
QB2OLAP: Enabling OLAP on Statistical Linked

Open Data

Jovan Varga∗1, Lorena Etcheverry†2, Alejandro A. Vaisman‡3,

Oscar Romero∗4, Torben Bach Pedersen§5 and Christian Thomsen§6

∗Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain
†Instituto de Computación, Facultad de Ingenierı́a, UdelaR Montevideo, Uruguay

‡Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
§Aalborg Universitet, Aalborg, Denmark

1jvarga@essi.upc.edu, 2lorenae@fing.edu.uy, 3avaisman@itba.edu.ar, 4oromero@essi.upc.edu, 5tbp@cs.aau.dk, 6chr@cs.aau.dk

Abstract—Publication and sharing of multidimensional (MD)
data on the Semantic Web (SW) opens new opportunities for the
use of On-Line Analytical Processing (OLAP). The RDF Data
Cube (QB) vocabulary, the current standard for statistical data
publishing, however, lacks key MD concepts such as dimension
hierarchies and aggregate functions. QB4OLAP was proposed
to remedy this. However, QB4OLAP requires extensive manual
annotation and users must still write queries in SPARQL, the
standard query language for RDF, which typical OLAP users
are not familiar with. In this demo, we present QB2OLAP, a tool
for enabling OLAP on existing QB data. Without requiring any
RDF, QB(4OLAP), or SPARQL skills, it allows semi-automatic
transformation of a QB data set into a QB4OLAP one via en-
richment with QB4OLAP semantics, exploration of the enriched
schema, and querying with the high-level OLAP language QL that
exploits the QB4OLAP semantics and is automatically translated
to SPARQL.

I. INTRODUCTION

OLAP analysis [1] is a well-established approach for
decision making. Typically used in Data Warehousing (DW),
OLAP relies on the MD model which represents data in terms
of facts and dimensions. In short, dimensions conform the
axes of an MD space in which a set of measures (associated
to the fact) are represented. Dimensions provide appropriate
contextual meaning to facts, and are organized as hierarchies,
providing different levels of data aggregation. By means of
an MD algebra, MD data are aggregated and disaggregated
(through roll-up and drill-down, respectively), and filtered
(through slice and dice operations), among other operations.

Initiatives like Open Data1 are pushing organizations to
publish MD data using standards and non-proprietary formats.
Two main approaches can be followed for OLAP analysis of
SW data. The first one aims at extracting MD data from the
Web, and loading them into traditional DWs for OLAP analysis
[2]. The second one (that we follow in our work) carries out
OLAP-like analysis directly over MD data represented in RDF,
following the notion of self-service BI [3].

Statistical data have traditionally been accessed and ana-
lyzed by means of OLAP [1]. In the SW, statistical data sets
are usually published using the RDF Data Cube Vocabulary2

⋄
This research is funded by the European Commission through the Erasmus

Mundus Joint Doctorate IT4BI-DC.
1http://okfn.org/opendata/
2http://www.w3.org/TR/vocab-data-cube/

(QB), a W3C recommendation since January, 2014. However,
QB does not support the dimension hierarchies and aggregate
functions needed for OLAP analysis. To address this challenge,
a new vocabulary called QB4OLAP has been proposed [4].
QB4OLAP allows reusing data already published in QB by
defining an MD schema containing the hierarchical structure of
the dimensions (and the corresponding instances that populate
the dimension levels). Once a data cube becomes published
using QB4OLAP, we benefit from all the OLAP advances
achieved in order to enable users to perform OLAP operations
over the cube at a higher level of abstraction by using an
OLAP algebra. In the demo, we present the QB2OLAP tool
that can semi-automatically transform a QB data set into a
QB4OLAP data set by enriching it with QB4OLAP semantics,
explore the enriched schema (i.e., dimensions’ structures and
instances), and query the data set using a high-level OLAP
language, denoted QL. QB2OLAP semi-automatically discov-
ers dimension hierarchies to enrich the original data set, and
automatically translates QL queries into SPARQL and executes
them on an endpoint. Thus, QB2OLAP is a tool that facilitates
data analysis, encouraging the use of MD data on the web. To
our best knowledge, it is the first tool enabling native OLAP
analysis on Statistical Linked Open Data.

