 1, the expression Pr(ξ̄n = [κ]) (2.4) has
the n → ∞ - limit (2.21):[

n

κ

]
pκ(1−· p)n−κ −→ 1

[k]!

(
p

1− q

)κ

(1−· p)∞. (4.3)

We can get a q-Poisson distribution from this by setting

p = lim
n→∞

λ

[n]
= λ(1− q), (4.4)

so that

Pr(X = [κ]) =
λκ

[κ]!
(1−· λ(1− q))∞, (4.5)

and therefore

E0(λ) = E0(λ; q) =
∞∑

κ=0

λκ

[κ]!
=

1
(1−· λ(1− q))∞

, (4.6)
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the well-known formula. Here

Eµ(λ) =
∞∑

κ=0

λκ

[κ]!
qµ(κ2) (4.7)

is the q-family of exponentials:

dEµ(λ)
dqλ

= Eµ(qµλ), Eµ(0) = 1. (4.8)

By Euler’s formula (2.11),

(1−· p)∞ =
∞∑

j=0

(
− p

1− q

)j 1
[j]!

q(
j
2) = E1

(
− p

1− q

)
, (4.9)

so that

E0(λ)E1(−λ) = 1; (4.10)

the latter 2 formulae are of course classic.
Formula (4.10) can be generalized, as follows. Consider the probability generating

function for the q-Bernoulli distribution:

FB;n(z) =
∞∑

k=0

zκPr(ξ̄n = [κ]) =
n∑

κ=0

[
n

κ

]
zκpκ(1−· p)n−κ

=
∑ [

n

κ

]
(zp)κ(1−· p)n−κ [by (2.8)] =

∑ [
n

κ

]
(zp−· p)κ

=
∑ [

n

κ

]
pκ(z −· 1)κ. (4.11)

As n → ∞, this generating function becomes

FB;∞ =
∞∑

κ=0

1
[κ]!

(
p

1− q

)κ

(z −· 1)κ. (4.12)

On the other hand, since

(1−· x)α+β = (1−· x)α(1−· qαx)β , (4.13a)

we have:

(1−· x)−β =
1

(1−· q−βx)β
, (4.13b)

and therefore

(1−· p)n−κ = (1−· p)n(1−· qnp)−κ =
(1−· p)n

(1−· qn−κp)κ

n→∞→ (1−· p)∞ = E1

(
− p

1− q

)
=

1
E0(λ)

,
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so that

FB;∞ = lim
n→∞

∑
zκ

[
n

κ

]
pκ(1−· p)n−κ =

∑(
zp

1− q

)κ 1
[κ]!

(1−· p)∞ =
E0(λz)
E0(λ)

. (4.14)

Thus,

E0(λz)
E0(z)

=
∞∑

κ=0

λκ

[κ]!
(z −· 1)κ, (4.15)

which can be equivalently rewritten as

E0(b)E1(−a) =
∞∑

κ=0

(b−· a)κ
[κ]!

. (4.16)

Taking the limit n → ∞ in formulae (2.17), (2.20), we find:

< X >= λ, (4.17)
V ar(X) = λ(1− (1− q)λ). (4.18)

Let us now consider the case when |q| > 1, so that we are walking outside the traditional
probability theories. Again, set

p =
λ

[n]
. (4.19)

Then, as n → ∞,[
n

κ

]
pκ =

[n]...[n− κ+ 1]
[κ]!

λκ

[n]κ
→ λκ

[κ]!
q−(

κ
2), (4.20)

since, as n → ∞,

[n− �]
[n]

=
qn− − 1
qn − 1 → q−. (4.21)

Next, by formula (4.13b),

(1−· p)n−κ = (1−· λ

[n]
)n−κ =

(1−· λ
[n])

n

(1−· qn−κ λ
[n])

κ
→ lim

n→∞(1−
· λ

[n]
)n(1−· λ)−κ. (4.22)

Thus,

Pr(X = [κ]) =
q−(

κ
2)

[κ]!
λκ(1−· λ)−κ lim

n→∞(1−
· λ

[n]
)n, |q| > 1. (4.23)

