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Abstract. It is very challenging to access the knowledge expressed
within (big) data sets. Question answering (QA) aims at making sense
out of data via a simple-to-use interface. However, QA systems are
very complex and earlier approaches are mostly singular and monolithic
implementations for QA in specific domains. Therefore, it is cumbersome
and inefficient to design and implement new or improved approaches, in
particular as many components are not reusable.

Hence, there is a strong need for enabling best-of-breed QA systems,
where the best performing components are combined, aiming at the best
quality achievable in the given domain. Taking into account the high
variety of functionality that might be of use within a QA system and
therefore reused in new QA systems, we provide an approach driven by
a core QA vocabulary that is aligned to existing, powerful ontologies pro-
vided by domain-specific communities. We achieve this by a methodology
for binding existing vocabularies to our core QA vocabulary without re-
creating the information provided by external components.

We thus provide a practical approach for rapidly establishing new
(domain-specific) QA systems, while the core QA vocabulary is re-usable
across multiple domains. To the best of our knowledge, this is the first
approach to open QA systems that is agnostic to implementation details
and that inherently follows the linked data principles.

Keywords: Semantic web · Software reusability · Question answering ·
Semantic search · Ontologies · Annotation model

1 Introduction

Data volume and variety is growing enormously on the Web. To make sense out
of this large amount of data available, researchers have developed a number of
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domain-specific monolithic question answering systems (e.g., [5,6,11,23]). These
QA systems perform well in their specific domain, but find limitation in their
reusability for further research due to specific focus on implementation details.
Hence, creating new question answering systems is cumbersome and inefficient;
functionality needs to be re-implemented and the few available integrable ser-
vices each follow different integration strategies or use different vocabularies.
Hence, an ecosystem of components used in QA systems could not be estab-
lished up to now. However, component-oriented approaches have provided high
values in other research fields (like service-oriented architectures or cloud com-
puting) while increasing efficiency. This is achieved by establishing exchangeabil-
ity and isolation in conjunction with interoperability and reusability. Increased
efficiency of both creating new question answering systems as well as establish-
ing new reusable services would be the major driver for a vital and accelerated
development of the QA community in academics and industry.

However, currently the integration of components is not easily possible
because the semantics of their required parameters as well as of the returned
data are either different or undefined. Components of question answering sys-
tems are typically implemented in different programming languages and expose
interfaces using different exchange languages (e.g., XML, JSON-LD, RDF, CSV).
A framework for developing question answering systems should not be bound
to a specific programming language as it is done in [14]. Although this reduces
the initial effort for implementing the framework, it reduces the reusability and
exchangeability of components. Additionally, it is not realistic to expect that a
single standard protocol will be established that subsumes all achievements made
by domain-specific communities. Hence, establishing just one (static) vocabu-
lary will not fulfill the demands for an open architecture. However, a standard
interaction level is needed to ensure that components can be considered as iso-
lated actors within a question answering system while aiming at interoperability.
Additionally this will enable the benchmarking of components as well as aggre-
gations of components ultimately leading to best-of-bread domain-specific but
generalized question answering systems which increases the overall efficiency [8].
Furthermore it will be possible to apply quality increasing approaches such as
ensemble learning [7] with manageable effort.

Therefore, we aim at a methodology for open question answering systems
with the following attributes (requirements): interoperability, i.e., an abstraction
layer for communication needs to be established, exchangeability and reusability,
i.e., a component within a question answering system might be exchanged by
another one with the same purpose, flexible granularity, i.e., the approach needs
to be agnostic the processing steps implemented by a question answering system,
isolation, i.e., each component within a QA system is decoupled from any other
component in the QA system.

