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Abstract 

Biogenic compounds are important materials for drug discovery and chemical biology. In this work, we report a 

quasi-biogenic molecule generator (QBMG) to compose virtual quasi-biogenic compound libraries by means of gated 

recurrent unit recurrent neural networks. The library includes stereo-chemical properties, which are crucial features 

of natural products. QMBG can reproduce the property distribution of the underlying training set, while being able 

to generate realistic, novel molecules outside of the training set. Furthermore, these compounds are associated with 

known bioactivities. A focused compound library based on a given chemotype/scaffold can also be generated by this 

approach combining transfer learning technology. This approach can be used to generate virtual compound libraries 

for pharmaceutical lead identification and optimization.
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Introduction
Biogenic compounds are important for medicinal chem-

istry and chemical biology [1]. It was reported that more 

than 50% of marketed drugs were derived from bio-

genic molecules [2]. �e reason is that both biogenic 

compounds and pharmaceutical agents are biologically 

relevant and recognized by organisms [3]. However, it 

requires tremendous efforts to identify and isolate bio-

genic compounds from natural resources [4]. Current 

virtual screening technologies allow us to efficiently 

identify biogenic molecules for pharmaceutical uses [5], 

but, it is getting rare to identify biogenic compounds 

with new scaffolds [6]. Practically, biogenic compounds 

can be probes for pharmaceutical and biological studies 

and, inspire chemists to make quasi-biogenic compounds 

(compounds modified from natural products).

Hence, many experimental approaches have been 

reported to synthesize quasi-biogenic compound 

libraries, such as targeted-oriented synthesis [7, 8], 

diversity-oriented synthesis (DOS) [7, 9, 10], biology-ori-

ented synthesis (BIOS) [11, 12], and functional-oriented 

synthesis (FOS) [13]. Meanwhile, virtual quasi-bio-

genic compound library generation methods were also 

reported, such as Yu reported a recursive atom-based 

compound library enumeration [14]. Based on property 

distribution analyses on the differences between drugs, 

natural products, and combinatorial libraries, Feher and 

Schmidt reported that those natural product-like librar-

ies were more like synthetic compounds rather than 

natural products [15]. �e entirety of the biologically rel-

evant chemical space is largely ignored [1]. �erefore, the 

biological relevant features should be taken into account 

while generating natural product-like libraries.

Recent advances in deep learning technology have 

brought many achievements in small molecule and pep-

tide design. Aspuru-Guzik’s group reported an auto-

mated chemical design using a data-driven continuous 

representation of molecules [16]. Segler and colleagues 

reported a method to generate virtual focused library 

using recurrent neural networks fine-tuned with small 

number of known active compounds [17]. Later, more 

studies were done by combining deep reinforcement 

learning [18], Monte Carlo search [19], de novo peptide 

design method [20], and generative adversarial network 

[21].
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�e main deficits of previous approaches are (1) stereo-

chemistry was not explicitly considered in the generated 

libraries, (2) there was no de novo approach to generate 

focused libraries biased on a specified scaffold/chemo-

type (this is important for lead optimization in medici-

nal chemistry). In the meantime, we are not aware of any 

models that used to construct specific virtual biogenic-

like compounds libraries of the type we envisioned.

In this work, we report a deep recurrent neural net-

works (RNN) [22] with gate recurrent unit (GRU) [23] 

to overcome these deficits, and generate quasi-biogenic 

compound library to explore greater biogenic diversity 

space for medicinal chemistry and chemical biology stud-

ies. By combining transfer learning [24], we can build 

focused compound libraries biased on a specific chemo-

type for lead optimization.

Methods
Biogenic compound structure data

163,000 biogenic compound structures were derived 

from biogenic library of ZINC15 [25]. �ese compounds 

are primary and secondary metabolites. �e chemical 

structure data were converted in canonicalized SMILES 

format [26]. �e chemical structures were filtered by 

removing the molecules containing metal elements, small 

molecules (the number of non-hydrogen atoms less than 

10), and larger molecules (the number of non-hydrogen 

atoms greater than 100). �is process resulted in 153,733 

biogenic structures.