Demo Use Case: Mary is a journalist covering the
European migration crisis. She wants to analyze historical
migration data for the European Union (EU), and knows that
these data3 are provided by the statistical office of the EU
(Eurostat) and are also available as Linked Open Data in
QB format4. Mary wants to compute some basic filtering/
summaries, typical for OLAP, such as aggregate the origin
nationality of immigrants per continent. However, due to the
limited schema information, she soon realizes that it is not
possible to perform OLAP operations. To do so, she would
need to enrich the data set (e.g., with dimension hierarchies
to roll-up through). Moreover, both enrichment and analysis
require the use of SPARQL, a language that she cannot manage
although she is quite proficient in OLAP. Fortunately, she
knows about QB2OLAP and decides to use it to overcome her
lack of technical knowledge on RDF, QB, and SPARQL. This
demo shows how QB2OLAP can be used to achieve OLAP-
like analysis over existing QB data sets and enable even wider
analysis, e.g., analyze migration data according to the kind

3http://ec.europa.eu/eurostat/statistics-explained/index.php/Asylum statistics
4http://eurostat.linked-statistics.org/

of political organization of the host countries. The original
data set contains data about asylum applications from 2008
to 2014. For the demo purposes, we consider the subset of
recent observations about asylum applications between 2013
and 2014, comprising approximately 80,000 observations.

II. BACKGROUND: QB VS. QB4OLAP

A QB data set is a collection of so-called observations (in
OLAP terminology facts) whose schema is specified by means
of a Data Structure Definition (DSD) as an instance of the
RDF class qb:DataStructureDefinition. This speci-
fication comprises a set of component properties representing
dimensions, measures, and attributes, as shown below for a
portion of the Eurostat data cube (RDF prefixes are omitted).

dsd:migr asyappctzm rdf:type qb:DataStructureDefinition ;
qb:component [qb:dimension sdmx−dimension:refPeriod] ;
qb:component [qb:dimension property:age] ;
qb:component [qb:dimension property:citizen] ;
...
qb:component [qb:measure sdmx−measure:obsValue] .

From an OLAP analyst’s point of view, QB has the fol-
lowing limitations: (a) No native support of dimension hierar-
chies. OLAP operations rely on the organization of dimension
members into hierarchies defined in terms of aggregation
levels. QB only allows representing relationships between
dimension instances. Thus, for example, although Mary knows
that Nigeria aggregates to Africa, there is no way to express
that Nigeria is a country, Africa a continent, and that countries
aggregate to continents. (b) No native support to represent
aggregate functions. Most OLAP operations aggregate measure
values along dimensions in a cube using the default aggregate
function defined for the measure, which is not present in
QB. (c) No support for descriptive attributes. In the MD
model, dimension levels are associated with a set of attributes
that describe the characteristics of their members. Lack of
descriptive attributes is not only awkward from a user’s point
of view, but also inefficient. For example, if Mary wants to ask
only for applications from Nigeria, she would need to know
the IRI representing Nigeria5.

The QB4OLAP6 vocabulary addresses the drawbacks
above by representing the most common features of the MD
model as shown in [5]. It is currently being used in several
research projects concerning OLAP over RDF data. From
a well-formed MD schema we can again automate most of
the OLAP processing, as done in traditional DW settings.
Importantly, QB4OLAP has been devised to operate over
observations published in QB without the need of rewriting
them. Typically, observations are the largest part of the data,
while dimensions are usually orders of magnitude smaller.

