Q VALUED FUNCTIONS MINIMIZING DIRICHLET'S INTEGRAL AND THE REGULARITY OF AREA MINIMIZING RECTIFIABLE CURRENTS UP TO CODIMENSION TWO

F. J. ALMGREN, JR.¹

We announce several results of an extensive study [A] of the size of singular sets in oriented m dimensional surfaces which are area minimizing in m+l dimensional Riemannian manifolds. Our principal result is that the Hausdorff dimension of such a singular set does not exceed m-2. Examples show this is the best possible such general estimate when $l \geq 2$, i.e., when branching singularities are possible. The general existence of such surfaces of least area is well known in a variety of settings [F, 5.1.6].

In order to obtain estimates on branching of area minimizing surfaces we were led to use Taylor's expansion in terms of first derivatives at 0 to approximate the nonparametric area integrand by Dirichlet's integrand. Accordingly, we study branched coverings of regions in \mathbf{R}^m which are graphs of multiple valued functions minimizing the integral of Dirichlet's integrand. As a central estimate in our analysis of area minimizing surfaces we show that the Hausdorff dimension of the branch set of such a minimizing covering does not exceed m-2.

To state several results in more detail we use the terminology of [F]. Suppose that A is a bounded open subset of \mathbb{R}^m with smooth boundary, and let k, l, m, n, Q be positive integers with $k \geq 3$, $l \leq n$, and $m \geq 2$.

INTERIOR REGULARITY OF ORIENTED AREA MINIMIZING SURFACES. Suppose N is an m+l dimensional submanifold of \mathbf{R}^{m+n} of class k+2 and that T is an m dimensional rectifiable current in \mathbf{R}^{m+n} which is absolutely area minimizing with respect to N. Then there is an open subset U of \mathbf{R}^{m+n} such that $\operatorname{spt} T \cap U$ is an m dimensional minimal submanifold of N of class k and the Hausdorff dimension of $\operatorname{spt} T \sim (U \cup \operatorname{spt} \partial T)$ does not exceed m-2.

For such area minimizing T we have additionally

SINGULARITY STRATIFICATION BY TANGENT CONE TYPE. Whenever $p \in \operatorname{spt} T \sim \operatorname{spt} \partial T$ and S is an oriented tangent cone to T at p then

$$P(S) = \mathbf{R}^{m+n} \cap \{x: \theta^m(||S||, x) = \theta^m(||S||, 0) = \theta^m(||T||, p)\}$$

© 1983 American Mathematical Society 0273-0979/82/0000-1203/\$01.50

Received by the editors November 11, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 45F22; Secondary 53A10.

¹This work was supported in part by grants from the National Science Foundation and from the Institute for Advanced Study in Princeton.

is either the point $\{0\}$ or a linear subspace of \mathbf{R}^{m+n} with $m-1 \neq \dim P(S) \leq m$. Furthermore, for each $j \in \{0,1,\ldots,m-2,m\}$, the Hausdorff dimension of $(\operatorname{spt} T \sim \operatorname{spt} \partial T) \cap \{p: j = \sup\{\dim P(S): S \text{ is an oriented tangent } \}$

 $cone \ to \ T \ at \ p\} \}$

does not exceed j.

We denote by **Q** the space of all 0 dimensional integral currents V in \mathbb{R}^n for which $Q = \mathbf{M}(V) = \langle V, 1 \rangle$ with metric given by setting

$$\begin{split} & \operatorname{dist}([\![p(1)]\!] + \dots + [\![p(Q)]\!], [\![q(1)]\!] + \dots + [\![q(Q)]\!]) \\ &= \inf \left\{ \left(\sum_{i=1}^Q |p(i) - q(\sigma(i))|^2 \right)^{1/2} : \sigma \text{ is a permutation of } \{1, \dots, Q\} \right\} \end{split}$$

whenever $p(1), \ldots, p(Q), q(1), \ldots, q(Q) \in \mathbf{R}^n$. For Lipschitz \mathbf{Q} valued functions we show a Lipschitz extension theorem analogous to Kirszbraun's theorem, an almost everywhere Q fold affine approximation theorem analogous to Rademacher's theorem, and also show that each Lipschitz function $A \to \mathbf{Q}$ induces a natural chain mapping of degree 0 from the chain complex of real flat chains having supports in A into the chain complex of real flat chains in \mathbf{R}^n . In terms of Dirichlet's integral naturally defined for appropriate functions $A \to \mathbf{Q}$ we have the following central results.

EXISTENCE AND REGULARITY OF DIRICHLET INTEGRAL MINIMIZING ${\bf Q}$ VALUED FUNCTIONS. For each appropriate function $g\colon \partial A\to {\bf Q}$ there exists a (strictly defined but not necessarily unique) function $f\colon A\to {\bf Q}$ having boundary values g and of least Dirichlet integral among such functions. Furthermore, each such minimizing f is Hölder continuous, and $A\times {\bf R}^n\cap\{(x,y)\colon y\in\operatorname{spt}(f(x))\}$ is an m dimensional real analytic (harmonic) submanifold of $A\times {\bf R}^n$ except possibly for a closed set of Hausdorff dimension not exceeding m-2.

Assuming that m and n and even integers and the usual complex identifications have been made, we show that the \mathbf{Q} valued function produced by projection mapping slicing of a complex holomorphic chain in $A \times \mathbf{R}^n$ associated with a Q fold analytic branched covering of A is uniquely Dirichlet integral minimizing. Our Hausdorff codimension two singularity estimate for Dirichlet integral minimizing \mathbf{Q} valued functions is thus the best possible.

REFERENCES

- [A] F. Almgren, Q valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension 2 (being typed, approximately 1500 manuscript pages).
- [F] H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, Berlin, Heidelberg and New York, 1969.

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08544