
Qanary – The Fast Track to Creating a Question
Answering System with Linked Data Technology

Kuldeep Singh1(B), Andreas Both2, Dennis Diefenbach3, Saedeeh Shekarpour4,
Didier Cherix6, and Christoph Lange1,5

1 Fraunhofer IAIS, Sankt Augustin, Germany
kuldeep.singh@iais.fraunhofer.de
2 Mercateo AG, Köthen, Germany

andreas.both@mercateo.com
3 Laboratoire Hubert Curien, Saint-Etienne, France

dennis.diefenbach@univ-st-etienne.fr
4 Knoesis Center, Fairborn, USA

saeedeh@knoesis.org
5 University of Bonn, Bonn, Germany

langec@cs.uni-bonn.de
6 FLAVIA IT-Management GmbH, Kassel, Germany

didier.cherix@gmail.com

Abstract. Question answering (QA) systems focus on making sense out
of data via an easy-to-use interface. However, these systems are very
complex and integrate a lot of technology tightly. Previously presented
QA systems are mostly singular and monolithic implementations. Hence,
their reusability is limited. In contrast, we follow the research agenda of
establishing an ecosystem for components of QA systems, which will
enable the QA community to elevate the reusability of such components
and to intensify their research activities.

In this paper, we present a reference implementation of the Qanary
methodology for creating QA systems. Qanary relies on linked data
vocabularies and provides a fast track to integrating QA components
into a light-weight, message-driven, component-oriented architecture.

Keywords: Software reusability · Question answering · Semantic
search · Ontology · Annotation model

1 Motivation

The Web of Data is every day. Researchers have developed a variety of mono-
lithic Question Answering (QA) systems (e.g., [2,3]) to make sense out of the
enormous amount of available web data. Although the field of QA is large and
many state-of-the-art QA systems exist, researchers are facing difficulties to reuse
them because of their focus on implementation details and for lack of a generic
approach for designing QA systems. For example, PowerAqua [3] links informa-
tion available across distributed semantic resources to answer queries whereas
c© Springer International Publishing AG 2016
H. Sack et al. (Eds.): ESWC 2016 Satellite Events, LNCS 9989, pp. 183–188, 2016.
DOI: 10.1007/978-3-319-47602-5 36



184 K. Singh et al.

TBSL [8] presents an approach that parse the question to produce SPARQL
template that depictis the internal structure of the question. However, TBSL
provides better results regarding linguistic analysis of questions, whereas Power-
Aqua is limited w.r.t. linguistic coverage of questions. Combining the capabilities
of both systems will provide better functionalities. However, these systems are
monolithic and they cannot easily be combined, which reduces their applicability
to new domains and the options for synergy effects.

In other research areas, such as service-oriented architectures or cloud com-
puting, the vision of building an ecosystem of components within a dedicated
field has already proven its significance for the rapid advancement of research.
Therefore, establishing a methodology – on a conceptual and implementation
level – is considered crucial for managing the challenges of question answering.
The Qanary approach [1] provides such a methodology. Driven by linked data
technology and particularly by vocabularies, it integrates the knowledge of QA
components into an overall component-based QA system. However, the concep-
tual layer for QA systems leaves the implementation of the QA system open.

We have implemented the Qanary using a message-driven and light-weight
architecture that provides a fast track for integrating QA components, and uses
standard RDF technology. We present a reference implementation of a frame-
work for QA systems, manifesting the abstract/conceptual layer of Qanary. The
framework covers the main features of component-based systems, i.e., interoper-
ability, exchangeability and reusability, flexible granularity, as well as isolation
of components (cf. [1]). Therefore, a sophisticated framework level is achieved
while hiding implementation details of the integrated components and establish-
ing the qa vocabulary [7] as representation of the knowledge about the user’s
question and the search query derived from it.

Following our long-term research agenda, this framework provides a signifi-
cant step towards a best-of-breed approach for integrating the most suitable QA
components for the planned domain of application. As components integrated
by this framework, we initiate hereby an ecosystem for QA components and
promote the reusability of existing technology. Hence, efficiency for establishing
new QA systems is increased while the effort for providing reusable components
is reduced.

The next section covers our approach to create a QA system following the
Qanary methodology. We also briefly introduce the qa vocabulary. Section 3
presents a methodology for vocabulary-driven integration of QA components.
Section 4 concludes.

