
i L

!

i FI

i r._,

! L

L
w

ib

DEPARTMENT OF COMPUTER

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

TH E N EW ADDI T ION

REPORT NO. UIUCDCS-R-89-1535 UILU-ENG-89-1754

QATT: A NATURAL LANGUAGE INTERFACE FOR QPE

by

Douglas Robert-Graham White

August 1989

(I.IIUCOC..S-_-_Ig-lS3'_) QATT: A NATURAL

LANGUAGe INTERFACE FOR QPI- M.S. Thesis

(Illinois univ.) 59 D CSCL
09B

Ht/ol

N90-25590

J,,im

i

il
il

I
dl

II

!
m.
l
Bm
i

i
I

!m:

i

QATT: A NATURAL LANGUAGE INTERFACE FOR QPE

BY

DOUGLAS ROBERT-GRAHA_ WHITE

B.S.,Purdue University,1987

F

'_

a5

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois, Urbana-Champaign, 1989

Urbana, IlUnols

v

Jri
ql

d

aim

l
i

111

NI

11w

i

l

1IF

v QATT: A NATURAL LANGUAGE INTERFACE FOR QPE

Douglas Robert-Graham White, I_f.S.

Department of Computer Science

University of nltnois at Urbana-Champaign, 1989

This thesis presents QATT, a natural language interface developed for the Qualitative Process

Engine (QPE) system. The major goal of the pioject was to evaluate the use of a preexisting

natural language understanding system designed to be tailored for query processing in multiple

domains of application. The other goal of QATT is to provide a comfortable environment in which

to query envisionments in order to gain insight into the qualitative behavior of physical systems.

It is shown that the use of the preexisting system made possible the development of a reasonably

useful interface in a few months.

7i

v

°,°
Ul

PI_;:.CF..Dii_G PAGE BLA_K NOT FILMED

v

m

L

IB

mm

I

m

W

_EZ

w

z

ml

v

II

_qw

q>
n

m

line

V

_LRD

1il

mm

IL

I

= =

v

ACKNOWLEDGEMENTS

I first want to thank my thesis advisor, Ken Forbus, for his motivation, patience and guidance.

And many thanks to the members of the Qualitative Reasoning Group, especially Dennis, John,

Randy, and Rob for their help and humor. I owe much to Dr. Richard Grace for his encouragement.

I also wish to thank AT&T, and my supervisor Mark Dailey, for making my graduate study possible.

And special thanks to Michelle for her support and understanding.

_. Th_esearch--was s_]pported by National Aeronautics and Space Administration, Contract

f -Number NAG69137,=___an IBM equipment grant, and AT&T.

The author's current address :

ATkT Bell Laboratories

2000 N. Naperville Rd.

Naperville, IL 60566-7033

V

r

iv

=

um

W

m

iml

a

mm

m

ii

mm
m

ii

V

r_

v

v

TABLE OF CONTENTS

INTRODUCTION 1

1.1 Potential Users 1

1.2 Grammar Skeleton 2

1.3 Evaluating QATT 2

2 REQUIRE1VIENTS OF NATURAL LANGUAGE INTERFACES 3

2.1 Efficiency .. 3

2.2 Habitability ... 3

2.3 Self-Tutoring .. 5

2.4 Awareness of Ambiguity 5

2.5 Convenience Features 5

3 ATT OVERVIEW 7

3.1 Operation of the ATT 7

3.2 Grammar .. 10

3.3 Representation 10

3.4 Response Functions 11

4 QATT

4.1

4.2

4.3

OVERVIEW 12

Query Space .. 12

Representation of qPE Data 12

QA_rTFeatures .. 14

ANALYSIS .. 21

5.1 QATT as a Natural Language Interface 21
5.2 Use of General Grammar Skeleton 24

5.3 What is Missing 25

REFERENCES ... 26

A SAMPLE DIALOG WITH QATT 27

B GRAlk43dAR EXTENSIONS FOR QATT 34

r

v

t

J_m

V

V

I

=

.V

W

w

_m

m
L_

m
w

I

Immm

mm

q

_m

mm

m
m

ram'

V

V

\

LIST OF FIGURES

2.1 "Minor s modifications to sentences 4

2.2 Multiple sentence phenomena. 4

3.1 Top level view of QATT grammar 8

3.2 The separation of domain-dependent and domain-independent parts in ATT 9

3.3 Some sentences understood by ATT 10

4.1 Example of the elliptical capabilities of QATT....................... 14

4.2 Example of the pronominalization capabilities of QATT.................. 15

4.3 Example of the host language access capabilities of QATT................ 15

4.4 Example of the spelling correction capabilities of QATT.................. 16

4.5 Example of the synonym capabilities of QATT....................... 17

4.6 Example of the paraphrase capabilities of QATT...................... 18

4.7 Example of the tutorial capabilities of qATT 19

4.8 Phrases mapped to disambiguated objects. 20

4.9 Example of the state filterin K command 20

v

mr__

vi

jmmm ¸

_q

_r

qw

!m
m

_w

um

qP

W

w

N

m
m

lw

V

z

W

mm

Z
II

i

my

W_r

v

J

i

w

Z

i INTRODUCTION

This thesis presents qATT, a natural language interface developed for the Qualitative Process Engine

(QPE),a qualitativesimulator(Forbus,1988).

The major goal forthe projectisto evaluatethe use of a preexistingnaturallanguage under-

standingsystem which was designed to be domain-independent. Can off-the-shelfnaturallanguage

technology be used to quicklygenerate reasonably usefulinterfaces?To answer thisquestion I

builtan interface,attempting to replicatethe capabilitiesof preexisting,landmark systems, such

as SOPHIE and LIFER. The other goalof QATT isto provide a comfortableenvironment in which

to query envisionments in order to gain insightintoqualitativemodels. The hope isthat with a

more friendlyinterface,qPE willbecome even more usefuland accessible.Throughout the thesis,

I willassume that the readerhas deep familiaritywith QualitativeProcess theory (Forbus,1984)

and QPE.

1.1 Potential Users

When buildinga natural language understanding system, the firstconsiderationshould be the

characterizingthe potentialusersofthesystem. Users shouldbe classifiedby theirknowledge ofthe

applicationdomain and by any specialrequirementsthey may have. This definesthe requirements

of the system.

The potentialusersof qATT can be dividedintothreeclasses:

1. Students tryingto learnqualitativephysicsor the internalworkings of qPE.

2. QPE programmers who already know QPE's inner workings.

3. People using C]PEto model real world systems.

Each class of user brings its own problems to QATT. For students it is paramount to minimize

the level of frustration involved in using the interface. Otherwise, they will spend time learning

the capabilitiesof QATT insteadof learningabout QPE. This requiresQATT to accept a wide variety

of input sentences. When a sentence is not accepted,the system should explainwhy itdidn't

understand. With thisfeedback,the student need not spend time guessing about what was not

understood,and can more easilyfindan alternativestatement thatwillwork. The students may

alsorequiremore detailedand informativeresponses,in whole sentencesor paragraphs,sincethey

may be unfamiliarwith QPE nomenclature and formats.

The frequencyof use of QATT by QPE programmers alsoplacesrequirements on the interface.

They requirequick responses.And as they become more familiarwith the interface,they willalso

desirecustomized short-cutsto allowextractinginformationwith minimal key strokes.And finally,

they don't want to be forcedto wade through long-windedtextualresponsesto findthe answers to

theirqueries.They want short,conciseresponses.

The lastclassofusersof QATT, thoseusing QPE inthe field,requireallofthe above featuresinan

interface.Sincethey willprobably be fairlyfrequentusers,they need low response delaysand the

power to customize theirinput. But as QPE novices,they willbe prone to enteringsentencesthat

the interfacecannot understand. Consequently,the interfacewillneed to acceptmany sentences

in the domain, to be highlytolerantof errors,and to provide helpfulfeedback when sentencesare

not understood.

QATT attempts to make all classes of users comfortable. Being an experimental tool, though,

QATT concentrates on the needs of the constant users of QPE. This is due mainly to the time

constraints of the project, but also to the complexity of dealing with novice users, and the problems

they cause a natural language interface. However, many features of QATT are implemented for the

other kinds of users, and Chapter 4 shows how they make the interface more friendly.

1.2 Grammar Skeleton

{_ATTwas developed from another natural language understanding system called ATT (Martin, 1985).

ATT's premise was that a natural language understanding system could be separated into a domain-

independent part (grammar, interpreter, etc.), and a domaln-dependent part (lexicon). So, with a

general grammar skeleton in place, the ATT could in principle be configured for a new application

just by redefining the lexicon. For QATTthen, I would only need to extend the lexicon to reflect the

QPE domain, by adding QPE-specific verbs and nouns, and simply use the existing ATT grammar for

parsing.

1.3 Evaluating QATT

_ -_ -: /_ _ _:_

A large part of the thesis is the evaluation of this approach. Did the use of this grammar skeleton

aid in the interface's development? One measure of the approach's merit is in the amount of effort

required to configure the new domain, which included defining the lexicon, and in fact extending

the grammar where itwas insuf_cientl -

Time constraintsruled out _fieldtests"on a statisticallysignificantpopulation of users,so

my evaluationwillof necessitybe more analytic.One way to gauge the outcome of thisproject,

is to compare the features of QAT'r_t_se of SOPHIE (Burton &BroW, 1979). sOPHIE

was an intelligent computer-assisted instructional tool designed to teach troubleshooting electronic

circuits. SOPHIE included a successful natural language system that in its time set a new standard

of performance, one hop_that as a_t_noiogy a_lvances, creat_n_new systems becomes easier

and easier. SOPHIE was developed in the mid to late 1970's as part of a multi-year, multi-person

project. QATT was developed in only a few months by me. Has the technology improved enough to

allow SOPHIE-quality interfaces to be rapidly developed? :Chapter 5 d_cUsses the outcome.

/

U

i

W

i

!

g

I
l

g

V

i

m

mm
,ttm

r
i

n

!

|

I

I

w

L _

L

L

_L

L_.

L

m

j

2 REQUIREMENTS OF NATURAL LANGUAGE

INTERFACES

To characterize the needs of a natural language interface, we must first understand what separates

good interfaces from bad interfaces. The most important factor is the comfort of the user. If a user

is uncomfortable with any interface, it becomes a detriment instead of a helpful feature. In a good

interface, the user does not need to think about it at all. With an _invisible" interface, the user

can concentrate on the task at hand.

In (Burton & Brown, 1979), Burton and Brown give a list of the requirements of a natural

language understanding system. Among these are efficiency, habitability, self-tutoring ability, and

awareness of ambiguity. These are detailed below, and in Chapter 5 are used to evaluate the QATT

system.

2.1 EfHciency

One thing that users dislike is the delay between the entering of the input, and the eventual response

from the system. While a system is athinking _ , the user may lose interest, his mind may wander,

and by the time the system comes back, he may have forgotten the purpose of the query. Worse

yet is the anxiety of a new user, wondering what he could have done wrong as the system crunches

away slowly.