In this paper we describe a methodology for developing question answer-
ing systems driven by the knowledge available for describing the question and
related concepts. The knowledge is represented in RDF, which ensures a self-
describing message format that can be extended, as well as validated and rea-
soned upon using off-the-shelf software. Additionally, using RDF provides the
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advantage of retrieving or updating knowledge about the question directly via
SPARQL. In previous work, we have already established a QA system vocab-
ulary qa [19]. qa is a core vocabulary that represents a standardized view on
concepts that existing QA systems have in common, on top of an annotation
framework. The main focus of this paper is to establish a methodology for inte-
grating external components into a QA system. We will eliminate the need to
(re)write adapters for sending pieces of information to the component (service
call) or custom interpreters for the retrieved information (result). To this end,
our methodology binds information provided by (external) services to the QA
systems, driven by the qa vocabulary. Because of the central role of the qa
vocabulary, we call our methodology Qanary: Question answering vocabulary.
The approach is enabled for question representations beyond text (e.g., audio
input or unstructured data mixed with linked data) and open for novel ideas on
how to express the knowledge about questions in question answering systems.
Using this approach, the integration of existing components is possible; addition-
ally one can take advantage of the powerful vocabularies already implemented
for representing knowledge (e.g., DBpedia Ontology1, YAGO2) or representing
the analytics results of data (e.g., NLP Interchange Format [9], Ontology for
Media Resources3). Hence, for the first time an RDF-based methodology for
establishing question answering systems is available that is agnostic to the used
ontologies, available services, addressed domains and programming languages.

The next section motivates our work. Section 3 reviews related work. In
Sect. 4 the problem is will be broken down to actual requirements. Thereafter,
we present our approach (Sect. 5) followed by a methodology to align existing
vocabularies to our qa vocabulary in Sect. 6. In Sect. 7, we present a case study
where a QA system is created containing actual reusable and exchangeable com-
ponents. Section 8 concludes, also describing future research tasks.

2 Motivation

QA systems can be classified by the domain of knowledge in which they answer
questions, by supported types of demanded answer (factoid, boolean, list, set,
etc.), types of input (keywords, natural language text, speech, videos, images,
plus possibly temporal and spatial information), data sources (structured or
unstructured), and based on traditional intrinsic software engineering challenges
(scalability, openness, etc.) [13].

Closed domain QA systems target specific domains to answer a question, for
example, medicine [1] or biology [2]. Limiting the scope to a specific domain or
ontology makes ambiguity less likely and leads to a high accuracy of answers,
but closed domain systems are difficult or costly to apply in a different domain.

1 http://dbpedia.org/services-resources/ontology.
2 YAGO: A High Quality Knowledge Base; http://www.mpi-inf.mpg.de/departments/

databases-and-information-systems/research/yago-naga/yago/.
3 W3C Recommendation 09 February 2012, v1.0, http://www.w3.org/TR/

mediaont-10/.

http://dbpedia.org/services-resources/ontology
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.w3.org/TR/mediaont-10/
http://www.w3.org/TR/mediaont-10/
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Open domain QA systems either rely on cross-domain structured knowledge
bases or on unstructured corpora (e.g., news articles). DBpedia [3], and Google’s
non-public knowledge graph [20] are examples of semantically structured general-
purpose Knowledge Bases used by open domain QA systems. Recent exam-
ples of such QA systems include PowerAqua [11], FREyA [6], QAKiS [5], and
TBSL [23]. QuASE [21] is a corpus-based open domain QA system that mines
answers directly from Web documents.

Each of these QA systems addresses a different subset of the space of all
possible question types, input types and data sources. For example, PowerAqua
finds limitation in linguistic coverage of the question, whereas TBSL overcomes
this shortcoming and provides better results in linguistic analysis [23]. It would
thus be desirable to combine these functionalities of [23] and [12] into a new,
more powerful system.

For example, the open source web service DBpedia Spotlight [15] analyzes
texts leading to named entity identification (NEI) and disambiguation (NED),
using the DBpedia ontology (cf., Subsect. 3.2). AIDA [10] is a similar project,
which uses the YAGO ontology (cf., Subsect. 3.2). AGDISTIS [24] is an indepen-
dent NED service, which, in contrast to DBpedia Spotlight and AIDA, can use
any ontology, but does not provide an interface for NEI. The PATTY system [17]
provides a list of textual patterns that can be used to express properties of the
YAGO and DBpedia ontologies. As these components have different levels of
granularity and as there is no standard message format, combining them is not
easy and demands the introduction of a higher level concept and manual work.

3 Related Work

We have already reviewed the state of the art of QA systems in Sect. 2. Work
that is related to ours in a closer sense includes other frameworks that aim at
providing an abstraction of QA systems, as well as other ontologies used by QA
systems.

