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Abstract. The increasing amount of data on the Semantic Web offers
opportunities for semantic search. However, formal query hinders the
casual users in expressing their information need as they might be not
familiar with the query’s syntax or the underlying ontology. Because key-
word interfaces are easier to handle for casual users, many approaches
aim to translate keywords to formal queries. However, these approaches
yet feature only very basic query ranking and do not scale to large repos-
itories. We tackle the scalability problem by proposing a novel clustered-
graph structure that corresponds to only a summary of the original on-
tology. The so reduced data space is then used in the exploration for
the computation of top-k queries. Additionally, we adopt several mech-
anisms for query ranking, which can consider many factors such as the
query length, the relevance of ontology elements w.r.t. the query and the
importance of ontology elements. The experimental results performed
against our implemented system Q2Semantic show that we achieve good
performance on many datasets of different sizes.

1 Introduction

The Semantic Web can be seen as an ever growing web of structured and in-
terlinked data. Examples for large repositories of such data available in RDF
are DBpedia1, TAP2 and DBLP3. A snippet of RDF data contained in TAP
is shown in Fig. 1. It describes the entity SVGMobile (a W3CSpecification) in
terms of its relations to the other entities and its attribute values.

The increasing availability of this semantic data offers opportunities for seman-
tic search engines, which can support more expressive queries that address com-
plex information needs [1]. However, query interfaces in current semantic search
engines [2,3] only support formal queries e.g. SPARQL4. For example, when a per-
son wants to find specifications about “SVG” whose author’s name is “Capin”, he
1 http://dbpedia.org
2 http://tap.stanford.edu
3 http://dblp.uni-trier.de/
4 http:// www.w3.org/TR/rdf-sparql-query
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<rdf:Description rdf:about="SVGMobile">

<rdf:type> W3CSpecification</rdf:type>

<tap:hasAuthor rdf:resource="Capin,_Tolga"/>
<rdfs:label xml:lang="en">Mobile SVG 
Profiles: SVG Tiny and SVG Basic</rdfs:label>

</rdf:Description>

PREFIX tap: <http://tap.stanford.edu/tap#>
SELECT ?spec
WHERE {
       ?spec  tap:hasAuthor  ?person.
       ?spec  tap:label  “SVG”.
       ?person  tap:name  “Capin”.
}

Fig. 1. a) Sample RDF snippet. b) Sample SPARQL query

needs to type in the SPARQL query shown in Fig.1. The user thus needs to learn
the complex syntax of the formal query. Moreover, the user also needs to know the
underlying schema and the literals expressed in the RDF data.

Keyword interfaces is one solution to this problem. User’s are very famil-
iar with these interfaces due to their widespread usage. Compared with formal
queries, keyword queries have the following advantages: (1) Simple Syntax : they
are simply lists of keyword phrases (2) Open Vocabularies: the users can use
their own words when expressing their information needs. In the above example,
the user would have to type in only “Capin” and “SVG”.

Since keyword interfaces seem to be suitable for casual users, many studies
have been carried out to bridge the gap between keyword queries and formal
queries, notably in the information retrieval and database communities [4,5,6,7].
There also exist approaches that specifically deal with keywords interfaces for
semantic search engines. The template-based approach discussed in [8] fixes the
possible interpretations and thus, cannot always capture the meaning intended
by the users. This problem has been tackled recently by [9,10]. In [10], a more
generic graph-based approach has been proposed to explore the connections be-
tween nodes that correspond to keywords in the query. This way, all interpreta-
tions that can be derived from the underlying RDF graph can be computed.

However, three main challenges still remain: (1) How to deal with keyword
phrases which are expressed in the user’s own words which do not appear in the
RDF data? (2) How to find the relevant query when keywords are ambiguous
(ranking)? For instance, [10] exploits only the query length for ranking. (3) How
to return the relevant queries as quickly as possible (scalability)? Both [9,10]
require the exploration of a possibly large amount of RDF data, and thus, cannot
efficiently deal with large repositories.

In this paper, we address the above challenges as follows:

– (1) We leverage terms extracted from Wikipedia to enrich literals described
in the original RDF data. This way, users need not use keywords that exactly
match the RDF data.

– (2) We adopt several mechanisms for query ranking, which can consider
many relevant factors such as the query length, the relevance of ontology
elements w.r.t. the query as well as the importance of ontology elements.

