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ABSTRACT
Motivation: Identifying the location of ligand binding sites on a protein
is of fundamental importance for a range of applications including
molecular docking, de novo drug design and structural identification
and comparison of functional sites. Here, we describe a new method
of ligand binding site prediction called Q-SiteFinder. It uses the inter-
action energy between the protein and a simple van der Waals probe
to locate energetically favourable binding sites. Energetically favour-
able probe sites are clustered according to their spatial proximity and
clusters are then ranked according to the sum of interaction energies
for sites within each cluster.
Results: There is at least one successful prediction in the top three
predicted sites in 90% of proteins tested when using Q-SiteFinder.
This success rate is higher than that of a commonly used pocket
detection algorithm (Pocket-Finder) which uses geometric criteria.
Additionally, Q-SiteFinder is twice as effective as Pocket-Finder in gen-
erating predicted sites that map accurately onto ligand coordinates. It
also generates predicted sites with the lowest average volumes of the
methods examined in this study. Unlike pocket detection, the volumes
of the predicted sites appear to show relatively low dependence on
protein volume and are similar in volume to the ligands they contain.
Restricting the size of the pocket is important for reducing the search
space required for docking and de novo drug design or site compar-
ison. The method can be applied in structural genomics studies where
protein binding sites remain uncharacterized since the 86% success
rate for unbound proteins appears to be only slightly lower than that
of ligand-bound proteins.
Availability: Both Q-SiteFinder and Pocket-Finder have been made
available online at http://www.bioinformatics.leeds.ac.uk/qsitefinder
and http://www.bioinformatics.leeds.ac.uk/pocketfinder
Contact: r.m.jackson@leeds.ac.uk

1 INTRODUCTION
The function of a protein is defined by the interactions it makes with
other proteins and ligands. Computational methods for the detection
and characterization of functional sites on proteins have increasingly
become an area of interest (Campbell et al., 2003). This is largely due
to the many newly solved structures that have poorly characterized
biochemical functions or molecular interactions. Faced with a rapidly
increasing number of known protein structures, it has become more
important to have analytical tools that identify functional sites. This
is frequently achieved through functional site detection, which often

∗To whom correspondence should be addressed.

uses protein evolutionary information (Lichtarge et al., 1996; Aloy
et al., 2001; Armon et al., 2001; Landgraf et al., 2001) or by structural
comparisons of functional sites (Artymiuk et al., 1994; Wallace et al.,
1997; Stark and Russell, 2003). In addition, functional site detection
is important for targeting specific sites in structure-based drug design
to assist in the development of therapeutic agents. Virtual screening
of ligands against protein structures using docking is widely used for
identifying potential lead compounds in the drug design process. In
addition de novo drug design can lead to the creation of novel lig-
ands not found in molecular databases (Honma, 2003). It is essential
that the ligand binding site is identified prior to either study as both
procedures require this information. Furthermore, all methods can
be made more efficient by further restricting the search to critical
regions.

Generally, ligand binding site prediction methods analyse the
protein surface for pockets. The ligand binding site is usually in
the largest pocket. For example, SURFNET (Laskowski, 1995) was
used to analyse 67 protein structures (Laskowski et al., 1996). The
ligand binding site was found to be in the largest pocket in 83% of
cases. LIGSITE (Hendlich et al., 1997) was used to show that the
ligand binding site was found in the largest pocket in all 10 proteins
tested. Other pocket detection methods include Cavity Search (Ho
and Marshall, 1990), POCKET (Levitt and Banaszak, 1992), CAST
(Liang et al., 1998), VOIDOO (Kleywegt, 1994), PASS (Brady and
Stouten, 2000), LigandFit (Venkatachalam et al., 2003), APROPOS
(Peters et al., 1996) and the methods of Delaney (1992), Del Carpio
(1993) and Masuya and Doi (1995). In all cases geometric criteria
are used to define the location and extent of the pocket. Q-SiteFinder
takes a different approach. The pockets are defined only by energetic
criteria. The method calculates the van der Waals interaction energies
of a methyl probe with the protein. Probes with favourable interac-
tion energies are retained and clusters of these probes are ranked
according to their total interaction energies. The energetically most
favourable cluster is then ranked first. It should be noted that there
is no requirement that this is also the geometrically largest cluster.