3.1 Abstract QA Frameworks

The QALL-ME framework [8] is an attempt to provide a reusable architecture for
multilingual, context aware QA. QALL-ME uses an ontology to model structured
data of a specific domain at a time. However, it focuses on closed domain QA,
and finds limitation to get extended for heterogeneous data sources and open
domain QA systems.

openQA [14] on other hand is an extensible framework for answering ques-
tions using open domain knowledge. openQA has a pipelined architecture to
incorporate multiple external QA systems such as SINA [18] and TBSL to answer
questions. openQA requires all components of the pipeline to be implemented in
Java. The OKBQA Hackathon4, on the other hand, is a collaborative effort to
4 OKBQA Hackathon: http://2015.okbqa.org/development/documentation (last

accessed: 2016-03-04).

http://2015.okbqa.org/development/documentation


Qanary – A Methodology for Vocabulary-Driven Open QA Systems 629

develop knowledge bases and question answering systems that are generic and
independent of programming languages.

3.2 Ontologies for Question Answering

Ontologies play an important role in question answering. First they can be used
as a knowledge source to answer the questions. Prominent examples are the
DBpedia Ontology and YAGO. DBpedia is a cross domain dataset of structured
data extracted from Wikipedia articles (infoboxes, categories, etc.). The DBpe-
dia Ontology is “a shallow, cross-domain ontology, which has been manually
created based on the most commonly used infoboxes within Wikipedia”.5

The YAGO ontology unifies semantic knowledge extracted from Wikipedia
with the taxonomy of WordNet. The YAGO Knowledge Base contains more than
10 million entities and more than 120 million facts about these entities. YAGO
links temporal and spatial dimensions to many of its facts and entities.

Ontologies can also be used to model the search process in a question answer-
ing system. For example, the research presented in [22] describes a search ontol-
ogy that abstracts a user’s question. One can model complex queries using this
ontology without knowing a specific search engine’s syntax for such queries. This
approach provides a way to specify and reuse the search queries. However, the
approach focuses on textual queries, i.e., it is not completely agnostic to possi-
ble question types (e.g., audio, image, . . . ). Search Ontology also does not cover
other possibly useful properties, such as the dataset that should be used for
identifying the answer.

However, so far no ontology has been developed that would provide a common
abstraction to model the whole QA process.

4 Problem Statement, Requirements and Idea

Our work is motivated by existing QA systems not being sufficiently interop-
erable and their components not being sufficiently reusable, as pointed out in
Sect. 2. Related work on abstract frameworks and QA ontologies has not yet
solved the interoperability problem fully, as explained in Sect. 3. In this section,
we provide a precise statement of the problem, from which we derive require-
ments for an abstraction, and finally present our idea for an ontology that can
drive extensible QA infrastructures.

4.1 Problem Statement

Question answering systems are complex w.r.t. the components needed for an
adequate quality. Sophisticated QA systems need components for NEI, NED,
semantic analysis of the question, query building, query execution, result analy-
sis, etc. Integrating multiple such components into a QA system is inconvenient

5 http://wiki.dbpedia.org/services-resources/ontology (last accessed: 2016-03-08).

http://wiki.dbpedia.org/services-resources/ontology
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and inefficient, particularly considering the variety of input and output para-
meters with the same or similar semantics (e.g., different terms for referring
to “the question”, or “a range of text”, or “an annotation with a linked data
resource”, or just plain string literals where actual resources are used). As no
common vocabulary for communicating between components exists, the follow-
ing situation is observable for components that need to be integrated: (1) a (new)
vocabulary for input values is established, (2) a (new) vocabulary for the output
values is established, (3) input or output values are represented without provid-
ing semantics (e.g., as plain text, or in JSON or XML with an ad hoc schema).
Confronted with these scenarios, developers of QA systems have the responsibil-
ity to figure out the semantics of the components, which is time-consuming and
error-prone. Hence, efficiently developing QA systems is desirable for the infor-
mation retrieval community in industry and academics. We observed in Sects. 2
and 3 that the number of reusable (components of) QA systems is negligible so
far.

4.2 Requirements

From the previous problem statement and our observations, we derived the fol-
lowing requirements for a vital ecosystem of QA system’s components:

Req. 1 (Interoperability). Components of question answering systems are typ-
ically implemented in different programming languages and expose interfaces
using different exchange languages (e.g., XML, JSON-LD, RDF, CSV). It is
not realistic to expect that a single fixed standard protocol will be established that
subsumes all achievements made by domain-specific communities. However, a
consistent standard interaction level is needed. Therefore, we demand a (self-
describing) abstraction of the implementation.