In particular,

lim
n→∞(1−

· λ

[n]
)n =

( ∞∑
κ=0

q−(
κ
2)

[κ]!
λκ(1−· λ)−κ

)−1

, |q| > 1; (4.24)

this formula is not a q-analog of anything classical.
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5 q-hypergeometric distribution

Imagine that we have an urn consisting of two types of balls: m marked ‘1’ and u marked
‘0’. We pick out at random one ball, record its value and leave it outside the urn; then
proceed again, for a total of n draws. Had we returned each picked ball back into the
urn, we would have the Bernoulli trials; since we don’t return the balls, we get something
different, called the hypergeometric distribution: the probability of ending up with κ ‘1’
balls out of n draws is

Pr(ξn = κ) =
(
m

κ

)(
u

n− κ

)/(
N

n

)
, N = m+ u, (5.1)

see [4, 5].
As a q-analogue of this distribution we set

Pr(ξ̄n = [κ]) =
[
m

κ

][
u

n− κ

]
q(m−κ)(n−κ)

/[
N

n

]
. (5.2)

To justify this definition we have to verify that

∑
κ

[
m

κ

][
u

n− κ

]
q(m−κ)(n−κ) =

[
m+ u

n

]
. (5.3)

This identity results by picking the xn-coefficient in formula (4.13a):

(1−· x)m(1−· qmx)u = (1−· x)m+u, (5.4)

and using the Euler formula (2.11):

∑
κ

[
m

κ

]
(−x)κq(κ2)

∑


[
u

�

]
(−x)qmq(

�
2)

=
∑

n

(−x)nq(n2)
∑

k+=n

[
m

κ

][
u

�

]
q(

κ
2)+(

�
2)−(κ+�

2 )qm

=
∑

n

(−x)nq(n2)
∑

κ

[
m

κ

][
u

n− κ

]
q(m−κ)(n−κ) =

∑
n

[
m+ u

n

]
(−x)nq(n2), (5.5)

where we used the obvious relation(
κ+ �

2

)
=

(
κ

2

)
+

(
�

2

)
+ κ�. (5.6)

Similar to the Bernoulli case, we can treat the q-hypergeometric distribution (5.2) as
a macroscopic object and inquire about its microscopic representation. The latter can be
guessed from the relations

P (ξ̄n = [n]) =
[
m

n

]/[
N

n

]
=
[m]
[n]

[m− 1]
[N − 1] ...

[m− n+ 1]
[N − n+ 1]

, (5.7a)

Pr(ξ̄n = 0) =
[
u

n

]
qmn/

[
N

n

]
=
[u]
[N ]

qm [u− 1]
[N − 1]q

m...
[u− n+ 1]
[N − n+ 1]

qm, (5.7b)
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which suggest that in the representation

ξ̄n = ζ̄1 + ...+ ζ̄n (5.8)

of n successive draws, we should set

Pr(0a(0)q0...0a(k−1)qk−10a(κ)) = q
∑κ

0 (m−s)a(s)

[
m

κ

][
u

n− κ

]/[
N

n

][
n

κ

]
(5.9a)

= q
∑κ

0 (m−s)a(s) �κ−1
i=0 [m− i] �n−κ−1

j=0 [u− j]/ �n−1
γ=0 [N − γ]. (5.9b)

Pr(0a) = qma

[
u

a

]/[
N

a

]
. (5.9c)

(In the ζ̄-language, we have

Pr(ζ̄ = 0) = [m]
[N ]

, P r(ζ̄ = 0) = qm [u]
[N ]

(5.10)

at each ball pick-out when the number of marked ‘nonzero’ balls in the urn is m, and the
number of those marked ‘zero’ is u = N −m.)
To prove that microscopic formula (5.9a) implies the macroscopic formula (5.2), we

need to verify that

∑
|a(κ)|=n−κ

q
∑κ

0 (m−s)a(s) = q(m−κ)(n−κ)

[
n

κ

]
, (5.11)

and this equality follows from the already proven formula (2.35):

∑
|a(κ)|=n−κ

q
∑κ

0 (m−s)a(s) =
∑

qm
∑

a(s)q−
∑

sa(s) = qm(n−κ)q−(n−κ)κ

[
n− κ+ κ

κ

]

= q(m−κ)(n−κ)

[
n

κ

]
.