Several techniques have been developed for estimating the inter-
action energy between a probe at a given point and a protein. One of
the most established methods is that developed by Goodford (1985).
It identifies sites of favourable interaction with specific probe types.
This is particularly useful for structure-based drug design, since it
identifies which parts of the protein are likely to interact favourably
with functional groups on a drug-like molecule. For example, studies
have been carried out to identify the hydrogen bonding potential of
drug-like molecules using GRID (Wade and Goodford, 1989; Wade
et al., 1993). The multiple copy simultaneous search (MCSS) method
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of Miranker and Karplus (1991) has also been used to detect favour-
able binding sites for different functional groups. There are also a
number of other methods that have been developed to determine
preferential locations for functional groups within binding sites (for
a review, see Bohacek and McMartin, 1997). They use interacting
probes or fragments with different interaction types such as elec-
trostatic and hydrogen bonding. None of these methods have been
used to predict protein–ligand binding sites. However, the meth-
ods of Silberstein et al. (2003) and Bate and Warwicker (2004)
have been applied to enzyme active site detection and that of Rup-
pert et al. (1997) to ligand binding site prediction. The method of
Silberstein et al. (2003) computationally distributes organic solvent
molecules (e.g. acetone, urea, t-butanol, etc.) around the surface
of an enzyme. The interaction energies between the molecules and
the enzyme are optimized using a conventional molecular mech-
anics function (including van der Waals, electrostatic and solvation
terms) in a way similar to the MCSS method. For each type of organic
molecule, the distances between the active site and the energy minima
were calculated. For six enzymes and six apoenzymes, the enzyme
active site was typically identified within 1 Å of one of the five
lowest energy minima. Bate and Warwicker (2004) predicted active
site location based on the peak of the electrostatic potential. They
compared it with the effectiveness of a cleft volume calculation. For
77% of enzymes the electrostatic potential peak is within 5% of that
of the surface shell (drawn around the whole molecule) closest to
the active site centre as opposed to only 58% of enzymes for which
the centre of the largest cleft lies within 5% of the active site. The
method of Ruppert et al. (1997) has been developed for estimat-
ing the interaction energies between a probe at a given point and
a protein. Ruppert et al. (1997) use the scoring function developed
by Jain (1996) to optimize interaction energies of three different
probe types (hydrophobic and hydrogen bond donor and acceptor).
They retain probes with the most favourable interaction energies.
They then identify ‘sticky spots’, which are regions that have the
highest density of probe interaction energy. Next a pocket is grown
by defining protein-free spheres in the protein void around the sticky
spot. Lastly, a process of accretion takes place, which enlarges the
sticky spots into larger pockets, by adding nearby accessible probes
defined by the pocket. Thus, both energetic and geometric criteria
are used to define a ligand binding site. Their algorithm was shown
to give good results on nine ligand-bound proteins and two proteins
in the unbound state. In contrast to the above methods, Q-SiteFinder
simply uses the van der Waals interaction (of a methyl probe) and an
interaction energy threshold to determine favourable binding clefts.

Q-SiteFinder has been designed to meet two main requirements.
First, it is intended to be suitable for identification of ligand bind-
ing sites for virtual screening and de novo drug design. The drug
design process requires that the binding site be known as accurately
as possible. Second, protein residues within a suitable range of the
probe clusters are identified, which could be used for functional
site identification and comparison. In both cases it is important to
keep the predicted ligand binding site as small as possible without
compromising accuracy. In particular, Laskowski et al. (1996)
demonstrated that pocket size increases linearly with protein volume.
This trend is likely to be a geometric property of proteins, as the
sizes of ligands are not likely to be related to protein volume.
We therefore measure how accurately our predicted sites mapped
onto ligand coordinates, and used this measurement to provide a
threshold for success. Q-SiteFinder is then compared with a pocket

Table 1. The protein dataset used in this study

1aaq 1bma 1dwd 1hef 1lna 1poc 1tpp 2dbl 3ptb
1abe 1byb 1eap 1hfc 1lpm 1rds 1trk 2gbp 3tpi
1acj 1cbs 1eed 1hri 1lst 1rne 1tyl 2lgs 4aah
1acl 1cbx 1epb 1hsl 1mcr 1rob 1ukz 2mcp 4cts
1acm 1cdg 1eta 1hyt 1mdr 1slt 1ulb 2phh 4dfr
1aco 1cil 1etr 1icn 1mmq 1snc 1wap 2pk4 4est
1aec 1com 1fen 1ida 1mrg 1srj 1xid 2plv 4fab
1aha 1coy 1fkg 1igj 1mrk 1stp 1xie 2r07 4phv
1apt 1cps 1fki 1imb 1mup 1tdb 2ack 2sim 5p2p
1ase 1ctr 1frp 1ive 1nco 1tka 2ada 2yhx 6abp
1atl 1dbb 1ghb 1lah 1nis 1tmn 2ak3 3cla 6rnt
1azm 1dbj 1glp 1lcp 1pbd 1tng 2cgr 3cpa 6rsa
1baf 1did 1glq 1ldm 1pha 1tni 2cht 3gch 7tim
1bbp 1die 1hdc 1lic 1phd 1tnl 2cmd 3hvt 8gch
1blh 1dr1 1hdy 1lmo 1phg 1tph 2ctc 3mth

detection algorithm, Pocket-Finder, an implementation of LIGSITE
(Hendlich et al., 1997). LIGSITE is a widely used pocket detection
algorithm. It has been used in defining binding sites in many applic-
ations including docking (Rarey et al., 1995), de novo drug design
(Verdonk et al., 2001) and in defining binding sites for functional site
comparison (Schmitt et al., 2002) as well as in the widely used Reli-
Base, a program for searching a protein–ligand database (Hendlich,
1998).