ZINC biogenic-like compound reference

5060 ZINC biogenic-like compounds were collected 

from biogenic-like subset of ZINC12 [27]. �is library 

consisted of synthetic compounds that having Tanimoto 

80% similarity or better with biogenic library.

Active compound reference

�e compounds in ChEMBL23 [28] are used as active 

compound references.

Molecular representation and tokenization

Biogenic molecules have many chiral centers, charges, 

cyclic connection descriptive SMILES notations, which 

are called as tokens in machine learning studies, such 

as @, = , #, etc. Conventionally, each letter in a molecu-

lar SMILES notation was sent to RNNs for training. 

�is process cannot reflect the biogenic features of chi-

ral centers, charges, cyclic connection descriptors. To 

preserve these important features, we train RNNs with 

normal tokens and combined tokens (the SMILES nota-

tions grouped by a pair of square brackets []). With this 

rule, the original SMILES data consisted the vocabulary 

as shown in Fig. 1. Compared to 35 tokens and average 

sequence length of 82.1 ± 34.9 (mean ± SD) with conven-

tional method, this way resulted in 87 tokens and average 

sequence length of 62.4 ± 25.27 in biogenic library.

Word embedding process

In a conventional one-hot encoding approach, each 

molecule is represented by a number of token vectors. 

Fig. 1 Molecular representation and tokenization. The SMILES notations grouped by a pair of square brackets is considered as one token
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All token vectors have the same length (in our case, it 

is 87 as shown in Fig.  1). Each component in a vector 

is set as zero except the one at the token’s index posi-

tion. �is data storage protocol occupies great memory 

space and result in inefficient performance. �erefore, 

we adopt word embedding, which is usually used in 

natural language process [29]. With this method, each 

conventional token vector was compressed into an 

information enriched vector. �us, a token transformed 

from a space with one dimension per word to a contin-

uous vector through unsupervised learning. �is data 

representation can record the “semantic similarity” of 

every token. �is process expedites the convergence of 

a training [30]. In summary, each molecular structure 

in our work is converted in a SMILES string, which is 

then encoded into a one-hot matrix, and then is trans-

formed to a word embedding matrix at the embedding 

layer.

Network architecture

�e modified recurrent neural network structure is 

depicted in Fig. 2a. �e whole model consists of embed-

ding layer, GRU structure and densely connected layer. 

�e embedding layer consists of 64 units, which translate 

every single token from a one-hot vector to a 64-dimen-

sional vector. �is vector is then transferred to GRUs. 

�e GRUs consists 3 layers, in which each layer has 512 

neurons. �e GRU output data to the densely connected 

linear layer with 89 neurons, combining the output sig-

nals with a softmax function. �e number of the neurons 

in densely connected layer is the same as the number of 

the vocabularies. <START> and <END> are additional 

tokens, which mark the starting and ending of a SMILES 

string. For a GRU cell (Fig. 2a), ht is the hidden state and 

h̃t is the candidate hidden state.rt and zt are reset gate and 

update gate. With these gates, the network ‘knows’ how 

to combine the new input with the previously memorized 

data and update the memory. �e details of GRU opera-

tions are described in Additional file 1.

Fig. 2 Network architecture and training procedure. a Unfolded representation of the training model, which contains embedding layer, GRU 

structure, fully-connected linear layer and output layer. The structure of GRU cell is detailed on the right. b Flow-chart for the training procedure 

with a molecule. A vectorized token of the molecule is input as xt in a time step, and the probability of the output to xt+1 as the next token is 

maximized. c The new molecular structure is composed by sequentially cascading the SMILES sub-strings replied by the RNN network



Page 4 of 12Zheng et al. J Cheminform            (2019) 11:5 

Training procedure

Training an RNN for generating SMILES strings is done 

by maximizing the probability of the next token posi-

tioned in the target SMILES string based on the previous 

training steps. At each step, the RNN model produces 

a probability distribution over what the next character 

is likely to be, and the aim is to minimize the loss func-

tion value and maximize the likelihood assigned to the 

expected token. �e parameters θ in the network were 

trained with following loss function J (θ):

Simplified depiction of the training procedure with one 

biogenic molecule has been shown in Fig. 2b.