– (3) We propose an exploration algorithm and a novel graph data structure
called clustered graph, which represents only a summary of the original RDF
data. This improves scalability particularly because the data space relevant
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Fig. 2. The result view of Q2Semantic

for exploration becomes smaller in size. Additionally, the exploration algo-
rithm also allows for the construction of the top-k queries, which can help
to terminate the interpretation process more quickly.

Also, we have implemented a keyword interface called Q2Semantic to evaluate
our approach. The experiments performed on several large datasets show that
our solution achieves high effectiveness and efficiency.

The rest of the paper is organized as follows. We will start in section 2 with
an overview of Q2Semantic. Section 3 shows how the underlying data models
are preprocessed. Section 4 elaborates on how these models are used in the main
steps involved in the translation process. Section 5 presents several mechanisms
for query ranking. The experimental results are given in section 6. Section 7
contains information on related work. Finally, we conclude the paper with dis-
cussions of current limitations and future work in section 8.

2 Q2Semantic

2.1 Feature Overview of Q2Semantic

Q2Semantic is equipped with a keywords-based search interface. In order to fa-
cilitate usage, this interface supports auto-completion. This feature exploits the
underlying RDF literals enriched with Wiki terms to assist the user in typing
keywords. This is extended to “phrase completion” such that when the first key-
word has been entered, Q2Semantic will automatically generate a list of phrases
containing these keywords from which the user can choose from.

After submitting the keyword query, the user sees the results as shown in the
screenshot of our AJAX interface in Fig. 2 (corresponds to our example query
“Capin” and “SVG”). On the left, the query results are listed in an ascending
order according to the ranking scores of their corresponding queries. For the
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Fig. 3. Workflow of Q2Semantic.

selected result, the corresponding formal query and its natural language expla-
nation are presented on the right. In the middle, the data space that is explored
to compute the queries is visualized for the user to understand and explore the
queries. For the selected query, the relevant path in this data space is highlighted
(in yellow and green). The user explores the data by double clicking on a node
to see (further) neighbors. These and other features such as query refinement
can be tested at http://q2semantic.apexlab.org/UI.html.

2.2 Query Translation in Q2Semantic

Q2Semantic supports the translation of keyword queries to formal queries. In
particular, a keyword query K is composed of keyword phrases {k1, k2, · · · , kn}.
Each phrase ki has correspondence (i.e. can be mapped) to literals contained
in the underlying RDF graph. A formal query F can be represented as a tree
of the form 〈r, {p1, p2, · · · , pn}〉, where r is the root node of F and pi is a path
in F , which starts from r and ends at leaf nodes that correspond to ki. The
root node of F represents the target variable of the query. So basically, we
restrict our definition of formal queries to a particular type of tree-shaped con-
junctive queries [11] where the leaf nodes correspond to keywords entered by
the user. In our example, K includes k1 = “Capin” and k2 = “SVG”, and
F = 〈r, {p1, p2}〉, where r = W3CSpecification, p1 = 〈x1, label, SV G〉 and p2
= 〈x1, hasAuthor, x2, name, Capin〉. Since SPARQL is essentially, conjunctive
query plus additional features, our formal query can be directly rewritten as
triple patterns to obtain a SPARQL query like the one presented in section 1.

The translation process is illustrated in Fig. 3, which includes two main steps:
(1) Phrase Mapping: Retrieve terms stored in an inverted index using the key-
word phrases entered by the user (2) Query Construction and Ranking: Search
the clustered graph to construct potential formal queries and assign costs to
them. Meanwhile, top-k queries are returned based on the costs. Note that these
online activities are performed on the inverted and the graph index. There is
more pre-processing required to build these two data structures, including map-
ping, clustering and indexing. We will continue with a detailed elaboration on
these pre-processing steps and then, discuss the online activities required to
translate the keywords.
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Fig. 4. Index process

3 Data Pre-processing in Q2Semantic

3.1 Graph Construction Via Mapping and Clustering

Graph exploration as done in other approaches is expensive due to the large size
of the A-Box (RDF graph) [9,10]. As observed in [12], similar instances always
share similar attributes and relations. Adopting this idea, we propose a clustered
RACK graph which corresponds to a summary of the original RDF graph. This
reduction in size enables faster query construction and ranking especially for
RDF graph containing a large number of instances. In the following, we will
describe our notion of RACK graph and the rules for clustering.