2 METHODS

2.1 Datasets and ligand identification
The dataset consisted of 134 records obtained from the Protein Data Bank
(PDB) (Berman et al., 2000) listed in Table 1. These entries correspond to the
GOLD protein–ligand docking dataset described by Nissink et al. (2002). All
the coordinates in the PDB entries were used. This subset was used instead
of all 305 proteins described by Nissink et al. (2002) to remove those with
high levels of structural similarity (e.g. 1ela, 1elb, 1elc, 1eld and 1ele), which
could bias the results.

Coordinates of the ligand(s) were placed in a separate file. Residues cova-
lently bound to the protein were retained in the file containing the protein
coordinates. All solvent molecules were discarded (including phosphate,
sulphate and metal ions). Q-SiteFinder is not designed to detect the binding
sites of small solvent molecules.

We developed a program (LigandSeek) to identify ligand coordinates in
PDB files. It divides the atoms in a PDB file into separate groups at TER cards,
ATOM/HETATM boundaries or change of chain letter. Groups of non-water
atoms that have fewer than 150 atoms are identified as potential ligands.
Ligand identification was checked manually by cross-referencing with the
Macromolecular Structures Database MSDSite service (Golovin et al., 2004)
available online at http://www.ebi.ac.uk/msd-srv/msdsite/. LigandSeek was
found to be 100% successful in identifying ligands using the 134 proteins
described in this study. LigandSeek also identifies residues that the user may
not wish to define as a ligand, such as protein phosphotyrosine residues,
cofactors such as Haem, peripherally bound carbohydrate residues and small
solvent molecules such as SO4. In the online versions of Q-SiteFinder and
Pocket-Finder, options are therefore provided to retain these residues along
with protein atoms for binding site analysis or to discard selected residues.

We created a dataset of 35 structurally distinct proteins in the unbound
state which share structural similarity with 35 proteins in the ligand-bound
dataset. This was achieved through examination of the Structural Classi-
fication Of Proteins (SCOP) database (Murzin et al., 1995) for the 305
proteins described by Nissink et al. (2002). The 305 proteins were used
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Table 2. The dataset used in testing Q-SiteFinder with proteins in the
unbound conformation

Ligand- Unbound Ligand- Unbound Ligand- Unbound
bound bound bound

1a6w 1a6u 1mtw 2tga 2h4n 2cba
1acj 1qif 1okm 4ca2 2pk4 1krn
1apu 3app 1pdz 1pdy 2sim 2sil
1blh 1djb 1phd 1phc 2tmn 1l3f
1byb 1bya 1pso 1psn 2ypi 1ypi
1hfc 1cge 1qpe 3lck 3gch 1chg
1icn 1ifb 1rbp 1brq 3mth 6ins
1ida 1hsi 1rne 1bbs 3ptb 2ptn
1igj 1a4j 1snc 1stn 5p2p 3p2p
1imb 1ime 1srf 1pts 6cpa 5cpa
1ivd 1nna 1stp 2rta 6rsa 7rat
1mrg 1ahc 2ctc 2ctb

rather than just the 134 proteins of the GOLD set to yield enough pairs
of homologues. High-resolution structures were favoured where possible.
The bound protein–ligand complexes were superimposed onto their unbound
homologues. Ligands were then extracted for use with the unbound homo-
logues. Both sets of proteins and ligands were analysed using Q-SiteFinder
and the success rates were compared. The protein pairs used in the experiment
are shown in Table 2.

2.2 Q-SiteFinder
Q-SiteFinder uses several separate procedures to perform ligand binding
site prediction (shown in Supplementary Figure 1). First, ligand coordin-
ates should be separated from the other atom coordinates using LigandSeek.
All remaining HETATM records in the protein file are converted to ATOM
records, and water molecules removed. Hydrogen atoms are then added to
protein atoms by the method described by Jackson et al. (1998). The coordin-
ates are rotated about the geometric centre to minimize the volume of the
box enclosing the protein. This reduces the number of grid points requir-
ing analysis. The same pre-processing steps are also performed when using
Pocket-Finder.

