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Abstract

Alternative polyadenylation (APA) affects most mammalian genes. The genome-wide investigation of APA has been
hampered by an inability to reliably profile it using conventional RNA-seq. We describe ‘Quantification of APA’
(QAPA), a method that infers APA from conventional RNA-seq data. QAPA is faster and more sensitive than other
methods. Application of QAPA reveals discrete, temporally coordinated APA programs during neurogenesis and
that there is little overlap between genes regulated by alternative splicing and those by APA. Modeling of these
data uncovers an APA sequence code. QAPA thus enables the discovery and characterization of programs of
regulated APA using conventional RNA-seq.
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Background

Alternative cleavage and polyadenylation (APA) of pre-

mRNA results in the formation of multiple mRNA tran-

script isoforms with distinct 3′ untranslated regions

(UTRs). Approximately 70% of mammalian protein-

coding genes contain multiple polyadenylation (poly(A))

sites [1, 2]. Thus, APA, much like alternative pre-mRNA

splicing (AS) [3, 4], contributes extensively to eukaryotic

transcriptome diversity and complexity. APA can occur

within introns, or within 3′ UTR sequences [5], and as

such can affect the composition of both protein coding

and noncoding sequences in genes. Changes in 3′ UTR

sequence through APA can significantly impact the fate

of mature mRNA through the loss or gain of 3′ UTR se-

quences that harbor cis-regulatory elements recognized

by microRNAs (miRNAs) and/or RNA-binding proteins

(RBPs), as well as by affecting RNA structure [6, 7].

Through these mechanisms, APA plays important roles

in the control of mRNA stability, translation, and subcel-

lular localization [5, 8, 9]. However, our understanding

of the regulation of APA and how it impacts gene ex-

pression is far from complete.

The polyadenylation machinery responsible for recog-

nition of poly(A) sites involves interactions between sev-

eral trans-acting factors and cis-elements. The core 3′

processing factors include cleavage and polyadenylation

specificity factor (CPSF), cleavage stimulation factor

(CstF), and cleavage factors I and II (CFI and CFII) [10–

12]. Transcription of the poly(A) site by RNA polymer-

ase II results in the recruitment of the above complexes

via recognition of two surrounding sequence motifs in

the nascent RNA. The first is a hexamer poly(A) signal

located 10–30 nucleotides (nt) upstream of the poly(A)

site that is recognized by CPSF [10]. In eukaryotes, the

canonical, highly conserved hexamer is AAUAAA; how-

ever, other non-canonical variants also exist [13, 14].

The second is a G/GU-rich region downstream of the

poly(A) site that is recognized by CstF [15]. This com-

plex then recruits CFI and CFII to cleave the RNA at the

poly(A) site [16], followed by poly(A) tail synthesis by

polyadenylate polymerase (PAP) [17].

To facilitate a deeper understanding of APA, methods

for the genome-wide mapping of poly(A) sites have been

developed that employ high-throughput, directed se-

quencing of the 3′ ends of mRNAs [2, 18–23]. While

these methods have provided invaluable insight into the

global landscape of APA, they have not yet been exten-

sively utilized, and consequently the availability of such
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data is currently limited. In contrast, there is a near ex-

ponential expansion in the number of conventional (i.e.,

whole transcript), mRNA-enriched high-throughput

RNA sequencing (RNA-seq) datasets. Previous studies

have demonstrated the potential of using conventional

RNA-seq to characterize APA [4, 24–27]. However, the

precise mapping of poly(A) sites from RNA-seq data is

challenging due to read coverage biases at the 3′ end of

transcripts, and poor yields of non-templated poly(A)

tail-containing reads that can be reliably mapped to

poly(A) sites [24] (KCHH, BJB, and QM unpublished ob-

servations). Moreover, another challenge is resolving the

ambiguity of reads mapping to overlapping transcript

isoforms [8]. To address these challenges, we posited the

profiling of APA using RNA-seq data may be greatly en-

hanced by combining a comprehensive set of poly(A)

site annotations with computational methods for accur-

ate estimates of steady-state 3′ UTR abundance [28].

Accordingly, in this study we describe a new method,

Quantification of APA (QAPA), that employs estimates

of alternative 3′ UTR expression in combination with a

significantly expanded resource of annotated poly(A)

sites to demarcate UTR sequences that are specifically

affected by APA. Demonstrating the effectiveness of our

approach, we show that QAPA estimates for APA correl-

ate well with those obtained using 3′ sequencing data,

and that QAPA is more sensitive, efficient, and often

more specific than other recently described methods for

measuring APA. Using QAPA, we have profiled and de-

termined new global regulatory features of APA during

neurogenesis from a time series of RNA-seq data from

differentiation of mouse embryonic stem cells (ESCs) to

glutamatergic neurons [29]. Consistent with previous

findings [30–32], a large subset of transcripts display

progressive 3′ UTR lengthening during differentiation.

We further observe sets of genes with 3′ UTR shorten-

ing and also genes that display temporally separated

waves of shortening and lengthening during neurogen-

esis. Importantly, we also find that these changes in

inferred APA are detected in genes that do not signifi-

cantly overlap those with substantial steady-state

changes in mRNA expression, alternative splicing, and

transcriptional start sites. To probe regulatory mecha-

nisms governing APA, we use QAPA data to train a new

model of poly(A) site usage during neurogenesis and

identify cis-elements that are predictive of this process.

Collectively, our results demonstrate that QAPA facili-

tates the reliable detection and characterization of land-

scapes of alternative mRNA 3′ end processing from

conventional RNA-seq data. As such, we envisage that

QAPA will enable a more comprehensive definition of

the programs of genes regulated by APA, as well as asso-

ciated regulatory mechanisms, by leveraging the wealth

existing RNA-seq data.

Results
Detection of APA from whole transcript RNA-seq data

QAPA quantifies APA levels using RNA-seq reads that

uniquely map to 3′ UTR sequences demarcated by anno-

tated poly(A) sites in last exons. The development and ap-

plication of QAPA entailed establishing an expanded

library of annotated poly(A) sites and 3′ UTR sequence.

To this end, we constructed a reference library comprising

sequences of last exons with distinct 3′ ends using GEN-

CODE gene models for human and mouse [33] (Fig. 1a;

see Additional file 1: Figure S1 and “Methods” for details).

Many additional poly(A) sites detected by 3′-seq have not

yet been incorporated into these or other existing gene

models. As such, we expanded our library by including

non-redundant annotations from two sources: PolyAsite

database [14], a repository of poly(A) site coordinates

from published 3′-end sequencing datasets, and the GEN-

CODE PolyA annotation track [33], which contains manu-

ally annotated poly(A) sites. We used the compiled

annotations (referred to below as “annotated poly(A)

sites”) to update existing coordinates of proximal 3′ UTR

sequences, and to establish coordinates for new instances

of alternative 3′ UTR isoforms. In total, our set of anno-

tated poly(A) sites represents 34,978 and 27,855 3′ UTR

isoforms in human and mouse, respectively.

From analyzing our library, we observe that 74.3 and

65.7% of protein-coding genes contain two or more dis-

tinct poly(A) sites in human and mouse, respectively

(Additional file 1: Figure S2), consistent with previous

estimates [18, 20]. Because we incorporated only high

confidence annotated poly(A) sites, i.e., those that are

supported by multiple datasets (see “Methods”), our li-

brary may exclude potential poly(A) sites that have been

previously reported. Hence, the numbers of protein-

coding genes with multiple poly(A) sites in our library

represent conservative estimates.

To quantify APA from the set of annotated 3′ UTR se-

quences with multiple APA sites, we applied Sailfish [28]

to resolve reads that map to loci containing multiple

transcript isoforms. We then inferred APA from differ-

ential expression of alternative 3′ UTR isoforms. We

quantified APA using the metric “Poly(A) Usage” (PAU).

The PAU for a 3′ UTR isoform is the ratio of its expres-

sion to the sum of the expression of all detected 3′ UTR

isoforms from its gene. In this study, we focused on the

PAU of the proximal 3′ UTR isoform (denoted as prox-

imal PAU or PPAU), since APA is often regulated

through the differential use of proximal poly(A) sites

[20]. A lower value for PPAU thus implies that a distal

poly(A) site is selected, and vice versa.