A RACK graph consists of the four elements R-Edge, A-Edge, C-Node and
K-Node, obtained from the original RDF graph through the following mappings:

– Every instance of the RDF graph is mapped to a C-Node labelled by the
concept name that the instance belongs to.

– Every attribute value is mapped to a K-Node labelled by the value literal.
– Every relation is mapped to a R-Edge that is labelled by the relation name

and connects two C-Nodes.
– Every attribute is mapped to an A-Edge that is labelled by the attribute

name and connects a C-Node with a K-Node.

As shown in Fig. 4, the mapping process results in a RACK graph. Note that
each instance is mapped to the most special concepts if it belongs to multiple
concepts. We also do not consider any axioms (e.g. subsumption between con-
cepts) in the RACK graph as it does not support reasoning capability for query
interpretation. A clustered RACK graph can be further obtained by the iterative
application of the following four rules.

– Two C-Nodes are clustered to one if they have the same label.
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– Two R-Edges are clustered to one if they have the same label and connect
the same pair of C-Nodes.

– Two A-Edges are clustered to one if they have the same label and is con-
nected to the same C-Node.

– Two K-Nodes are clustered to one if they are connected to the same A-Edge.
The resulting node inherits the labels of both these K-Nodes.

For each clustered node, we track and store the number of original nodes that
collapsed to it during the clustering. Also, for each clustered edge, we store the
number of node pairs that were connected by the original edges collapsed to it.
These numbers stored in nodes and edges are used to compute their costs on
the basis of cost functions discussed in section 5. The costs are shown in Fig. 4.
They will be used later in the construction and ranking of the query.

3.2 Clustered Graph Indexing

The clustered RACK graph computed in the previous step can be stored in a
graph index as discussed in [13]. In our current experiments, we directly load
the clustered RACK graph model into the memory for fast query construction
since it is very small. However, the graph index will be used when the clustered
graph is too big to be loaded into memory.

3.3 Phrase Indexing

We make use of an inverted index to store the labels of K-Nodes. This index is
used to locate relevant K-Nodes for a given keyword phrase faster. In particular,
we create a document for each K-Node and take its labels as the document
content. This document is further enriched with terms extracted from Wikipedia.

This enrichment is performed to support keywords that are expressed in the
user’s own words that do not match the literals of RDF data. In fact, we adopt
the idea in [14] to leverage Wikipedia. Namely, for each K-Node label, we search
the Wikipedia database to see whether it matches the title of any article. If
so, several semantic features of the article as introduced in [15] are added as
additional labels of the K-Node. These features include the title, the anchor
texts that link to the article, and the titles of other articles that redirect to the
article. Therefore, user keywords might be mapped to the actual labels of the
K-Nodes or any of these extracted features added to the K-Nodes.

4 Query Interpretation in Q2Semantic

The query interpretation begins with the mapping of user keywords to the labels
of K-Nodes in the inverted index. Starting from the matched K-Nodes, an ex-
ploration on the clustered graph is performed, which is similar to the single-level
search algorithm discussed in [16]. It expands the current nodes to their neighbors
iteratively until reaching a common root. In this process, the edge with the lowest
cost is selected for traversal. The process terminates until the top-k queries have
been found. In the following subsections, we will describe these steps in detail.
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4.1 Phrase Mapping

Each keyword phrase ki in K entered by the user is submitted as a query to the
index, resulting in hits that represent the matching K-Nodes. They are returned
in a ranked list as KLi = {k-nodei1, k-nodei2, · · · , k-nodeimi}, associated by the
retrieval engine with the matching score Si = {si1, si2, · · · , simi}. Each sij is
used as the dynamic weight of the respective k-nodeij with respect to ki. For
instance, KL1 contains one K-Node that matches “Capin” while KL2 contains
three K-Nodes matching “SVG”, as illustrated in Fig. 5.

4.2 Query Construction

After obtaining these K-Nodes, we construct the potential queries by exploring
the clustered RACK graph. The process is as follows: For each keyword phrase,
we create a thread. Then we do traversal in these threads until all the threads
converge at a same node. This way, the traversal paths correspond to a tree,
from which we construct a tree-shaped formal query. In the following, we first
define the thread and the expansion operations required to traverse the graph.
Then we will present the detailed algorithm.

A thread maintains cursors that haven’t been expanded yet. A cursor is de-
fined on a node, which traces the expansion track in a thread. Each cursor has
four fields (c; n; p; k), where c represents the cost for the track, n is the node
where the cursor locates in, p is the parent cursor of the current cursor, and k is
the keyword phrase corresponding to the thread that the cursor is in. Note that
all cursors in the same thread share the same keyword phrase.

