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Abstract

We suggest analytic estimates for the Q-switching instability bound-
ary of the continuous-wave mode-locking regime domain for a ring cav-
ity semiconductor laser. We use a differential delay laser model that
allows to assume large gain and loss in the cavity, which is a typical
situation for this laser class. The slow saturable absorber approxima-
tion is applied to derive a map that describes the transformation of
the pulse parameters after a round trip in the cavity. The Q-switching
instability boundary is then obtained as a Neimark-Sacker bifurcation
curve of this map. We study the dependence of this boundary on laser
parameters and compare it with the boundaries obtained by New’s sta-
bility criterion and by direct numerical analysis of the original delay
differential model. Further modification of our approach, based on the
hyperbolic secant ansatz, is used to estimate the width and repetition
rate of the mode locking pulses.

1 Introduction

Semiconductor lasers operating in mode-locking (ML) regime are efficient,
compact, low cost sources of short optical pulses with high repetition rates
(tens and hundreds of GHz), suitable for applications in telecommunication
technology. Similarly to other types of lasers, these lasers can be passively
mode-locked by incorporating intracavity saturable absorber section into the
laser. However, lasers with a saturable absorber have a tendency to exhibit
undamped Q-switching pulsations. In a mode-locked laser Q-switching in-
stability leads to a transition from continuous-wave (cw) ML regime to a
so-called Q-switched ML regime. The latter regime is characterized by pulse
amplitude modulated by the Q-switching oscillations frequency that is typ-
ically of order few GHz for semiconductor lasers. Since fluctuations of ML
pulse amplitude are undesirable in most of applications, it is an important
question how to avoid such type of instability in real devices.

Stability of the cw ML regime with respect to Q-switching bifurcation
was studied experimentally and theoretically in a number of publications
[1, 2, 3, 4, 5, 6]. In particular, analytical estimations for the stability criteria
for cw ML regime in a solid state laser were obtained [2, 4]. However, since
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previous theoretical studies were based on the Haus master equation, which
assumes small gain and loss, their results are hardly applicable to describe Q-
switching bifurcation in the parameter range typical of semiconductor lasers.
To this end we use the delay differential model proposed in Ref. [7]. Under the
slow saturable absorber approximation laser we derive a map that describes
the transformation of the ML pulse parameters after a complete round trip
in the cavity. A nontrivial fixed point of this map corresponds to a cw ML
regime. Q-switching bifurcation is obtained from linear stability analysis of
this map. Using this approach we study the dependence of the Q-switching
instability domain on the laser parameters.

2 Model equations

We consider a ML solution in a model of a semiconductor ring cavity laser
suggested and studied numerically in Ref. [7]. In case of the Lorentzian
lineshape of the spectral filtering element, the model has the form

γ−1Ȧ + A =
√

κ e
1−iαg

2
G(t−T )− 1−iαq

2
Q(t−T )A(t− T ), (1)

Ġ = g0 − γgG− e−Q(eG − 1)|A|2, (2)

Q̇ = q0 − γqQ− s(1− e−Q)|A|2, (3)

where A is the electric field envelope at the entrance of the absorber section;
G and Q stay for saturable gain and loss, respectively. In Eqs. (1)-(3) T is
the cold cavity round trip time, the parameter γ measures the bandwidth
of the spectral filtering element, κ is the attenuation factor describing linear
nonresonant intensity losses per cavity round trip, γg,q are the relaxation rates
of the amplifying and absorbing media, and s is the ratio of the saturation
intensities in gain and absorber media. Eqs. (1)-(3) give a generalization of
the Haus’ master equation to the case of large gain and loss per cavity round
trip, i.e. a situation typical of semiconductor lasers.