Accuracy of QAPA estimates for alternative polyadenylation

To assess the performance of QAPA, we compared its

PPAU estimates from conventional RNA-seq data to
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those computed from 3′-end sequencing data generated

using two different protocols (A-seq2 [19] and 3′-seq

[20]). For these analyses, we directly compared absolute

PPAU and the change in PPAU (ΔPPAU), as determined

from each data type and method.

First, we used published RNA-seq and 3′-seq data

from HEK293 cells [14, 34]. We estimated alternative 3′

UTR levels from the 3′-seq data by counting the num-

ber of A-seq2 reads mapping to each poly(A) site (see

“Methods”), and computed PPAU as described above.

Because these data were collected in different labs and

from different stocks of HEK293 cells, and were gener-

ated using markedly different sequencing technologies,

they exhibit a less than perfect correlation in overall

steady-state mRNA expression profiles (R = 0.81, p < 2.2

× 10–16; data not shown). Despite these sources of vari-

ability, the QAPA PPAU estimates based on conven-

tional RNA-seq data correlate well with those estimates

a

d e

b

c

Fig. 1 Profiling APA from RNA-seq. a Overview of annotated 3′ UTR library generation and QAPA method. Top: Terminal exons of two alternative
3′ UTR isoforms. The grey box indicates the coding sequence region. The blue region indicates the common region shared by both isoforms. The

green region indicates the alternative region found only in the longer isoform. In (1), additional poly(A) site annotations (inverted chevrons) are
used to refine the 3′ coordinates, as well as establish new isoforms. These new sequences are then used in (2) to measure expression from

RNA-seq data and in (3) to estimate relative alternative 3′ UTR isoform abundance. b Hexbin scatterplot comparing PPAU estimates of 975 genes
derived from HEK293 control samples assayed by RNA-seq (QAPA) [34] and A-seq2 [14]. Bins are colored by number of data points and the dashed

line indicates the reference diagonal. c Scatterplot comparing ∆PPAU for 86 highly expressed genes between human skeletal muscle and brain

tissue samples from RNA-seq (QAPA) [35] and 3′-seq [20]. d Receiver operating characteristic curves comparing performance of QAPA and other
methods on simulated RNA-seq data. e Bar plot showing average runtime of each method on the same four RNA-seq samples divided into
“pre-processing” stage for method-specific data preparation and “APA” stage for direct computation of APA results
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determined using A-seq2 data (Pearson’s correlation R =

0.70, p < 2.2 × 10−16; Fig. 1b).

Next, to assess the accuracy of QAPA against a differ-

ent 3′-end sequencing protocol (3′-seq [35]), and also in

quantifying changes in APA, we compared ΔPPAU be-

tween human brain and skeletal muscle using RNA-seq

data [35], with corresponding estimates from the same

tissue types analyzed using 3′-seq data [20]. When con-

sidering APA events inferred by both methods in tran-

scripts from genes with comparable expression between

the two tissues (see “Methods”), the ΔPPAU values cor-

relate well (Pearson’s correlation R = 0.62, p < 1.49 × 10
−10; Fig. 1c). However, as in the case of the analysis of

the HEK293 data described above, it is important to note

that this degree of correlation represents an underesti-

mate of the true correlation due to various sources of

variability including—but not limited to—different

sources of tissue samples, differences in overall gene ex-

pression profiles (“Methods”), and inherent differences

in the sequencing methodologies.

Comparison of methods for analyzing APA

We next compared the performance of QAPA with three

other methods: Roar [26], DaPars [25], and GETUTR

[27]. It is important to note in this regard that QAPA

differs fundamentally from DaPars and GETUTR in its

reference-based approach, and it also differs from all

three methods by using fast, accurate pseudo-alignment

techniques [28] to quantify 3′ UTR isoform levels. Roar

does use a reference-based approach to identify APA

changes; however, unlike QAPA its estimates for APA

derive from counts of the number of reads in the ex-

tended alternative 3′ UTR (aUTR) region and in the

common 3′ UTR (cUTR) region. In contrast, DaPars

and GETUTR infer proximal poly(A) sites de novo by

identifying significant changes in 3′ UTR read coverage.

To compare the four methods, we generated a syn-

thetic RNA-seq dataset containing 200 multi-3′ UTR

genes across two conditions, with three replicates per

condition. Among these genes, 50 were assigned as 3′

UTR lengthening (ΔPPAU > 20), 50 were assigned 3′

UTR shortening (ΔPPAU < −20), and 100 served as no-

change negative controls (−20 < ΔPPAU < 20). Overall,

QAPA outperforms the other methods, as measured by

the area under the receiver operating characteristic

curve (AUC = 0.88; Fig. 1d); the AUC for Roar, DaPars,

and GETUTR are 0.66, 0.65, and 0.62, respectively. In

particular, DaPars and GETUTR detect fewer APA

events (i.e., have a lower sensitivity) than reference-

based approaches, suggesting that predicting proximal

poly(A) sites de novo is relatively imprecise when using

conventional RNA-seq. In this regard, utilizing a

reference-based approach such as QAPA further pro-

vides a more comprehensive APA analysis from RNA-

seq data. We also directly compared the performance of

QAPA, Roar, DaPars, and GETUTR, in the detection of

APA using the brain and skeletal muscle RNA-seq data

described above. Consistent with the benchmarking re-

sults using simulated data, QAPA, followed by Roar,

showed the highest degree of overlap of APA events that

are also detected using 3′-seq from the same tissues

(Additional file 1: Figure S3c).

Next, we measured the runtime that each of the four

methods took to complete the analysis of four RNA-seq

datasets [29], each of which comprised 20 million

paired-end reads (see “Methods”). The total runtime was

measured as the sum of two stages: (1) pre-processing

steps required to prepare the data for APA analysis, in-

cluding transcript abundance measurements and read

alignment, and (2) inference of APA. Overall, because

QAPA leverages the speed of alignment-free quantifica-

tions of transcript abundance, in contrast to conven-

tional alignment procedures used by the other methods,

it performed remarkably faster—i.e., less than 10 mi-

nutes compared to over 2 hours by the other methods

(Fig. 1e; see “Methods” for details). Hence, QAPA pro-

vides an accurate, sensitive, and rapid reference-based

approach for the quantitative profiling APA from RNA-

seq data.

Transcriptome-wide analysis of APA during neuronal

differentiation

We next applied QAPA to investigate the genome-wide

landscape of APA in the context of neuronal differenti-

ation (ND), using conventional RNA-seq data generated

from eight time points (with four replicates per time

point) during differentiation of cortical glutamatergic neu-

rons from embryonic stem cells (ESCs) [29]. We focused

on a set of 3825 proximal 3′ UTR events measured with

high confidence (see “Methods”) for downstream analyses

(see Additional file 2 for a complete table of all events).

To examine the reproducibility of QAPA quantification

between biological replicates, we performed unsupervised

hierarchical clustering on estimated PPAU values for each

replicate. The results show that the replicates correlate

well with each other (Additional file 1: Figure S4). More-

over, the samples clustered into three groups consistent

with distinct developmental stages of ND defined in the

original study [29]. Specifically, group 1 comprises days in

vitro (DIV) −8 and −4, representing ESCs and neuroepi-

thelial stem cells, respectively. Group 2 comprises DIV 0

and 1, representing radial glia and developing neurons, re-

spectively. Finally, group 3 comprises DIV 7, 16, 21, and

28, representing successive stages of maturing neurons.

These groupings mirror those derived from clustering the

data based on gene expression profiles (data not shown),

even though such changes involve a distinct subset of

genes (see below). The clustering of PPAU profiles
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generated by QAPA thus reveals widespread changes in

inferred APA regulation during ND.