Given a thread, a thread expansion (T-Expansion) selects a cursor in it, exe-
cutes cursor expansion, and then removes the cursor from it. Given a cursor Ccur,
a cursor expansion (C-Expansion) includes a validation step and an exploration
step. In the validation, we check whether a new formal query rooted at the node
Ccur.n has been found. It is accomplished by checking whether cursors in other
threads have arrived at this node. In the exploration, new cursors (e.g. Cnew)
are created for all neighbors of the node Ccur.n and added to the current thread,
i.e. Cnew.k = Ccur.k. The current cursor then becomes parent cursor of these
new cursors, i.e. Cnew.p = Ccur. The costs of the new cursors are calculated

Fig. 5. Exploring the clustered graph Fig. 6. Example on repeated expansion
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Input: K = {k1, k2, ..., kn}, where ki hits the K-Nodes
KLi = {k-nodei1, k-nodei2, · · · , k-nodeimi} with the matching relevance
as Si = {si1, si2, · · · , simi};

Output: A: result set, initially ∅;
Data: τprune: pruning threshold, initially τ0;
for i ∈ [1, n] do1

ti = new Thread();2

for j ∈ [1, mi] do3

ti.add( new Cursor(sij , k-nodeij , NULL, ki));4

end5

end6

while ∃i ∈ [1, n] : ti.peekCost() �= ∞ do7

j ← pick from [1, n] in a round-robin fashion;8

c ← tj .popMin();9

C-Expansion(c); // A and τprune will be updated here;10

if tj .peekCost() > τprune then11

Output the top k answers in A;12

end13

end14

Algorithm 1. Query Interpretation Process

using the formula Cnew .c = Ccur.c + dist(Ccur.n, Cnew .n), where dist() is a
distance function between two nodes in the graph. By default, it is the cost of
the edge which connects the two nodes.

The sequence of doing T-Expansions has an impact on the speed of query
construction. This speed is also influenced by the sequence of C-Expansions
performed during the T-Expansions. Considering that, we use the following two
strategies when choosing what to expand next: 1) Intra-Thread Strategy: In a T-
Expansion, we choose the cursor with the lowest cost for the next C-Expansion.
2) Inter-Thread Strategy: Within different threads, we choose the thread with the
lowest number of expanded cursors for the next T-Expansion in order for a round
robin fasion. These two strategies have been proven optimal in the single-level
search algorithm [16].

This query construction process is described in Algorithm 1. We first initialize
thread ti for each keyword phrase ki in K (Line 1), and fill ti with cursors for
the K-Nodes in KLi (Line 1). Then we do T-Expansions on the threads in a
round-robin fashion (Line 1). In each T-Expansion, we do C-Expansion on the
cursor which has the lowest cost (Line 1). Note that for each thread, popMin()
pops out the cursor with the minimal cost, whereas peekCost() just returns the
minimal cost. Line 1 to Line 1 is the optimization for top-k termination, which
will be discussed in the next subsections.

As shown in Fig. 5, after the initialization, t1’s cursor locates in the K-Node
labelled “Capin”, and t2’s cursors point to three K-Nodes. When we expand
the cursor in t1 to the C-Node Person, and assuming cursors in t2 have already
reached this node (e.g. a cursor starts from “SVG”, expands through W3CNote
and reaches Person), we get a formal query rooted at Person. One path of the
query is from Person to the K-Node labelled “Capin”, and the other is from
Person to the most left K-Node labelled “SVG”.
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4.3 Optimization for Top-k Termination

In order to find out the top-k queries only, we maintain a pruning threshold
called τprune, which is the current kth minimal cost of the already computed
queries. τprune will be initialized to τ0. When we find a valid formal query in C-
Expansion, the cost of the query is calculated by the ranking mechanism, which
will be discussed in Section 5. For a new formal query to be in a top k position,
its cost should be no greater than τprune. When such a query is found, it will be
added to the answer set A and τprune will be updated accordingly. Since a cursor
actually indicates a path in query, if all cursors’ costs are larger than τprune, new
queries including these paths will have even larger costs. Therefore, we can stop
the query interpretation process and output the top-k formal queries.