In the classical case q = 1, we can rewrite formula (5.1) as

Pr(ξn = κ) =
(
n

κ

)
�k−1

s=0

m− s

N − s
�n−κ+1

=0

u− �

N − κ− �
, (5.12)

so that in the limit

N → ∞,
m

N
→ p,

u

N
→ 1− p, (5.13)

formula (5.12) becomes the Bernoulli one; the classical explanation is that when m and u
are large, it makes little difference whether the picked-out balls are returned back to the
urn or not.
For q = 1, the situation is more interesting. Certainly formulae (5.13) are not the

correct ones. We proceed as follows.
Let |q| > 1. Set

N → ∞,
[m]
[N ]

→ p, (5.14)
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and re-write formula (5.2) in the form

Pr(ξ̄n = [κ]) =
[
n

κ

]
�κ−1

s=0

(
[m− s]qκ−n

[N − (n− κ)− s]

)
�n−κ−1

=0

(
[u− �]qm

[N − �]

)
. (5.15)

Now,

[m− s]qk−n

[N − (n− κ)− s]
= qκ−n [−s] + q−s[m]

[κ− s− n] + qκ−s−n[N ]
[by (5.14)]

→ qκ−n q−s

qκ−s−n
p = p, (5.16a)

[u− �[qm

[N − �]
=
[N −m− �]qm

[N − �]
=
[N − �]− [m]
[N − �]

= 1− [m]
[−�] + q−[N ]

→ 1− qp,

(5.16b)

so that

Pr(ξ̄n = [κ])→
[
n

κ

]
pκ(1−· p)n−κ, (5.17)

as desired.
Suppose now that |q| < 1. Denote that q by Q. Set

q = Q−1, |q| > 1. (5.18)

Since

[x]Q = q1−x[x]q, (5.19a)

[k]!Q = q−(
κ
2)[κ]!q, (5.19b)[

a

b

]
Q

= qb(b−a)

[
a

b

]
q

, (5.19c)

we have

Pr(ξ̄n = [κ]q) = Q(m−κ)(n−κ)

[
m

κ

]
Q

[
u

n− κ

]
Q

/[
N

n

]
Q

= q(κ−κ′)(n−κ′)
[
u

κ′

]
q

[
m

n− κ′

]
q

/[
N

n

]
q

, (5.20)

where

κ′ = n− κ. (5.21)

We see that our formula (5.2) in the form

Pr(ξ̃n = κ) =
[
m

κ

][
u

n− κ

]
q(m−κ)(n−κ)

/[
N

n

]
(5.22)

allows the symmetry

m → u, u → m, κ → n− κ, q → q−1. (5.23)
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Setting

N → ∞,
[u]
[N ]

→ p′ (= 1− p), (5.24)

we find, in the same way as formula (5.17) was gotten, that

Pr(ξ̃n = [κ]) =
[
n

κ

]
(1−· p′)κp′n−κ, (5.25)

a different q-version of the classical Bernoulli distribution.

6 q-contagious distribution

Suppose we again, like in the preceding section, have an urn with m marked and u un-
marked balls. We pick out one ball at random, record its value, and then return to the urn
s+ 1 balls identical to the one we just picked out. If s = 0, we return the ball itself, and
this is the Bernoulli scheme; if s = −1, we return nothing, and this is the hypergeometric
scheme. For general s, the probability to pick out k marked (by ‘1’) balls out of n draws
is

Pr(ξn = κ) =
(
n

κ

)
�κ−1

α=0 (m+ as) �n−κ−1
β=0 (u+ βs)

/
�n−1

γ=0 (m+ u+ γs). (6.1)

This particular member of the family of the so-called “contagious distributions” was dis-
covered by Eggenberger and Pólya in 1923 [2, 8].
As a q-analog of this distribution, we set

Pr(ξ̄n = [κ])

=
[
n

κ

]
q−s

q(m+sκ)(n−κ) �κ−1
α=0 [m+ αs] �n−κ−1

β=0 [u+ βs]
/

�n−1
γ=0 [m+ u+ γs].