To elucidate the underlying patterns of APA changes

during ND, we performed principal component analysis

(PCA) on the PPAU values of each time point. We fo-

cused on the first two principal components (PCs),

which described 64.5 and 14.1% of the data’s variance,

respectively (Additional file 1: Figure S5a). PC1 captured

APA changes consistent with a gradual lengthening

(and, in rare cases, shortening) during ND (Fig. 2a;

Additional file 1: Figure S5b, c). Moreover, by summariz-

ing the PPAU profiles of genes with the highest

weighting given by PC1, we observed that the transition

to longer 3′ UTRs is more pronounced at early stages of

ND (DIV 1) and is followed by a slower lengthening rate

during neuronal maturation (Fig. 2b). Interestingly, in

addition to these patterns, PC2 captures a pattern in

which some 3′ UTRs lengthen as ESCs differentiate into

glial cells, but subsequently shorten as they develop into

neurons. To identify genes producing transcripts under-

going APA during ND, we calculated ΔPPAU between

ESC and neuronal samples. Genes with ΔPPAU > 20

were deemed to have lengthening 3′ UTRs, while

ΔPPAU < −20 were deemed to have shortening. By this

a

d

e f

b

Fig. 2 3′ UTRs lengthen during neuronal differentiation. a Scatterplot comparing the projections of QAPA PPAU profiles onto first (x-axis) and

second (y-axis) principal components. Each point indicates the median values for a DIV stage over replicates. Mature neurons appear at DIV ≥ 7.
Note that PC1 sorts samples by increasing development time as indicated above the plot. b Lines show the median PPAU (y-axis) of the top 100

3′ UTRs with largest absolute principal component loadings for PC1 (purple) and PC2 (orange) across increasing development time (x-axis). c Bar
plot indicates the number of 3′ UTRs that lengthen (∆PPAU > 20), shorten (∆PPAU < −20), and do not change (|∆PPAU| ≤ 20) where ∆PPAU is
defined as the difference in PPAU between ESC stages (DIV ≤ −4) and mature neuron stages (DIV ≥ 7). d Heat map displays PPAUs across DIV

stages for the 608 genes whose |∆PPAU| > 20. Columns correspond to genes and are sorted to be consistent with the hierarchical clustering
dendrogram shown above the heatmap. Rows correspond to DIV stages. To emphasize 3′ UTR lengthening, the distal PAU (= 100 − PPAU) is
shown. e Combined violin and box plots comparing the lengths of the extended, alternative 3′ UTR (aUTR) regions in lengthening, shortening,

and non-changing 3′ UTRs. P values were computed using Kolmogorov–Smirnov test. f Enrichment map summarizing gene set enrichment
analysis results of Gene Ontology (GO) terms enriched in the genes with 3′ UTR lengthening. Nodes represent a GO term and links between two

nodes indicate that more than 90% of the genes in the smaller term are also in the larger term
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definition, 568 (14.9%) and 40 (1.0%) genes lengthened

and shortened, respectively, whereas 3217 did not dis-

play evidence of a change in UTR length (Fig. 2c, d).

The strong bias toward lengthening is consistent with

previous findings that 3′ UTRs often extend during

neurogenesis [30–32, 36]. Our analysis expands the set

of 3′ UTRs known to lengthen during this process, some

of which are highlighted below.

To investigate differences in the properties of 3′ UTRs

that lengthen, shorten, or don’t change, we compared

the lengths of the longest aUTR region. Notably, the

lengths of the aUTR regions in the lengthening group

are significantly longer than those of the non-changing

group (p < 2.2 × 10−16, two-sided Kolmogorov–Smirnov

test), whereas the aUTR lengths of this latter group are

not significantly different from those of the shortening

group (Fig. 2e). This is in agreement with previous obser-

vations that genes with tissue-dependent 3′ UTR isoform

expression tend to have longer 3′ UTR lengths compared

to constitutively expressed isoforms [20]. Overall, the me-

dian lengths of aUTRs in lengthening, shortening, and

non-changing 3′ UTRs are approximately 1.9, 1.4, and 1.0

kb, respectively.

We next performed gene set enrichment analysis

(GSEA) [37] to assess whether genes associated with

lengthening or shortening 3′ UTRs belong to common

biological functions or pathways. No terms are signifi-

cantly enriched in the set of genes with 3′ UTR shorten-

ing during ND, possibly due to the small size of this

group. In contrast, multiple Gene Ontology (GO) terms

associated with ND are enriched in genes with lengthen-

ing 3′ UTRs; these include neurogenesis, nervous system

development, embryo development, cell morphogenesis,

proliferation, and localization (Fig. 2f ).

We identified new examples of genes that lengthen

during neuronal differentiation as a consequence of ap-

plying QAPA in conjunction with our expanded library

of poly(A) sites. Four examples are shown in Fig. 3, and

additional cases are shown in Additional file 1: Figure

S6. In the example of the gene slingshot protein phos-

phatase 1 (Ssh1; Fig. 3a), the GENCODE gene model in-

dicates a proximal 3′ UTR of 47 nt. In contrast, our

a b

c d

Fig. 3 Examples of lengthening events detected by QAPA based on updated 3′ UTR isoform annotations. Four examples of 3′ UTR lengthening:
a Ssh1, b Sipa1l1, c Hspa4, and d Mecp2. In each example, RNA-seq read coverage of each 3′ UTR at each DIV stage (rows) is displayed (using the

first replicate of each stage as a representative example). A schematic from the UCSC Genome Browser (mm10) [82] for each 3′ UTR is shown
below. Four annotation tracks are shown. From top to bottom, these tracks are: QAPA-annotated 3′ UTR models, PolyAsite [14] annotations with
score ≥ 3, GENCODE [33] gene annotation models, and GENCODE Poly(A) track annotations (except for Sipa1l1, in which no supporting GENCODE

Poly(A) data were found). Ssh1, Sipal1l, and Mecp2 are shown in the reverse strand orientation. For Mecp2, although an intermediate GENCODE
poly(A) site is present, there was insufficient support from PolyAsite annotations and thus it was not used to define a 3′ UTR model (see “Methods”).

The horizontal boxplots to the right show the PPAU values across replicates in each corresponding DIV stage to the row
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analysis supports a longer proximal 3′ UTR of 557 nt, con-

sistent with PolyAsite annotations, GENCODE Poly(A)

track annotations, and visualization of RNA-seq read map-

pings. In the case of signal induced proliferation associated

1 like 1 (Sipa1l1) and heat shock 70 kDa protein 4 (Hspa4)

(Fig. 3b, c), each gene is annotated by a single GENCODE

3′ UTR isoform whereas our library and RNA-seq data

support two and three distinct 3′ UTR isoforms, respect-

ively. Finally, we detected previously validated 3′ UTR

lengthening in methyl CpG binding protein 2 (Mecp2) [38],

a gene causally linked to Rett Syndrome that is critical for

normal brain development [39] (Fig. 3d). QAPA analysis in

conjunction with the employment of our expanded 3′

UTR library thus can capture more isoforms than current

annotation resources, as also supported by our benchmark-

ing comparisons described above.

Differential APA and steady-state gene expression

changes during ND largely involve distinct subsets of

genes

Given the large program of changes that occur during

ND, including numerous changes in total steady-state

mRNA abundance, we next investigated whether the ob-

served 3′ UTR length changes during ND are primarily

due to differential recognition of alternative poly(A)

sites, or possible changes in the differential stability of

the proximal and/or distal 3′ UTR isoforms that may

affect steady-state expression levels of the corresponding

isoforms. To address this question, we identified genes

with overall differential steady-state mRNA expression

levels (i.e., changes involving all isoforms from a gene)

and genes in the same data that display QAPA-inferred

differential APA during ND, and then asked whether

there was a statistically significant overlap between these

two sets of genes.

To this end, we used DESeq2 [40] to identify genes

that are differentially expressed between ESCs (DIV −8

and −4) and maturing neurons (DIV 7, 16, 21, and 28).

Of 3825 analyzed genes, we observe that 423 (11.1%)

display a significant increase in expression and 394

(10.3%) a decrease in expression during differentiation

(Additional file 1: Figure S7a; |log2 fold change| > 1.5,

FDR < 0.01, where fold change is the ratio between

neuronal expression and ESC expression). Notably,

among a total set of 608 genes with QAPA-inferred

lengthening or shortening 3′ UTRs, the large majority

(460, 75.7%) do not overlap those genes with significant

expression changes (Table 1). Moreover, this subset also

did not display significant changes in mRNA expression

when comparing ESCs with an earlier stage of ND (DIV

1; Additional file 1: Figure S7b). However, of the 568

genes with 3′ UTR lengthening, 88 (15.5%) display in-

creased steady-state mRNA expression, and 44 (7.8%)

show decreased expression (Fig. 4a). By independently

Table 1 Summary of genes with QAPA-inferred APA changes
and significant differential steady-state mRNA expression changes
measured by DESeq2 [40] (|log2 fold change| > 1.5 and FDR < 0.01)

Differential expression

Increase No change Decrease

APA Lengthening 88 436 44

No change 329 2548 340

Shortening 6 24 10

a

b

Fig. 4 APA changes during ND are rarely correlated with steady-
state mRNA expression changes. a Comparison between mRNA

expression changes (y-axis) and APA changes (x-axis) for 3825 analyzed
genes. Lengthening 3′ UTRs are indicated on the right (∆PPAU > 20),

while shortening 3′ UTRs are on the left (∆PPAU < − 20). Genes with
statistically significant differential up- or down-regulation are indicated
by red and blue dots, respectively (|log2 fold change| > 1.5, FDR < 1%).