Req. 2 (Exchangeability and Reusability). Different domains or scopes of appli-
cation will require different components to be combined. Increasing the efficiency
for developers in academia and industry requires a mechanism for making com-
ponents reusable and enable a best-of-breed approach.

Req. 3 (Flexible Granularity). It should be possible to integrate components for
each small or big step of a QA pipeline. For example, components might pro-
vide string analytics leading to Named Entity Identification (NEI) (e.g., [15]),
other components might target the Named Entity Disambiguation (NED) only
(e.g., [24]) and additionally there might exist components providing just an inte-
grated interface for NEI and NED in a processing step.

Req. 4 (Isolation). Every component needs to be able to execute their specific
step of the QA pipeline in isolation from other components. Hence, business,
legal and other aspects of distributed ownership of data sources and systems can
be addressed locally per component. This requirement targets the majority of the
QAS platform, to enable benchmarking of components and the comparability of
benchmarking results. If isolation of components is achieved, ensemble learning
or similar approaches are enabled with manageable effort.
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No existing question answering system or framework for such systems fulfills
these requirements. However, we assume here that fulfilling these requirements
will provide the basis for a vital ecosystem of question answering system com-
ponents and therefore unexpectedly increased efficiency while building question
answering systems.

4.3 Idea

In this paper we are following a two step process towards integrating different
components and services within a QA system.

1. On top of a standard annotation framework, the Web Annotation Data Model
(WADM6), the qa vocabulary is defined. This generalized vocabulary covers
a common abstraction of the data models we consider to be of general interest
for the QA community. It is extensible and already contains properties for
provenance and confidence.

2. Vocabularies used by components for question answering systems for their
input and output (e.g., NIF for textual data annotations, but also any cus-
tom vocabulary) are aligned with the qa vocabulary to achieve interoper-
ability of components. Hence, a generalized representation of the messages
exchanged by the components of a QA system is established, independently
of how they have been implemented and how they natively represent questions
and answers.

Thereafter, the vocabulary qa provides the information needed by the com-
ponents in the implemented question answering system, i.e., a self-describing,
consistent knowledge base is available – fulfilling Req. 1. Hence, any component
can use the vocabulary for retrieving previously annotated information and to
annotate additional information (computed by itself), i.e., each component is
using this knowledge base as input and output. This fact and the alignment of
the component vocabularies fulfills Req. 2, as each component can be exchanged
by any other component serving the same purpose with little effort, and any com-
ponent can be reused in a new question answering system. Following this process
might result in a message-driven architecture (cf., Sect. 7) as it was introduced
earlier for search-driven processes on hybrid federated data sources (cf., [4]).
However, the methodology might be implemented by different architectures.

5 Approach

5.1 Web Annotation Framework

The Web Annotation Data Model (WADM), currently a W3C Working Draft,
is a framework for expressing annotations. A WADM annotation has at least a
target and a body. The target indicates the resource that is described, while the
body indicates the description. The basic structure of an annotation, in Turtle
syntax, looks as follows:
6 W3C Working Draft 15 October 2015, http://www.w3.org/TR/annotation-model.

http://www.w3.org/TR/annotation-model
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<anno> a oa:Annotation ;
oa:hasTarget <target> ;
oa:hasBody <body> .

Additionally the oa vocabulary provides the concept of selectors, which provide
access to specific parts of the annotated resource (here: the question). Typically
this is done by introducing a new oa:SpecificResource, which is annotated by
the selector:
<mySpTarget > a oa:SpecificResource ;

oa:hasSource <URIQuestion > ;
oa:hasSelector <mySelector > .

<mySelector > a oa:TextPositionSelector ;
oa:start "n"^^ xsd:nonNegativeInteger ;
oa:end "m"^^ xsd:nonNegativeInteger .

Moreover one can indicate for each annotation the creator using the
oa:annotatedBy property and the time it was generated using the
oa:annotatedAt property.

5.2 Vocabulary for Question Answering Systems

In [19] we introduced the vocabulary for the Qanary approach. Following the
data model requirements of question answering systems, this vocabulary – abbre-
viated as qa – is used for exchanging messages between components in QA
systems [19].