4.4 Optimization for Repeated Expansion

We assume that it rarely happens for people to propose a query which contains
the same relations several times (e.g. “find Tom’s friends’ friends’ friend, who is
Spanish”). Based on this assumption, we adopt a mechanism to avoid redundant
exploration of the same elements, which can speed up the construction process.
Namely, we add penalty to the cursor whose track contains repeated nodes. This
is done by using a different dist() function for C-Expansion, namely

dist∗(n1, n2) =
{

P If n2 has been visited
dist(n1, n2)

(1)

where P is set to a large number as the predefined penalty parameter.
In Fig. 6, there is a cursor on W3CSpecification. Its track is indicated by 1,

2 and 3. Assume that the cost of the current cursor is two, every edge has one
as weight, and P is set to five. Then the cost of the new cursor on W3CActivity
gets three, while the one on Person gets seven as it has been visited already at 2.
This way, repeated expansion on Person is still allowed but with a higher cost.

5 Query Ranking in Q2Semantic

Since the query construction process can result in many queries, i.e. possible inter-
pretations of the keywords, a ranking scheme is required to return the queries that
most likely match the user intended meaning. Ranking has been dealt with in other
approaches. For ranking ontologies, [17] returns the relevant ontologies based on
the matching score of the keywords w.r.t. the ontology elements. It also considers
the importance of nodes and edges in the ontology graph as a static score simi-
lar to Google’s PageRank. For ranking complex relationships, [18,19] employ the
length of the relation paths. Besides these approaches for ranking ontology (an-
swers) and relations, work has been done for ranking queries. [10] uses the length
of the formal query and [9] considers also the keywords’ matching score.

We define three ranking schemes from simple to complex, which adopt ideas
from other approaches mentioned above, to extend existing work on ranking
queries. They compute the cost for a query. The most complex scheme leverages
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all the above factors including the query length, the keyword matching score and
the importance of nodes and edges.
Path Only: The basic ranking scheme R1 considers the query length only, which
is as follows:

R1 =
∑

1≤i≤n

(
∑
e∈pi

1) (2)

This formula computes the total length of paths in the formal query, where pi is
a path and e is an edge in pi. Each pi represents a connection between the root of
the formal query and a matched K-Node. Lower cost queries are preferred over
higher cost queries. Since the cost of every edge is defaulted to exactly one, in
effect, shorter queries are preferred over longer ones. As discussed in [10], shorter
queries tend to capture stronger connections between keyword phrases.
Adding matching relevance: When further considering the matching distance
between the user’s keyword phrases and the literals in the RDF graph, a ranking
scheme R2 can be defined as

R2 =
∑

1≤i≤n

(
1
Di

∑
e∈pi

1) (3)

where Di is the score stored in the pi’s starting K-Node, which has been com-
puted in the phrase mapping. In this case, R2 prefers shorter queries with higher
matching score of keyword phrases w.r.t. K-Nodes labels.
Adding Importance of Edges and Nodes: This ranking scheme assumes
that users prefer to find entities with types and relations that are more “impor-
tant”. Ranking scheme R3 considers also the importance of query elements. In
particular, specific cost functions are defined for nodes and edges, which reflect
their importance for the RDF graph. R3 and these cost functions are defined as

R3 = costr
∑

1≤i≤n

(
1

Di

∑
e∈pi

coste) (4)

costnode = 2 − log2(
|node|

N
+ 1) (5)

costedge = 2 − log2(
|edge|

M
+ 1) (6)

where N is the total number of nodes in the original RACK graph, |node| is
the number of original nodes clustered to the node (as discussed for clustering
in section 3), M is the total number of edges in the original RACK graph,
|edge| is the number of original edges clustered to the edge, and costr is the
cost function of the query root. The cost functions guarantee the cost of each
node and edge to be in the interval (1,2). Since both local frequencies, i.e. the
number of original elements clustered to an element, and total number of nodes
and edges are incorporated, these function compute the importance of nodes
and edges in a manner similar to TF/IDF used in information retrieval. Note
that the higher its frequency is, the more important a node is considered to be
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Table 1. Table of TAP sample queries

Query Keywords Potential information need
Q3 Supergirl Who is called “supergirl”
Q5 Strip, Las Vegas What is the well-known “Strip” in Las Vegas
Q9 Web Accessibility

Initiative, www-rdf-
perllib

Find persons who work for Web Accessibility Ini-
tiative and involve in the activity with mailing list
“www-rdf-perllib”

because it will obtain a lower cost. As the cost is lower for elements with high
importance, they have more positive impact on the rank of the query.