Burton and Brown cite (Miller, 1968), whose study showed that response delays of more than

two seconds negatively effected the performance of complex tasks on computers. So an interface

should try to respond under this two second mark. But, there is a trade off between speed and

coverage of the sub-language, as the next section shows.

2.2 Habitability

No system to date can understand all of English. Such a system would be incredibly complex

and would have to be infinitely expandable, as the English language is. So natural language

understanding systems typically characterize and understand a subset of English. The system

should strive for, as (Watt, 1968) puts it, a habitable sub-language, or "one in which users can

express themselves without straying over the language boundaries into unallowed sentences". The

sub-language should also allow the user to make _minor" modifications to an accepted sentence,

and still get an accepted sentence. Of course, the specification of Uminor" is open to interpretation.

But, Brown and Burton give a good example, shown in Figure 2.1. Sentences 2 and 3 seem to be

minor variants of sentence 1, so if the system accepts 1, it should also accept sentences 2 and 3.

Sentence 4 gives a semantic extension, and should probably also be accepted. Sentence 5, though

easily understood in common conversation, is such a permuted variation, that it would probably be

considered out of the scope of a habitable syste m. So, the sub-language should provide more than

just adequate coverage of the concepts of the domain: it should maintain a comfortable coverage

that will allow users to easily work in the sub-language.

Another feature of habitability is the understanding of context. As a user starts to feel more

comfortable with an interface, she will typically use contextual knowledge in her dialog. The user,

as she starts to feel that the interface is more and more intelligent, will subconsciously start making

3

"Is there anything wrong wi_ Section 8f _

1. x[s anything wrongf _

2. _Is there anything wrongf"

3. _/s there something wrong_ _

4.

5. *Does it look to you aa if Sections 8 could have a problemf"

F[_e 2.1: "Minor _ modificat[o_ _ _nt_.

I. #What isthepopulationof Los Angelesf"

2. *What isitfor San Franciscof"

3. *What about San Diegof"

Figure 2.2: Multiple sentence phenomena.

more assumptions about itsabilities.Includedinwhat Burton and Brown callthe multiplesentence

phenomena are the contextualissuesof pronominalization,ellipsis,and anaphgric deletion.

Pronominalizationisthe use of a pronoun forsome referentnoun. Theonly way:t0 definethe

referentofthe pronoun isto evaluatethe contextof the conversation,and even then there may be

ambiguities.Figure 2.2 shows an exarnplefrom (Burton & Brown, 1979). In sentence 2, itrefers

to population,but without contextualknowledge, sentence2 isnot clear.And what ifthe response

to sentence I made referenceto the increaseof the population of Los Angeles as being due to the

beautifulweather there.Then, the itin sentence2 couldb e considered_ referringto the weather

in S_ Francisco.Resol_g such ambiguous referencescan be extremely difficult.

Userswillo_tenbegin to use pronouns as they grow familiarwith the system, and itis_mportant

to allowthis.To accommodate pronominalizationrequiresrecognizingit,maintainingcontext,and

providingforthe possibilityof ambiguous reference.

Ellipsisisanother multiplesentencephenomena. Sentence 3 of figure2.2providesan example.

Here the system would need to recognizethat San D/ego is a noun, but the system must also

determine how the current context dictatesthe noun's usage (i.e.itwillnot take the place of

populationin sentence 1,but ratherLos Angeles).

So ellipsis.....................is the implicitsubst!tutio_n of one element ofa_ntence for another, based on con-

text.The difficultieswith ellipsesincluderecognizingthe ellipticalreference,which may be only a

sentencefragment, and then findingitsplace_nthe currentcontext.

Deletion of a part of a sentence alsoleads to problems. A user may unknowingly omit a

meaningful partof a sentence,and the system must hypothesizeabout what ismissing.In sentence

3 of figure 2.2,there isno referenceto population;not even with a pronoun. So the system

4

l

m

i

m

W

r

l-i=

must recognize that a constituent is missing, and then make its best guess as to what that missing

constituent is.

Habitabilitycan be characterizedasflexibilityinthe sub-languageofthe applicationdomain. A

habitablesystem willstriveto make the useras comfortableas possible,and itselfas inconspicuous

aspossible.This willrequirean adequate coverageofthe sub-language,aswellas the abilityto fill

in informationfrom context.

2.3 Self-Tutoring

As a user converses with an interface for the first few times, he undergoes a learning process that

helps him to characterise the sub-language of the system. As this process continues, the user will

subconsciously limit his interaction to what he thinks is the system's sub-language. The goal of a

good interface is to make this learning process as fast and painless as possible.

Providing meaningful feedback on mistakes, gives the user the best chance to learn the sub-

language. If the system simply states that it cannot understand the input, then the user is forced

to hypothesize what the error was, and then test this hypothesis. Or worse yet, they may simply

give up on the query, rather than trying to get the computer to understand it. But, if the system

tries to explain why the input was not understood, the user can adjust his input accordingly.

2.4 Awareness of Ambiguity

In nearly alldomains, the possibilityof ambiguity can arisein a conversation.This can occur

when the userasks a question,understanding itone way, but the system takesitanother way and

answers accordingly. For example (again from (Burton & Brown, 1979)):

_Was John believed to have been 8hot by Fredf"

The sentence can be understood as Fred shooting John, or Fred believing that John has been

shot. Both of these interpretations are valid and without complex context analysis, the correct

interpretationcannot be definitelychosen.

So itisimportant for the system to be explicitin itsresponses.A simple #Yes_response may

lead to the user thinkingthat the system understands the questionin a completely differentway

than itactuallydoes. Explicitlystatingitsbeliefsby responding with :

_Yes, John was believed to have shot Fred.', or ryes, Fred believed that John w_s shot."

would be more clear and helpful.

2.5 Convenience Features

Some problems with natural language interfaces have nothing to do with their lexical coverage or

their contextual knowledge. Often, the most irritating aspects of a conversation are input oriented.

Hendrix gives some ideas about how to alleviate some of this frustration in (Hendrix, 1977). He

uses paraphrases, synonyms, spelling correction, and access to the host language to make the user

more powerful and comfortable.

Paraphrases and synonyms allow the user to customize his interface. If he is used to referring

to the rDepartment of Computer Science" as rCS', he can add to the system the word rCS" and

tellthe system that itisa synonym for the #Department of Computer Science'.Similarly,ifthe

system accepts:

aLiat the #aJary o/ each member of the Department of Computer Science. J

but the user doesn't want to type that for ea_.h department, he can define a paraphrase like:

_Salary CS."

which will be interpreted by the system as meaning the same as the original longer sentence. The

paraphrase should do more than substitute one set of words for another. It should generalize the

types of words used, and allow further use of the paraphrase. So the user might enter similar

paraphrases that can be interpreted, like:

rage EE."

which will print the age of each member of the Electrical Engineering Department. These features

help make the user feel more comfortable by allowing him to define his own environment. They

also increase the user's efficiency by allowing them _ define short-cute.

Allowing short cute and synonyms may also allow the system to function while accepting a

smaller sub-language. The idea is to provide some means with which the information can be

obtained, and rely on the paraphrases and synonyms to allow the user to tailor the input language.

For example, if the system doesn't understand the user's preferred phrasing:

The red bloc are supported by what_ J
but does understand :

_What supports the red blocker"

a paraphrase allows the system to understand his way of asking the question.

Spelling correction is also an important tool. If a user isTnot a terribly good typist, she will make

many typing errors in her input. And few things are more irritating than having to retype a long,

or even not so long, sentence just because of a typing error. To alleviate this, spelling correction

should be used to spot misspelled words, and then replace them with their corrected form. Such a

simple procedure can add much power and utility to an interface. An import_-t addition should be

made though. The replacement should be explicitly stated, to avoid user confusion if an unexpected
replacement occurs. _ __ _ _

A final convenience feature is access to the host language. Frequent users of a system will want

to do other things outside the interface, like loading files, reading mail, or checking the time. Some

common activities, such as loading files, should be incorporated into the system's sub-language

explicitly. But predicting every necessity is impossible, so a simple co'and that will put the user

temporarily into the host language can help to make the interface more comfortable.

In summary, a natural language interface needs to be eiBcient, otherwise the long response

delays may prove detrimental to the user's performance. It should also understand a habitable

sub-language that will allow the user to comfortably converse in the domain. The system should

provide feedback upon not understanding a sentence to help the user to learn the boundaries of

the sub-language. The system should be careful to avoid misunderstandings due to ambiguity by

explicitly stating its responses so as to reflect its understanding. And finally, some _user friendly"

conveniences like paraphrases and spelling correction will give the user more power in the interface,

and allow him to customize the interface to accommodate his sub-language.

• w

N

u

m

z
g

m

!

I

l

w

=

m

m

--7

3 ATT OVERVIEW

The Augmented Transition Tree (ATT) was a Master's project by Bruce Martin (Martin, 1985). The

premise was that a natural language understanding system could be divided into domain-dependent

and domain-independent parts. His thinking was that this could lead to the development of a

general grammar skeleton that would parse simple English commands and questions, and call the

domain-dependent lexicon functions to respond to the user.

ATT is a specialization of Woods' Augmented Transition Network (ATN) (Woods, 1970). The

code was developed from a simple example program in (Winston & Horn, 1984), and was tested in

a blocks-world domain. The idea of an ATN is similar to that of a finite state machine. The nodes

in an ATN correspond to deeper parsing ATN's, and the arcs correspond to words parsed by the

network. The augmentation comes with the addition of testa on the arcs that conditionalise their

use. There is also the ability to build structures during the parse of a sentence to represent the

ATN's interpretation of it.

The ATT specializes the ATN approach by not allowing branches to remerge, hence the uTree_

designation. ATT also does no explicit structure building while parsing. The ends of branches are

analogous to end states in a finitestate machine. Figure 3.1 shows a top level graph of the ATT

used as the grammar inthe system and isexplainedinthe next sectionwhich summarizes the ATT's

operation.

3.1 Operation of the ATT

The main featureof ATT isthe separation of the domain-dependent lexicon from the domain-

independent grammar and parsingmechanisms. The generalskeletonconsistsof a grammar core

that parsessome simple questions,assertions,and commands. It alsoconsistsof an interpreter

(orin the case of QATT a compiler,alsodeveloped from an example in (Winston & Horn, 1984)),

and means of maintaining the lexicon,ellipticalreferences,pronouns, and other features.The

lexiconcontains allof the informationneeded for the specificapplication,such as the verb and

noun definitions,and the response generatingfunctions.

Understanding a sentencestartswith using the ATT to parse it.In figure 3.1 we see that the

highestlevelin the grammar iscalledInterface. Transitionsare based on characteristicsof the

input sentence.Ifthe input sentenceconsistsonly ofthe word tL_sp_,then the lisparc istaken to

handle a LISP interaction.Ifthe input containsa #_, then the questionarc istaken. Otherwise,

the command arc istaken. This type of testingmad transitionmaking continuesuntilthe input

sentenceisconsumed and the appropriatesyntacticinformationiscomputed.