Qanary extends the WADM such that one can express typical intermediate
results that appear in a QA process. It is assumed that the question can be
retrieved from a specific URI that we denote with URIQuestion. This is particu-
larly important if the question is not a text, but an image, an audio file, a video
or data structure containing several data types. URIQuestion is an instance
of an annotation class called qa:Question. The question is annotated with
two resources URIAnswer and URIDataset of types qa:Answer and qa:Dataset
respectively. All of these new concepts are subclasses of oa:Annotation. Hence,
the minimal structure of all concepts is uniform (provenance, service URL, and
confidence are expressible via qa:Creator, oa:annotatedBy, and qa:score) and
the concepts can be extended to more precise annotation classes.

These resources are further annotated with information about the answer
(like the expected answer type, the expected answer format and the answer
itself) and information about the dataset (like the URI of an endpoint express-
ing where the target data set is available). This model is extensible since each
additional information that needs to be shared between components can be
added as a further annotation to existing classes. For example, establishing
an annotation of the question is possible by defining a new annotation class
qa:AnnotationOfQuestion (using OWL Manchester Syntax):
Class: qa:AnnotationOfQuestion
EquivalentTo: oa:Annotation that oa:hasTarget some qa:Question

For additional information about the vocabulary we refer to [19].
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5.3 Integration of (External) Component Interfaces

Following the Qanary approach, existing vocabularies should not be overturned.
Instead, any information that is useful w.r.t. the task of question answering
will have to be aligned to Qanary to be integrated on a logical level, while the
domain-specific information remains available. Hence, we provide a standardized
interface for interaction while preserving the richness of existing vocabularies
driven by corresponding communities or experts. Existing vocabularies will be
aligned to Qanary via axioms or rules. These alignment axioms or rules will typi-
cally have the expressiveness of first-order logic and might be implemented using
OWL subclass/subproperty or class/property equivalence axioms as far as pos-
sible, using SPARQL CONSTRUCT or INSERT queries, or in the Distributed
Ontology Language DOL, a language that enables heterogeneous combination of
ontologies written in different languages and logics [16]. The application of these
alignment axioms or rules by a reasoner or a rule engine will translate informa-
tion from the Qanary knowledge base to the input representation understood
by a QA component (if it is RDF-based), and it will translate the RDF output
of a component to the Qanary vocabulary, such that it can be added to the
knowledge base. Hence, after each processing step a consolidated representation
of the available knowledge about the question is available.

Each new annotation class (with a specific semantics) can be derived from the
existing annotation classes. Additionally, the semantics might be strengthened
by applying restrictions to oa:hasBody and oa:hasTarget.

6 Alignment of Component Vocabularies

Our goal in this section is to provide a methodology for binding the qa vocabulary
to existing ones used by QA systems. Of course, it is not possible to provide a
standard solution for bindings of all existing vocabularies due to the variety of
expressing information. However, here we provide three typical solution patterns
matching standard use cases and presenting the intended behavior.

As running example we consider an implemented exemplary question answer-
ing system with a pipeline of three components (NEI + NED, relation detection,
and query generation and processing; cf., Sect. 7). In the following the compo-
nents are described briefly and also a possible alignment implementation of the
custom vocabulary to qa.

6.1 NE Identification and Disambiguation via DBpedia Spotlight

DBpedia Spotlight [15] provides the annotated information via a JSON inter-
face. An adapter was implemented translating the untyped properties DBpedia
Spotlight is returning into RDF using NIF. On top of this service we developed a
reusable service that aligns the NIF concepts with the annotations of qa. First we
need to align the implicit NIF selectors defining the identified named entities with
the oa:TextPositionSelector while aligning the oa:TextPositionSelector
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with nif:String on a logical level iff nif:beginIndex and nif:endIndex exist.
This is expressed by the following first-order rule:

rdf:type(?s, nif:String) ∧ nif:beginIndex(?s, ?b) ∧ nif:endIndex(?s, ?e)

=⇒ (∃?x • rdf:type(?x, oa:TextPositionSelector) ∧ oa:start(?x, ?b) ∧ oa:end(?x, ?e))
(1)