The program Liggrid calculates the non-bonded interaction energy of a
probe type with the protein at each position on a defined 3D grid, using the
GRID force field parameters as described previously (Jackson, 2002). Here
we define the interaction between the protein and a methyl probe (−CH3) at a
grid resolution of 0.9 Å on a 3D grid enclosing the whole protein. The probes
with the most favourable binding energy are retained based on an interaction
energy threshold. A range of values were tested (−1.0 to −1.9 kcal/mol).
The probe coordinates are saved in PDB format, and the coordinates are
rotated back to match the original orientation of the protein. Individual probe
coordinates are then clustered according to their spatial proximity, and the
total interaction energies of probes within each cluster are calculated. Probe
clustering uses a variable known as the connection range, which determines
the maximum distance between two probes that can be connected as part of
the same cluster. This value should be greater than the probe grid resolution
used to generate the probe output file. The default used here is 1.0 Å for a
grid resolution of 0.9 Å. This connects all adjacent sites but not those on
the diagonals of the cube. The probe clusters are ranked according to their
total interaction energies, with the most favourable being identified as the
first predicted binding site. The speed of the overall process is dependent on
protein size, but it is usually 10–15 s on the current server (1.8 GHz CPU).

The Clustering program also calculates site volume, and can identify
which protein atoms are within a defined range of cluster sites. It is also

used in this capacity in Pocket-Finder (discussed below). The parameters for
estimation of site volume and identification of protein residues are different
for Q-SiteFinder and Pocket-Finder. Values of 5.0 and 3.0 Å are used, respect-
ively, to identify protein atoms in contact with the site. For the volume
calculation, a distance threshold was used to calculate the number of cubes of
dimension 0.5 Å3 within 2.0 and 1.0 Å, respectively, of the probe sites. These
values reflect the fact that probe sites identified with Q-SiteFinder approach
the protein within van der Waals (vdW) contact, i.e. the sum of the two vdW
radii, as opposed to Pocket-Finder where sites approach the vdW surface of
the protein, i.e. the vdW radius of protein atoms. This was found to pro-
duce sites in both cases with approximately a single layer of protein atoms
surrounding the probes and approximately the same site volume.

2.3 Pocket-Finder
Pocket-Finder implements LIGSITE (Hendlich et al., 1997) which is based
on the POCKET algorithm (Levitt and Banaszak, 1992). In POCKET, a probe
sphere of radius 3 Å is passed across the protein along each line of a 3D grid
in the x, y and z directions. An interaction between the protein and probe
sphere occurs if the centre of a protein atom is found inside the probe sphere.
A pocket is identified if an interaction occurs followed by a period of no
interaction, followed by another interaction. This is referred to as a protein–
site–protein (PSP) event. The definition of the pocket is somewhat dependent
on the angle of rotation of the protein relative to the axes. LIGSITE improves
on POCKET by scanning along the four cubic diagonals in addition to the x,
y and z directions. This makes the identification of protein pockets much less
dependent on the orientation of the protein on the 3D grid. Like LIGSITE,
Pocket-Finder measures the extent to which each grid point is buried in the
protein. Each grid point has seven scanning lines passing through it (in the x,
y and z directions and the four cubic diagonals). The grid points are initially
set to zero. Every time a grid point is identified as being in a pocket in a PSP
event, the grid point is incremented by one. Grid points can therefore register
from zero (not part of a pocket) to seven (deeply buried in a cavity) PSP
events. Grid points are only retained if they exceed a threshold number of
PSP events. The threshold is termed the MINimum PSP (MINPSP). Pockets
are defined by cubes of retained grid points with sides of length equal to the
grid resolution. We use a grid resolution of 0.9 Å, a probe radius of 1.6 Å and
a MINPSP of 5. These values reduce the average volume of the first predicted
site when compared with the parameters used by Hendlich et al. (1997) (grid
resolution of 0.5 or 0.75 Å, a probe radius of 1.4 Å and a MINPSP of 2).

Pocket-Finder generates a probe output file that is compatible with the
clustering method (described above). However, the sites produced by
the Pocket-Finder program are ranked according to the number of probes
in the site rather than by probe energy.

2.4 Protein volume calculation
PDBVolume gives an estimate of the protein volume. It is a requirement that
the PDB file is first pre-processed (described above). PDBVolume creates
a 3D grid with resolution 0.9 Å and places a probe (radius 1.7 Å) at each
position. If the probe overlaps with a protein atom, the grid point is marked as
being occupied. The number of cubes with sides of length 0.9 Å and a marked
grid point at each vertex are counted to estimate the volume. A comparison
between protein volume calculations carried out by Laskowski et al. (1996)
(for the 12 proteins labelled in their graphs) and PDBVolume gave a standard
deviation of 3.3%. PDBVolume was also used to calculate ligand volume.
Hydrogen atoms were added to the ligands and a higher grid resolution of
0.1 Å (rather than 0.9 Å) was used to calculate volumes.