At the end of a successfulparse,the interpretershould finditselfat the end of a branch in

the tree. There itshould finda callto the Respond functionthat willdetermine what domain-

dependent response functionto call,using the syntacticinformationgathered in the parse. The

chosen function willthen be calledto respond to the user. This allowsallof the idiosyncratic

information to be taken out of the syntacticknowledge of the grammar, and into the lexicon.

Figure 3.2shows how the ATT dividesthe system intodomain-dependent and domain-independent

parts. So, in theory,only the domain-dependent parts,the lexiconmad the response functions,

need to be suppliedto the ATT inorder to prepareitfornaturallanguage understanding inthe new

domain.

7

Ill

Lisp.

Interface

?

WH QU

, ©
! !

I I

I I

I t

I I

I i

T Y

[Respond

• (get-binding "verb)
'Verb-wh)

Command

(Respond

(get-binding ' verb)
"verb-command)

(Respond
(get-binding 'verb)
' verb-yes-no)

Fl_z_ 3.1: Top level view of qA_ grammar

8

I

m

L

B

!
m

_ 1

m
g

i

m

m

u

m
4mlw

W

J
i

i

mm

l

=

Input Sentence

=

Y

w

- =

v

m

L

'k

Domain

Lexicon

S 1 Noun

Occur Verb

Quantity Subcat

the article

Respond

_'_Domain Response_"_

Figure 3.2: The separation of domaln-dependent and domain-independent parts in ATT

I

9

1. _What are the red blocksf"

2. _The green pyramid is huge."

3. _Put the blue brick in the large boz."

4. _Is the orange pyramid on the table f"

Figure 3.3: Some sentences understood by ATT

3.2 Grammar

The general grammar provided by ATT was tested using a blocks-world domain. So it is heavily

biasedtoward simplequestionsand commands. Itisalsoa syntacticgrammar, ratherthan semantic,

That means that the parsingisdone on a purelysyntacticbasis.This make sensesinceitwas meant

to covervariedapplicationdomains.

Some examples of sentencesunderstood by ATT are shown in figure 3.3.These sentences,and

most of those understood by the ATT's language, referto eithera specificobject,or a classof

objects,characterizedby their(previouslydefined)properties.Later we willsee how thiscaused

problems in the qATT implementation.

The grammar islinearin nature;itcan only parse leftto rightand cannot look ahead or back

easily.This causesproblems with some nestedreferencesand discontinuousmorphemes, but thisis

oflittleharm in QAIr. The treestructurealsomakes arbitrarylengthconjunctionsor disjunctions

diHicult.And therearealsovariousotherquirksinthe grammar thatposed problems when applying

itto the QPE domain. These are describedin Chapter 5.

3.3 Representation

ATT's grammar uses an eztensionalrepresentationscheme, as opposed to intensional.For example,

the phrase #the red bloclcs" would be interpreted in an intensional scheme as all things that are

blocks and red. An extensional scheme instead provides a list of the red blocks. So rather than

coming up with a definition of the meaning of the phrase, Air finds the actual objects in the domain

that fit the meaning of the phrase.

The questions and commands accepted by Air are represented as function calls to appropriate

domain-dependent response functions. These functions provide the responses to the users. The

entities in the domain are represented by symbols With various properties and values attached to

them. So, #the red bloc_" will be represented by a llst of all symbols that have the two properties

of being red and being a block. The question aWhat are the red bloc_f" will be represented by a

call to the domain function that handles Wtt questions for the main verb is, and it will be given

the list of red block symbols as an argument.

_m

B
I

z

m

Im

m
m

W

m

U

m

10
u

m

E

o
wD_

3.4 Response Functions

The domain-dependent response functions are the expressive parts of the system. The set of these

functions is the true definition of exactly what the scope of the interaction with the user can be. The

functions are keyed to verbs; that is, they are used to respond to sentences with their verb as the

main verb. The functions for each verb and their arguments are included in the lexicon as part of the

verb's definition. Upon successful parsing of the input sentence, the grammar having determined

the main verb and sentence type, the Respond function gathers the appropriate arguments for the

response function, and then calls that function with its required arguments.

As an example, let's take the question "What are the biotite" Since the main verb is/s, and

the sentence is a Wh. question, the function called is WII-IS. WH-IS takes arguments like SUBJECT,

OBJECT, PREPOSITION, 0BJECT-0F-PR_0SITION, and WH(for the type of wh-question ; what, how,

who, etc). Respond must then gather all of these arguments, of which only the SUBJECT is bound

in our example. Then WH-IS is called with its arguments, and by seeing that WHis what, that only

the SUBJECT is bound, and that the SUBJECT is a list of nouns, it will proceed to print these nouns

on the screen. The response would have done something completely different if the WHhad been

where instead. So these domain functions are usually large conditional structures, and they should

be carefully engineered to inform users of their capabilities.

Once the grammar is capable of parsing the sentence and providing the correct verb function

with the appropriate arguments, it is up to this function to decipher the actions to be taken based on

the arguments given. So the response functions require the most programming effort and attention

to detail.

Now that we have a basic understanding of the natural language understanding skeleton that

was the foundation for qATT, we next examine the qATT implementation in detail and the problems

encountered using the ATT.

mt_

11

4 QATT OVERVIEW

This chapter examines the featuresof the QATT implementation; specifically,itsrepresentationof

qPE objects,the verbs used forthe sub-language,and the implementation of itsmajor features.

4.1 Query Space

In order to definea sub-languagefor qATr, itwas necessaryto firstcharacterizea query spacefor

QPE; that is,a set of question types that could easilybe answered by a QPE envisionment. Once

thisquery space isdefined,a set ofverbs can be selectedto cover it.

The firsttype of interactionwith QAYY concerns simple informationabout the entitiesin the

lexiconand the envisionment. For example, #What are the quantitiesf"and #Displaythe verbsf'.

This type of interaction typically produces a list of the specified objecte.

Another type of interaction with QPE asks _t the qualltative change of quantities. For

instance, #When is the amount of water in G increasing_" or the more general #How can the

amount of water in G change_" For these cases, a list of states should be produced for each of the

qualitative changes in the quantity. Along With qualitative changes go questions of influence, such

as #What influences the amount of water in Gf" Here the response should be a list of processes or

views and their effect on the quantity.

For processes, the questions willcenter around in what states they axe active. #When is PI_

active_" should be responded to with a list of the states in which the process is active. Asking

what quantities a process can affect, as in #What does PI_ influence_" should produce a list of the

quantities that the process causes to increase or decrease.

Questions about limit hypotheses focus on the conditions under which they may occur. #When

can LH_ occurS" would give a list of the states that satisfy the limit hypothesis' starting envi.

ronments. #What can LH_ lead to_" would respond with a list of possible end states of the limit

hypothesis.

Qualitative states of a system can contain a great deal of information, and so will be the subject

of many queries. Most queries concern the properties of a state, like #What is the duration of s$_ _

and ffs $3 an end statef'. There are also questions about transitions to and from other states;

#What states have no transitions outf', #Does $8 have transitions inf', #Can $8 occur from S_'.

Finally,in order to examine largeenvisionments,itisoften necessaryto isolatethe subsetof

statesthatconform tocertainspecifications.This smallersetmay then be examined more carefully.

To do this,some sortof filteringmechanism isneeded. So a command like #Define FO0 as the

set of states where the amount of water in G is increasing and the flow of water from F to G is

active." should force FO0 to refer to the set of states which have both of these properties.

That is the basic query space covered by QATT. It concentrates on the specification and manip-

ulation of sets of states, and provides reasonable insight into the envisionment. Now we will see

how this query space is accommodated by the lexicon.

4.2 "Representation of QPE Data

To provide a lexicon which the ATT grammar can use in parsing, we must add words relevant to

the qPE domain. This includes verbs that might be used in the discourse, nouns to represent the

C]PEobjects, and subcategories that provide a means of referring to nouns by their type.

12

i

m
w

1B

m

m
B

l

L

m

w

_m

E_

k_

i w

4.2.1 Verbs

Two kinds of verbs are used by QATT. First there are domain-independent verbs, rBe" is used

extensively for all of the xWhat is..." questions, aDisplay _ is used in commands to show the

elements of some data type. tLoad" and rsave" are used for file manipulation and with paraphrases

or synonyms. _Set" and freest" are for toggling QATT system flags, aUsc" is used for synonym

creation and for window manipulation. Finally, tErcse" is used to remove elements from the QATT

lexicon.

Several verbs were added for the QPE domain, redefine" is used for the state filtering commands.

_Change', ti,fluence', rincre_e_, and _decrs_e" are all used for questions about the changes of

quantities and the effects of processes, rOecur', _hold', and "happen" are for questions about limit

hypotheses. And finally "Tead" is used for questions about what states are attainable from other

states and the ending states of transitions.

4.2.2 Nouns

The nouns used in QATT generally parallel the objects in the qPE domain. Each noun has several

properties, and can also be part of a subcategory. For example, the noun rPlO" is a member of the

PROCESS subcategory. Additionally, each noun has two printing routines that specify how it is to

be displayed to the user for different levels of detail."

The first nouns are the QAI"r flags which allow the user to control global parameters. The only

flags now implemented are for controlling the level of detail in the output of responses. Each flag

has associated with it a :VM. field that holds its current value.

The properties of the QATT nouns corresponding to QPE objects are extracted from the envision-

ment. The extracted properties of quantities include the processes and views which directly and

indirectly influence them. The states in which the quantity is increasing, decreasing, and constant

are also computed. For states, its status, duration, environments, and active process and view

instances, along with transitions to and from it are extracted.

Quantities are represented in the lexicon by nouns. For QATT to have a single symbol to identify

with a given quantity, each is given a name (i.e. Q0, Q1, ...). To provide a means to match a

quantity with a phrase like ¶..the amount o/water in G...', an : IUF0 field is used to hold the key

words found in the quantity object, such as (aaount-of water liquid G).

Nouns for states are given the properties status, duration, activeopis, active-vis, assumptions,

and lists of transitions to and from the state. To keep a pointer to the QPE object, there is a

:QPE-SIT field. A state may also be an end state (no transitions out), an eden state (no transitions

in), or an isolated state (no transitions in or out). These properties are added to the state noun as

appropriate.

Limit hypothesis nouns include the start-envs and end-envs which point to the environments

that the limit hypothesis can occur in and lead to respectively. Process and view nouns only have

the : II_F0 field that is used much like that in the quantity nouns to match processes with phrases.

4.2.3 Subcategortes

Each type of noun must have an associated subcategory. These are used by QATT to identify

groups of nouns based on their properties. The qATT subcategorles are quantity, state, transition,

environment, process, view, and set. Subcategories are also used to refer to the fields of nouns,

like status, in/luencer, and start.erie. Several general properties of nouns are also encoded as

13

8 ?--what is the status of s3?

<PARSED>

STATUS of $3 is R-COMPLETE.

@ ?--duration?

DURATION of $3 Is INTERVAL.

10 ?--s2?

DURATION of S2 Is INTERVAL.

FtEuFe 4.1: Example of the elliptical capabilities of QATT.

subcategories, such as end for states and empty for sets. The information for each subcategory

must also be duplicated for its plural form.