Sampling procedure

�e model predicts biogenic molecules based upon the 

token probability distributions learned from the training 

set. �e prediction consists of the following steps:

1. a <START> token is sent to the network;

2. the network replies with another token (a SMILES 

sub-string);

3. the new token is sent to the network again to get a 

newer token;

4. repeat (3) till the network replies with <END> token.

�e new molecular structure is composed by sequen-

tially cascading the SMILES sub-strings replied by the 

RNN network.

�e GRU model was implemented using Pytorch 

library [31], and trained with ADAM optimizer [32] 

using a batch size of 128 and 0.001 learning rate. �e 

model was trained until convergence. For each training 

epoch, a sampled set of 512 SMILES strings was gener-

ated to evaluate the validity using RDkit [33].

Validating the predicted compound library

�e following criteria are used to evaluate the compound 

library generated by the RNN model.

(1) Natural product-likeness. Natural product-likeness 

score [34], a Bayesian measure which allows for the 

determination of how molecules are similar to the 

chemical space covered by natural products based 

on atom-center fragment (a kind of fingerprint), 

were implemented to score the generated mole-

cules. Note that we used the version that was pack-

aged into RDkit in 2015.

(2) Physico-chemical properties/descriptors. To visually 

compare the generated library against the biogenic 

J (θ) = −

T∑

t=1

log P(xt |xt−1, . . . , x1)

library (the training set) and ZINC biogenic-like 

library, t-SNE (t-distributed stochastic neighbor 

embedding) maps are calculated with a set of phys-

ico-chemical properties/descriptors (cLogP, MW, 

HDs, HAs, rotatable bonds, number of aromatic 

ring systems, and TPSA) following the method 

reported by Chevillard and Kolb [35]. It is believed 

that biogenic compounds are structurally diverse in 

terms of molecular weight, polarity, hydrophobicity, 

and aromaticity [3, 36, 37].

(3) Ability to reproduce biogenic molecules. �e gen-

erated compound library should be able to repro-

duced already existed biogenic molecular structures 

[17]. To validate the ability to reproduce biogenic 

molecules, a variant five-fold cross-validation 

method is used. �e process consisted of the fol-

lowing steps:

1. the biogenic library was randomly divided into five 

sub-libraries (each sub-library has 30,747 com-

pounds);

2. these sub-libraries were used in a five-fold cross-val-

idation protocol (one sub-library was used as the test 

set; the others were used as the training sets) to vali-

date the RNN model;

3. sampling 153,733 (the same number of compounds 

in the biogenic library) unique compounds excluding 

the repeated ones in the training sets each fold after 

training;

4. comparing the generated library against the test 

library to identify overlapped molecules, and calcu-

late the ratio of reproduced compounds;

5. the five-fold cross-validation process was repeated 

for three times.

(4) Scaffold validation. To validate the new scaffold 

generation capacity of the RNN model, the gener-

ated, training and test libraries were analyzed using 

scaffold-based classification (SCA) method [38]. 

�e Tanimoto similarities of the scaffolds derived 

from the generated library and training library were 

calculated with standard RDKit similarity based on 

ECFP6 molecular fingerprints [39]. �ese similari-

ties were used to compare the generated new scaf-

folds against the biogenic scaffolds.

Transfer learning for chemotype-biased library generation

It is important to generate a chemotype-biased library for 

lead optimization if a privileged scaffold is known. �e 

transfer learning process consists of the following steps:

(1) selecting focused compound library (FCL) from 

the biogenic library. All compounds in FCL have a 

common scaffold/chemotype;
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(2) re-trained the RNN model with FCL;

(3) predict a chemotype-biased library.