Additionally the identified resource of the named entity (taIdentRef of the
vocabulary itsrdf) needs to be constructed as annotation. We encode this
demanded behavior with the following rule:

itsrdf:taIdentRef(?s, ?NE) ∧ nif:confidence(?s, ?conf)

=⇒ rdfs:subClassOf(qa:AnnotationOfEnitites, oa:AnnotationOfQuestion) ∧
(∃?sp • rdfs:type(?sp, oa:SpecificResource) ∧ oa:hasSource(?sp,< URIQuestion >)∧

(2)
oa:hasSelector(?sp, ?s)) ∧ (∃?x • rdfs:type(?x, oa:AnnotationOfNE)∧
oa:hasBody(?x, ?NE) ∧ oa:hasTarget(?x, ?sp) ∧ qa:score(?x, ?conf))

Figure 1 shows our SPARQL implementations of this rule. After applying this
rule, named entities and their identified resources are available within the qa
vocabulary.

Fig. 1. Aligning identified NE to a new qa annotation using SPARQL
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6.2 Relation Detection Using PATTY Lexicalization

PATTY [17] can be used to provide lexical representation of DBpedia proper-
ties. Here we created a service that uses the lexical representation of the prop-
erties to detect the relations in a question. The service adds annotations of type
qa:AnnotationOfEntity. Consequently, the question is annotated by a selec-
tor and a URI pointing to a DBpedia resource comparable to the processing in
Fig. 1.

For example, the question “Where did Barack Obama graduate?” will now
contain the annotation:
PREFIX dbo: <http: // dbpedia.org/ontology/>

<urn:uuid:a ...> a oa:TextPositionSelector ;
oa:start"24"^^ xsd:nonNegativeInteger ;
oa:end "33"^^ xsd:nonNegativeInteger ;

<urn:uuid:b ...> a qa:AnnotationOfEntity ;
oa:hasBody dbo:almaMater ;
oa:hasTarget [ a oa:SpecificResource ;

oa:hasSource <URIQuestion > ;
oa:hasSelector <urn:uuid:a ...> ] ;

qa:score"23"^^ xsd:decimal ;
oa:annotatedBy <http: // wdaqua.example/Patty > ;
oa:annotatedAt "2015 -12 -19 T00:00:00Z"^^ xsd:dateTime .

In our use case the PATTY service just extends the given vocabulary. Hence,
components within a QA system called after the PATTY service will not be
forced to work with a second vocabulary. Additionally, the service might be
replaced by any other component implementing the same purpose (Reqs. 2 and 4
are fulfilled).

6.3 Query Construction and Query Execution via SINA

SINA [18] is an approach for semantic interpretation of user queries for question
answering on interlinked data. It uses a Hidden Markov Model for disambiguat-
ing entities and resources. Hence, it might use the triples identifying entities
while using the annotation of type qa:AnnotationOfEntity, e.g., for “Where
did Barack Obama graduate?” the entities http://dbpedia.org/resource/Barack
Obama and http://dbpedia.org/ontology/almaMater are present and can be
used. The SPARQL query generated by SINA as output is a formal representa-
tion of a natural language query. We wrap SINA’s output into RDF as follows:
PREFIX sparqlSpec: <http: //www.w3.org/TR/sparql11 -query /#>
<urn:uuid: ...> sparqlSpec:select "SELECT�*�WHERE�{
��<http: // dbpedia.org/resource/Barack_Obama >
��<http: // dbpedia.org/ontology/almaMater >�?v0�.�}".

As this query, at the same time, implicitly defines a result set, which needs to
be aligned with the qa:Answer concept and its annotations. We introduce a new
annotation oa:SparqlQueryOfAnswer, which holds the SPARQL query as its
body.

http://dbpedia.org/resource/Barack_Obama
http://dbpedia.org/resource/Barack_Obama
http://dbpedia.org/ontology/almaMater
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sparqlSpec:select(?x, ?t) ∧ rdf:type(?t, xsd:string)

=⇒ rdfs:subClassOf(oa:SparqlQueryOfAnswer, oa:AnnotationOfAnswer) ∧
(∃?x • rdfs:type(?x, oa:SparqlQueryOfAnswer) ∧ oa:target(?x,<URIAnswer>)∧

(3)
oa:body(?x, “SELECT . . . ”))

The implementation of this rule as a SPARQL INSERT query is straight-
forward and omitted due to space constraints. Thereafter, the knowledge base
of the question contains an annotation holding the information which SPARQL
query needs to be executed by a query executor component to obtain the (raw)
answer.