Stored with e_subcategory is the list of nouns having it as a property. This is a feature of the

ATT. So, for example, the subcategory QUANTITY, contains a list of all of the quantity nouns. This

listing of members of subcategories is necessary since the ATT uses an extensional representation.

4.3 QATT Features

This section covers the implementation and limits of the major features of _ATT. It begins by

examining those features that are domain-independent, such as paraphrases and ellipsis. Then it

examines those that are particular to the QPE domain.

4.3.1 Domain-Independent Features

Most of the domain-independent features deal with the context of discourse. These have been

implemented in a general manner so as to be useful in any ATT application.

Ellipsis was partially implemented in ATT. The m_uiics for maintaining a copy of the parsing

of the last sentence was_n place, but it made m_y%_-rors. ATT would try t0kplace theeUiptical

reference into one of two noun slots; subject or object. The QATT ellipsis implementation added the

possibility of the noun occupying the slot for the object of preposition. It also checks to see that

the slot was actually used in the previous context, unlike ATT. This allowed dialogs like that shown

in figure 4.1.

The ATT context mechanism also allowed limited pro,omi, alisatio,. This is accomplished by

maint_ing a *last-noun* variable, and substituting its value for the pronoun, as in figure 4.2.

This was left unchanged for QATT,

Access to the host language was also partially implemented by ATT through the acceptance of

the simple sentence "Lisp." This command awaits input, and then evaluates that input as a lisp

expression. QATT added the ability to load and save files directly from the grammar. Having such

common actions _vailable through the grammar may increase the user's confidence in the interface.

But it is necessary to give the user raw access to the host, since it is impossible to provide for all

types of desired interaction. Figure 4.3 illustrates.

14

z

z

!
n

W

E_

V

m

26 T--what is the amount-of water in GT

<PARSED>

AMOUNT-OF(C-S(WATER LIQUID G))

27 ?--what influences it?

<PARSED>

_J40UNT-0F(C-S(WATER LIQUID G)) is influenced indirectly by

(CONTAINED-STUFF(C-S(WATEIt LIQUID G)))

Figure 4.2: Example of the pronominalization capabilities of QATT.

III I IIIII

i

m

v

E

W

16 ?--load "/u/wILite/new-att/qpe-att/str_.lisp"!

<PARSED>

;;; Loading source file "/u/whtte/new-att/qpe-att/string.lisp"

17 ?--llsp.

-> (* 3.14159 3)

9.42477

Figure 4.3: Example of the host language access capabilities of QATT.

15

I

52 ?--does sO have transitons?

<PARSED>

No transitions in to SO.

No transitions out of SO.

(Replaced TR_SITONS with TRANSITIONS)

33 ?--show Foo.
J

I am stuck on the word SHOW.

Do you have a replacement word? (word or <enter to fail>) :display

Got it, DISPLAY for SHOW, thanks.

Should I consider SHOW a synonym for DISPLAY? (Y or N) y

Trying to add SHOW as a synonym for DISPI_Y

Adding synonym SHOW for (DISPr.aY)

<PARSED>

Figure 4.4: Example of the spelling correction capabilitiesof qATT.

I II III II1[IIII

Spelling correction was added in qATT. Itworks as follows. All words in the lexicon are encoded

in a correction table using the Soundex algorithm (Knuth, 1973). When a sentence failsto parse,

QATT looks for any unknown words. For each unknown word, its soundex code iscomputed and

used to fetch allwords with the sam e code_,which constitutes the words in the lexicon the unknown

word isa poesibie _pelling of. The sentence is re-parsed wlth e_ candidate in turn until one

of them isunderstood. Ifno acceptable substitution isfound, the user isprompted for one. Then

she isasked ifher replacement word isa synonym for the unknown word. Ifso, then that synonym

is added. This allows the interface to learn new terms in the domain without explicit synonym

creation by the user. (See figure 4.4)

The synonym capability was also added for qATT. It allows the interface to leaz_nnew terms in

the sub-language and to provide short cuts for the user. Itisimplemented with a table that matches

the synonym with its associated listof words. When a sentence is input, it is firstsearched for

known synonyms, and these are replaced by their associated words. For efficiency,only one-word

synonyms are allowed, Since search_g the _ntence for arbitrarilylong sequences of Words would

be too time consuming. Synonyms may be defined from unrecognized symbols, as above, or by an

explicit#Synonym." call,or in the grammar with the rUmeJ command. Examples are shown in

figure 4.5.

16

w

g

_J

_H
I
g

i
IEi

I

m

u

l
l

J

_.._J

27 ?--synonym.

Words :amount-of-in of water in f

Synonym :ant-g

Adding synonym A}4T-G for (AMOUNT-OF-IN OF WATER IN F)

28 ?--how can ut-g change?

<PARSED>

AMOUNT-OF-IN(WATER LIQUID F) is Increaslng In ($3)

AMOUNT-OF-ZN(¥ATER LIQUID F) is decreasing in ($5)

AMOUNT-OF-IN(WATER LIQUID F) is constant in (SO S1 $2 $4)

29 v use amt-of for amount-ofo--

<PARSED>

Adding synonym _rr-0F for (AMOUNT-OF)

30 ?--what is the ant-of water in f?

<PARSED>

AMOUNT-OFCC-SCWATE_ LTQUID F))

Figttre 4.5: Example of the synonym capabilities of QATT.

I

Paraphrases were also implemented for QATr. These provide the ability for users to customize

their environment by providing alternative ways to say something. Figure 4.6 shows the use

of a paraphrase. The example sentence is parsed, and then common words are found in the

paraphrase. These words are then generalized to their lexicon classi6cati0n and the part of the

sentence they represented, so the paraphrase can accept a larger variety of paraphrases. In the

example, "dt, ratio,_" was generalized to any sequence of subcategories, and _sS" to any object of

preposition. Then a segment of an ATT branch that will parse the paraphrase and interpret it as the

example sentence is created and incorporated into a list of similar segments for other paraphrases.

A short description of this segment is displayed to the user showing how the paraphrase was

interpreted. These paraphrases may also be saved and loaded to maintain a user's environment
acro_ sessions.

4.3.2 Domain-Dependent Features

These features are either specific to the QPE domain or are implemented in the domain-dependent

response functions, and hence not a part of the ATT skeleton.

Feedback to the user is divided into two parts. An ATT domain-independent part tells the user,

upon not understanding a sentence, how much of the sentence the interface did understand, with

the idea that the rest is incorrect. This will help users identify exactly where the error may be,

rather than just telling them that the sentence is wrong. The domain-dependent part of feedback

comes in the response functions. Each response function contains branching conditionals that

key on values of parameters. If a combination of values is not accounted for, but the grammar

parsed the sentence, then the response function should explain to the user why a response is not

17

1@?--paraphrase.

Sentence :what is the duration of s3?

Paraphrase :duration s37
<PARSED>

require generalized SUBCATS (for DURATION)

require generalized OBJOP (for $3)

require ?

20 ?--duration s3?

<P/LRSED>

DURATION of $3 is INTERVM..

21 ?--duration and status s27

<PARSED>

DURATION of $2 is INTERVAL.

STATUS of 82 is R-CONPLETE.

Figure 4.6: Example of the paraphrase capabilities of qATT.

w

wm

Im

available. T_ explanation Often requires printing some background information about the domain

or implementation status.

Feedback provides one of the tutorial abilities of the interface. QATT's other main tutorial feature

isits_cesS to the comm_,nouns, quantities,a,nd-a.nyo-ther noun or subcategory.This allows

even a noviceto quicklyget a rough ideaofthe capabilitiesof the system. Also,the use ofsystem

variablesto controlthe levelofoutput detailcan alsohelp the userto understand the domain more

easily.Figure 4.7 demonstrates some of QATT'sfeedback and tutorialcapabilities.

Ambiguity handling alsomust be done in the response functions.This ishandled by making

responsesto the userexplicitas to theirmeaning and the interfacesunderstanding of the question.

qATT should never respond with a ayes.',but should always qualifyitsanswer, llke=Yes, 85 _s

an end state."Further,when a responsefunctionmakes an assumption in the case of anaphoric

deletion,that assumption should be made clear.For example, aWhat can lh3 leadto?" isassumed

to refer to the stat_thatlh31eads to. The response makes this clear: rLH3 leads to the/ollowing

states..."

QATT makes availablethe use of differentstreams for output. This allowsthe user to choose

where the_sy_ern'srespo_ _ to be displayed.This was add_to takeadv_tage o_ Symboiics'

ScrollWindows for viewing detailedoutput, but may also be used for other purposes,such as

appending output to a file.To implement this,the "Use" verb was extended and window n_ns

were added With propertiesofLEFT, _G_, and BOTTOM. By _]_t_dis_t_nct windows ford_fferent

responses,itwas alsopossibleto compare two responsessideby side.Similarnouns could alsobe

added for output to files, -_ _ -_

By far the most complicated feature of qATT is the state filtering feature. This allows the user

to define sets of states that conform to certain characteristics. This new set may then be examined

18

!
m

U

=e
m

m

B

U

--A

12 ?--what quantities does lh3 lead to?

<PARSED>

I can only ansver questions about states or envs for LEAD.

13 7--what are the processes?

<PARSED>

LIQUID-FLO¥(WATEEG F Pl)

LIQUID-FLOW(WATEEF G PI)

14 ?--what are the commands?

<PARSED>

SAVE DEFINE USE LET CALL SET RESET

18 ?--what is l?

I don't understand.

I got as far as :(WHAT IS)

Figure 4.7: Example of the tutorial capabilities of qATT.

more closely as desired. The problem with the implementation of this feature came from the ATT

grammar. It was simply not capable of handling such a complex command.

The first step in the filter implementation was getting the grammar to accept phrases that

corresponded to quantities, processes, and limit hypotheses. To do this, I added to the grammar

semantic extensions of quantity, process, and limit-hypothesis phrases. These were, unlike the

rest of the grammar, semantically defined, not syntactically. To match a quantity, for instance,

I required that words appearing in the quantity description in QPE be used in the phrase. For

example, the QPE quantity AMOUNT-OF(WATER,LIQUID,G) could be matched by the phrase "the

Qmount o/water in G', since the words "amount m, rwster', and "G" allappear in the quantity

description.

To do this in a manner that would extend across QPE domain models, the use of preposi-

tions to explicitly refer to properties of nouns was not feasible. Instead, I used the above textual

matching method. This method, though, was not sufficient in some cases. For example, the

phrase "flow o/water from F to G" could match the processes LIQUID-FL0W(WATER.G,F.PIPE1)

and LIQUID-FLOW(WAT£R,F.G,PIPE1). The prepositions must be used to help disambiguate this

phrase. To do this in a QPE-domain-independent manner, each QPE domain model must define, for

each type of process or quantity that may cause such ambiguity, the prepositions that are keyed to

argument positions. For example, for LIQUID-FL0W the preposition "(o[)" may be used to refer to

the first argument, "(from, between)" for the second, "(to, between)" the third, and "(in, through)"

for the fourth. With this information, the phrases in figure 4.8 can be disambiguated. If the phrase

cannot be disambiguated, the user is asked to choose from a list of the possible matches.