Examples of lengthening 3′ UTRs from Fig. 3 are labeled. Dotted
horizontal lines indicate log2 fold change thresholds, while dotted

vertical lines indicate ∆PPAU thresholds. b Bar plot showing

distribution of lengthening 3′ UTRs across classes based on isoform
expression changes between proximal and distal 3′ UTRs: Switch,

Long-Up, or Short-Down
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comparing the number of lengthening and shortening

genes with differential expression changes to those genes

without associated expression changes, we observed a

higher than expected overlap between genes with both

3′ UTR lengthening and increased expression, and a

barely significant overlap between 3′ UTR shortening

and decreased expression (p = 0.002 and p = 0.02, two-

sided Fisher’s exact test, Bonferroni correction).

We next investigated the extent to which QAPA-

detected 3′ UTR changes during ND are represented by

genes for which there are changes in the steady-state ex-

pression of only one of the resulting proximal (short) or

distal (long) isoforms, versus genes for which there are

reciprocal changes in levels of these isoforms. For this

analysis, DEXSeq [41] was used to detect significant

changes in the expression of the proximal or distal 3′

UTR isoforms, particularly focusing on lengthening

genes. We classified these genes as Long-Up if only the

distal isoform is up-regulated during ND, Short-Down if

only the proximal isoform is down-regulated, and Switch

if the distal isoform is up-regulated and proximal iso-

form is down-regulated. Overall, a total of 296/568

(52.1%) genes with 3′ UTR lengthening could be confi-

dently assigned to one of these three classes (Fig. 4d).

Importantly, the Switch class represents the majority

(283) of events, whereas the Long-Up and Short-Down

classes represent only ten and three genes, respectively

(examples in Additional file 1: Figure S8). These results

are thus further consistent with our observation that the

large majority of genes with changes in steady-state gene

expression levels during ND do not overlap those genes

with QAPA-inferred APA. Moreover, the results suggest

that the majority of the inferred APA events that involve

reciprocal changes in proximal and distal isoform ex-

pression likely arise from differential APA regulation. In

the case of the smaller groups of genes that are either

specifically long- or short-regulated, it is probable that

additional post-transcriptional mechanisms, including

miRNA- and RBP-mediated regulation of transcript sta-

bility, result in unidirectional changes that affect the

relative ratios of these isoforms.

Differential APA, alternative splicing, and transcription

start site selection are largely independent regulatory

events during neuronal differentiation

Previous studies have demonstrated links between spli-

cing and APA. For example, specific splicing regulators

such as SRRM1 [42] and NOVA [43] control 3′-end for-

mation, and components of the cleavage polyadenylation

machinery can influence splicing [44–46]. Another ex-

ample is the spliceosome factor U1 small nuclear ribo-

nucleoprotein regulating the usage of cryptic intronic

poly(A) sites [47, 48]. Moreover, selection of alternative

last exons is coupled with APA in the same exons [49].

However, overall, it is not clear to what extent APA (oc-

curring within the 3′ UTR) and AS changes (independ-

ent of terminal exon selection) act independently or in a

coordinated fashion to impact gene regulation. To ad-

dress this in the context of ND, we investigated whether

genes with differential APA significantly overlap those

with differentially regulated AS events. We carried an

analysis of AS on the same dataset (see “Methods”) that

detected cassette exons (including microexons of length

3–27 nt) and alternative 5′/3′ splice sites. Only 53/608

(8.7%) of genes with QAPA-inferred APA contain one or

more differentially regulated AS events (Fig. 5a). How-

ever, this overlap is not significantly different from the

overlap between genes with no inferred APA changes

and those with neural-regulated AS (p = 0.56, two-sided

Fisher’s exact test). We also compared genes with

QAPA-detected APA with an independently defined set

of genes with neural-regulated AS events [50] and, again,

did not observe any significant overlap (p = 0.37, two-

sided Fisher’s exact test; Additional file 1: Figure S9a).

Since APA has previously been linked to changes in

transcription initiation [51], we additionally asked whether

genes with QAPA-inferred APA are enriched for multiple

transcription start sites. We observe that 259/608 (42.6%)

such genes contained two or more distinct start sites (Fig.

5b, Additional file 1: Figure S9b). However, again, this

overlap is not significantly different from that overlap with

genes lacking APA (p = 0.49, two-sided Fisher’s exact

test).

Taken together, these results provide evidence that

APA is a distinct layer of regulation that is largely inde-

pendent of programs of differential gene expression,

AS, and transcription start site selection, during ND.

Nevertheless, it is important to bear in mind that in

specific cases these processes are coupled and can in-

fluence each other [45, 46].

a b

Fig. 5 APA during neuronal differentiation is generally independent
of alternative splicing and multiple transcription start sites. a Venn

diagram showing the overlap between 3′ UTR lengthening and
shortening genes (right) and genes with differentially regulated AS
events [50] (left). b Venn diagram showing the overlap between 3′

UTR lengthening and shortening genes (right) and genes with more
than one distinct transcription start site (left). Neither overlap is

statistically significant (p = 0.56 and 0.49, respectively, Fisher’s exact test)
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Modeling the APA regulatory code using QAPA data

Because APA appears to act largely independently of

other regulatory mechanisms, and because a parsimoni-

ous explanation for our observations is that APA

changes are largely regulated by differential choice of

poly(A) sites, we assembled models for inferring the role

of cis-elements that control proximal poly(A) site choice.

In this regard, the full set of cis-regulatory instructions

for the regulation of APA is not known. Moreover,

QAPA, coupled with our expanded resource of anno-

tated poly(A) sites and UTR sequences, provides a con-

siderable increase in quantitative estimates for inferred

APA available for modeling, and therefore has the po-

tential to afford a greater resolution in inferring an APA

code. To investigate this possibility, we used QAPA pre-

dictions generated from the analyses described above to

quantitatively model poly(A) site usage in the context of

ND. We trained our model to predict PPAU levels using

QAPA estimates from the ND RNA-seq data [29] de-

scribed above and then inferred cis-elements (and poten-

tial cognate trans-factors) controlling choice of poly(A)

sites.

Using an approach similar to that applied previously

to predict regulated alternative splicing [52], we first col-

lected and analyzed a variety of features within 300 nt

upstream and 300 nt downstream of each poly(A) site.

The features were assigned to four broad groups: se-

quence content, polyadenylation-related, RBP motifs,

and conservation. The first group included features de-

scribing dinucleotide sequence content. The second in-

cluded features indicating the presence or absence of 18

possible poly(A) signals within 50 nt upstream of the

poly(A) site, as well as the enhancer element UGUA.

Among the 18 poly(A) signals, 12 were initially defined

by Beaudoing et al. [13], and an additional six were de-

fined by Gruber et al. [14]. We also included features de-

scribing the dinucleotide at the polyadenylation site. The

third group contained features representing 204 experi-

mentally defined RBP motifs from RNAcompete [53].

Each RBP motif was also scored for its computationally

predicted accessibility [54] (see “Methods” for details).

Scores were summed within 100-nt bins between 300 nt

upstream of a proximal poly(A) site to 300 nt down-

stream, resulting in six binned features per motif for a

total of 1224 motif features. Finally, we also included

features describing the conservation profile upstream

and downstream of the poly(A) site. In total, we collected

1296 features (Additional file 3). We built a regression

model that describes the propensity or “site strength” of a

poly(A) site using the features described above, as poly(A)

site strength is thought to be due to a combination of

many factors [55]. Using the ND RNA-seq dataset [29],

we computed the mean PPAU value across all samples for

each gene. Constitutively expressed proximal poly(A) sites

will have a high mean PPAU, while differentially regulated

poly(A) sites will have low to mid-range mean PPAU. For

this model, we included proximal poly(A) sites to reflect

APA, as well as single, constitutively expressed poly(A)

sites (i.e., genes with a single site), which have a PPAU

value of 100. In the latter case, we assume these to be ex-

amples of strong poly(A) sites, and that the mechanisms

for processing a single site are not necessarily different

from those of a proximal site.