A key difference between QB and QB4OLAP is that,
in the latter, facts represent relationships between dimen-
sion levels and fact instances (observations) that map level
members to measure values. The dimension levels are rep-
resented in the same way as dimensions, i.e., as compo-
nent properties, and they can be linked to the DSD via
the qb4o:level property. Similarly, aggregate functions
are also component properties that are linked to the DSD

5Some data sets include a Label, although there is no guarantee about this.
6http://purl.org/qb4olap/cubes

via the qb4o:aggregateFunction property associating
measures with aggregate functions. Moreover, QB4OLAP de-
fines the qb4o:cardinality property that represents the
cardinality of the relationship between a fact and a dimension
level. Finally, level attributes can be linked to a dimension
level via the qb4o:hasAttribute property. Below, we
show the cube structure of the Eurostat data set, represented
in QB4OLAP.

schema:migr asyappctzmQB4O rdf:type qb:DataStructureDefinition;
qb:component [qb4o:level sdmx−dimension:refPeriod ;

qb4o:cardinality qb4o:ManyToOne];
qb:component [qb4o:level property:citizen ;

qb4o:cardinality qb4o:ManyToOne] ;
...
qb:component [qb:measure sdmx−measure:obsValue;

qb4o:aggregateFunction qb4o:sum] ;

Furthermore, we also show a portion of the structure of the
Citizenship dimension, discovered by the tool that we present
later. We show the definition of the dimension, the dimension
levels (as part of the hierarchies), and hierarchy steps that
represent roll-up relationship between levels. We point the
interested reader to the QB4OLAP project’s wiki7 for details.

schema:citizenshipDim a qb:DimensionProperty ;
qb4o:hasHierarchy schema:citizenshipGeoHier,

schema:citizenshipGeoHier a qb4o:Hierarchy ;
qb4o:inDimension schema:citizenshipDim ;
qb4o:hasLevel property:citizen, schema:continent, schema:citAll .

:ih45 a qb4o:HierarchyStep ;
qb4o:inHierarchy schema:citizenshipGeoHier ; qb4o:ChildLevel property:citizen ;
qb4o:parentLevel schema:continent ; qb4o:pcCardinality qb4o:ManyToOne .

III. QB2OLAP OVERVIEW

QB2OLAP is organized in three main modules, Enrichment,
Exploration, and Querying, as illustrated in Figure 1. By using
the Enrichment module, the user generates the QB4OLAP
graph. Then, this semantics is exploited by the Exploration
module enabling the user to explore the QB4OLAP schema
and by the Querying module enabling OLAP analysis. The
schema and level instance enrichment triples are loaded into
a local SPARQL endpoint. All modules provide graphical
interfaces. QB2OLAP automatically generates and triggers the
necessary SPARQL queries and handles the result triples. The
Querying module also gives the possibility to manually formu-
late SPARQL queries. Next, modules’ details are explained.

Fig. 1. QB2OLAP Architecture

A. Enrichment module

The enrichment of the QB data set is a labor-intensive
task that is semi-automatized in the Enrichment module [6].
The user is released of the burden to manually explore the
data set, define dimension levels and hierarchies, and generate
the corresponding QB4OLAP triples. Instead, the Enrichment
module triggers the queries, performs the necessary processing,

7https://github.com/lorenae/qb4olap/wiki

makes suggestions for the user, and based on her choices
enriches the schema. Thus, even an ordinary OLAP user can
perform the enrichment on her own. The workflow of the
Enrichment module is presented in Figure 2.

Fig. 2. The Enrichment Module Workflow

The first phase is the Redefinition Phase where the
input schema of the QB graph is adjusted according to
the QB4OLAP semantics, i.e., dimensions are redefined as
levels (e.g., [qb:dimension property:citizen] is
redefined to [qb4o:level property:citizen;

qb4o:cardinality qb4o:ManyToOne]) while
measures are copied and an aggregate function is assigned to
them (e.g., [qb:measure sdmx-measure:obsValue]

to [qb:measure sdmx-measure:obsValue;

qb4o:aggregateFunction qb4o:sum]). Starting
from the levels of this redefined schema, the Enrichment
Phase collects the level instances and their properties. A
query is run for each level instance and the results are
processed to discover the properties that represent functional
dependencies (FD) which are typically used in MD modeling
to automatically discover potential roll-up relationships [7].
Therefore, such properties are automatically suggested to
the user as sound candidates for coarser granularity level(s)
(e.g., schema:continent for property:citizen).
The user then chooses out of the automatically discovered
candidate properties the roll-up relationships of her interest
and by doing so, we drastically prune the search space guided
by the user preferences. The tasks of the Enrichment Phase
are iteratively repeated until the user has added all desired
levels and conformed the dimension hierarchies. When a new
level is added, the dimension hierarchies are automatically
constructed or updated (e.g., a portion of triples related to
the previous levels schema:citizenshipGeoHier