3 RESULTS AND DISCUSSION

3.1 Comparison of Q-SiteFinder and Pocket-Finder
Q-SiteFinder analyses clusters of energetically favourable methyl
binding sites to predict the ligand binding sites. Three sets of res-
ults are presented here: development and calibration of the method,
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A B

C D

Fig. 1. Examples of different levels of predicted binding site precision (for a definition of precision, see text). (A) 2gbp, 100% (Q-SiteFinder); (B) 1bbp, 68%
(Q-SiteFinder); (C) 1asc, 26% (Pocket-Finder); (D) 1glq, 17% (Q-SiteFinder). Probe centres are shown in black wireframe.

comparison with two pocket-detection algorithms and testing its
ability to predict ligand binding sites on proteins in the unbound state.

We measure how well a predicted site maps onto the ligand
coordinates using a precision threshold. The term ‘precision’ used
here defines the percentage of probe sites in a single cluster that are
within 1.6 Å of a ligand atom. We define a successful prediction
using a precision threshold.

A threshold of 25% precision was used to define success in all
the results presented here. For example, the predicted site shown in
Figure 1C with a precision of 26% is considered a success; however,
the site shown in 1D with a precision of 17% is not. We feel this is
a very stringent measure of success, since (1) a significant number
of probe sites must be within the range of the ligand and (2) simply
predicting very large pockets that include the ligand binding sites will
not be counted as a success. It should be noted that a method that
includes the entire protein surface in a single ‘pocket’ will be 100%
successful unless such a precision threshold is used. However, such
a prediction is of little utility for guiding docking studies, de novo
drug design or functional site comparisons.

In addition to a 25% precision threshold, the following conditions
apply to the definition of success. If a ligand is successfully predicted
in more than one site on a protein, it is counted as a success only in
the higher ranking site, since these predicted sites can be considered
to be part of the same binding site. If more than one ligand is found in
the same site, only the success with the highest precision is counted
for this site. This affected only four cases: 1glp, 1glq, 1ukz and 2phh.
If two ligands are successfully predicted in two different sites on a
protein, these are counted separately.

The results have been derived using the coordinates of 134
structures corresponding to the GOLD docking test set described
by Nissink et al. (2002). Their actual coordinates were not
used, since they contain only the binding site and surrounding
atoms. The coordinates were taken in their entirety from the PDB

entries (Table 1) using all protein chains and not solely single
subunits.

Figure 2A shows the results of using Q-SiteFinder with a range
of energy threshold values (−1.0 to −1.9 kcal/mol) for retaining
methyl binding sites. The maximum success rate was achieved when
a binding energy cut-off of −1.4 kcal/mol was used. This cut-off was
used to generate the other results presented in this report. The suc-
cess rate was 71% in the first predicted binding site, and the average
precision was 68%. It is desirable to have both a high rate of success
and a high precision of binding site prediction. Figure 1B shows an
example of 68% precision, giving an idea as to the average capabil-
ities of Q-SiteFinder. The average volume of the first predicted site
was 390 Å3 (1% of the average protein volume). However, this var-
ies between 0.2 and 3.0% of the protein volume. There was at least
one successful prediction in the top three predicted sites for 90%
of the proteins, and at least one successful prediction in the top ten
predicted sites for 96% of the proteins.

Pocket-Finder uses a variable, MINPSP, the minimum number
of PSP events (see Methods). This can be thought of as a burial
threshold, and PSP values for each grid point vary from 0 (not a
pocket) to 7 (deeply buried). Figure 2B shows that the best success
rate for Pocket-Finder is obtained at a MINPSP threshold of 5. The
success rate is only 48% in the first predicted site with an average
precision of 29%. There was at least one successful prediction in
the top three predicted sites for 65% of the proteins, and at least one
successful prediction in the top ten predicted sites for 74% of the pro-
teins. The average volume of the first predicted site is 1300 Å3 (3%
of the average protein volume). Hendlich et al. (1997) recommend
a MINPSP of 2. In our implementation of Pocket-Finder this gives
a relatively low average precision (8%) and a relatively large site
volume of 8700 Å3 (23% of the average protein volume). No signi-
ficant benefit in the success rate was observed on using a MINPSP of
2 rather than 5 when the minimum threshold for success (more than
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A B

C

Fig. 2. (A) The success rates (in the first predicted binding site) and the average precision when different probe binding-energy cut-offs are used in Q-SiteFinder.
Complete failures (i.e. a precision of 0%) were excluded from the calculation of the average precision values. (B) The average volumes, success rates and the
average precisions for the first predicted site when different MINPSP thresholds (see Methods) are used in Pocket-Finder. (C) A comparison of the success rates
for Q-SiteFinder and Pocket-Finder for the top ten predicted sites (a probe binding-energy cut-off of −1.4 kcal/mol was used for Q-SiteFinder and a MINPSP
threshold of 5 was used for Pocket-Finder).