To train our model, we compared three algorithms:

linear regression with LASSO regularization [56], ran-

dom forests [57], and gradient tree boosting [58]. These

algorithms were chosen for their ability to carry out fea-

ture selection. Reducing the number of features in this

manner thus provides interpretable insight into cis-ele-

ments that are most important for prediction of poly(A)

site selection. A model was trained for each method

using cross-validation, and evaluation was carried out on

held-out test data (see “Methods”). Overall, random for-

ests and gradient tree boosting outperformed LASSO

(root-mean-square error (RMSE) = 21.72, 21.87, and

26.48, respectively; Fig. 6a for random forests and

Additional file 1: Figure S10 for LASSO and gradient tree

boosting). Furthermore, all three methods outperformed a

baseline model that predicts only the mean PPAU from

the training data (RMSE = 37.46), suggesting that our

models contained features that are predictive of PPAU.

We next investigated the importance of features in the

random forests model (Fig. 6b–d). Among the top fea-

tures, conservation surrounding the proximal poly(A)

site is strongly associated with site strength as well as

the two poly(A) signals, AAUAAA and AUUAAA, the

poly(A) site dinucleotide AU, and downstream GG di-

nucleotide content. To determine the prevalence of the

latter feature groups, we examined the distribution of all

18 poly(A) signals and 16 poly(A) site dinucleotides in

the poly(A) sites of proximal, constitutive, as well as dis-

tal 3′ UTRs. As expected, the signals AAUAAA and

AUUAAA were the two most frequent elements in all

three types (Fig. 6e). Among the AAUAAA-containing

events, constitutive 3′ UTRs are the most prevalent,

followed by distal and proximal 3′ UTRs. This is in

agreement with previous reports suggesting that prox-

imal poly(A) sites are typically less often selected and

thus are less likely to contain a strong poly(A) signal

[55]. The poly(A) site dinucleotide AU was the most fre-

quently observed poly(A) site for single and distal

poly(A) sites, while CA was the most frequent in prox-

imal poly(A) sites (Fig. 6f ). Similarly, we observed that

the downstream content of GG (measured in the 300-nt

region downstream of the poly(A) site) provided some

predictive value. Finally, several RBP motifs also collect-

ively provided substantial predictive value. As several of

the RBP motifs closely resembled the canonical poly(A)
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signal AAUAAA, we separated the motif features as ei-

ther upstream AAUAA-like, located within the (−100, 0)

bin (Fig. 6c), and non-AAUAAA-like (Fig. 6d). The up-

stream AAUAAA-like features are among the top scor-

ing motifs and likely overlap the poly(A) signal features.

The other non-AAUAAA-like features individually pro-

vided a much smaller amount of predictive value. This

suggests that while collectively RBP motifs provide con-

siderable predictive value in site strength, their involve-

ment is complex and individual RBPs each contribute to

APA regulation with small effect sizes and in different

contexts. In summary, our model highlights various se-

quence features that are important for the overall pre-

diction of proximal poly(A) site usage and further

indicates that, in contrast to the code underlying tissue-

dependent regulation of AS, does not comprise RBP

motif cis-features that act widely to control APA.

Discussion
In this study, we present a new computational approach,

QAPA, to quantitatively infer APA from conventional

RNA-seq data, by profiling 3′ UTR isoforms demarcated

by annotated poly(A) sites. Facilitating the application of

this method, we have introduced a more comprehensive

resource of annotated poly(A) sites and alternative 3′

UTR sequences for human and mouse that significantly

improves on existing gene model annotations. To resolve

overlapping isoforms, our method employs a recent

transcript-level quantification strategy based on k-mer

frequencies [28], which obviates the compute-intensive

and time-consuming steps of alignment of reads to a ref-

erence genome or transcriptome. Using these combined

approaches, QAPA directly estimates absolute alterna-

tive 3′ UTR isoform expression and then computes the

relative expression of each isoform among all isoforms

to assess APA. When developing QAPA, we tested in-

corporation of information from chimeric reads contain-

ing non-templated poly(A) stretches to locate poly(A)

sites [24]. However, we found this approach to be unreli-

able due to very low yields of such reads, and the poor

quality of the templated portion of the reads, and as

such including these reads did not enhance performance

(data not shown).

We show that QAPA estimates for APA correlate well

with those derived from 3′-end sequencing methods,

despite inherent sources of variability due to technical

differences in sequencing methods, where the samples

were sequenced, and expression levels between the

a

e

f

b c

d

Fig. 6 Modeling the APA regulatory code using random forests. a Hexbin scatterplot comparing PPAU predictions made by random forests
model on genes in the ND RNA-seq dataset [29] to the observed QAPA-assigned PPAU values. Only data on held-out genes not used in the training

the model are shown here. Higher values indicate increased usage and vice versa. Bins are colored by number of data points. The dashed line indicates
the reference diagonal. The blue line represents a polynomial spline of best fit to the data. b Dot plot showing the top six features from the model.

The x-axis indicates the importance of each feature (see “Methods”), scaled between 0 and 100. Higher values indicate that the feature has stronger
predictive value than lower values. Note that the Conservation, Cis RBP motifs, and Upstream AAUAAA-like cis RBP motifs features shown are the sum of
the importances from all the corresponding binned conservation-related and motif-related features. c Zoom-in dot plot showing the importances of

the top eight motif features from the Cis RBP motifs set. This set consists of RBP motifs that are not similar to the AAUAAA poly(A) signal. Each motif is
labeled according to the corresponding RBP, IUPAC motif, and bin region. d Zoom-in dot plot showing the importances of individual Upstream
AAUAA-like RBP motifs. These features are likely predictive due to their similarity to the canonical poly(A) signal AAUAAA. e Distribution of 18 poly(A)

signals in mouse, grouped by poly(A) site type: proximal (poly(A) site closest to stop codon), distal, and single (genes with one poly(A) site). f Similar to
e, distribution of 16 poly(A) site dinucleotides, grouped by poly(A) site type
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samples. A major goal of this study was to introduce a

reliable method for inferring APA when 3′-end sequen-

cing data are unavailable. In this regard, currently there

is a limited amount of such data compared to conven-

tional RNA-seq data. However, we support continued

generation of 3′-end sequencing data, as it represents an

effective approach for the definition of poly(A) sites and

the characterization of APA regulation. In addition to

displaying comparable accuracy as 3′-end sequencing

data in inferring APA, in benchmarking comparisons we

observe that QAPA has an overall greater sensitivity and

speed than other recently described methods [25–27] for

inference of APA from RNA-seq data. Finally, by per-

forming QAPA analysis of conventional RNA-seq data

from a time course of ND from ESCs [29], we provide

an extensive resource of quantitative estimates of APA

during ND and further use these data to model an APA

regulatory code. These results thus demonstrate the po-

tential of QAPA for greatly expanding our knowledge of

APA by harnessing the wealth of existing conventional

RNA-seq data.

A limitation of QAPA is that it requires poly(A) sites

to be pre-defined. In the present study, this issue is miti-

gated by the generation of a greatly expanded resource

of annotated poly(A) sites that incorporates data from

3′-seq and other resources. Moreover, the addition of fu-

ture poly(A) site data (e.g., from new 3′-end sequencing

data) to this resource will further increase the power of

QAPA. It should be noted that the de novo discovery of

APA from conventional RNA-seq data is challenging,

given the uneven distribution of reads across 3′ UTR se-

quence. Hence, coupling a comprehensive annotation of

experimentally supported poly(A) sites is therefore a

critical component of QAPA’s inference of poly(A) site

selection from conventional RNA-seq data.