The number of cavity modes that take part in the locking process can be
roughly estimated as a ratio of the spectral width γ of the filtering element
and the intermode frequency spacing T−1. Here we consider a limit when
this number is very large, γT → ∞, which means that the duration τ of a
ML pulse is very short, much shorter than the relaxation times of the gain
and absorber media, τ ¿ γ−1

g,q . This limit corresponds to the so-called slow
saturable absorber approximation [8, 9] which holds quite well for parameter
values typical of semiconductor lasers. Analytical study of a ML laser with
slow absorber was performed by New [8] and Haus [9]. Following their ap-
proach, we distinguish between slow and fast stages in the evolution of a ML
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solution. The fast stage corresponds to a short time interval when the am-
plitude of the pulse is large. During this stage linear relaxation terms in the
right hand side of Eqs. (2) and (3) can be neglected. The slow stage corre-
sponds to the time interval when the electric field intensity is small between
two subsequent pulses. At this stage we neglect the terms proportional to
|A|2 in the right hand sides of Eqs. (2) and (3). Solving the laser equations for
the two stages separately and then gluing the solutions together, we obtain a
map that describes the transformation of pulse parameters after a complete
round trip in the cavity. A fixed point solution of this map corresponds to a
ML solution characterized by periodic laser intensity. We study the stabil-
ity of the fixed point and demonstrate that it can exhibit a Neimark-Sacker
bifurcation characterized by a pair of complex conjugate Floquet multipliers
crossing the unit cycle. Such a bifurcation is responsible for a Q-switching
instability of the ML regime.

Let Gn and Qn be the saturable gain and loss evaluated at the beginning of
the fast stage after n round trips in the cavity, i.e. at the leading edge of the n-
th pulse. The corresponding pulse energy is given by Pn =

∫ τn
0 |A|2 dt, where

the integration limits, 0 and τn, stand for the beginning and end of the n-th
fast stage, respectively. During the fast stage the laser intensity is large and
the terms containing |A|2 become dominating in Eqs. (2) and (3). Thus we
neglect the other (relaxation) terms in the right hand sides of these equations
to arrive at the system Ġ = −e−Q(eG − 1)|A|2 and Q̇ = −s(1 − e−Q)|A|2,
which admits the explicit solution

G(p) = − ln

[
1− 1− e−Gn

(1 + esp−Qn − e−Qn)1/s

]
, Q(p) = ln

[
1 + e−sp(eQn − 1)

]
,

(4)
where p is the differential energy of the n-th pulse defined by dp = |A|2 dt.
The slow stage of ML solution is described by the linear ordinary differential
equations, Q̇ = q0 − γqQ and Ġ = g0 − γgG, with the solutions

G (t) = G (Pn) e−γgt+
g0

γg

(
1− e−γgt

)
, Q (t) = Q (Pn) e−γqt+

q0

γq

(
1− e−γqt

)
,

(5)
where the initial conditions, G (Pn) and Q (Pn), are obtained from Eqs. (4)
with p = Pn. Substituting Eqs. (4) into Eqs. (5) and taking into account
that in the limit γT → ∞ the duration of the slow stage is equal to the
cavity round trip time T , we obtain a map describing the transformation of
the saturable gain and loss after a complete round trip in the cavity:

Gn+1 = −e−γgT ln

[
1− 1− e−Gn

(1 + esPn−Qn − e−Qn)1/s

]
+ (1− e−γgT )g0/γg,(6)

Qn+1 = e−γqT ln
[
1 + e−sPn(eQn − 1)

]
+ (1− e−γqT )q0/γq. (7)
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Here Gn+1 and Qn+1 are the saturable gain and loss evaluated at the begin-
ning of the fast stage after n + 1 round trips in the cavity, i.e. at the leading
edge of the (n + 1)-th pulse.