0% precision) was used. A MINPSP value of 5 was used to generate
the other results presented in this report. Figure 2B also shows the
relationship between site volume and precision. Smaller sites have
a higher average precision. This is expected, since sites with high
volumes will usually incorporate locations on the protein surface that
are not part of the binding site. It is interesting to note that a MINPSP
of 7 still gives a relatively high success rate. Such grid points form
part of a cavity, since they are bound on all sides by protein. This
suggests that about one-third of the proteins in our dataset undergo
a conformational change on binding that completely encloses the
ligand. A comparison between the success rates for Q-SiteFinder
and Pocket-Finder is shown in Figure 2C. Q-SiteFinder has a higher
success rate in each of the top three predicted binding sites.

Q-SiteFinder did not identify the ligand binding site for 1cdg, 1eta,
3cla and 2yhx (which had 0% precision for all predicted sites) and
1glq and 1glp (which had partial successes in the first predicted site,
below the 25% precision threshold). 1cdg represents the structure of
cyclodextrin glycosyltransferase. It has three maltose sugar moieties
which bind at the protein surface, and are in very shallow clefts. Large
probe clusters are therefore not generated at these sites. However,
the catalytic site of the protein is in a cleft, and binds to cyclodextrin
(Uitdehaag et al., 1999) in other ligand-complexed PDB entries for
this enzyme. The fourth predicted site identifies this binding site
and is within 5.0 Å of contacting residues Arg-47 and Asp-371. This
success was not identified during analysis because the coordinates of
cyclodextrin are not present in the 1cdg structure. 1eta is a thyroxine
transporter (Hamilton et al., 1993). However, only one symmetrical
unit (a dimer) is described by the PDB coordinates used in this study.
The biologically relevant tetramer forms two thyroxine binding sites

Fig. 3. Overlap in ligand binding site prediction in the first predicted site.
Pocket-Finder (PF) predicts 10 sites that were not predicted by Q-SiteFinder
(QSF). Q-SiteFinder predicts 54 sites that were not predicted by Pocket-
Finder and 41 sites are predicted by both methods.

between two symmetrical units. When analysis was performed on
the tetramer [coordinates taken from the PQS database (Henrick and
Thornton, 1998)], the two binding sites were successfully identified
by Q-SiteFinder in the first and third predicted sites. Similarly, 3cla is
a trimer formed from three symmetrical units. Only a single unit was
described by the PDB coordinates. When the trimer was analysed
with Q-SiteFinder, the three ligand binding sites were identified in
the top three predicted sites (albeit with precisions below the 25%
threshold).

There was a fairly high degree of overlap in the detection of ligand
binding sites by Q-SiteFinder and Pocket-Finder (Fig. 3). Pocket-
Finder identified only 10 ligand binding sites that were not identified
by Q-SiteFinder in the first predicted site. However, all 10 were
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Fig. 4. Success rates of binding site prediction when Q-SiteFinder was used
for 35 ligand-bound proteins and 35 unbound homologues.

identified by Q-SiteFinder in the second or third predicted sites.
Q-SiteFinder identified 54 that were not identified by Pocket-Finder.
Therefore, Pocket-Finder detects a subset of the ligand binding sites
detected by Q-SiteFinder.

3.2 Application of Q-SiteFinder for detecting binding
sites on unbound proteins

It is anticipated that Q-SiteFinder will be used to detect binding sites
on proteins that are not bound to ligands. It is possible that ligand
binding may cause a conformational change in the protein that biases
the program to select a particular site. To test unbound conforma-
tions, 35 structurally distinct unbound proteins were compared with
35 homologous ligand-bound proteins as described in the Methods
section.

Figure 4 shows that the success rate in the first predicted site was
lower for the unbound state (51%) than for the ligand-bound state
(80%). The percentages of proteins with at least one success in the top
three sites were 86% for the unbound state and 97% for the ligand-
bound state. The average precision of the first predicted binding site
(excluding total failures) was 71% for the unbound state and 74%
for the ligand-bound state.

The reduced success rate for the unbound conformation is caused
by a number of factors. In two cases (1acj/1qif and 1snc/1stn),
subtle changes in the protein structures meant that the predicted
sites in the unbound form fell below the 25% precision threshold
for success. In some cases, the structure of the ligand binding
site was significantly different in the unbound conformation; for
example, 1byb/1bya and 1ida/1hsi. 1byb and 1bya are structures
of β-amylase (Mikami et al., 1994). In the ligand-bound conform-
ation (1byb), the VAL-99–GLY-100–ASP-101 loop appears to fold
over the maltotetraose ligand. However, in the unbound conform-
ation, the loop folds away from the binding site. This alters the
structure of the binding site, but it is still successfully identified by
Q-SiteFinder in the fourth predicted site compared with the first pre-
dicted site in the bound conformation (Fig. 5A). 1ida (Tong et al.,
1995) and 1hsi (Chen et al., 1994) are structures of the HIV pro-
tease; the unbound form undergoes a sizable induced fit on ligand
binding. The main chain of the ligand binding site of the unbound
form (1hsi) is much more open. This reduces the interaction in the
binding site and, consequently, no large probe clusters are formed
(Fig. 5B).