But the filtering commands still need to parse specifications for these objects, like "increaaing"

for quantities, or "active" for processes. And then the name of the set has be parsed and stored.

Then, once the command can actually be parsed, the response function is responsible for finding

19

@ "]_ow o/water/rom F to G" =_

LIqUID-FLOW (WATER. F. G. ?path)

• X]_ow o/water between F and G _ro,gA PIPE1"

LIQUID-FLOW (WATER. F. G.PIPEt) U LIQUID-FLOW (WATER. G.F. PIPE1)

• "flow o]'water to G" =_

LIQUID-FLOW (WATER. ?source. G. ?path)

Figure 4.8: Plu'_ mapped to disambiguated objects.

31 ?--define FO0 as the set of states with the amount-of water in F increasing

and water flowing from G to F.

<PARSED>

Set: FO0

Elements: ($3)

Size: 1

Set F00

32 ?-- Show FO0.

$3

Figure 4.9: Example of the state filteringcommand.

I I 77[......

the elements of the set that correspond to the specifications,and then including the set in the

lexicon. An example of this interaction isshown in figure 4.9.

2O

u

J

m

m

m

W

i

I

B

W

r

mm_

F

5 ANALYSIS

The previous chapter summarized the featuresof QATT and the major additionsmade to the ATT.

This chapter evaluatesthe interfacealong the requirements of a good naturallanguage interface

and compares itscapabilitieswith those of SOHPIE. But, of course,the realtestof the system

willcome when people try touse itroutinely.Finally,some generalcomments are made about the

suitabilityofusing an ATT as a foundationforconstructinga naturallanguage interface,based on

thesecomparisons and my experiencebuildingqATr.

5.1 QATT as a Natural Language Interface

To judge the resultsof the QATr interface,I willevaluateitshabitability,ei_iciency,handling of

context,self-tutoringabilities,awarenessof ambiguity,and itsconveniencefeatures.

5.1.1 Habitability

SOPHIE's strongestfeatureishabitability.This would seem necessary,sincethe interfaceisused

in an educationalenvironment with noviceusers. And since,due to time constraints,QATT was

aimed at the frequentusersofqPE, habitabilitysufferedsomewhat.

In the limitedtestsof QATT, it seems to cover the query space well when the user knows

what types of questionsitunderstands,as there are severalways to ask these questionsthat are

accepted. But in some cases,especiallythe set filteringcommand, the format accepted isquite

rigid. The lower coverage of QATT is due to two factors. First isthe syntacticnature of the

grammar. A semantic grammar ismore flexible,and can be made to parse more variedsentence

formats,because itlooks forsemantic components, not syntacticconstituents.But, sincethe ATT

grammar isdesigned to be domain-independent, itclearlycannot be semanticallyoriented.The

QATT grammar, being syntactic,needs to take explicitmeasures to accept syntacticorderingsfor

allsentencetypes,blindto theirsemantic content.A semantic grammar gainsleverageby knowing

what types of sentence formats make sensefor specifickinds of phrases.For example, a semantic

specificationof a phrasefor measurement inan electronicsdomain can expect to see a measurable

quantity,followedby a preposition,and then some part or placewhere the measurement isto be

taken (Burton & Brown, 1979). But a syntacticgrammar willhave no such leverage,and must

parse the phrase with no expectationsabout itscontent. To do thisin a domain-independent

manner, allgrammatical word orderingswould need to be representedin the syntacticgrammar.

So to have the wide coverage of SOPHIE, qATT would have to accept virtuallyany grammatical

syntacticsequence.And thisis,ofcourse,not feasiblefor as diversea language as English.

The second factorforqATT'slower coverageislimiteddevelopment time. Much ofthe coverage

provided by the interfaceis implemented in the domain-dependent response functions. If the

sentenceisparsed by the grammar, itisup to the responsefunctionto provide the response.With

limitedtime, some queriesthat are parsed by the grammar were not implemented in the response

functions.So thisisnot a weakness of the QATr system, but rathera time constraintproblem.

With more time, the responsefunctionscould be extended to handle those parsed queries.

5.1.2 Efficiency

To gaincoverage inthe ATT grammar, many additionswere made in the form ofoptionalbranches.

The prime example is the various ways to phrase "[To] what [states] does LH$ lead [to]_', where the

21

[]'s denote optional words. Allowing for such varied parses increases the coverage of the grammar,

but necessarily decreases the efficiency of the interface, since it must repeatedly follow the wrong

branch past optional nodes. But this is the price to be paid for wide coverage. QATT cut options]
branches to a minimum.

In the blocks world, ATT's typical response time was around 4 seconds. QATT responds to short

(5 to 8 word) queries in an average of 3 seconds when run on a Symbolics or an IBM-RT. In the

worst case, an unparsed set filtering command, responses are around 6 seconds. These times could

be improved by pruning the ATT grammar to better fit the QPE query space, but this would be

violating the goal of the project to develop the interface from a preexistin K grammar.

5.1.3 Context

The revisions to the ATT context mechanisms for QATT have put it nearly at the level of SOPHIE.

QATT has a record of the _last-noun z used in the context. This last-noun is then used as the referent

of subsequent pronouns. So in the sentence mWhat influences itS', mit" is assumed to refer to the

value of *last-noun*.

SOPHIE is able to handle context references like (Burton & Brown, 1979): _Set the voltage

control to .87", _What is the current thru Rg?', rWhat is it with it set to .9_'. In the third

sentence, it is able to determine that the first "tit" refers to xcurrent', and the second refers to

Cvoltage control'. The difference comes from SOPHIE's use of its semantic grammar to predict

missing or pronominallzed constituents. QATT can only hypothesize from syntactic information.

QATT's ellipsis handling is nearly as powerful as SOPHIE's. QATT assumes the elliptical references

are always to nouns. SOPHIE allows elliptical references to prepositional phrases', as in the sequence

What is the bose current of Q$', rThru the emltter_" The QATT ellipsis mechanism could be

configured to han_e t_ type of reference, bu(as of yet it was not found necessary.

SOPHIE uses its semantic grammar to make assumptions as to the content of missing con-

stituents in anaphoric deletions. By noting the possible semanticporti0n _ssing in a sentence, it

is able to make intelligent guesses as to its referent. For example, if there were a semantic rule for

=lead to" questions about limit-hypotheses, it might look like:

What states does <limit-hypothesis> lead to?

If the input sentence is _What does Llt8 lead tof_ _, the grammar can assume that the missing con-

stituent is sstatcs'. In qATT, the guessing is left up to the response functions. The sentence must

still be parsec] by the grammar, and if a constituent is Unbound, then the response function can

simply make an assumption about what it is. This assumption is Shard-coded" into the function,
and has no notion of context.

QATT could also use a notion of "last-state" for context. For example, the sequence rWhat state

does LH$ lead to_', rCan S3 occur from there," could be disambiguated with this information.

This was not implemented mainly due to the time constraints, but also due to my reluctance to

make domain-dependent alterations to the ATT grammar.

5.1.4 Self-Tutoring

Being an educational tooi, SOPHIE is extremely strong in its self-tutorial abilities. It not only tells

the student why it could not understand a sentence, but it is also able to explain to the student

why a sentence _ght not make sense in the domain. This ability is partially implemented in

qATT and is incorporated in the response functions, the equivalent of SOPHIE's specialist.s. QATT's

tutorial abilities could be improved by simply expanding the explanations of misunderstandings

22

w

==

I

m

z

ffi====.

m
m

gv

#

"ml

m

w

I

J
i

M

mm

lid

r

B

r

m

E,_ ,,5

in these response functions, it is not shown in (Burton & Brown, 1979) that SOPHIE provides

feedback when a sentence is not SUccessfully parsed, such as the Qb,TT's '7 9ot as/ar as ... ". LITER

provides this and goes a step further by suggesting possible categories of words that might fit into

the sentence to make it understandable.

5.1.5 Ambiguity Awareness

Like SOPHIE, QATT responses have been carefully worded so as to make any implicit assumptions

clear to the user. If the context mechanisms for QATT Were extended to include the _last-state"

notion above, then there could p_sibly be more chance of ambiguous references. But as long as

responses are explicit about their suppositions, this should not cause a problem.

5.1.6 Convenience Features

QATT's strong suit is the convenience features that it provides to the user. These are the synonyms,

paraphrases, access to LISP, and spelling correction. This again is mainly due to the focus of the

interface on the the frequent QPE users. Since SOPHIE is not as strong as LIFER in this area, I

will use LIFER as the benchmark.

Access to the host language is simple enough. LIFER provides a command to access LISP, but

it does not allow for host interaction through the grammar. QATT presently only accepts loading

and saving of files in the grammar, but these commands were very easy to incorporate, and others

could be added just as easily. Executing such commands inside the grammar makes the interface

more helpful to the user.

The qATr synonym facility appears to work as well as LIFER's. Its only problem is the inability

to handle multi-word synonyms, such as "/evel in C" for _the le,Jel o/water in can C'. This was

an efficiency consideration, since searching for arbitrarily long strings in the sentence is so time

consuming. Having synonym definition possible from the grammar, which is done in LIFER as

well, further aids habitability.

The paraphrase ability of QATT is limited when compared to LIFER. LIFER is able to not

only paraphrase whole sentences, but it can also find hidden paraphrases in these sentences. For

example, using rgalar9 /or US Facalty" for "Print the salary o� everyone in the Computer Sci.

ence Department.', LIFER would build a large paraphrase for the short sentence, and also build

a sub-paraphrase that matches tC8 Faculty" with rererpone in the Computer 3eience Depart-

ment. ". {_ATTcan only paraphrase at the sentence level, but does generalize enough to make these

paraphrases useful in other contexts, as shown in figure 4.6.

LIFER handles paraphrase definition exclusively inside its grammar. So a definition would be

something like xUse /paraphrase/ /or /sentence/. ". I_ATTwas not implemented this way because of

the complexity of re-configuring the grammar. Instead, the simpler a fill-in-the-blank" approach was

used. This may tend to decrease flexibility of the interface, but the time needed to accommodate

definitions in the grammar could not be justified.

The Soundex algorithm used for QATT's spelling correction does not seem appropriate for typing

errors. The algorithm was developed for airline reservation systems that experienced problems with

misspelled names, not because of typing errors, but due to letters sounding the same over the phone.

So Soundex maps strings of letters to strings that may sound the same. LIFER and SOPHIE both

use a spelling correction algorithm borrowed from INTERLISP. This method looks for transposed

letters and double strikes, making it more suitable for finding typing errors.

23

km

QATT does however come back to the user if no successful substitutions were found in the spelling

hash table. It also makes synonym definition immediately available to the user in that case. And

like LIFER and SOPHS, it does inform the user of any substitutions made.

One possible enhancement to the spelling correction would be to keep the system from sub-

stituting for words that are unknown, not because they are misspelled or new terms, but because

they represent objects that don't exist in the domain. For example, in an envisionment with only

5 states, tO/splay _q19_'j will actually display SO, and then tell the user that the substitution was

made. This determination as to what words are semantically valid but don't refer to anything,

would need to be domain-dependent though, and was not implemented. An alternative solution

would be to ask the user if a proposed substitution is acceptable before responding.