Using QAPA to analyze APA in longitudinal RNA-seq

data from glutamatergic ND confirms previous reports

that 3′ UTR lengthening is the predominant APA pat-

tern during differentiation [30–32, 36], with smaller sub-

sets of genes displaying shortening or successive waves

of lengthening and shortening, or vice versa. This ana-

lysis further defined new cases of inferred APA, overall

progressive lengthening as ESCs differentiate into neural

precursor cells, and the observation that genes that

undergo 3′ UTR lengthening overall have a longer me-

dian 3′ UTR length (1.9 versus 1.4 kb) compared to

those genes that do not undergo lengthening, thus

affording greater potential for miRNA-, RBP-, or RNA

structure-based regulation [9, 32, 38]. Furthermore, the

majority of inferred APA events are not associated with

significant and selective changes in steady-state 3′ UTR

isoform levels during ND. While this is consistent with

previous observations that genes subject to regulation by

APA largely do not overlap with genes with differential

expression in the same biological context [19, 31, 59],

we do observe a higher than expected number of genes

with 3′ UTR lengthening that display accompanying in-

creased expression during ND. Hence, possible coupling of

APA with steady-state mRNA expression changes impacts

a relatively small number of genes and may arise through

mechanisms involving miRNA- and RBP-mediated control

of mRNA turnover. One such example is Mecp2, in which

its long 3′ UTR isoform has been shown to be post-

transcriptionally regulated by a coordinated program of

miRNAs and RBPs during ND [38]. Furthermore, among

the genes with inferred APA during ND, we do not observe

significant overlap with genes that contain (non-terminal

exon) neural-regulated AS and multiple transcription start

sites.

To investigate the regulatory code governing APA, we

developed models to predict poly(A) site usage. Previously,

classification models have been used to predict functional

poly(A) sites in genomic sequence [60–62], as well as

tissue-specific poly(A) sites from constitutive poly(A) sites

[63, 64]. Here, our regression models employ a set of fea-

tures that represent sequence properties flanking each

poly(A) site to predict usage. We trained the models using

LASSO, random forests, and gradient tree boosting. Over-

all, our best models were achieved by the latter two, both

of which outperformed a baseline model that predicts the

average PPAU across the ND samples. Features that con-

tributed the most predictive power are conservation, the

poly(A) signals AAUAAA and AAUAAA, and to a smaller

extent poly(A) site dinucleotide AU. The conservation

patterns surrounding the poly(A) site are in part due to

conserved poly(A) signals and downstream elements [20].

In the case of poly(A) site dinucleotides, while CA has

been reported as the preferred poly(A) site dinucleotide

[65], a subsequent study revealed a nucleotide preference

order of A > U > C ≫ G at the cleavage site [66]. We ob-

served that AU is the most frequent dinucleotide (Fig. 5d);

however, our model suggests that AU weakly predicts

poly(A) site selection. We also detect relatively small con-

tributions of specific RBP motifs to overall poly(A) site

usage, likely because individual RBPs control only small

subsets of target events and in specific contexts. These

results thus highlight the inherent challenge of in silico

inference of an APA code that accounts for regulatory

behavior in different biological contexts. We propose

that the application of QAPA to the enormous wealth

of existing conventional RNA-seq data may provide suf-

ficient genome-wide measurements of poly(A) site

usage to significantly enhance further efforts directed at

inferring the APA code. Based on our observations in

the present study, we expect that such an expanded

analysis will define relatively small sub-networks of

APA events controlled by individual RBPs or other

regulatory factors.
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Conclusions
In this study, we developed and applied QAPA, a new

method that uses conventional RNA-seq data to infer

poly(A) site selection and alternative 3′ UTR usage. We

further introduced a greatly expanded resource of poly(A)

site annotations that are used by QAPA to infer APA. As

exemplified by its application to a time series of ND RNA-

seq data, QAPA facilitates the systematic discovery and

characterization of APA across diverse physiologically nor-

mal and disease conditions. Also, as demonstrated in the

present study, such expanded datasets for poly(A) site se-

lection generated by QAPA facilitate modeling of the APA

code.

Methods

Curating a library of 3′ UTR isoform sequences

We used gene models based on the GENCODE [33]

basic gene annotation set version 19 and M9 for humans

(hg19) and mouse (mm10), respectively, to build our

database of 3′ UTRs from protein-coding genes. First,

we perform filtering on these gene models to identify 3′

UTR isoforms that are likely to be part of stable mRNA

transcripts. Then we used additional poly(A) site annota-

tion sources to refine the 3′ end of some of the 3′ UTR

isoforms, or to add new isoforms where additional

poly(A) sites appear that are not present in the GEN-

CODE basic annotations. See Additional file 1: Figure S1

for a flow chart of the procedure. We performed a series

of filtering steps to pre-process the 3′ UTR isoforms.

First, we removed 3′ UTRs with introns that are likely

to lead to nonsense-mediated decay and 3′ UTRs that

are not at the 3′-most end of the coding region. We

identified the latter by removing 3′ UTRs that overlap

with the coding region or introns. Then, we extracted

the genomic coordinates of terminal exons from each

transcript, which include both the 3′ UTR and the adja-

cent coding sequence region (Fig. 1). Note that our fil-

tering ensures that all these terminal exons have the

same 5′ start site. For convenience and clarity, we refer

to these terminal exons as 3′ UTRs. Finally, we excluded

3′ UTRs shorter than 100 nt in length, which are diffi-

cult to quantify.

Next, we used two additional poly(A) site annotation

sources to refine the 3′ ends of our set of 3′ UTRs and to

generate new 3′ UTR isoforms where a well-supported

poly(A) site appeared within an existing 3′ UTR. These

annotation sources were the GENCODE basic poly(A) an-

notation track [33], and the PolyAsite database (http://

polyasite.unibas.ch/; accessed on December 2016) [14].

Specifically, we included all GENCODE entries and only

PolyAsite entries that had three or more supporting 3′-

end sequencing datasets (score ≥ 3) and were labeled as

“TE” or “DS” (for downstream poly(A) sites). Collectively,

we will refer to a poly(A) site from one of these sources as

an annotated poly(A) site. We used the annotated poly(A)

sites in two ways: to refine the 3′ end of nearby 3′ UTRs,

or to generate new 3′ UTR isoforms. Note we used anno-

tated poly(A) sites from GENCODE only to refine the 3′-

ends of nearby 3′ UTR; sites from PolyAsite were also

used to generate new 3′ UTR isoforms.

To update 3′ ends of 3′ UTRs, thereby accounting for

slight variability in precise cleavage sites, if an annotated

poly(A) site was located within 24 nt of the existing 3′

end coordinate of a 3′ UTR, then we replaced its coord-

inate with that of the annotated poly(A) site. The 24-nt

cutoff is based on previous poly(A) site clustering pipe-

lines [1]. We generate a new 3′ UTR isoform if an anno-

tated poly(A) site otherwise occurs within an existing 3′

UTR and the annotated poly(A) site source is from Poly-

Asite and is supported by four or more 3′-seq datasets

(note this is a more stringent criteria than we use for

allowing a PolyAsite to update a 3′ end). This new 3′

UTR isoform is assigned the same 5′ end as all the other

3′ UTR isoforms for that gene. Finally, we perform a

final merge of 3′ UTRs with 3′ ends within 24 nt of

each other to produce a non-redundant set of isoforms.

All genomic interval operations were performed using

pybedtools [67]. Sequences were extracted using bed-

tools getfasta [68].

Data processing of RNA-seq datasets

Transcript-level expression of 3′ UTRs was measured

using Sailfish v0.8.0 [28] and our curated reference li-

brary of 3′ UTR sequences. To quantify the relative

usage of 3′ UTR isoforms (and thus differential poly(A)

site usage), we calculate the relative expression of a 3′

UTR over the total expression level of all 3′ UTRs in a

gene, defined by a metric called Poly(A) Usage (PAU):

PAU ig ¼
eig

X

je jg

� 100

where g is a given gene, eig is the expression level of iso-

form i in g, measured in transcripts per million (TPM).

RNA-seq read coverage was visualized using the R pack-

age Gviz [69].