6.4 Discussion

In this section we have shown how to align component-specific QA vocabularies.
Following our Qanary approach each component’s knowledge about the current
question answering task will be aligned with the qa vocabulary. Hence, while
using the information of the question answering system for each component
there is no need of knowing other vocabularies than qa. However, the original
information is still available and usable. In this way Req. 4 is fulfilled, and we
achieving Req. 2 by being able to exchange every component.

Note that the choice of how to implement the alignments depends on the
power of the triple store used. Hence, more elegant vocabulary alignments are
possible but are not necessarily usable within the given system environment
(e.g., an alternative alignment for Sect. 6.1, implemented as an OWL axiom, is
given in the online appendix7).

Here our considerations finish after the creation of a SELECT query from an
input question string. A later component should execute the query and retrieve
the actual resources as result set. This result set will also be used to annotate
URIAnswer to make the content available for later processing (e.g., HCI compo-
nents).

7 Case Study

In this section we present a QA system that follows the idea presented in Sect. 4.3.
Note that in this paper our aim was not to present a pipeline that performs better
by quantitative criteria (e.g., F-measure) but to show that the alignment of
isolated, exchangeable components is possible in an architecture derived from the
Qanary methodology. In this paper, we have extended the vocabulary proposed
in [19] to align individual component vocabularies together to integrate them
into a working QA architecture. Without such an alignment, these components
cannot be integrated easily together because of their heterogeneity.

7 Alternative alignment: https://goo.gl/hdsaq4.

https://goo.gl/hdsaq4
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Fig. 2. Architecture of the exemplary question answering system.

Our exemplary QA system consists of three components: DBpedia Spotlight
for named entity identification and disambiguation, a service using the relational
lexicalizations of PATTY for relation detection, and the query builder of SINA.
All information about a question is stored in a named graph of a triple store
using the QA vocabulary. As a triple store, we used Stardog8.

The whole architecture is depicted in Fig. 2. Initially the question is exposed
by a web server under some URI, which we denote by URIQuestion. Then a
named graph reserved for the specific question is created. The WADM and the
qa vocabularies are loaded into the named graph together with the predefined
annotations over URIQuestion described in Sect. 5.2. Step by step each com-
ponent receives a message M (cf., Fig. 2) containing the URI where the triple
store can be accessed and the URI of the named graph reserved for the question
and its annotations. Hence, each component has full access to all the messages
generated by the previous components through SPARQL SELECT queries and
can update that information using SPARQL UPDATE queries. This in partic-
ular allows each component to see what information is already available. Once
a component terminates, a message is returned to the question answering sys-
tem, containing the endpoint URI and the named graph URI (i.e., the service
interface is defined as process(M ) → M). Thereafter, the retrieved URI of the
triple store and the name of the named graph can be passed by the pipeline to
the next component.

Now let us look into detail about the working of each component.
The first component wraps DBpedia Spotlight and is responsible for linking

the entities of the question to DBpedia resources. First it retrieves the URI
of the input question from the triple store and then downloads the question
from that URI. It passes the question to the external service DBpedia Spotlight
by using its REST interface. The DBpedia Spotlight service returns the linked
entities. The raw output of DBpedia Spotlight is transformed using the alignment
from Subsect. 6.1 to update the information in the triple store with the detected
entities.

The second component retrieves the question from the URI and analyses
of all parts of the question for which the knowledge base does not yet contain

8 http://stardog.com/, community edition, version 4.0.2.

http://stardog.com/
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annotations. It finds the most suitable DBpedia relation corresponding to the
question using the PATTY lexicalizations. These are then updated in the triple
store (cf., Sect. 6.2).

The third component ignores the question and merely retrieves the resources
with which the question was annotated directly from the triple store. The query
generator of SINA is then used to construct a SPARQL query which is then
ready for sending to the DBpedia endpoint.

We implemented the pipeline in Java but could have used any other language
as well. The implementation of each component requires just a few lines of code
(around 2–3 KB of source code); in addition, we had to implement wrappers for
DBpedia Spotlight and PATTY (4–5 KB each) to adapt their input and output
(e.g., to provide DBpedia Spotlight’s output as NIF). Note that this has to be
done just once for each component. The components can be reused for any new
QAS following the Qanary approach.