In order to complete Eqs. (6) and (7) one has to relate the energies Pn

and Pn+1 of the two subsequent pulses by solving Eq. (1) for the electric
field envelope A. Unfortunately, this task cannot be performed analytically
in general situation. Therefore, we use two different approaches to simplify
the problem. The first of them is based on New’s approximation [8] which
assumes that there is no spectral filtering in the cavity. This approach al-
lows to calculate the Q-switching instability boundary of a ML solution and
background stability boundaries of a ML pulse according to the criterion
proposed by New [8]. However, such important characteristics of ML regime
as pulse duration and deviation of the pulse repetition period from the cold
cavity round trip time are missing in this approach. Therefore, in order to
get these characteristics, in Section 4 we apply a variational approach to a
more realistic situation when spectral filtering is taken into account.

3 No spectral filtering in the cavity

Let us rewrite Eq. (1) equivalently in the form

γ−1Ȧn+1

(
t− γ−1δn

)
+ An+1

(
t− γ−1δn

)
=
√

κ e
1−iαg

2
G(t)− 1−iαq

2
Q(t)An (t) .

(8)
In Eq. (8) An+1 (t) ≡ An (t + Tn) and δn = γ(Tn − T ), where Tn is the time
interval between the two subsequent pulses. Multiplying Eq. (8) with its
conjugate and integrating over the round trip time T we get

γ−2
∫ τn+1

0
|Ȧn+1|2 dt + Pn+1 = κ

∫ Pn

0
eG(p)−Q(p) dp, (9)

where in both sides we have restricted the integration to the fast stage,
since the optical field intensity during the slow stage is negligibly small.
Eq. (9) describes the energy balance in the cavity. It is similar to Eq. (46) in
Ref. [9], which was derived for a periodic ML solution under small gain and
loss per cavity round trip and parabolic dispersion approximations, and to a
generalization of this equation to the case of large gain and loss obtained in
Ref. [10]. The integral term in the left hand side of Eq. (9) describes energy
losses introduced by the spectral filtering element. Since in this section we
neglect the spectral filtering completely, this term can be dropped. Then,
after explicit integration of the right hand side we obtain

Pn+1 = κ ln
[
1− eGn + eGn(1 + esPn−Qn − e−Qn)1/s

]
. (10)
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The 3-dimensional map (6), (7), and (10) describes the transformation of
the pulse parameters Gn, Qn, and Pn after a complete round trip in the cavity.
It always has a trivial fixed point (g0/γg, q0/γq, 0) corresponding to zero pulse
power (i.e. to laser off). This point is stable for η = g0/γg − q0/γq + ln κ < 0
and looses stability via a transcritical bifurcation at the linear laser threshold
η = 0. A fixed point (G∗, Q∗, P∗) with P∗ > 0 that appears after the trans-
critical bifurcation represents a pulsed solution of Eqs. (1)-(3) with periodic
laser intensity corresponding to a fundamental ML regime. Depending on
the parameter values, the fixed point characterized by a positive pulse en-
ergy can bifurcate from the trivial one either supercritically or subcritically.
In the latter case there may be a bistability between the zero intensity solu-
tion and a solution corresponding to a ML regime. In this paper, however,
we consider only the parameter values which satisfy the inequality

(κ−1 − e−q0/γq) tanh
γqT

2
> s(1− e−q0/γq) tanh

γgT

2
,

which implies that the stable fixed (G∗, Q∗, P∗) with P∗ > 0 bifurcates from
the trivial one supercritically, whereby bistability is excluded.

We have observed numerically by the linear stability analysis that the
fixed point (G∗, Q∗, P∗) can loose stability via the so-called Neimark-Sacker
bifurcation where two complex conjugated Floquet multipliers cross the unit
circle. This bifurcation is similar to Andronov-Hopf bifurcation of ordinary
differential equations. A solution that appears at this point corresponds to
a regime with ML pulse energy modulated periodically at the Q-switching
frequency. The Neimark-Sacker bifurcation curve QS shown in Fig. 1 by solid
represents thereby the border between the ML and Q-switching domains in
the parameter plane (g0,−q0). The fixed point (G∗, Q∗, P∗) exists to the right
from the linear threshold line th and is stable in the area above the curve
QS.