(6.2)

Obviously, for the case s = −1 we recover the hypergeometric formula (5.2). For the case
s = 0, we recover the classical Bernoulli formula (2.3) with p = [m]/[m + u]), not the
q-Bernoulli formula (2.4).
To justify formula (6.2), we need to check that

n∑
κ=0

[
n

κ

]
q−s

q(m+sκ)(n−κ) �κ−1
α=0 [m+ αs] �n−κ−1

β=0 [u+ βs] = �n−1
γ=0[m+ u+ γs]. (6.3)

To do that, we assume that s = 0 and start with the formula (5.3) in the base Q = q−s:

n∑
κ=0

[
M

κ

]
Q

[
U

n− κ

]
Q

Q(M−κ)(n−κ) =
[
M + U

n

]
Q

, Q = q−s, (6.4)
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which we rewrite as

n∑
κ=0

[
n

κ

]
Q

Q(M−κ)(n−κ) �κ−1
α=0 [M − α]Q �n−κ−1

β=0 [U − β]Q = �n−1
γ=0[M + U − γ]Q. (6.5)

Multiplying both sides by ([−r]q)n, setting

M = −m/s, U = −u/s, (6.6)

and noticing that

Q(M−κ)(n−κ) = q−s(−κ−m/s)(n−κ) = q(m+κs)(n−κ), (6.7)

we arrive at formula (6.3). The latter formula can be considered as a new q-analog of
Newton’s binomial.
Similar to the hypergeometric case, we can arrive at the q-contagious distribution (6.2)

as a macroscopic object,

ξ̄n = ζ̄1 + ...+ ζ̄n (6.8)

from the microscopic formulae

Pr(0a(0)q0...0a(k−1)qk−10a(k))

= q
∑κ

i=0(m+si)a(i) �k−1
α=0 [m+ αs] �n−κ−1

β=0 [u+ βs]
/

�n−1
γ=0 [m+ u+ γs]; (6.9)

the latter formulae are suggested by the extreme cases k = n and k = 0 of formula (6.2):

Pr(ξ̄n = [n]) = �n−1
α=0

[m+ αs]
[N + αs]

, N = u+m, (6.10a)

Pr(ξ̄n = 0) = �n−1
β=0

(
[u+ βs]
[N + βs]

qm

)
. (6.10b)

To verify that microscopic formulae (6.9) imply the macroscopic formula (6.2), we need
to check that

∑
|a(κ)|=n−κ

q
∑κ

i=0(m+si)a(i) = q(m+sκ)(n−κ)
[
n

κ

]
q−s

. (6.11)

Now, for the LHS of formula (6.11) we get:

∑
|a(κ)|=n−κ

q
∑κ

i=0(m+si)a(i) = qm(n−κ)
∑
(q−s)−

∑
ia(i) [by (2.35)]

= qm(n−κ)(q−s)−(n−κ)κ

[
n

κ

]
q−s

= q(m+sκ)(n−κ)

[
n

κ

]
q−s

, (6.12)

and this is exactly the RHS of formula (6.11).
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7 q-uniform distribution

A classical random variable X taking M + 1 discreet values v0 < ... < vM , each with
equal probability 1/(M +1), represents a discrete uniform distribution. The values v′is are
immaterial and can be taken as vi = i, or vi = a+ hi, or vi = [i], ...
As a q-analog of this distribution, we set

Pr(X̃ = i) = qi/[M + 1], 0 ≤ i ≤ M, (7.1)

or

Pr(X̄ = [i]) = qi/[M + 1], 0 ≤ i ≤ M, (7.2)

so that

< X̄ >=
q[M ]
[2]

, (7.3)

< X̄2 >=
q[M ][M + 1](q[2][M ] + 1)

[2][3]
, (7.4)