Data processing of 3′-end sequencing datasets

For A-seq2, reads were processed as described in Gruber

et al. [14], with some modifications. Briefly, after remov-

ing adapters, reads were reverse complemented, col-

lapsed using FASTX-Toolkit, and aligned to the human

reference genome (hg19) using Bowtie2 v2.2.6 [70] with

–local option. Next, we used filtering criteria outlined in

Gruber et al. [14] and further filtered the alignments to

remove non-uniquely mapping reads (MAPQ < 10),

reads with more than two Ns, reads with more than 80%

adenines, and reads where the last nucleotide is adenine.
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To annotate and quantify poly(A) sites, reads overlap-

ping the PolyAsite (hg19) database were quantified using

bedtools intersect (with options –s, −wa, and –c) [68],

forming poly(A) site clusters. To ensure that all reads

that mapped near a poly(A) site cluster were counted,

we extended clusters less than 30 nt in length by 15 nt

on either side. An equivalent PAU metric was used to

quantify the relative usage of poly(A) sites as described

above. In this case, the relative proportion of read counts

at a given poly(A) site cluster over the total number of

reads for all clusters in the gene was calculated.

For 3′-seq [20], we used pre-processed “final” datasets

for downstream analysis (see “Availability of data and

materials” below). A similar approach was taken as

above with a few modifications. Instead of using PolyA-

site annotations, we determined the set of observed

poly(A) site clusters by merging both brain and skeletal

muscle datasets and scanned for clusters using an in-

house Python script (find_sites.py, available on the

QAPA GitHub page). The poly(A) sites were then quan-

tified as above and similar PAU values were computed.

Comparison between QAPA and 3′-end sequencing

For RNA-seq datasets, QAPA was applied using a hu-

man 3′ UTR library (hg19) as described above. We ex-

cluded genes with less than 100 nt between the 3′ ends

of the proximal poly(A) site and the furthest down-

stream distal site.

For A-seq2 analysis, we mapped poly(A) site clusters

to 3′ UTRs by finding the 3′ UTR whose 3′ end over-

laps with the cluster. Next, we only considered 3′ UTRs

expressed at least 5 TPM in both RNA-seq and A-seq2

in at least one of two replicates. We restricted our PPAU

comparison to genes with exactly two 3′ UTRs. In some

cases, there were poly(A) site clusters in A-seq2 that

were not near a 3′ end of a 3′ UTR; in this case, we next

added their TPMs to those of the 3′ UTRs whose 3′ end

was first one downstream of the cluster. Total gene ex-

pression was measured by taking the sum of the TPMs

of the two 3′ UTRs for that gene in that sample. We

then computed the PPAU for each gene, in each sample,

for each method. To ensure that we were comparing

high confidence events, we removed genes whose PPAUs

varied by more than 10% between replicates for a sample

for both methods. We then computed the average

PPAUs between replicates and used those for compari-

son. Replicates from each condition and method then

were combined by taking the mean.

For analysis of differential 3′ UTR usage between

RNA-seq and 3′-seq, we used a variable expression

threshold rather than the fixed 5 TPM threshold used

for A-seq2. First, we separately transformed the expres-

sion levels for each gene into a percentile between 10 to

90 (step size = 10) independently for each method. Next,

at each percentile p, we considered the intersection of

genes expressed above p in RNA-seq, and similarly for

3′-seq. We then required genes to have proximal 3′

UTR non-zero expression for both methods in the same

tissue type. Within this intersection, the overlap of genes

with APA changes between both methods was calculated

where we require a |ΔPPAU| > 10 between brain and

skeletal muscle to define an APA change.

Benchmarking of QAPA using simulated RNA-seq data

To evaluate QAPA against other RNA-seq-based methods

for APA inference, we generated a synthetic RNA-seq

dataset containing 200 mouse multi-3′ UTR genes with

minimum 3′ UTR length of 100 nt across two conditions,

each with three simulated biological replicates. For each

gene, the proximal 3′ UTR isoform was assigned two

PPAU values (one per condition). For the first condition,

the PPAU is uniformly sampled from either a low usage

range (10–49%) or high usage range (50–90%). For the

second condition, the PPAU is uniformly sampled from

the opposite range of the first condition along with an

added restriction such that the minimum difference be-

tween the two conditions is at least 20%. The total PAU of

all the distal isoforms was then set to 100% minus PPAU,

and was allocated uniformly at random among the various

distal isoforms if there was more than one. Through this

sampling procedure, we generated 50 lengthening and 50

shortening events with |ΔPPAU| > 20, as well as 100 non-

changing events as a negative control (|ΔPPAU| < 20). To

simulate different coverage levels, baseline coverage for

each gene was uniformly sampled between 10 to 50×.

These parameters were then supplied to the R package

polyester [71] to simulate paired-end 100-nt reads from

the mouse genome (mm10), with Illumina error rate and

GC bias models enabled (error_model = “illumina5”,

gc_bias = 1).

We compared QAPA with three other methods: Roar

v1.10.0 [26], DaPars v0.9.0 [25], and GETUTR v1.0.3 [27].

For each method, we provided annotations based on our

QAPA 3′ UTR library to ensure that the same set of 3′

UTRs were interrogated. For Roar, the analysis was carried

out using the supplied roarWrapper_multipleAPA.R script.

Results were filtered for events with FDR < 0.1 and length-

ening events were defined as having a roar value between 0

and 0.8, and shortening events with roar value > 1.2. For

DaPars, the coverage cutoff was set to 10 and results were

filtered for events with predicted proximal poly(A) sites

that were within 100 nt of a QAPA-annotated proximal

poly(A) site (FDR < 0.1). In DaPars, lengthening events

were defined as those with Percentage of Distal Poly(A)

Usage Index (PDUI) group difference (PDUI_Group_diff)

< −0.2 and shortening events with PDUI_Group_diff > 0.2.

For GETUTR, we used the default settings and results

were filtered for predicted proximal poly(A) sites within
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100 nt of a QAPA-annotated proximal poly(A) site. For

GETUTR, the polyadenylation cleavage site (PCS) scores

from the three replicates were averaged for each condition.

Lengthening events were defined as having a change (Δ) in

PCS score > 0.2, while shortening events have a ΔPCS <

−0.2. For analysis of human brain and skeletal RNA-seq

datasets as shown in Additional file 1: Figure S3c, relaxed

thresholds were applied to correspond with the RNA-seq

versus 3′-seq analysis described above: roar: 0–0.9 and >

1.1 for lengthening and shortening, respectively: DaPars,

−0.1 and 0.1, and GETUTR, 0.1 and −0.1.

To measure the run times of each method, we selected

four representative samples from the Hubbard et al. [29]

dataset: two replicates from DIV − 8 and two replicates

from DIV 28. Each sample was randomly down-sampled

to 20 million paired-end reads. Each method was then run

twice on all four samples and the run times were averaged.

For Roar, DaPars, and GETUTR, reads were first aligned

to the mouse genome (mm10) using HISAT [72]. Where

the methods used parallel computing, multiprocessing

was enabled using eight threads. All computation was car-

ried out on a cluster equipped with four Intel Xeon E7–

4830 2.13 Ghz 8-core processors, 256 GB RAM, and run-

ning CentOS Linux 7 (x86–64) operating system.

APA analysis of neuronal differentiation

Pre-processing

QAPA was applied using a mouse 3′ UTR library

(mm10). We kept 3′ UTRs that had a total gene expres-

sion of at least 3 TPM in at least 29/31 samples across

all stages and replicates. In order to avoid overlapping

non-strand specific RNA-seq reads due to two genes

converging into each other, we excluded gene pairs

whose distal 3′ UTRs had 3′ ends that were within 500

nt of each other on the genome. We also excluded genes

with aUTR lengths of less than 100 nt to reduce poten-

tially noisy estimates due to small differences in length

between proximal and distal 3′ UTR sequences. We de-

fined the change in proximal poly(A) site usage (ΔPPAU)

as the difference between the median PPAU of ESC

group (DIV −8 and −4) replicates and the median PPAU

of the neuron group (DIV 7, 16, 21, and 27) replicates.

Principal component analysis

To extract patterns of APA during ND, principal compo-

nent analysis (PCA) was performed on mean-centered

PPAU values using the R function prcomp().

Gene set enrichment analysis

We applied gene set enrichment analysis (GSEA) [37]

on gene lists containing either lengthening 3′ UTRs or

shortening ones. GSEA analysis requires a real-valued

score for each gene in each list in each phenotype. For

this score, we used the PPAU values and assigned a

binary phenotype for each sample that indicated whether

the sample was in the ESC group (as defined above) or

the NEURON group. We tested the enrichment of gene

sets contained in the GMT file: “MOUSE_GO_bp_no_-

GO_iea_symbol.gmt”. These are mouse-specific Enrich-

ment Map Gene Sets downloaded from http://

baderlab.org/GeneSets [73]. GSEA was performed from

command line with the options: collapse = false, mode =

Max_probe, norm = meandiv, nperm = 1000, permute =

phenotype, metric = Ratio_of_Classes, set_max = 300,

set_min = 20, include_only_symbols = true, make_sets =

true, median = false. Only the gene list associated with

the lengthening 3′ UTRs had any significantly enriched

terms.

