Q VALUED FUNCTIONS MINIMIZING DIRICHLET'S INTEGRAL AND THE REGULARITY OF AREA MINIMIZING RECTIFIABLE CURRENTS UP TO CODIMENSION TWO

F. J. ALMGREN, JR. ${ }^{1}$

We announce several results of an extensive study $[\mathbf{A}]$ of the size of singular sets in oriented m dimensional surfaces which are area minimizing in $m+l$ dimensional Riemannian manifolds. Our principal result is that the Hausdorff dimension of such a singular set does not exceed $m-2$. Examples show this is the best possible such general estimate when $l \geq 2$, i.e., when branching singularities are possible. The general existence of such surfaces of least area is well known in a variety of settings [$\mathbf{F}, 5.1 .6$].

In order to obtain estimates on branching of area minimizing surfaces we were led to use Taylor's expansion in terms of first derivatives at 0 to approximate the nonparametric area integrand by Dirichlet's integrand. Accordingly, we study branched coverings of regions in \mathbf{R}^{m} which are graphs of multiple valued functions minimizing the integral of Dirichlet's integrand. As a central estimate in our analysis of area minimizing surfaces we show that the Hausdorff dimension of the branch set of such a minimizing covering does not exceed $m-2$.

To state several results in more detail we use the terminology of [$\mathbf{F}]$. Suppose that A is a bounded open subset of \mathbf{R}^{m} with smooth boundary, and let k, l, m, n, Q be positive integers with $k \geq 3, l \leq n$, and $m \geq 2$.

INTERIOR REGULARITY OF ORIENTED AREA MINIMIZING SURFACES. Suppose N is an $m+l$ dimensional submanifold of \mathbf{R}^{m+n} of class $k+2$ and that T is an m dimensional rectifiable current in \mathbf{R}^{m+n} which is absolutely area minimizing with respect to N. Then there is an open subset U of \mathbf{R}^{m+n} such that $\operatorname{spt} T \cap U$ is an m dimensional minimal submanifold of N of class k and the Hausdorff dimension of $\operatorname{spt} T \sim(U \cup \operatorname{spt} \partial T)$ does not exceed $m-2$.

For such area minimizing T we have additionally
SINGULARITY STRATIFICATION BY TANGENT CONE TYPE. Whenever $p \in \operatorname{spt} T \sim \operatorname{spt} \partial T$ and S is an oriented tangent cone to T at p then

$$
P(S)=\mathbf{R}^{m+n} \cap\left\{x: \theta^{m}(\|S\|, x)=\theta^{m}(\|S\|, 0)=\theta^{m}(\|T\|, p)\right\}
$$

[^0]is either the point $\{0\}$ or a linear subspace of \mathbf{R}^{m+n} with $m-1 \neq \operatorname{dim} P(S) \leq$ m. Furthermore, for each $j \in\{0,1, \ldots, m-2, m\}$, the Hausdorff dimension of
$(\operatorname{spt} T \sim \operatorname{spt} \partial T) \cap\{p: j=\sup \{\operatorname{dim} P(S): S$ is an oriented tangent
cone to T at $p\}\}$
does not exceed j.
We denote by \mathbf{Q} the space of all 0 dimensional integral currents V in \mathbf{R}^{n} for which $Q=\mathbf{M}(V)=\langle V, 1\rangle$ with metric given by setting
\[

$$
\begin{gathered}
\operatorname{dist}(\llbracket p(1) \rrbracket+\cdots+\llbracket p(Q) \rrbracket, \llbracket q(1) \rrbracket+\cdots+\llbracket q(Q) \rrbracket) \\
=\inf \left\{\left(\sum_{i=1}^{Q}|p(i)-q(\sigma(i))|^{2}\right)^{1 / 2}: \sigma \text { is a permutation of }\{1, \ldots, Q\}\right\}
\end{gathered}
$$
\]

whenever $p(1), \ldots, p(Q), q(1), \ldots, q(Q) \in \mathbf{R}^{n}$. For Lipschitz \mathbf{Q} valued functions we show a Lipschitz extension theorem analogous to Kirszbraun's theorem, an almost everywhere Q fold affine approximation theorem analogous to Rademacher's theorem, and also show that each Lipschitz function $A \rightarrow \mathbf{Q}$ induces a natural chain mapping of degree 0 from the chain complex of real flat chains having supports in A into the chain complex of real flat chains in \mathbf{R}^{n}. In terms of Dirichlet's integral naturally defined for appropriate functions $A \rightarrow \mathbf{Q}$ we have the following central results.

Existence and regularity of Dirichlet integral minimizing \mathbf{Q} valued functions. For each appropriate function $g: \partial A \rightarrow \mathbf{Q}$ there exists a (strictly defined but not necessarily unique) function $f: A \rightarrow$ \mathbf{Q} having boundary values g and of least Dirichlet integral among such functions. Furthermore, each such minimizing f is Hölder continuous, and $A \times$ $\mathbf{R}^{n} \cap\{(x, y): y \in \operatorname{spt}(f(x))\}$ is an mimensional real analytic (harmonic) submanifold of $A \times \mathbf{R}^{n}$ except possibly for a closed set of Hausdorff dimension not exceeding $m-2$.

Assuming that m and n and even integers and the usual complex identifications have been made, we show that the \mathbf{Q} valued function produced by projection mapping slicing of a complex holomorphic chain in $A \times \mathbf{R}^{n}$ associated with a Q fold analytic branched covering of A is uniquely Dirichlet integral minimizing. Our Hausdorff codimension two singularity estimate for Dirichlet integral minimizing \mathbf{Q} valued functions is thus the best possible.

References

[A] F. Almgren, \mathbf{Q} valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension 2 (being typed, approximately 1500 manuscript pages).
[F] H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, Berlin, Heidelberg and New York, 1969.

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

Department of Mathematics, Princeton University, Princeton, New Jersey 08544

[^0]: Received by the editors November 11, 1982.
 1980 Mathematics Subject Classification. Primary 45F22; Secondary 53A10.
 ${ }^{1}$ This work was supported in part by grants from the National Science Foundation and from the Institute for Advanced Study in Princeton.