6 Evaluation
6.1 Experiment Setup

Asthere isyetno standardbenchmark for evaluating theperformanceof translating
keyword queries to formal queries, we use TAP, DBLP and LUBM [20] for the
experiment. For TAP, we manually construct nine scenarios where the keywords
and the corresponding potential information needs are listed in table 1 for three
scenarios. The experiments are conducted on a Intel PC with 2.6GHz Pentium
processor and 2GB memory. Note that the following presentation will focus on
results performed on TAP. The proposed queries and their results for DBLP and
LUBM as well as the extended presentation of our experiments can be found in the
technical report [21] athttp://q2semantic.apexlab.org/Pub/Q2Semantic-TR.pdf.

6.2 Effectiveness Evaluation

For ranking query, precision and recall as applied for information retrieval can
not be used directly because only one of the computed query matches the mean-
ing of the keywords intended by the user. Hence, we introduce a new metric
called Target Query Position (TQP) to evaluate the effectiveness of query rank-
ing. Namely, TQP = 11 − Ptarget, where Ptarget means the position of the in-
tended query in the ranked list. Note the higher the rank of the intended query,
the higher its TQP score. If the rank of a query is greater than ten, its TQP is
simply 0. Thus, the TQP score of a query range from 0 to 10.

Since this metric is sensitive to the query rank, it can be used to evaluate
our approach for query construction and the different ranking schemes. For this,
We invite twelve graduate students to identify the query from a ranked list
computed by Q2Semantic, which corresponds to their interpretations of the given
keyword query. For each keyword query, we compute the final TQP score as an
average of the scores obtained for each participant. Fig. 7 illustrates results of
our experiments performed on TAP using the three different ranking schemes.

Note that the performance of R1 is relatively good for Q1-Q4. This is because
keywords in these queries have little ambiguity, i.e. can be mapped exactly one
or two K-Nodes (e.g. “supergirl” in Q3). In these cases, the query length is very
effective in ranking the queries. When applying R2, significant improvements
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Fig. 7. TQPs of different ranking schemes on TAP

Table 2. RACK graph versus Clustered RACK graph

R-Edge A-Edge C-Node K-Node
TAP 41914 158 87796 666 167656 314 87796 666

LUBM(1,0) 41763 43 30230 39 16221 13 30230 39
LUBM(20,0) 1127823 43 815511 39 411815 13 815511 39
LUBM(50,0) 2788382 43 2015672 39 1018501 13 2015672 39

DBLP 5619110 19 12129200 23 1366535 5 12129200 23

Fig. 8. Index size and search time on different datasets

can be obtained for Q5-Q7. Keyword phrases in these queries are ambiguous,
i.e. mapped to many K-Nodes, resulting in a lot of queries having the same
path length. As R2 also considers the matching score of the keyword phrases to
K-Nodes, it helps to resolve this ambiguity. For instance, the query containing
K-Nodes with highest matching score for “Strip” and “Las Vegas” (Q5) is indeed
the one intended by the user. Finally, another improvement is obtained for Q8
and Q9 when using R3 to consider also the importance of nodes and edges. This
improvement comes from the usage of costs for nodes and edges, which guide
the traversal and the selection of the root note. Note that elements with higher
importance are preferred during expansions. For instance, in Q9, the author is
preferred over the book because it has higher importance (lower cost).

In summary, the results show that our approach offers high quality translation
of keywords to formal queries, especially when using R3 as the ranking scheme.
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Our technical report also shows that the overall performance on all keyword
queries for LUBM is promising and the average TQP reaches 9.125 by using R3.

6.3 Efficiency Evaluation

Table 2 compares the statistical information of the original RACK graphs and
the clustered RACK graphs (Bold numbers). The number of K-Node is the same
as that of A-Edge according to the fourth clustering rule. It is observed that the
sizes are largely reduced after clustering. That is, the relevant data space to
be explored in the query interpretation process is much smaller, which leads
faster query construction. This is indicated by the average time in Fig. 8, which
also shows the size of the inverted and the graph index for TAP, LUBM(1,0),
LUBM(20,0), LUBM(50,0) and DBLP. The average time ranges from 20ms to
160ms on all datasets. Since no evaluation has been carried out to measure
performance in previous approaches, we cannot make any comparative analysis.
However, the reduction in data space must have a positive effect on performance.