3.3 Predicted site volume
Figure 6A and B show the relationship between the predicted cleft
volume of the first predicted binding site and the protein volume for
Q-SiteFinder and Pocket-Finder. The results can also be compared
with those of SURFNET (Laskowski et al., 1996).

Q-SiteFinder produced the smallest first predicted binding sites
of 390 Å3 on average, which shows the best agreement with the
average ligand volume (275 Å3). The average volumes of the first pre-
dicted sites as a percentage of protein volume were 15% (SURFNET
class 1), 8% (SURFNET classes 2 and 3), 3% (Pocket-Finder) and 1%
(Q-SiteFinder). The volumes of the sites predicted by Q-SiteFinder
are only weakly dependent on protein volume (Fig. 6B). No pre-
dicted site exceeds 1200 Å3 even at very large protein volumes. This
trend closely parallels the relationship between protein volume and
the volume occupied by the ligand where there is little correlation
between protein volume and ligand volume (Fig. 6C). However, for
the pocket detection algorithms, the size of the pocket is more closely
related to protein volume; therefore, as protein volume increases,
so does the average volume of the first predicted pocket. Hence,
Q-SiteFinder predicts sites with volumes that are most appropriate
for the size definition of a ligand binding site. Figure 6A shows that
SURFNET produced the largest first predicted binding sites on aver-
age. However, SURFNET has the highest success rate (83.6%) of
all the methods in the first predicted site.

No significant difference was noted between the volumes of suc-
cessful predictions and unsuccessful predictions for Q-SiteFinder
in the first predicted site. Interestingly, for Pocket-Finder, the aver-
age volume of successful predictions in the first predicted site was
460 Å3, much less than the average volume of unsuccessful sites
(2100 Å3). This is because the precision threshold of 25% ensures
that predictions defined as a success map well onto the ligand
coordinates. Bigger sites often encompass large areas that are not
occupied by ligand atoms.

3.4 Precision and comparison with previous studies
The threshold for success used in this study requires that at least 25%
of the probe sites in a single cluster are within 1.6 Å of a ligand atom.
This implies a precision value greater than 25%. In previous studies
no precision threshold has been applied, the only criterion being that
the ligand is found somewhere in the predicted pocket. If we relax our
threshold to allow any non-zero value (success requires a precision
greater than 0%) then at least one ligand atom must be situated in
a predicted pocket of infinite size. In this case, the success rates of
Pocket-Finder approach those of Q-SiteFinder (Fig. 7A). However,
this is at the cost of a significant increase in the volume of the cavity
for Pocket-Finder (Fig. 7B), both in comparison with Pocket-Finder
at a precision greater than 25% and relative to Q-SiteFinder at a
precision greater than 0%. Indeed, there is little change both in the
success rate or the average volume of predicted sites for Q-SiteFinder
in going from a precision threshold of 0–25%. This implies that the
method is relatively insensitive to change in the precision threshold
unlike Pocket-Finder. This is due to the fact that the average precision
of Pocket-Finder is 29% while that of Q-SiteFinder is 68%. Hence,
Q-SiteFinder would appear to be more robust than Pocket-Finder,
and better able to pinpoint the location of the ligand binding site.

Furthermore, there is little difference (2%) between the success
rate for Pocket-Finder with a MINPSP of 2 and that with 5 despite a
4-fold reduction in the average predicted site volume between these
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A B

Fig. 5. Backbone structures of homologous ligand-bound (mid-grey) and unbound (dark grey) proteins have been superimposed with their ligands (light grey).
(A) 1byb (mid-grey) and 1bya (dark grey). The VAL-99–GLY-100–ASP-101 loop has been circled. (B) 1ida (mid-grey) and 1hsi (dark grey).

A B

C

Fig. 6. Volume of the first predicted site as a function of protein volume for Q-SiteFinder, Pocket-Finder and SURFNET. Class 1 enzymes are defined by
Laskowski et al. (1996) to have the ligand in the first predicted site. Class 2 enzymes are defined to have the ligand in the second predicted site. The remaining
proteins are defined as Class 3. (A) Volume of the first predicted site as a function of protein volume for Q-SiteFinder, Pocket-Finder and SURFNET. Data for
individual proteins are marked as white circles (Pocket-Finder) and black diamonds (Q-SiteFinder). Only the lines of best-fit are shown for SURFNET. Data
for 1wap are not shown here due to the unusually large predicted binding site generated by Pocket-Finder (44 000 Å3). (B) The same graph is shown again
with a different y-scale. All of the Q-SiteFinder data are shown, but only part of the Pocket-Finder data are shown. (C) Ligand volume as a function of protein
volume for all ligands in the 134 protein dataset. Note: Following Laskowski et al. (1996), the lines of best-fit (y = mx) pass through the origin.

values (data not shown). Therefore, increasing the pocket size (by
decreasing MINPSP) does not significantly increase the success rate
of Pocket-Finder. It can be concluded that ligands have a preference
for regions of the protein that are more buried (Pocket-Finder) and
better able to participate in van der Waals interactions with the protein
(Q-SiteFinder).