Results and discussion
�e ZINC biogenic library with 153,733 compounds 

were used to train an RNN model. Along with the num-

ber of the epochs grew, the model was converging (See 

Additional file  2 for learning curves). After training for 

50 epochs, the model can generate an average of 97% 

valid SMILES strings. 250,000 valid and unique SMILES 

strings were generated as the predicted library. After 

removing compounds that were found in the training set 

from the predicted library, we got 194,489 compounds. 

�e average number of tokens for each compound was 

59.4 ± 23.1 (similar to the one for a compound in the 

biogenic library). 153,733 (the same number of the com-

pounds in the training library) compounds were selected 

from the predicted library to study their natural prod-

uct-likeness and physico-chemical properties/descriptor 

profiles.

Natural product-likeness of the predicted library

�e natural product-likenesses of ZINC biogenic library 

(ZBL), ZINC biogenic-like library (ZLL), and our pre-

dicted compound library (PCL) were compared as shown 

in Fig.  3. �e average natural product-likeness scores 

of PCL and ZBL were 1.09 ± 1.46 (mean ± SD) and 

1.22 ± 1.56, indicating that they were both natural prod-

uct-like, and similar to each other. �e average natural 

product-likeness of a ZLL compound was − 1.25 ± 0.60, 

indicating that ZLL compounds were different from ZBL 

compounds, and compounds only partially overlapped 

the biogenic chemical diversity space.

�e chemical structures of top-twelve PCL compounds 

and their natural product-likeness scores are depicted in 

Fig.  4. �e important feature of our method is that our 

predicted quasi-biogenic compound library includes chi-

ral molecules, which are important characteristics in nat-

ural products. �e previous reported methods were not 

able to generate chiral isomers [14, 17–19]. Top-200 PCL 

compounds and their natural product-likeness scores 

were listed in Additional file 3.

The physico-chemical properties/descriptors pro�le 

of the predicted library

A t-SNE plot was derived based on physico-chemical 

properties/descriptors (cLogP, MW, HDs, HAs, rotatable 

bonds, number of aromatic ring systems, and TPSA) to 

profile compound libraries, and compare their chemical 

diversity space occupations (Fig. 5). Again, PCL and ZBL 

occupied almost the same chemical diversity space. ZLL, 

however, only partially occupies the chemical diversity 

space occupied by PCL and ZBL. �e plot also indicated 

that ZLL were not structurally as diverse as PCL and 

ZBL.

Ability to reproduce biogenic molecules

Five-fold cross validation experiments indicated that 

the RNN model was mature after being trained for 20 

epochs. �e criterion of the training end was determined 

according to the change of the loss values during train-

ing. At this stage, quasi-biogenic molecules were sampled 

for studying the ability to reproduce already existed bio-

genic molecules. �e results were represented in Table 1. 

Five-fold cross validation experiments were repeated for 

three times. �e results demonstrated that the model can 

predict more than 25% compounds existing in the test 

library (TL). �e RNN was robust because there were 

little fluctuations in three validation experiments as indi-

cated at the last column of Table 1. It is worth noting that 

the RPP would slightly grow with longer training, even 

though the loss values were stable. To prevent overfit-

ting of the model, we chose a moderate stage (20 epochs) 

for later experiments. �e Epochs-Loss and Epochs-RPP 

curves were shown in Additional file 2.

At the first trial of the first five-fold cross validation 

experiment, we also generated a series of libraries with 

increased sizes (the 1, 5, 10, 25, 50 and 100 times of TL 

size, which is 30,747). As shown in Fig. 6, RPP increases 

exponentially when the PCL size grows to 30 × TL. And, 

RPP trends to be mature when PCL size increases fur-

ther, and ends around 60% ~ 70%.

Fig. 3 PCL is quasi-biogenic and ZBL is biogenic, and they are similar 

to each other. ZLL is different from ZBL, and only partially overlapping 

the biogenic chemical diversity space
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Several chemical structures reproduced by the RNN 

model from TL are listed in Fig. 7. More such compounds 

can be found in Additional file 4.