5.1.7 Sunm_ary

To get qATT as close to the level of SOPHIE as feasible would require approximately three months

of refinement of the domain-dependent parts of the interface. The domain-independent parts, with

the exception of the grammar, appear to be roughly as capable as those of SOPHIE. But for the

grammar to achieve the coverage of SOPHIE, it would need to be extensively altered and tuned for

the qPE domain. And in so doing, the efllciency of the interface could also be improved by trimming

branches for the QPE query space. This would have violated the spirit of the project, which was to

take a general grammar and build On it a qPE natural language interface. However, while QATT is

not as robust as SOPHIE's interface, it appears to be reasonably useful.

5.2 Use of General Grammar Skeleton

Initially,usingATT as the basisforthe QATT interfaceseemed to offera fastmeans to development.

And italsolookedasifIcouldconstructthisnaturaIian_age interfacewithout any formallinguistic

training.The results,though not perfect,are very promising.

The ATT grammar was implicitlybiasedtoward the blocksworld domain that itwas testedon.

Most notably,the prepositionalphraseswere assumed to be restrictive.For example, in #The bloclc

in the boz on the table...',the prepositionalphrase #inthe boz" restrictsthe blocksconsidered,and

ton the table"restrictsthe boxes considered.The extensionalrepresentationofATT alsodemanded

that these restrictionsbe explicitlyrecorded in the propertiesof each object.So in our example,

the blocksthatmatched would need tohave B0Xn intheirfield:IN,where B0Xn isa box with TABLE

in its:ON field.

An important goalwas to make QATT work with any QP domain model that QPE could simulate.

So to handle prepositionalphrases,a new type of non-restrictiveprepositionalphrase parse was

devisedthatmerely parsesthe prepositionalphrase and returnsitscontentswithout regardto any

restricti0ns.T_-rest_Ctlons _are then-wor]cedout using the orderedprep0Sitionsthat are supplied

foreach QPE domain model, as shown in section1.3.

Every applicationisbound to facesimilarobstacleswhen tryingto fita _general_ grammar to

a specificapplication.This willbe the caseuntilthe=(unlikelyto be soon) inventionof a complete

naturallanguage understanding system.

Until then, to gain coverage beyond the scope of the originalgrammar, a linguisticnovice is

forced to manfl_ulate the grammar to fit hemal Inevitab|y, _t_s _lead tO many optional

branches, as in QATT, or possibly even reduced coverage as the grammar is hacked at by the

programmer.

24

L_

m

However, once the query space is accepted by the grammar, the division of domain-dependent

and domain-independent parts of the interface make implementation of reasonable responses easy.

By planning ahead for required properties of nouns, and exactly which nouns will be implemented,

the lexicon can be quickly developed and serve as the data base for all of the responses. Verbs can

be added to expand the interface's coverage, and the detail of responses can be changed as the need

arises. As time permits or as the need arises, the programmer can work on the response functions

without touching the grammar or lexicon. With a few hours of work, a verb can be added to the

system and all of its response functions can be debugged to provide adequate responses to the new

sentences.

In a few months, I was able to develop a reasonable natural language interface using this general

grammar Skelet0n, with minimal linguistic experience. The only real dif_culty came in manipulating

the grammar to achieve greater coverage of the query space, and in devising new methods of parsing

when the general grammar failed to meet my needs. Most of the work done in the project, the

increased coverage, the context knowledge, and the convenience features, were extensions of the

general skeleton, and would transfer to other domains. Using the general skeleton made possible

the development of the interface in a matter of months rather than years.

5.3 What is M|ssing

QATT remains wide open for enhancements. Many improvements would be simple, but could not be

accomplished with my time constraints. One example is displaying the paraphrases and synonyms

in an easy to read format. Increasing the coverage of the response functions would also be easy,

and could increase the system's habitability. A more appropriate spelling correction algorithm,

like the one in INTERLISP, would not be hard to implement. And if the system could respond to

sHe/p!" with a short explanation of the interface's capabilities and commands, it might help the
novice user.

Some enhancements would take more integration but would not be too difficult to implement.

Linking qATT with ZCIL_PH, a graphical display utility, could allow the user to point to states, as if

to say "That one.*. QPE could also be run from QATT. Providing a word completion capability that

would find a known word and display it once enough characters have been entered to disambiguate

it, could make the interface more habitable and reduce typing errors. And using internal interface

routines to fetch envisionment data rather than explicitly copying it into the lexicon would make

the domain-dependent part of qATT more modular and easily modified.

And there are more complicated, theoretical extensions that would require significant work.

One promising extension would be the use of a text generation system that could provide english

text from semantic descriptions derived in the response functions. Another would be to incorporate

a _user model _ that monitors a user's knowledge of the domain and of the interface, and adjusts

responses accordingly. And extending ATT to build a syntactic structure of the input sentence could

provide more information to the response functions, and allow the paraphrase utility to capture

nested paraphrases as LIFER does.

25

REFERENCES

Burton, R. R and Brown, J.S. Toward a natural-languagecapabilityforcomputer-assitedinstruc-

tion.Procedure for Instructional Systems Development, 1979.

Forbus, K. Qualitativeprocesstheory.ArtificialIntelligence,24:85-168, 1084.

Forbus,K. _PE:a study inassumption-basedtruthmaintenance. InternationalJournal ofArtificial

IntdHgence in Engineering, 1988.

Hendrix, G. G. Lifer: a natural language interface facility. SIGART Newsletter,61, 1977.

Knuth, D. E. The Art of Computer Understanding, second edition, pages 391-392. Volume 3,

Addison-Wesley, 1973.

Martin, B. The limitations of augmented transition tree interpreters as natural language interfaces.

Master's Thesis, University of Illinois, 1985.

Miller, R. Response time in man-computer conversational transactions. AFIPS Conference Pro-

ceedings, 1968.

Watt, W. Habitability. American Documentation, 19, 1968.

Winston and Horn. LISP second edition. Addison-Wesley, 1984.

Woods, W. Transition network grammars for natural language analysis. CACM, 13, 1970.

w

W

l

I

U

l

U

m

U

H
m
u
W

l

w

M
g

u

26

m

l
W

B
m"

J

U
g

u

_J

w_

W

A SAMPLE DIALOG WITH QATT

> (init-att)

Loading data...

;;; Loading source file "/u/vhite/nev-att/qpe-att/q-init.lisp n

Initializing

Adding verbs

Adding QPE data

;;; Loadin K source file "/u/white/nev-att/qpe-att/spec.lisp _

Adding parts

;;; Loading source file "/u/white/nev-att/qpe.att/ord-preps.lisp m

Initialized.

#P"/u/white/nev-att/qpe-att/q-init.lisp"

> (start)

0 ?--what are the flags?

<PARSED>

DETAIL NIL

SHOW-TYPE NIL

FORM T

1 ?--vhat are the commands?

<PARSED>

SAVE DEFINE USE LET CALL SET RESET

2 ?--what are the states?

<PARSED>

SO $1 $2 $3 $4 $5

3 ?--set detail.

<PARSED>

DETAIL set.

4 ?--vhat are the quantities?

<PARSED>

VOLUME(C-S(WATEELIQUID G))

VOLUME(C-S(WATEELIqUID F))

TOP-HEIGHT(G)

TOP-HEIGHT(F)

TEMPERATURE(C-S(WATERLIQUID G))

TEMPEP_TU&E(C-S(WATE&LIQUrDF))
TBOIL(WATERG)

27

AMOUNT-OF-IN(WATERLIQUID G)

AMOUNT-OF-IN(WATERLIqUID F)

AMOUNT-OF(C-S(WATERLIQUID G))

AMOUNT-OF(C-S(WATERLIQUID F))

5 ?--what are the processes?

<PARSED>

LIQUID-FLOW(WATEE G F P1)

LIQUID-FLOW(WATER F G PI)

6 ?--what is resettable?

<PARSED>

DETAIL (Provides detailed output) T

SH0W-TYPE (Show the type of a datum) NIL

FORM (Form output) T

7 ?--reset detail.

<PARSED>

DETAIL reset.

8 ?--what is the status of s3?

<PARSED>

STATUS of $3 is R-COMPLETE.

9 ?--duration?

DURATION of SS is INTERVAL.

I0 T--s2?

DURATION of S2 is INTERVAL.

11 ?--what are the end states?

<PARSED>

$4

12 ?--eden states?

$3 $5

13 ?--what is A?

I don't understand.

I got as far as :(WHAT IS)

14 ?--what quantities does lhO lead to?

<PARSED>

I can only answer questions about states or envs for LEAD.

15 ?--load "/u/white/new-att/qpe-att/striugs.lisp" J

<PARSED>

I can't find /u/whtte/new-att/qpe-att/strtngs.lisp

28

m

i

J

l

m
i

U

m

le

m

z

W

W

B

= ,

u

==

16 ?--load "/u/white/new-att/qpe-att/string.llsp"!

<PARSED>

;;; Loading source file "/u/white/new-att/qpe-att/string.lisp"

17 ?--lisp.

-> (. s.1416o s)

@.42477

18 ?--what is the duration of sS?

<PARSED>

DURATION of $3 is INTERVAL.

19 ?--paraphrase.

Sentence :what is the duration of sS?

Paraphrase :duration s3?

<PARSED>

Foregoingresponse

require generalized SUBCATS (for DURATION)

requlre generalized OBJOP (for $3)

require ?

20 ?--duration s37

<PARSED>

DURATION of $3 is INTERVAL.

21 ?--duration and status s27

<PARSED>

DURATION of $2 is INTERVAL.

STATUS of $2 is R-COMPLETE.

22 ?--sl?

DURATION of $1 is INTERVAL.

STATUS of $1 is R-COMPLETE.

23 ?--end-env lhO?

<PARSED>

LHO doesn't have END-ENV.

24 ?--end-envs lhO?

<PARSED>

END-ENVS of LHO is ENV-185.

25 ?--what is the amount-of water in G?

29

<PARSED>

AMOUNT-OF (C-S (WATER LIOUID G))

26 ?--what influences it?

<PARSED>

AMOUNT-OF(C-S(WA_ LIQUID G))

LIQUID G)))

is influenced indirectly by (CONTAINED-STUFF(C-S(WATER

27 ?--synonym.

Words :amount-of-in of water in f

Synonym :amt-g

Adding synonym L_r-G for (_OUNT-OF-IN OFWATER IN F)

28 ?--how can amt-g change?

<PARSED>

AMOUNT-OF-IN(WATER LI@UID F) is increasing in ($3)

AMOUNT-OF-IN(WATER LIQUID F) is decreasing in ($5)

A_OUNT-OF-IN(WATER LIQUID F) is constant in (SO S1 $2 $4)

29 ?--use amt-Of for amount-of,

<PARSED>

Adding synonym _T-OF for (AMOUNT-OF)

SO ?--what is the amt-of water in f?