Precision is a useful method for measuring how well probes map
onto ligand coordinates (Fig. 8). The main disadvantage of precision
is that a high score can be achieved if the probe cluster maps accur-
ately onto only a part of the ligand. In many cases, this is justified,

since only a part of the ligand may be bound to the protein. However,
in some cases, a high precision can be achieved even though a part of
the ligand bound to the protein has not been identified by the probe
cluster.

Other studies have used different measures of success. For
example, Peters et al. (1996) defined a successful prediction as one
that includes at least seven of the protein atoms in contact with the
ligand. This definition of success has two major problems. First, a
very large predicted site (such as one that spreads across the whole
surface of the protein) would be considered successful providing
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A B

Fig. 7. Success rates of Q-SiteFinder and Pocket-Finder when the threshold for success requires a precision greater than 0%. (A) A comparison between
Q-SiteFinder and Pocket-Finder for the top 10 predicted sites. (B) Average volumes of successfully predicted sites, when 0 and 25% precision thresholds are
used to define success in Pocket-Finder and Q-SiteFinder.

A

B

C

D

Fig. 8. Different levels of precision. The ligand is shown in white and the
probe cluster is shown in black. (A) High precision with all of the ligand
covered. (B) Low precision with all of the ligand covered. (C) Low precision
with part of the ligand covered. (D) High precision with part of the ligand
covered.

it incorporated at least seven protein atoms in contact with ligand
atoms, even though such a site would be very imprecise. False pos-
itive protein residues are not taken into account. Second, if fewer
than seven protein atoms were in contact with the ligand, no predic-
tion could be defined as a success even if all of the protein atoms in
contact with the ligand were correctly identified.

Hendlich et al. (1997) measured the accuracy of their LIGSITE
algorithm by finding the percentage of protein atoms that formed part
of a pocket that were in contact with ligand atoms. Protein and ligand
atoms were defined to be in contact with each other if they were within
a distance of the sum of the van der Waals radii plus 0.5 Å. They used
a test set of 10 proteins and found that 100% of the contacting atoms
were identified in each case. The main disadvantage of this method
is that false positive protein residues are not taken into account. If
the entire surface of a protein were identified as a predicted binding
site, it would score 100%.

Ruppert et al. (1997) used three different probe types (hydrophobic
and hydrogen bond donor and acceptor probes). They measured the

success of their predictions by finding the maximum, minimum and
average distances between ligand atoms and the nearest probe whose
type matched the ligand atom in question. The reported distances
were low. However, this method for calculating success disregards
all probes that bind further away from the ligand (false positives).
Hence good results could be reported even if the predicted site was
very large (for example, covering the entire surface of the protein).

‘Precision’ is a way of measuring the extent to which a predicted
site maps onto ligand coordinates. A method that gives a high preci-
sion is a suitable starting point for ligand docking studies, de novo
drug design and functional site definition. Hence, we conclude that
a precision-based threshold for success is suited to measuring the
ability of a method to achieve this aim.

4 CONCLUSIONS
We have presented a method, Q-SiteFinder, for ligand binding site
prediction that is based on determining energetically favourable
binding sites on the surface of a protein. The method is better able
to pinpoint the location of the ligand binding site than a compar-
able pocket detection algorithm (Pocket-Finder) on a dataset of 134
proteins. One of the strengths of the method is its prediction of relat-
ively small sites. The sites have volumes roughly equivalent to ligand
volumes irrespective of the overall size of the protein. This is in con-
trast to pocket detection, where predicted site volumes show a much
greater tendency to increase with protein size. This property would
appear to be a result of using probe site binding energies with the
appropriate energy cut-off rather than purely geometric criteria to
determine favourable binding sites on proteins. The individual probe
sites relate most closely to the favoured high-affinity binding sites
on the protein surface. These favourable binding sites relate to loc-
ations where a putative ligand could bind and optimize its van der
Waals interaction energy. Such sites would be expected to corres-
pond closely to a high-affinity ligand binding site. This is supported
by the high level of success of the method. First, it would appear
that this measure is general enough to be of predictive value for a
broad range of proteins and ligands of different chemical composi-
tion. Furthermore, given the high level of success in unbound protein
sites, it is also a property of binding sites that do not have a ligand
already bound.

Q-SiteFinder was shown to identify sites with high precision.
The advantage of this is that putative binding sites are identified
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as closely as possible to the actual binding site. It is important to
keep the predicted ligand binding site as small as possible without
compromising accuracy for a range of applications such as molecu-
lar docking, de novo drug design and structural identification and
comparison of functional sites.
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