a qb4o:Hierarchy; qb4o:hasLevel

property:citizen, schema:continent) and
the new candidate hierarchy levels for the added level are
again discovered. Finally, once the Enrichment Phase is over,
the RDF triples are automatically generated for both the
schema and schema instances in the Triple Generation Phase.
The generated triples are then exploited in the Exploration and
Querying modules. Additionally, the Enrichment module also
enables configuring fine-tuning parameters for the aggregate
function, level detection, and triple generation. In the Linked
Data dynamic context involving external and non-controlled
data sources, the fine-tuning parameters that QB2OLAP offers
are essential to deal with data quality issues, e.g., by searching
for quasi FDs (i.e., an FD with an allowed error threshold).

The Enrichment module is implemented in Java 8. The Jena
2.13.0 library is used to manipulate RDF. QB and QB4OLAP
graphs and the SPARQL endpoint are stored and run on
Virtuoso 7 that is shared with the Exploration and Querying
modules. The module interface is implemented in SWT.

B. Exploration and Querying modules

The Exploration module8 allows to choose a data cube
(represented in QB4OLAP) among a collection of cubes stored
in an endpoint and, in a user-friendly fashion, navigate its
dimension structures and instances. Graphics allow to explore
the dimension instances and group them in many ways (e.g.,
hierarchies, dimensions, etc.).

Fig. 3. The Querying Module Workflow

The Querying module lets the user write QL queries (or
load predefined example queries) in a query editor. Its work-
flow is presented in Figure 3. QL follows the ideas introduced
in the work by Ciferri et al. [8]. Basically, a QL program
is a sequence of operations of the form (ROLLUP | SLICE
| DRILLDOWN)* (DICE)*. Thus, we impose (for simplicity
of processing) that dicing must always be written at the end
of the QL program. In the Query Simplification Phase QL
queries are then automatically simplified to produce better ones
(e.g., the user may have included unnecessary operations, or
written them in a non-optimal ordered sequence). The current
implementation applies the following typical OLAP processing
optimization rules: (a) perform SLICE operations as soon as
possible, to reduce the size of intermediate results; and (b)
group all the ROLLUP and DRILLDOWN operations over the
same dimension, and replace them with a single ROLLUP from
the dimension’s bottom level to the latest level reached by the
sequence of ROLLUP/DRILLDOWN operation(s).

After simplifying and optimizing the QL query, it is
automatically translated into a single SPARQL expression in
the Query Translation Phase as explained next. ROLLUPs
are implemented navigating the roll-up relationships between
members, guided by the dimension hierarchy representation
provided by the QB4OLAP metadata, and aggregations are
performed using GROUP BY clauses. Navigation is performed
through SPARQL graph patterns (corresponding to joins).
Since SLICE removes dimensions, this requires measure values
to be aggregated up to a single value in the dimension being
sliced out. The mechanism for this is the same used as to
compute a ROLLUP. Lastly, a DICE operation is associated
with a condition over measures and/or attribute values, and its
result filters out of cells in the cube that do not satisfy the
condition. We implemented these conditions using SPARQL
FILTER clauses9. This way, the QL query is classified accord-
ing to the existing query patterns and two SPARQL queries are
generated. Both are semantically equivalent and one represents
the direct translation while the other is an alternative query
generated using optimization heuristics thought to deal with

8https://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/explorer
9Details and examples of the translation process can be found in

http://cs.ulb.ac.be/conferences/ebiss2015/files/slides/vaisman ebiss2015.pdf

some of the typical limitations of SPARQL endpoints. Finally,
the user can choose to run either one or both queries and see
the results in the SPARQL Execution Phase. The resulting cube
is computed on-the-fly.