<PARSED>

AMOUNT-OF(C-S(WATERLI@UID F))

S1 ?--define FO0 as the set of states with the amount of water in F increasing and

water flowing from G to F.

<PARSED>

Please choose one by number to resolve ambiguity:

I AMOUNT-OF(C-S(WATEELIQUID F))

2 AMOUNT-OF-IN(WATERLI@UID F)

S: ALL

,m,

W

II

V

i

J

U

J

W

CHOICE:I

Merci

Set: FO0

Elements: ($3)

Size: 1

Set FO0

32 ?--set detail.

<PARSED>

DETAIL set.

3O

33 ?--show Foo.

I am stuck on the word SHOW.

Do you have a replacement word? (word or <enter to fail>) :display

Got it. DISPLAY for SHOW. thanks.

Should I consider SHOW a synonya for DISPLAY? (¥ or N) 7

Trytn K to add SHOW as a synonym for DISPLAY

Addin K synonyl SHOW for (DISPLAY)

<PARSED>

Sclass $3. 1 situations:

Status = E-COMPLETE. Duration = INTERVAL

IS:QPE,C-S(WATER,LIQUID.G),C-S(WATER,LIQUID,F)

VS: VIO: CONTAINED-STUFF(C-S(WATER.LIQUID,G))

VII: COMTAINED-STUFF(C-S(WATER,LIQUID,F))

PS: PIO: LIQUID-FLO¥(WATER,G,F.P1)

-- Environments --

Env EIW-203 :

A [AMOUNT-0F- IN (WATER, LIQUID, a)] >ZERO

A[AMOUNT-OF-IN (WATER.LIQUID. F)] >ZERO

A [PRESSURE (C- S (WATER, LIQUID, F))]<A [PRESSURE (C-S (WATER, LIQUID, G))]

A [FLOW-RATE (PIO)]>ZERO

A [FLOW- RATE (PI 1)] ??ZERO

ALIGNED (P1)

ENFORCE (qUANTITY-EXISTENCE)

34 ?--reset detail.

<PARSED>

DETAIL reset.

w

35 ?--what can lh2 lead to?

<PARSED>

LH2 leads to the followin K states

$4

36 ?--what does lh2 lead to?

<PARSED>

LH2 leads to the following states

$4

37 ?--what states does ih2 lead to?

<PARSED>

LH2 leads to the following states

31

$4
38 ?--to what states does lh2 lead?

<PARSED>

LH2 leads to the following states

$4

30 ?--to what can lh2 lead?

<PARSED>

LH2 leads to the following states

$4

40 ?--what envs does lh2 lead to?

<PARSED>

LH2 leads to the following environment:

ENV-lgS

41 ?--what happens after 1_27

<PARSED>

LH2 leads to the following states

$4

42 ?--what happens after lh2 occurs?

<PARSED>

LH2 leads to the following states

$4

43 ?--what must hold for Ih2 to occur?

<PARSED>

For LH2 to OCCUR

EHV-172

one of the following environments must hold

44 ?--what holds before 1J_?

<PARSED>

Before LH2 occurs the following envirionments nay hold :

Eh'V- 172

45 ?--can sl occur froa sO?

<PARSED>

Ho 81 cannot occur from SO

46 ?.--can sS lead to s47

<PARSED>

Yes, $S can lead to $4 directly.

47 ?--can s4 occur froa s3?

<PARSED>

Yes, $4 can occur fron SS directly.

48 ?--can lh2 lead to an end state?

<PARSED>

$2

W

W

g

m

g

J

W

u

L_

t

r_

m

= =

I

m

w

le

v

LH2 leads to the following specified states (i.e.

$4

4g ?--is sO an end state?

<PARSED>

yes SO is Ca) (END STATE)

end states) :

50 ?--what states have transitions in?

<PARSED>

The following states have transitions IN :

$4

51 ?--what states have-transitions out?

<PARSED>

The following states have transitions OUT :

S3 $5

52 ?--does sO have transitons?

<PARSED>

No transitions in to SO.

No transitions out of SO.

(Replaced TRANSITONS with TRANSITIONS)

53 ?--what corresponds to the amount-of water in g?

I am not able to handle correspondences.

54 ?--q

Do you want to save any paraphrases or synonyms? (Y or N) n

NIL

>

33

B GRAMMAR EXTENSIONS FOR QATT

;;; -*- Package: ATT; Syntax: Comnon-Lisp-*-

;;; Defn Comm - DRGW

;;; These are meant to parse commands used to define sets of objects. "-

;;; Define X <as. to be> [].

;;; Call [] X.

;;; Let X be [].

;;; [] : quantity-phrase

;;; the set of Y'm <with, in which_

;;; : quantity-phrase <increasing. decreasing, constant>

;;; process-phrase <present, active>

;;; and . (possibly ORs later) (possibly NOTs later)

;;; "Call the level in @LEV-G." U
.

;;; "Define FO0 as the set of states in which the flow rate through PIPE1 is increasing."

;;; HLet BAR be the set of states with a flow into G <present> and boiling in F."

;;; Defn Conn

;;; Top level of Definition command parsing.

(defrecord DEFN-COMM

((branch (DEFINE

(test-word (lambda (x) t) NAME)

;; add word to spell table DRGW T/6

(test (or (spell-insert (get-binding 'name)) t))

(parse defn'conn-connect)

(parse gaggle)

(parse punctuation)

(parse-result-if-end (respond *define 'verb-command)))

(CALL

(parse gaggle)

(test-word (lambda (x) t) NAME)

;; add word to spell table DRGW 7/6

(teat (or (spell-inser_ (get-binding 'name)) t))

(parse punctuation)

(parse-result-if-end (respond 'define 'verb-command)))

(LET

(test-word (lambda (x) t) NAME)

;; add word to spell table DGRW 7/6

(test (or (spell-insert (get-binding 'name)) t))

(parse defn-conn-connect)

(parse punctuation)

(parse-result-if-end (respond 'define 'verb-command))))))

;;; Gaggle (terrible name. I know)

34

J

m

w

g

W

U

u

W

m
g

m

i

=

= =

t s

r_

= =

;;; parses the Specification for the set of things being gathered.

;;; i.e. "...Set of states with <SPEC>..."

;;; (As in a gaggle of geese).

(defrecord GAGGr._.

((branch ((parse-optional article)

set of

(test-word (lambda (x) t) GAG-TYPE)

(parse-optional gag-connect)

(parse gag-specs)

(parse-result (cons ' SET

(cons (get-binding 'gag-type)

(li st (get-binding ' gag - spec s))))))

((parse quantity-phrase)

(parse-result (get-binding 'quantity-phrase)))

((parse process-phrase)

(parse-result (get-binding 'process-phrase))))))

;;; Gag Specs

;;; parses specifications for set membership

(defrecord gag-specs

((branch ((parse gag-apse)

(one-of and or)

(test (bind 'gagl (get-binding 'gag-spec)))

(parse gag-specs)

(parse-result (cons (get-binding 'gagl)

(get-binding 'gag-specs))))

((parse gag-spec)

(parse-result (list (get-binding 'gag-spec)))))))

;;; Gag Spec

;;; parses a single specification for set membership

(defrecord GAG-SPEC

((branch ((parse good-quantity-phrase)

(parse gag-spec-q-spec)

(parse-result (cons (get-binding 'gag-spec-q-spec)

(get-binding 'quantity-phrase))))

((parse good-process-phrase)

(parse gag-spec-p-spec)

(parse-result (cons (get-binding 'gag-spec-p-spec)

(get-binding ,process-phrase))))

((parse good-proc-v-phrase) ;;Doesn't require a p-spec

(parse-result (cons (find,p-spec (get-binding 'good-proc-v-phrase))

(get-binding 'good-proc-v-phrase))))

((parse lh-phrase)

(parse gag-spec-lh-spec)

(parse-result (cons (get-binding 'gag-spec-lh-spec)

35

(get-binding '].h-phrase)))))))

I

_=
w

;;; Gag Spec P Spec

;;; parses a specifying word for processes (like active).

(defrecord GAG-SPEC-P-SPEC

((branch ((parse-optional preposed-aux)

(parse verb)

(test (and (pget (get-binding 'verb) 'verb)

(eember 'p-spec (lexical-subcat =

(pget (get-binding 'verb) 'verb)))))

(parse-result

(get (verb-key (lexical-info (pget (get-binding 'verb) 'verb))) 'val)))

((parse-optional preposed-aux)

(test-word (lambda (x)

(aenber x (lexical-info (pget 'p-spe¢ 'subcat)))) spec)

(parse-result (get (get-binding 'spec) 'val))))))

;;; Gag Spec Q Spec = =

;;; parses a specifying word for quantities (like increasing). =w

(defrecord GAG-SPEC-Q-SPEC

((branch ((parse-optional preposed-aux) ; is increasing, increases -> val of increase

(parse verb)

(test (and (pget (get-binding 'verb) 'verb)

(nenber 'q-spec __

(lexical-subcat (pget (get-binding 'verb) 'verb)))))

(parse-result

(get (verb-key (lexical-info (pget (get-binding 'verb) 'verb)))

'val)))

((parse-optional preposed-aux)

(test-word (lambda (x)

(member x (lexical-in_o (pget 'q-spec 'subcat)))) spec) W

(parse-result (get (get-binding 'spec) 'val))))))

;;; _AG-SPEC-LH-SPEC parses a specifying word for LHs (like occur).

(defrecord GAG-SPEC-LH-SPEC

((branch ((parse-optional preposed-aux)

(parse verb) w

(test (and (pget (get-binding 'verb) 'verb)

(umber 'lh-spec

(lexical-subcat (pget (get-binding 'verb) 'verb)))))

(parse-result

(get (verb-key (lexical-in_o (pget (get-binding 'verb) 'verb))) 'val)))

((parse-optional preposed-aux)

(parse neg)

(parse verb)

$6

J

2

w

I

m

w

w

v

l.i

E

(test (and (pget (get-binding 'verb) 'verb)

(nenber 'lh-spec

(lexical-subcat (pget (get-binding 'verb) 'verb)))))

(parse-result (- O (get (verb-key

(lexical-info (pget (get-binding 'verb) 'verb)))

'val))))

((parse-optionalpreposed-aux)

(test-word (lambda (x)

(meaber x (lerLcal-info (pget 'lh-spec 'subcat)))) spec)

(parse-result (get (set-binding 'spec) 'val))))))

;;; Defn Comm Connect

;;; parses connecting words for definition commands

(defrecord defn-comm-connect

((branch (be (parse-result 'be))

(to be (parse-result 'to-be))

(as (parse-result 'as)))))

;;; Gag Connect

;;; parses connecting words for gagEles.

(defrecord gag-connect

((branch (with (parse-result 'with))

(where (parse-result 'where))

(in which (parse-result 'in-which))

(that (parse-result 'that)) ;;DRGW 6/26

(that have (parse-result 'have)))))

;;; -*- Package: ATT; Syntax: ComJnon-Lisp -*-

;;; QPE-ATT specific grammar enhancements for quantities - DRGW

;;; Good quantity Phrase

;;; Requires a Q to be found from Q-Phrase

(defrecord good-quantity-phrase

((parse quantity-phrase)

(test (find-quantity (get-binding 'quantity-phrase)))

(parse-result (get-binding 'quantity-phrase))))

;;; Quantity Phrase

;;; Parses a phrase that refers to a Quantity

;;; i.e. "... amount of water in canl..."