Sca�old diversity and novelty of the predicted library

At the first trial of the first five-fold cross validation 

experiment, the scaffolds of compound libraries TRL 

(122,896 compounds), TL (30,747 compounds), and PCL 

(153,733 compounds) were analyzed with scaffold-based 

classification approach (SCA). �e results are depicted in 

Fig. 8. 48,444 new scaffolds are derived from PCL, which 

are 2 times more than the total scaffolds (23,806) derived 

from TRL and TL. 463 scaffolds are exclusively derived 

from both PCL and TL, indicating that the RNN model 

can generate new scaffolds, but predict repeated scaf-

folds in TL, which are outside the training library (TRL). 

To summarize, the RNN model is capable of generating 

diversified and novel compounds.

Fig. 4 Top-twelve PCL compounds and their natural product-likeness scores

Fig. 5 Two-dimensional t-distributed stochastic neighbor 

embedding (t-SNE) plot for PCL, ZBL, and ZLL. PCL and ZBL occupy 

almost the same chemical diversity space. ZLL partially occupies the 

chemical diversity space occupied by PCL and ZBL

Table 1 The reproducibility studies with �ve-fold cross validation experiments

ZBL ZINC biogenic library; TRL training library; TL test library; PCL predicted compound library; RP repeated molecules existing in TL; RPP percent of repeated 

molecules (RP/TL)

Exp. no. ZBL TRL TL PCL RP RPP (%)

EXP1 153,733 122,896 30,747 153,733 7935 ± 267 25.81 ± 0.87

EXP2 153,733 122,896 30,747 153,733 7961 ± 341 25.89 ± 1.10

EXP3 153,733 122,896 30,747 153,733 7800 ± 120 25.37 ± 0.39
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Another way to measure the structural diversity and 

novelty of PCL is to check the distribution of the simi-

larity of PCL and TRL. For each scaffold in PCL, we 

selected the most similar scaffold in TRL through calcu-

lating their Tanimoto similarity. �e PCL-TRL similarity 

distribution was depicted in Fig. 9a, which demonstrates 

an unbalanced Gaussian distribution biased to higher 

similarity scores. �e similarity values range between 50 

and 100%. �is implied that PCL scaffolds were similar 

to TRL scaffolds with variations in chemical diversity. We 

also calculated the nearest-neighbor Tanimoto similar-

ity distributions of the scaffolds of PCL and TRL, which 

were depicted in Fig. 9b, c. �e distributions of Tanimoto 

similarity indicated that the chemical space of PCL was 

diverse than TRL. �is analysis further proved that the 

RNN model can generate diversified and novel quasi-bio-

genic compounds.

Some similar compound scaffold pairs between PCL 

and TRL were listed in Table 2.

Potential bioactivities of the predicted library

For each PCL containing 150  K compounds, there 

were about 1% (1510 ± 221, mean ± SD) existed in the 

ChEMBL library, which are associated with bioactivities. 

Among those generated bioactive compounds, about 25% 

compound (371 ± 71) were found in the corresponding 

test libraries. Top-six such compounds and their activi-

ties were listed in Table 3.

Transfer learning for chemotype-biased library generation

Coumarin scaffold broadly exists in Rutaceae and Umbel-

liferae families. Its derivatives have many bioactivities 

such as activities of anticancer and anti-inflammatory 

[40–42]. �e previously trained RNN model was re-

trained with 2237 biogenic coumarin derivatives from 

ZBL. �e model predicted 50  K compounds at 20, 50, 

or 100 epochs, respectively. In the three batches of the 

50  K compounds, the compounds existing in TRL were 

excluded. 14,192 coumarin derivatives from ChEMBL23 

database were extracted as bioactive reference library 

Fig. 6 Reproducing known biogenic molecules in TL (30747) with 

different scale of generated set (1, 5, 10, 25, 50 and 100 times to TL)

Fig. 7 Chemical structures reproduced by the RNN model from TL

Fig. 8 Scaffold diversity and novelty of the predicted compound 

library
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(BRL), in which the compounds duplicated in ZBL were 

removed. As a comparison, we also trained biogenic cou-

marin derivatives without transfer learning and followed 

the same processes described above. �e scaffolds of each 

generated library were calculated with SCA for analyzing 

the diversity of chemical space.