Overall, it is important to note that the output of each component is not
merely passed to the next component just like other typical pipeline architecture,
but every time when an output is generated, the triple store is enriched with the
knowledge of the output. Hence, it is a message-driven architecture built on-top
of a self-describing blackboard-style knowledge base containing valid information
of the question. Each component fetches the information that it needs from the
triple store by itself.

In conclusion, the case study clearly shows the power of the approach.
The knowledge representation is valid and consistent using linked data tech-
nology. Moreover, each component is now isolated (cf., Req. 4), exchangeable
and reusable (cf., Req. 2), as the exchanged messages follow the qa vocabulary
(cf., Req. 1), which contains the available pieces of information about the ques-
tion, and their provenance and confidence. The components are independent
and lightweight, as the central triple store holds all knowledge and takes care
of querying and reasoning. As Qanary does not prescribe an execution order or
any other processing steps, Req. 3 is also fulfilled.

The case study is available as online appendix9.

8 Conclusion and Future Work

We have presented an extensible, generalized architecture for question answer-
ing systems. The idea is driven by the observation that, while many question
answering systems have been created in the last years, the number of reusable
components among them are still negligible. Hence, the creation of new question
answering systems is cumbersome and inefficient at the moment. Most of the cre-
ated QA systems are monolithic in their implementation; neither the systems nor
their components can be reused. To overcome this problem, our approach follows
the linked data paradigm to establish a self-describing vocabulary for messages
exchanged between the components of a QA system. Qanary – the question

9 https://github.com/WDAqua/Pipeline.

https://github.com/WDAqua/Pipeline
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answering vocabulary – covers the requirements of open question answering sys-
tems and their integrated components. However, our goal is not to establish an
independent solution. Instead, by using the methodology of annotations, Qanary
is designed to enable the alignment with existing/external vocabularies, and it
provides provenance and confidence properties as well.

On the one hand, developers of the components for question answering
(e.g., question analyses, query builder, . . . ) can now easily use our standard
vocabulary and also have descriptive access to the knowledge available for the
question via SPARQL. Additionally, aligning the knowledge of such compo-
nents with our vocabulary and enabling them for broader usage within question
answering systems is now possible. Fulfilling the requirements (cf., Reqs. 1–4)
this ultimately sets the foundation for rapidly establishing new QA systems. A
main advantage of our approach are the reusable ontology alignments, increasing
the efficiency and the exchangeability in an open QA system.

Our contribution to the community is a vocabulary and a methodology, which
take into account the major problems while designing (complex) question answer-
ing systems. Via alignments, our vocabulary is extensible with well-known vocab-
ularies while preserving standard information such as provenance. This enables
best-of-breed QA approaches where each component can be exchanged according
to considerations about quality, domains or fields of application. Additionally,
meta approaches such as ensemble learning can be applied easily. Hence, the
approach presented in this paper provides a clear advantage in comparison to
earlier closed monolithic approaches. Eventually, for the first time the founda-
tions for a vital ecosystem for components of question answering systems is on
the horizon. The paper already provides some components and the alignment
of their vocabulary to the Qanary vocabulary. In the future, we will integrate
further available components by implementing wrappers for them and specify-
ing ontology alignments. Checking the logical consistency of alignments is also
a future issue. Additionally an extension for benchmarking and a corresponding
framework is planned to be established.
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Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol.
4825, pp. 722–735. Springer, Heidelberg (2007)

4. Both, A., Ngomo, A.-C.N., Usbeck, R., Lukovnikov, D., Lemke, C., Speicher, M.:
A service-oriented search framework for full text, geospatial and semantic search.
In: SEMANTiCS (2014)

5. Cabrio, E., Cojan, J., Aprosio, A.P., Magnini, B., Lavelli, A., Gandon, F.: QAKiS:
an open domain QA system based on relational patterns. In: Proceedings of the
ISWC 2012 Posters & Demonstrations Track (2012)

6. Damljanovic, D., Agatonovic, M., Cunningham, H.: FREyA: an interactive way
of querying linked data using natural language. In: Garćıa-Castro, R., Fensel,
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