V ar(X̄) =
q[M ](q2[M ] + [2])

[2]2[3]
. (7.5)

Consider n independent identically distributed, via the discrete uniform distribution,
random variables X1, ..., Xn. The range of these variables is the quantity

rn = max
i
(Xi)− min

i
(Xi), 0 ≤ r ≤ M. (7.6)

The random variable rn has the following distribution ([4]) p. 240):

Pr(rn = 0) = 1/(M + 1)n−1, (7.7a)
Pr(rn = �) = ((�+ 1)n − 2�n + (�− 1)n)(M + 1− �)/(M + 1)n, 1 ≤ � ≤ M.

(7.7b)

This distribution is certainly different from those appearing in the preceding sections.
Let us calculate the q-analog of the distribution (7.7). Taking as our basic definition

formula (7.1), we have:

Pr(rn = 0) =
M∑
i=0

(Pr(X̃ = i))n = [M + 1]qn

/
[M + 1]n; (7.8)

Pr(rn = 1) =
M−1∑
i=0

∑
k �=0,n

(
n

κ

)(
qi

[M + 1]

)κ(
qi+1

[M + 1]

)n−κ

=
1

[M + 1]n

M−1∑
i=0

(
n∑

k=0

(
n

κ

)
(qi)κ(qi+1)n−κ − (qi+1)n − (qi)n)

=
1

[M + 1]n

M−1∑
i=0

((qi + qi+1)n − qinqn − qi)

=
1

[M + 1]n

M−1∑
i=0

(qi)n([2]n − [2]qn) =
[M ]qn([2]n − [2]qn)

[M + 1]n
; (7.9)
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finally, for � ≥ 2,

Pr(rn = �) =
M−∑
i=0

∑
κ(0),κ() �=0

n!
κ(0)!...κ(�)!

(
qi

[M + 1]

)k(0)

...

(
qi+

[M + 1]

)κ()

=
1

[M + 1]n

M−∑
i=0

( ∑
all κ′s

−
∑

κ(0)=0

−
∑

κ()=0

+
∑

κ(0)=κ()=0

)

=
1

[M + 1]n

M−∑
i=0

(
(qi + ...+ qi+)n − (qi+1 + ...+ qi+)n

− (qi + ...+ qi+−1)n + (qi+1 + ...+ qi+−1)n
)

=
1

[M + 1]n

M−∑
i=0

qin

(
[�+ 1]n − qn[�]n − [�]n + qn[�− 1]n

)

=
[M + 1− �]qn

[M + 1]n

(
[�+ 1]n − [2]qn [�]n + qn[�− 1]n

)
. (7.10)

For � = 1, formula (7.10) reproduces formula (7.8). Thus, formulae

Pr(rn = 0) =
[M + 1]qn

[M + 1]n
, (7.11a)

Pr(rn = �) =
[M + 1− �]qn

[M + 1]n

(
[�+ 1]n − [2]qn [�]n + qn[�− 1]n

)
, 1 ≤ � ≤ M,

(7.11b)

are q-analogs of formulae (7.7). Notice, that

Pr(r1 > 0) = 0, ∀q. (7.12)

Although not immediately apparent, formulae (7.11) are not the only q-analogs of the
classical formulae (7.7). For example, for n = 2, formulae

Pr(r2 = 0) =
1

[M + 1]
, (7.13a)

Pr(r2 = �) =
[2]

[M + 1]
(1− [�]

[M + 1]
)qM+1−2, 1 ≤ � ≤ M, (7.13b)

are different from formulae (7.11)
∣∣∣∣
n=2

.

8 Concluding remarks

The approach to q-Probability taken in this paper leaves the rules of classical probabil-
ity intact and only q-deforms some basic probability distributions. It is quite likely that
one can develop some new/bizarre rules of q-probability which contradict the comfort-
ably familiar intuition, similar to what Quantum-mechanical interpretations appear to
a Classical-mechanical disciple. The most direct route to such new rules probably goes
through basic continuous probability distributions when integral

∫
(·)dx is replaced by the

q-integral
∫
(·)dqx.
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