In this regard, we found out that the size of the clustered graph index depends
heavily on the schema structure of the original RDF graph. Namely, the simpler
the schema (number of T-Box axioms), the smaller the index size. For example,
the graph index size of DBLP and LUBM is smaller than that of TAP as TAP
contain much more concepts. Also the performance depends on the size of the
inverted index. This mainly depends on the number of literals in the ontology.

In summary, the experiments show promising performance. Besides the re-
duction of the original RDF graph, top-k query answering helps to terminate
even more quickly, i.e. avoid the calculation of all possible queries. Our technical
report provides more details on the impacts of the ranking mechanism, the top-k
parameter, and the penalty parameter on the performance.

7 Related Work

Translating keywords to formal queries is a line of research that has been carried
out in both the information retrieval and the database communities. Notably,
[4,5,22] support keyword queries over databases while [6,7] specifically tackle
XML data by translating keyword queries to XQuery expressions. However, none
of them can be directly applied to semantic search on RDF data since the un-
derlying data model is a graph rather than relational or tree-shaped XML data.

[8] represents an attempt that specifically deals with keyword queries in se-
mantic search engines. There, keywords are map to elements of triple patterns
of predefined query templates. These templates fix the structure of the resulting
queries a priori. However, only some but not all interpretations of the keywords
can be captured by such templates. Also, since queries with more than two key-
words lead to a combinatorial explosion of different possible interpretations, a
large number of templates would be needed. These problems have been tack-
led recently by [9,10]. In [10], a more generic graph-based approach has been
proposed to explore all possible connections between nodes that correspond to
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keywords in the query. This way, all interpretations that can be derived from
the underlying RDF graph can be computed.

With respect to these recent works [9,10], our approach is distinct in three
aspects. Firstly, we enrich RDF data with terms extracted from Wikipedia. Thus,
users can also use their own words because keywords can map also to Wikipedia
terms. Secondly, we extend the ranking mechanism in [10] to a more general
framework for query ranking, which can incorporate many factors besides the
query length. Most importantly, query construction has been relied on a large
number of A-Box queries that are performed on the original RDF graph. Our
approach greatly reduces this space to a summary graph, and thus scales to
large repositories. The additional support for top-k queries can further help to
terminate the translation even more quickly.

8 Conclusions and Future Work

In this paper, we propose a solution to translate keyword queries to formal
queries that can address drawbacks in current approaches. RDF Data is en-
riched with terms from Wikipedia to support also keywords specified in the user
own words. The RDF graph used for exploration is clustered down to a sum-
mary graph. Combined with top-k query answering, this increases scalability
and efficiency of the translation process. To improve effectiveness, a more gen-
eral ranking scheme is proposed that considers the query length, the element
matching score and the importance of the elements. Evaluation of the imple-
mented system Q2Semantic shows high quality translation of keyword queries
processed against datasets of different sizes and domains.

Currently, our approach support keywords that match literals and concepts
contained in the RDF data (where concepts are treated as special K-Nodes in the
current implementation). We will extend the current query capability to support
also keywords in the form of relations and attributes. Another future work is to
integrate query interpretation with query answering in a unified graph index as
one still need to use the original graph instead of the clustered RACK graph for
answering the translated queries from keywords.

References

1. Tran, D.T., Bloehdorn, S., Cimiano, P., Haase, P.: Expressive resource descriptions
for ontology-based information retrieval. In: Proceedings of the 1st International
Conference on the Theory of Information Retrieval (ICTIR 2007), Budapest, Hun-
gary, October 18- 20, pp. 55–68 (2007)

2. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In: ISWC, pp. 54–68 (2002)

3. Lu, J., Ma, L., Zhang, L., Brunner, J.S., Wang, C., Pan, Y., Yu, Y.: Sor: A practical
system for ontology storage, reasoning and search. In: VLDB, pp. 1402–1405 (2007)

4. Hristidis, V., Papakonstantinou, Y.: Discover: Keyword search in relational
databases. In: VLDB, pp. 670–681 (2002)

5. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
searching and browsing in databases using banks. In: ICDE, pp. 431–440 (2002)



598 H. Wang et al.

6. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proximity search on xml
graphs. In: ICDE, pp. 367–378 (2003)

7. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: Ranked keyword
search over xml documents. In: SIGMOD Conference, pp. 16–27 (2003)

8. Lei, Y., Uren, V.S., Motta, E.: Semsearch: A search engine for the semantic web.
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