Another stability criterion of ML solution was proposed by New [8]. Ac-
cording to this criterion, ML pulses are stable if the net gain parameter
G(t) − Q(t) + ln κ is negative during the whole slow stage. Physically this
means that small perturbations of the low intensity background between two
subsequent pulses do not grow with time. Though stable ML pulses which do
not satisfy New’s criterion were observed in numerical simulations [6, 3, 7],
these pulses are expected to be very sensitive to the presence of noise. There-
fore, one can expect that this criterion gives at least a rough estimation of
the ML stability domain.

It can be shown that it follows from (5) that New’s background stability
criterion is fulfilled if the net gain is negative at the beginning and the end of
the slow stage. Therefore the boundaries of the background stability domain
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of ML pulses are defined by the equalities

G∗ −Q∗ + ln κ = 0, G̃∗ − Q̃∗ + ln κ = 0. (11)

Here G̃∗ = G(P∗) and Q̃∗ = Q(P∗) defined by Eqs. (4) describe the saturable
gain and loss at the beginning of the slow stage. They are obtained from
Eqs. (4) by the substitution Qn → Q∗, Gn → G∗, and p → P∗. Eqs. (11)
define the leading and the trailing edge instability boundaries of a ML pulse
in the laser parameter space. These boundaries are shown in Fig. 1 by the
solid lines LE and TE, respectively. One can see that the lower boundary
TE of the background stability domain is separated from bifurcation bound-
ary QS by a thin stripe where ML pulses with unstable background are
stable with respect to Q-switching instability. The existence of stable ML
pulses with unstable background according to New’s criterion was noticed
in numerical simulations using both the Haus master equation [6, 3] and
the delay differential model (1)-(3) [7, 10]. The two background instability
boundaries, LE and TE, meet each other at the codimension-two point CT.
The coordinates of this point, which lies at the linear threshold line th and,
therefore, corresponds to infinitely small pulse energy, can be expressed ex-
plicitly: g0 = γg ln [(s− 1) / (sκ− 1)], q0 = γq ln [κ (s− 1) / (sκ− 1)] [10].
The dots in Fig. 1 represent the points at the Q-switching (empty dots)
and background (full dots) instability boundaries obtained by means of di-
rect numerical simulation of Eqs. (1)-(3). One can see that these numerical
results are in quite good agreement with those obtained analytically in the
limit when the spectral filtering is neglected.

Figs. 2 and 3 present the dependence of the Q-switching domain boundary
on the linear loss parameter κ and the ratio s of the saturation intensities
in gain and absorbing media. It follows from our numerical simulations that
this boundary depends mainly on the product sκ and weakly depends on
these two parameters separately. This property holds especially good for
large cavity losses typical for semiconductor lasers, as it is illustrated by Fig.
2. The Q-switching instability boundaries for different values of sκ are shown
in Fig. 3. According to this figure, the domain of Q-switched ML regime is
shifted into the region of large linear gain g0 and linear loss q0 parameters
and becomes wider with the decrease of sκ.

4 Variational approach

The reduced model (6), (7), and (10) is based on the representation of ML
solution by the T -periodic sequence of δ-pulses with the energy P∗. Note that
this map does not depend on the α-factors αg,q. Also, it gives no information
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g0

0.0 0.5 1.0

-q
0

-3

-2

-1

0

th

QS

TE

LE

CT

Figure 1: Q-switching instability curves (QS) and background instability bound-
aries (LE and TE) of a ML pulse. LE corresponds to the leading and TE to the
trailing edge instability boundary. Solid lines are obtained using Eqs. (6), (7), and
(10). Dashed lines are obtained from Eqs. (6), (7), (13), and (14). Dots show
Q-switching and background instability boundaries calculated by direct nemerical
integration of the laser equations (1)-(3). Straight line th indicates the linear las-
ing threshold. Parameters are: κ = 0.1, s = 25, γg = 0.01, γq = 0.75, T = 2.5,
γ = 50.