(defrecord QUANTITT-PHRASE

((branch

((parse quantity-p)

(test (not (prep-next? 'quantity-p)))

37

(parse-result (get-binding ' quantity-p)))

((rebind)

(parse quantity-p)

(test (prep-next? 'quantity-p))

(test (bind 'quantl (get-binding 'quantity-p)))

(parse prep)

(test (bind 'prepl (get-binding 'prep)))

(branch

((parse quantity-phrase)

(parse-result (list (get-binding 'quantl)

(get-binding 'prep1) i

(get-bind_ug 'quantity-phrase))))

((parse good-process-phrase)

(parse-result (list (get-binding 'quantl)

(get-binding 'prepl)

(get-binding 'good-process-phrase))))

;;; Quantity P

;;; Gathers quantity type words and eats articles.

(defrecordquantity-p

((parse-optional article)

(parse quantity-words)

(parse-result (get-binding 'quantity-word))))

;; ; Quantity Words

;;; Gathers consequtive Quantity words (aaybe "and")

(defrecord quantity-words

((branch

((parse quantity-word)

(parse-result (list (get-binding 'quantity-word))))

; ; flow rate

((parse quantity-word)

(test (bind 'q-wordl (get-binding 'quantity-word)))

(parse quantity-words)

(parse-result (cons (get-binding 'q-wordl)

(get-binding 'quantity-words))))

; ; flow and pressure

((parse quantity-word)

(test (bind 'q-wordl (get-binding 'quantity-word)))

and

(parse quantity-words)

(parse-resuit (cons (get-binding 'q-wordl)

(cons 'and

(get-binding ' quantity-words))))))))

;;; Quantity Word

$8

)))))

d

h _

m

w

l

l

Uf

m

g

W

I

W

J

m

====

=

I

Z

_ I

v

L_

r

;;; Parses a single Quantity word.

;;; Te_t makes sure that the subcat is a quantity word

;;; (Set in Init-Qs())

(defrecord quantity-word

((parse subcat)

(test (and (pget (get-binding 'subcat) 'subcat)

(listp (lexical-subcat (pget (get-binding 'subcat) 'subcat)))

(member 'quant (lexical-subcat (pget (get-binding 'subcat) 'subcat)))))

(parse-result (get-binding 'subcat))))

;;; Prepp Obj

;;; parses prepp and returns its object

;;; NOTE: This had to be added to avoid ATT's

;;; insistance on restrictive Prepps.

(defrecord prepp-obj

((parse prep) ; using prepp sends it down noun-with-adj

(parse-optional article)

(parse subcat)

(parse-result (list (get-binding 'prep)

(get-binding 'subcat)))))

:;; Prepp Objs

;;; Parses multiple Prepp-objs

(defrecord prepp-objs

((branch ((parse prepp-obj)

(test (prep-next? nil))

(test (bind 'pol (get*binding 'prepp-obj)))

(parse prepp-objs)

(parse-result (cons (get-binding 'pol)

(get-binding 'prepp-objs))))

((parse prepp-obj)

(parse-result (get-binding 'prepp-obj))))))

;;; Prep Next?

;;; Test to see if the next wrod is a Prep

;;; or the last word ended with a prep (i.e. amount-of)

(defunprep-next? (bound-part)

(cond ((prep? (car remaining-words)) t)

((and bound-part

(prep? (car (last (dehyph (get-binding bound-part))))) ; amount-of case

(push (car (last (dehyph (get-bindingbound-part))))

remaining-words)))))

;;; -*- Package: ATT; Syntax: Co_on-Lisp -*-

;;; qPE-ATT specific grammar enhancements for processes - DRGW

39

g

;;; Good Process Phrase

;;; Requ±res a Process to be found from phrase

(defrecord good-process-phrase

((branch ;; the Flow of water from A to B

((parse process-phrase)

(test (setq res (find-process (get-binding 'process-phrase))))

(parse-result (get-binding 'process-phrase)))

;; water is flowing from A to B

((parse PROC-V-PHR£SE)

(parse-result (get-binding 'proc-v-phrase))))))

;;; Good Process V Phrase

;;; Requires a Process to be found from the V-Phrase

(defrecord good-proc-v-phrase

((parse PROC-V-PHRASE)

(test (find-process (get-binding 'proc-v-phrase)))

(parse-result (get-binding 'proc-v-phrase))))

;;; Process Phrase

;;; Parses a phrase that mi_t refer to a process of the form

;;; "... FEow of water from F to G..."

(defrecord PP_CESS-PHI_SE

((branch

((parse process-p)

(test (not (prep-next? 'process-p)))

(parse-result (list 'PROC (get-binding 'process-p))))

((rebind)

(parse process-p)

(test (prep-next? 'process-p))

(test (bind 'procl (get-binding 'process-p)))

(parse prep)

(test (bind 'prepl (get-binding 'prep)))

(parse process-phrase)

(parse-result (list 'PROC

(list (get-binding 'procl)

(get-binding 'prepl)

(get-binding 'process-phrase))))))))

;;; Process V Phrase

;:; parses a process phrase where the process key word is

;;; used as a Verb in the phrase.

;;; i.e. water is flowing from A to B.

;;; NOTE: This verb must be added to lexicon!

(defrecord PROC-V-PHRASE

((parse-optional article)

4O

w

M

II

I

=

El

|

g

I

J

R

m

E

m

m

i
mm
m
I

m
I

J

w

w

w

=

E

= :

=

(parse process-words)

(parse-optional preposed-aux)

(parse proc-verb)

(parse prepp-obJs)

(parse-result (list (if (member 'neg *tense*) 'NOT)

(verb-key (lexical-info (pget (get-binding 'proc-verb) 'verb)))

(get-bindin_ 'prepp-objs)))))

;;; Proc Verb

;;; Parses a process verb like "Flowing"

(defrecord proc-verb

((parse-optional preposed-aux)

(parse-optional neg)

(parse verb)

(test (member 'PROC-VERB (lexical-subcat (pget (get-binding 'verb) 'verb))))

(parse-result (get-binding _verb))))

;;; Process P

;;; parses multiple process words and articles

(defrecord process-p

((parse-optional article)

(parse process-words)

(parse-result (get-binding *process-word))))

;;; Process Word

;;; Parse a process word

;;; Subcat must have 'PROC as a :subcat.

;;; Put in in Init-PsVs().

(defrecord process-word

((parse subcat)

(test (and (pget (get-binding 'subcat) 'subcat)

(iistp (lexical-subcat (pget (get-binding 'subcat) 'subcat)))

(member 'proc (lexlcal-subcat (pget (get-binding 'subcat) 'subcat)))))

(parse-result (get-binding 'subcat))))

;;; Process Words

;;; Parses multiple process words

(defrecord process-words

((branch

((parse process-word)

(parse-result (list (get-binding 'process-word))))

;pumped flow

((parse process-word)

(test (bind 'p-wordl (get-binding 'process-word)))

(parse process-words)

(parse-result (cons (get-binding 'p-word1)

41

(get-binding 'process-words))))
;;pumpedand flow (It could happen)

((parse process-word)

(test (bind 'p-wordl (get-binding 'process-word)))

and

(parse process-words)

(parse-result (cons (get-binding 'p-wordl)

(cons 'and

(get-binding 'process-words))))))))

;:; -*- Package: ATT; Syntax: Couon-Lisp -*-

;;; qPE-ATT specific grammar enhancements for Limit Hypotheses - DRGW

;;; Lh Phrase

;;; Parses limit hypothesis phrases

;;; NOTEfor now Just requires some lh-words

(defrecordLH-PHRASE

((parse lh-words)

(parse-result (get-binding 'lh-words)))) _
= ,

;;; Lh Words

;;; Parses multiple LH words

(defrecordlh-words

((branch ((parse lh-word)

(test (bind 'lhl (get-binding 'l h-word)))

(parse lh-words)

(parse-result (cons (get-binding 'lhl)

(get-binding 'l h-words))))

((parse lh-word)

(parse-result (get-binding 'lh-word))))))

;;; LhWord

;;; Parses one Lh word

:;; Requi_bs the subcat to have 'iiait=hypothesis in its :into

(defrecord lh-word

((test-word (lambda (w)

(member w (lexical-in_o

(pget 'limit-hypothesis 'subcat)))) lhw)

(parse-result (get-binding 'lhw))))

;;; LhVerb

;;; Parses a verb disignated as being a possible LH spec

;;; i.e. "...occurs..." or n... happens ..."

(defrecord lh-verb

((parse verb)

42

w

I

g

m

g

i

N

l

=_

l

g

z

B

t
g

W

H

g

w

l

J

m

D

m

(test (member 'LH-VERB (lexical-subcat (pget (get-binding 'verb) 'verb))))

(parse-result (get-binding 'verb))))

v

z

L

43

g

M

Jm
m

I

m l

w

u

g

J

w

mm

z

I

N

U

m

u_m

R

SHEETBIllLIOGILAPHI¢DATA 1I. Ripat No.

4. Tille and 51iilll

UZUCDCS-R-89-1535

QATT: .A NATURAL LANGUAGE INTERFACE FOR QPE

3. RecipieK's Accsssio. No.

5. Report Dnce

August 1989

6.

7. Authors)

Douglas Robert-Graham White

9. Pitfoimin 80tiaailillioli Name lull Addtell8

Dept. of Computer Science

1304 W. Springfield Avenue

Urbana, IL 61801

12,_i-i OfI--iz_i_ Nm_ _ Ackku8

_o. R-89-1535

10. Proiect/TuklVork Unit No.

I 1. Commcc/Gtinc No.

13. Type ot Rep_ I Period
Coveted

Technical

14.

15. Supplemen/ly Nailll

16. Abocirl_il

This thesis presents qATT, a natural lanluage intsfface developed for the Qualitative Process

Engine (QPE) system,_ The major goal of the project waa to evaluate the use of a preexis_ ng

natural language unclerstanding system desiKned to be tailored for query processing in multiple

domains of application. The other goal of QATT is to provide a comfortable environment in which

to query envisionments in order to gain insight into the qualita|;ive behavior of physical systems.

It is shown that the use of the preexisting system made possible the development of a reasonably

useful interface in a few months.

17. Key Toldll mid DacumeE Aaliysig. 17L Del¢/iplolll

natural language

qualitative physics

interfaces

17b. ldelifle:8/Open-Ended Te_TM

w

17c. COSAT! F|ild/&o_

1i A-Iillllillll 511clltlilt

unllmlCed

19..Se:utiiy Clul (This
Repoec)

T/NCT_ASSII_i _D
20. 5ecuzi/7 Class (This

Pile
_LASSIFIED

21. No. of Pages

50

22. Price

tJS¢OkOd*O¢ SOl,iS-m? 1

i

i

i

U

|

|

g

u

i

i

i

i

i