Significant terms were summarized using Enrichment

Map [73] in Cytoscape [74] with settings: p value cutoff

= 0.01, FDR Q-value cutoff = 0.025, overlap coefficient =

0.9. Clusters of related terms in the network were manu-

ally summarized by extracting common keywords using

the WordCloud plugin (http://baderlab.org/WordCloud).

Differential gene expression analysis

DESeq2 [40] was used to compare gene expression

changes between ESC samples (DIV −8 and −4) as one

condition versus mature neuronal samples (DIV 7, 16,

21, and 28) as the contrasting condition. We defined dif-

ferentially expressed genes as those with a |log2 fold

change| > 1.5 and FDR < 0.01, where fold change is de-

fined as the expression in neural samples divided by the

expression in ESC samples.

DEXSeq [41] was used to compare 3′ UTR isoform

expression changes between ESC and mature neurons.

As per the method’s procedure, 3′ UTR isoforms were

collapsed and segmented into adjacent bins demarcated

by each isoform’s boundaries. In particular, we denote

the 5′-most bin in the 3′ UTR as the proximal bin,

which is associated with the “common UTR regions”

(cUTR) — the region common to proximal and distal

isoforms. We denote the remaining bin(s) located 3′ to

the proximal bin as distal bin(s), which are associated

with “alternative UTR regions” (aUTRs) originating from

one or more distal isoforms. We defined a bin to be sig-

nificantly differentially expressed if it had a |log2 fold

change| > 0.5 and FDR < 0.1. For the latter, the same

FDR was used as by the DEXSeq authors. In the case of

multiple distal 3′ UTRs, we required a significant change

for at least one of the distal bins. We then classified each

3′ UTR lengthening event into three classes. First, a

Switch event is defined by a significant increase in a distal

bin usage and unchanged or decrease (i.e., log2 fold

change < 0.5) in proximal bin usage reflecting reciprocal

changes in expression between proximal and distal iso-

forms. A Long-Up event is defined by a significant increase

in both proximal and distal bin usage. A Short-Down
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event is defined by a significant decrease in proximal bin

usage and non-significant change in distal bin usage.

Differential alternative splicing analysis

Alternative splicing analysis was carried out using vast-

tools v0.1.0 [50, 75] (default settings). Splicing events

that were differentially regulated between ESCs and neu-

rons were identified using the vast-tools diff module

(–minReads = 20).

Transcription initiation sites analysis

To identify transcription initiation sites, whole transcript

abundances were measured using Sailfish [28] on GEN-

CODE [33] basic gene annotation (version M9). Tran-

scripts with the same distinct transcription initiation

sites were aggregated by calculating the maximum ex-

pression across all samples. Expressed initiation sites

were defined as having at least 3 TPM.

Features used in the APA model

Dinucleotide content (32 real-valued features)

There were 32 dinucleotide content features per poly(A)

site. Among these, 16 were the dinucleotide frequencies

in the 300 nt upstream of the poly(A) site. The other 16

were the frequencies of each in the downstream 300 nt.

Poly(A) signals and enhancer elements (19 binary features)

A total of 18 poly(A) signal features were compiled from

[13, 14]: AAUAAA, AAGAAA, AAUACA, AAUAGA,

AAUAUA, AAUGAA, ACUAAA, AGUAAA, AUUAAA,

CAUAAA, GAUAAA, UAUAAA, AAUAAU, AACAAA,

AUUACA, AUUAUA, AACAAG, AAUAAG. Each signal

was represented as a binary feature indicating whether

or not it is present in the 50 nt upstream of the poly(A)

site. In addition, there was one binary feature indica-

ting whether or not the upstream enhancer element

UGUA was present in the 50 to 100 nt upstream of the

poly(A) site.

Poly(A) site dinucleotide (16 binary features)

The dinucleotide at a poly(A) site is recorded by taking

the 2-mer sequence at position (t – 1, t) where t is the

3′ coordinate of the poly(A) site. This dinucleotide was

represented using a one-hot encoding.

RNA-binding protein motifs and secondary structure

accessibility (1218 real-valued features)

A total of 203 IUPAC motifs from RNAcompete were

scanned upstream and downstream of each poly(A) site

[53]. To account for the accessibility of the observed

motif in each 3′ UTR, we scored each motif target site

based on the probability of the site forming a local sec-

ondary structure. To do this, RNAplfold [76] was used

to compute local RNA secondary structures over small

windows of a given size (W = 200, L = 150, U = 1; as

per Li et al. [54]). This produces position-specific prob-

abilities that a base is unpaired. For each target site, an

accessibility score was calculated by taking the average

of all unpaired probabilities. Finally, for each motif, the

accessibility scores are aggregated into six 100-nt

discrete bins with respect to the poly(A) site (denoted as

position = 0): (−300, −200), (−200, −100), (−100, 0), (0,

100), (100, 200), and (200, 300). Motif hits that spanned

bin boundaries (e.g., starting at −102 and finishing at

−98) were counted in both bins. Scores within each bin

are summed, giving the expected number of accessible

target sites within each bin.

Conservation (four real-valued features)

Sequence conservation from the PhyloP 60-way track

[77] for the mouse genome (mm10) was downloaded

from the UCSC Genome Browser. For each poly(A) site,

conservation scores were extracted using bedtools inter-

sect [68] and summarized by taking the average within

100-nt bins in the region 200 nt downstream and 200 nt

upstream of the poly(A) site. In other words, we used

the following bins: (−200, −100), (−100, 0), (0, 100),

(100, 200).

Feature selection

We carried out a preliminary feature selection step using

the R package caret to eliminate non-informative fea-

tures. In particular, we removed features that had zero

variance using the function nearZeroVar(). We also used

the function findCorrelation() to identify highly corre-

lated pairwise features (Pearson correlation R ≥ 0.8). If

two features are highly correlated, then the feature with

largest mean absolute correlation with other features

was removed.

Model training and evaluation

We kept a random 80% of the data for training and held

out the remaining 20% for testing. We used stratified

sampling to maintain the relative balance of proximal

and constitutive 3′ UTR events in the training and test

sets. To train the regression model, we evaluated a num-

ber of different machine learning algorithms that are

available as R packages: linear regression with LASSO

regularization using glmnet [78], random forests using

randomForest [79], gradient tree boosting using xgboost

[80]. For each method, we used the R package caret to

select the optimal hyperparameters—it performs a

method-specific grid search over different hyperpara-

meter settings. Each parameterized model was tested by

tenfold cross-validation (CV). The same seed was used

when training each method to ensure that the same fold

samples were used during CV in order to remove inter-
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method variability in the test error statistics due to dif-

ferent training sets. For each method, the best CV model

was selected based on having the lowest root mean

squared error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ŷi−yið Þ2

s

where ŷi is the predicted value and yi is the observed

value for data point i. The final model was then trained

on the entire training dataset using the parameters from

the best CV model. Each model was then applied to the

held-out test dataset to assess relative performance.

The parameters selected by caret’s CV for each method

are as follows:

� glmnet: alpha = 1, lambda = 0.2858073

� randomForest: ntree = 500, mtry = 330

� xgboost: nrounds = 50, max_depth = 3, eta = 0.3,

gamma = 0, colsample_bytree = 0.8, min_child_

weight = 1, subsample = 1

To measure variable importance in random forests, as

shown in Fig. 6b, c, the R function importance() from

the randomForest package was used. Briefly, each train-

ing example was evaluated on the same random forests

model that it was trained on; but only on decision trees

where the example was not used during training. These

trees are known as out-of-bag (OOB) trees. For each

OOB tree, a prediction is made on each example and

the mean squared error is computed. Next, each feature

variable is permuted and evaluated on the tree. The dif-

ference in mean-squared error between the observed

data and permuted data is recorded. Finally, the average

difference for each variable over all trees is computed,

normalized by the standard error.
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