about such important characteristics of the ML regime as the pulse width
and deviation of the pulse repetition frequency from the cold cavity round
trip time T . In order to estimate these characteristics, we modify our map
using a variational approach. We look for the solution of Eq. (1) at the n-th
fast stage in the form

An(t) =

√
Pnγ

2τn

sech
(

γt

τn

)
, (12)

where Pn is the dimensionless pulse energy and τn/γ is the pulse width. In
doing so, we are motivated by the fact that Haus’ formula (12) (see, [9]) gives
an exact solution of the ML problem in the weak saturation limit when all
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Figure 2: Q-swithicing instability boundaries. Curves 1 and 2 correspond to
sκ = 1.3 with s = 35 and s = 15, respectively. Curves 3 and 4 correspond to
sκ = 5 with s = 35 and s = 15.

the nonlinearities can be replaced with their second order Taylor expansions
in the pulse energy P .

For simplicity, we consider the case of zero α-factors, consequently from
now on αg = αq = 0. Substituting expression (12) into Eq. (9) and taking
into account that the right hand side of this equation is equal to the right
hand side of Eq. (10), we obtain

Pn+1

3τ 2
n+1

+ Pn+1 = κ ln
[
1− eGn + eGn(1 + esPn−Qn − e−Qn)1/s

]
. (13)

It is important to note that since in the limit of infinite bandwidth, γT →∞,
the normalized pulse width τ remains finite, both the terms in the left hand
side of Eq. (13) are of the same order, while in New’s approach the first
term was neglected. It means that relation (13) obtained for the Lorentzian
filtering in the limit of infinitely broad bandwidth γT →∞ and relation (10)
based on New’s assumption that spectral filtering is absent lead to different
estimates of the ML pulse energy.
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Figure 3: Q-switching instability boundaries calculated for different values of sκ

with the fixed s = 25. Line 1: sκ = 1.25; line 2: sκ = 2.5; line 3: sκ = 5; line 4:
sκ = 7.5. Other parameters are the same as in Fig. 1.

Thus, in the presence of spectral filtering we replace Eq. (10) by Eq. (13),
while Eqs. (6) and (7) which do not depend on the pulse shape remain un-
changed. Since Eq. (13) contains an additional parameter, the normalized
pulse width τn, an extra relation is required to describe the evolution of this
parameter from one pulse to another. We obtain it by integrating Eq. (8)
over the cavity round trip time, which seems to be a reasonable and simple
possibility among the others (leading to different relations). We neglect the
optical field intensity during the slow stage and then integrate Eq. (8) with
G, Q, An, and An+1 replaced by the corresponding fast stage solutions (4),

(12), and An+1(t) =
√

γPn+1/ (2τn+1) sech(γt/τn+1). Taking square of both
sides of the resulting equation, in the limit γT →∞ we arrive at

τn+1Pn+1 = κ τnPn


 1

π

∫ Pn

0

Φ(p,Qn, Gn)√
p (Pn − p)

dp




2

, (14)
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with

Φ(p,Qn, Gn) =
[
1 + e−sp(eQn − 1)

]−1/2
[
1− 1− e−Gn

(1 + esp−Qn − e−Qn)1/s

]−1/2

.

We analyze 4-dimensional map (6), (7), (13), and (14) in the same way
as the 3-dimensional one of the previous section, again interpreting a stable
fixed point (G∗, Q∗, P∗, τ∗) with a positive pulse energy P∗ as a representation
of a fundamental ML solution and the Neimark-Sacker bifurcation line as the
border between Q-switching and ML domains. Fig. 1 allows to compare this
border and the region of stability of ML pulses background obtained for the
4-dimensional model (dashed lines) with that of the 3-dimensional model
(solid lines) and with the results of numerical analysis of the complete model
(1)-(3) (shown by dots). One can see that, as it could be expected, the results
obtained with the 4-dimensional map appear to be in better agreement with
the results of direct numerical simulations of the delay differential equations.
However, the discrepancy between the stability boundaries obtained with
and without spectral filtering is not so pronounced for the parameter values
of Fig. 1. A more important advantage of the approach based on the 4-
dimensional map is that it allows to estimate the normalized pulse width τ∗
and the normalized difference δ∗ = γ (T∗ − T ) between the pulse repetition
frequency and the cavity round trip time. The first of these two quantities
is obtained by calculating the fourth component of a nontrivial fixed point
of the map (6), (7), (13), and (14). The second quantity can be obtained
similarly to the derivation of relation (14) above. For a T∗-periodic ML
solution Eq. (8) becomes