2 Approach

2.1 Requirements for Open Question Answering Systems

We have identified four key requirements, namely, interoperability, exchangeabil-
ity and reusability, flexible granularity, and isolation for open QA systems [1].
The QA components are heterogeneous in their implementation, therefore, we
have identified that a consistent standard interaction level, i.e., a (self-describing)



Qanary – The Fast Track to Creating a Question Answering System 185

abstraction of the implementation is needed to promote interoperability. This
abstraction will further promote reusability to enhance efficiency of the user to
build a new QA system. Hence, exchangeability and reusability are important
requirements. Isolation is another identified requirement where each component
should run independently of other components, i.e., it is enabled to be loosely
coupled with QA systems. Flexible granularity of the components is required so
they can be integrated at any step of the QA process, i.e., in contrast to other
QA frameworks the granularity is not pre-defined and therefore open for future
(special or general) components. To the best of our knowledge, no existing QA
system or framework meets these requirements. Therefore, in our concrete imple-
mentation of the Qanary methodology, we aim at meeting these requirements.

2.2 The qa Vocabulary

In [7], we presented a vocabulary for question answering (abbreviated as qa),
for representing the knowledge about a question within a QA system. Following
the Qanary methodology, the qa vocabulary1 is used to represent transitional
results during the QA process, i.e., each component increases the knowledge
about the given question by creating or enriching instances of the concepts
qa:Question, qa:Dataset or qa:Answer. The qa vocabulary provides the main
concepts needed to express the information for annotating a question with knowl-
edge that was computed during the QA process. Each time a component is exe-
cuted, properties (or information) such as provenance of annotation, score of
annotation, relation between annotations, etc., are annotated to the message to
make it available for subsequent components in the QA process. Hence, after
every step of the QA process, the knowledge base (short: KB) is enriched with
additional information about the question.

2.3 Integration by Vocabulary Alignment

We consider the fact that Qanary should not overrule existing (domain-specific)
vocabularies. Therefore, it is intended to align existing vocabularies to the qa
vocabulary, s.t., the computed data is available in a normalized representation
and can easily be reused by other component just by knowing the concepts of
qa. This can be done by using axioms or rules. The OWL subclass/sub property
or class/property equivalence might be used to implement alignment axioms or
rules. A reasoner or a rule engine can be used to map information from the
Qanary KB to the input representation understood by a QA component (if the
latter is RDF-based). A reasoner further translates the RDF output of a QA
component to the extended vocabulary for uniformity, then adds it to the KB.
An alternative option is to use SPARQL CONSTRUCT or INSERT queries to
translate the data computed by a component to a representation that is aligned
with the qa vocabulary.

1 cf., https://github.com/WDAqua/QAOntology.

https://github.com/WDAqua/QAOntology


186 K. Singh et al.

3 Methodology for Vocabulary-Driven Integration
of Question Answering Components

To illustrate the power of the Qanary methodology, we took three independent
components – DBpedia Spotlight [4], PATTY [5], and SINA [6] – arranged in the
same order in the pipeline to build an exemplary QA system (cf. [1]). Here, we
describe our approach of integrating them using Qanary with minimal program-
ming effort. Our aim here was not to develop an actual QA system or to answer
some specific questions by depicting a QA process, but to support and evaluate
our claim that it is possible to reuse existing QA components by creating a new
abstraction level for interoperability.

Qanary enriches a process-independent KB in each step. Unlike in a tradi-
tional QA pipeline, the output of the first component, DBpedia Spotlight, is not
directly passed to the second component, PATTY, but is fed into a KB via the
abstract level defined by the qa vocabulary and by aligning existing vocabularies
to it. The second component needs particular input, and it fetches required input
directly from the KB and pushes its output back to KB. The third component
does the same. Each component can access all the messages generated by the
previous components stored in a triple store through SPARQL SELECT queries
and can update that information using SPARQL UPDATE queries. We follow a
three-step process to implement an exemplary QA system:

1. Information gathering: In general, every component has a particular need
for information as input. To ensure free access to the required information, every
QA component is enabled to execute SPARQL queries and can thus retrieve any
knowledge about the question. As the qa vocabulary provides a normalized rep-
resentation of the data, each component only has to know qa to access the data.
For example, DBpedia Spotlight needs a text query as its input. It might fetch it
from the question URI (<URIQuestion> a qa:Question), following linked data
principles. Additional RDF information about the question can be retrieved
by executing a SPARQL query, e.g., to fetch named entities already annotated
within a textual question. To access existing components, we have implemented
light-weight wrappers that send information to the particular component to wrap
around and perform its action. The sample code2 is shown below:
// Execute a SPARQL query to retrieve the question URI
String sparqlQuery = "PREFIX qa: <http :// www.wdaqua.eu/qa#>

SELECT ?questionURI FROM " + namedGraph + "
WHERE {? questionURI a qa:Question}";

QueryExecution qExe = QueryExecutionFactory .sparqlService (endpoint ,
QueryFactory.create(sparqlQuery));

ResultSet result = qExe.execSelect ();
URL uriQuestion = result.next().getResource("questionURI");