The Exploration and Querying modules are implemented
in JavaScript and run on the Node.js platform. The interface
of both modules is implemented with D3.js.

IV. DEMONSTRATION

In the on-site demonstration, we will show how Mary, our
journalist, can use the three modules of QB2OLAP to do her
work. The following scenarios will be demonstrated.

Enrichment. Starting from the QB data set loaded into the
endpoint, Mary can use the Enrichment module to interactively
retrieve the cube structure and candidate properties pointing
to the possible higher dimension levels. Using the graphical
interface in Figure 4, she is able to add new hierarchy levels
to the cube. The cube structure is visualized as a tree that is
updated after every change. Once all the levels are added, the
triples representing the schema and level instances are loaded
into the endpoint and used by the Exploration and Querying
modules. We will also show that, in the presence of linked
data sets, our tool is able to extract dimensional information
(schema and instances) from other data sets (e.g., DBpedia).

Fig. 4. The Enrichment Example

Exploration and Querying. With the enriched data, Mary
can now explore the cube dimensions, hierarchies, attributes,
etc., through the graphical interface in Figure 5. In the figure,
Mary explores the dimensional cube data by clustering the
instances according to their level value. Nodes represent level
members (e.g., Syria) and edges represent roll-up relationships.

Once explored, Mary can write her own queries in QL
(in the demo we include some predefined queries, which the
audience can modify). For example, she can find the number
of applications submitted by year by citizens from African
countries whose destination is France, a query that could not
be supported by the Eurostat site. The query (already simplified
and rewritten) reads in QL:

PREFIX data: <http://eurostat.linked−statistics.org/data/>;
PREFIX schema: <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#>;
QUERY
$C1 := SLICE (data:migr asyappctzm, schema:asylappDim);
$C2 := ROLLUP ($C1, schema:citizenshipDim,schema:continent);
$C3 := ROLLUP ($C2, schema:timeDim, schema:year);
$C4 := DICE ($C3, (schema:citizenshipDim|schema:continent|

schema:continentName = ”Africa”));
$C5 := DICE ($C4, schema:destinationDim|property:geo|

schema:countryName = ”France”);

Fig. 5. The Exploration Example

A key feature to promote the use of our proposal is
to relieve OLAP users from the need of learning a new
and complex language like SPARQL. QL provides a higher
abstraction level that is more intuitive to typical OLAP users
that only need to write relatively simple QL programs (e.g.,
the above query translates to more than 30 lines of SPARQL)
using OLAP algebra operations. Thus, they have the flexibility
to analyze data cubes on-the-fly, since QB4OLAP provides the
metadata needed to automatically translate QL into SPARQL.
Further, graphical OLAP tools can be developed, and translated
first into a mediator language like QL, and then to SPARQL
(we omit the SPARQL translation here, for space reasons).

REFERENCES

[1] A. Vaisman and E. Zimányi, Data Warehouse Systems: Design and

Implementation. Springer, 2014.

[2] B. Kämpgen and A. Harth, “Transforming statistical linked data for use
in OLAP systems,” in I-SEMANTICS, 2011, pp. 33–40.

[3] A. Abelló et al., “Fusion cubes: Towards self-service business intelli-
gence,” IJDWM, vol. 9, no. 2, pp. 66–88, 2013.

[4] L. Etcheverry and A. Vaisman, “QB4OLAP: A vocabulary for OLAP
cubes on the semantic web,” in COLD, 2012.

[5] L. Etcheverry et al., “Modeling and querying data warehouses on the
semantic web using QB4OLAP,” in DaWaK, 2014, pp. 45–56.

[6] J. Varga et al., “Dimensional enrichment of statistical linked open data,”
In submission, 2015.

[7] O. Romero and A. Abelló, “A framework for multidimensional design
of data warehouses from ontologies,” Data Knowl. Eng., vol. 69, no. 11,
pp. 1138–1157, 2010.

[8] C. Ciferri et al., “Cube algebra: A generic user-centric model and query
language for OLAP cubes,” IJDWM, vol. 9, no. 2, pp. 39–65, 2013.