γ−1Ȧ(t− γ−1δ∗) + A(t− γ−1δ∗) =
√

κe[G(t)−Q(t)]/2A(t).

Substituting fast stage solutions (4) and (12) into this equation, multiplying
it by t, and integrating over the round trip time, we arrive at the formula

δ∗ = 1 +
τ∗
√

κ

π

∫ P∗

0

Φ(p,Q∗, G∗)√
p (P∗ − p)

arctanh
(

2p

P∗
− 1

)
dp,

where (Q∗, G∗, P∗, τ∗) is the fixed point of map (6), (7), (13), and (14). Fig.
4 shows how the quantities τ∗ and δ∗ change along the boundaries of the
background stability domain. The curves labelled LE and TE correspond,
respectively, to the leading and trailing edge instability boundaries obtained
using the 4-dimensional map (dashed lines in Fig. 1). It follows from Fig. 4
that the pulse width is smaller at the trailing edge instability boundary which
is close to the Q-switching curve QS. This is in qualitative agreement with
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experimental data obtained with monolithic semiconductor laser [11]. The
quantity −δ∗ increases (decreases) with the increase of the pump parameter
at the curve LE (TE). This means that the pulse repetition rate increases
with g0 at the leading edge instability boundary and it decreases at the
trailing edge instability boundary. This is because near the boundary LE
the net gain window is shifted to the leading edge of a pulse, and, hence,
ML pulse is accelerated by nonlinear intracavity media. Similarly near the
trailing edge instability boundary pulses are delayed by a net gain window
shifted to their trailing edge. The point in Fig. 4a where two curves, LE and
TE meet each other lies on the linear threshold and corresponds to infinitely
small pulse energy. At this point the quantity −δ∗ is negative due to the
dispersion introduced by the spectral filtering element.

0.0 0.5 1.0 1.5

- δδ δδ
∗∗ ∗∗/

Τ/Τ /Τ/Τ

-0.5

-0.4

-0.3

TE

LE

g0

0.0 0.5 1.0 1.5

ττ ττ ∗∗ ∗∗

1

2

3

4

TE

LE

(a)

(b)

Figure 4: (a) Normalized difference between the ML pulse repetition period T∗
and the cavity round trip time T . (b) Normalized width τ∗ of a ML pulse. Curve
LE (TE) corresponds to the leading (trailing) edge instability boundary shown in
Fig. 1. Other parameters are the same as in Fig. 1.
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5 Conclusion

In this paper using slow saturable absorber approximation we have developed
a description of a Q-switching instability in a mode-locked semiconductor
laser. We have constructed an analytical map that describes the transfor-
mation of a ML pulse parameters after a complete round trip in the cavity.
The Q-switching instability boundary has been found as a Neimark-Sacker
bifurcation of this map. According to our results, this boundary can be quite
well estimated by the approach of New that neglects spectral filtering. In
order to determine the pulse width and the pulse repetition frequency, we
have applied a more advanced approach based on variational techniques. The
obtained estimations of the pulse width are in qualitative agreement with ex-
perimental data obtained with monolithic mode-locked semiconductor laser.
We have shown that the Q-switching instability boundary depends strongly
on the product of the stability parameter s and the linear non-resonant loss
parameter κ, being weakly dependent on these two parameters separately.
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