// Retrieve the question using an HTTP request
RESTClient myRestClient = new RESTClient ();
String question = rstclnt.getResults(uriQuestion.toString ());

2 using Apache Jena: https://jena.apache.org/.

https://jena.apache.org/


Qanary – The Fast Track to Creating a Question Answering System 187

// Send the question to the DBpedia Spotlight (local , port 8099)
String serviceUrl = "http :// localhost :8099/" +

URLEncoder.encode(question , "UTF -8");
String serviceResult = myRestClient.getResults(serviceUrl);

2. Information retrieval: Each component performs actions on extracted
information and produces some results. In the next step, the wrapper retrieves
the computed information from the component. Before pushing it to the KB, it
is stored in a temporary location and the defined bindings to the qa vocabulary
are applied.

3. Store results in triple store: After binding is applied on the retrieved infor-
mation, the information is pushed to the KB, i.e. a triple store. Hence, following
Qanary all QA components are independent from each other and reusable. For
example, if a new state-of-the-art named entity disambiguation (NED) method
evolves, or new input types come into the picture, researchers just need to replace
the NED (in our case study this is DBpedia Spotlight), following above men-
tioned three steps and the new component can easily be integrated in the QA
system. Additionally, it becomes reusable for any other QA system following the
Qanary methodology.

A possible extension of the described QA system might incorporate support
for spoken questions. Hence, a component C1 is required that translates an audio
stream to a textual question, which is required by DBpedia Spotlight. The qa
vocabulary is extensible and already covers the requirements for audio streams.
Now the individual vocabulary of C1 needs to be aligned to qa. To integrate C1
into the QA system, a light-weight wrapper has to be implemented that fetches
the required information and passes it to C1. The above mentioned three-step
process will be followed and C1 can be integrated easily and efficiently into the
QA system.

For details of the implementation of our exemplary QA system, please refer
to our case study at https://github.com/WDAqua/Pipeline.

4 Conclusion

Qanary establishes a methodology independent from the process actually imple-
mented by concrete QA systems. Hence, it is open for extension and ready for
any new idea of how to solve QA tasks. Additionally our approach is built on top
of formal logic to support reasoning and querying in a well-defined way and is
independent from the actual implementation (the case study has to be considered
as just one possible implementation). When a new requirement evolves, or a new
component needs to be included in the pipeline, this can be accomplished via a
“fast track” with minimal programming effort. Following the Qanary method-
ology, we meet all the requirements for a vital ecosystem of QA system compo-
nents that are actually reusable. Hence, Qanary constitutes the first logical step
towards actual open QA systems.

https://github.com/WDAqua/Pipeline


188 K. Singh et al.

Acknowledgements. Parts of this work received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk�lodowska-
Curie grant agreement No. 642795, project: Answering Questions using Web Data
(WDAqua).

References

1. Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.:
Qanary – a methodology for vocabulary-driven open question answering systems.
In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C.
(eds.) ESWC 2016. LNCS, vol. 9678, pp. 625–641. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-34129-3 38

2. Damljanovic, D., Agatonovic, M., Cunningham, H.: Freya: an interactive way
of querying linked data using natural language. In: Garćıa-Castro, R., Fensel,
D., Antoniou, G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 125–138. Springer,
Heidelberg (2012)

3. Lopez, V., Fernández, M., Motta, E., Stieler, N.: PowerAqua: supporting users in
querying and exploring the semantic web. Semant. Web 3(3), 249–265 (2011)

4. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C., DBpedia spotlight: shedding
light on the web of documents. In: I-SEMANTICS (2011)

5. Nakashole, N., Weikum, G., Suchanek, F.M.: PATTY: a taxonomy of relational
patterns with semantic types. In: EMNLP-CoNLL (2012)

6. Shekarpour, S., Marx, E., Ngomo, A.-C.N., Auer, S.: SINA: semantic interpretation
of user queries for question answering on interlinked data. Web Semant. Sci. Serv.
Agents WWW 30, 39–51 (2015)

7. Singh, K., Both, A., Diefenbach, D., Shekarpour, S.: Towards a message-driven
vocabulary for promoting the interoperability of question answering systems. In:
10th IEEE International Conference on Semantic Computing (ICSC) (2016)

8. Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.-C.N., Gerber, D., Cimiano P.:
Template-based question answering over RDF data. In: WWW (2012)

http://dx.doi.org/10.1007/978-3-319-34129-3_38

	Qanary -- The Fast Track to Creating a Question Answering System with Linked Data Technology
	1 Motivation
	2 Approach
	2.1 Requirements for Open Question Answering Systems
	2.2 The qa Vocabulary
	2.3 Integration by Vocabulary Alignment

	3 Methodology for Vocabulary-Driven Integration of Question Answering Components
	4 Conclusion
	References