�e results of the transfer learning for chemotype-

biased library generation were listed in Table  4. Com-

paring with the pre-trained RNN model, the number 

of coumarin derivatives is significantly increased (from 

662 to more than 32  K). Besides, results demonstrated 

that the model without transfer learning generated com-

pounds libraries with limited structural diversity and low 

correlation of bioactivity, though it can generate more 

coumarin derivatives. Also, when the number of transfer 

training epochs increased, the RNN model with transfer 

learning generated more coumarin-biased compounds. 

Table  4 also indicated that the number of coumarin-

biased compounds trends mature along with the transfer 

epochs. �e number of epochs should be limited to avoid 

overfitting.

�e top-six predicted coumarin derivatives that exist-

ing in BRL and their bioactivities were listed in Table 5.

Conclusions
In this work, for the first time, the gated recurrent unit 

deep neural network learning approach is applied in 

quasi-biogenic compound generation. We have also 

shown that a compound library biased on a specific 

chemotype/scaffold can be generated by re-training the 

Fig. 9 The nearest-neighbor scaffold similarity distributions of a PCL-TRL, b PCL–PCL and c TRL–TRL
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RNN model through transfer learning with a focused 

training library.

In summary, our method is able to (1) generate libraries 

including stereochemistry, (2) significantly repeat com-

pounds containing known bioactive compounds outside 

of the training sets, (3) create a de novo approach to gen-

erate focused libraries biased on a specified scaffold.

Our RNN model predicts biogenic compounds with a 

number of epochs depending on the size of the training 

data set. For a training set of about 150  K molecules, 

the number of training epochs can be less than 50, the 

optimized epochs can be figured out by monitoring the 

loss values and the capacity of generating new quasi-

biogenic scaffolds. For a predicted biogenic compound, 

the average number of SMILES tokens is about 60 (sim-

ilar to the one for a compound in the training set).

Table 2 Six similar compound sca�old pairs between TRL and PCL

No. TRL Sca�old PCL Sca�old Tanimoto 
similarity

1 0.94

2 0.87

3 0.82

4 0.80

5 0.77

6 0.71
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Table 3 The generated six most bioactive molecules. 1, 2 and 3 existed in test set

No. Structure ChEMBL ID IC50(nM) Targets

1 CHEMBL65 0.004–1.4 P388; Plasmodium falciparum;
CCRF-CEM; Jurkat;

2 CHEMBL489140 2–10 PBMC

3 CHEMBL2420226 ~ 7 PBMC

4 CHEMBL815 2.25–7 Prostanoid FP receptor

5 CHEMBL2042018 5.2–6.2 Neurokinin 1 receptor

6 CHEMBL226036 9.2 Human herpesvirus 4

Table 4 Results of transfer learning for chemotype-biased library generation

TRL training library; BRL bioactive reference library; PCL predicted compound library; RP number of compounds existing both PCL and BRL

Model type Epoch TRL BRL PCL Coumarin 
derivatives

PCL Sca�old RP

Pre-trained 50 153,733(ZBL) 14,192 50,000 662 18,446 19

Direct-GRU 20 2237 14,192 50,000 37,647 6828 0

50 2237 14,192 50,000 43,402 7642 0

100 2237 14,192 50,000 43,094 7231 0

Transfer-GRU 20 2237 14,192 50,000 32,025 13,543 381

50 2237 14,192 50,000 35,890 14,251 391

100 2237 14,192 50,000 35,972 13,892 384
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QBMG can be used to generate virtual biogenic com-

pound libraries for pharmaceutical lead identification, 

and design focused library for lead optimization.

Additional �les

Additional �le 1. GRU operations.

Additional �le 2. Learning curves of biogenic library training.

Additional �le 3. Top-200 PCL compounds and their natural product-

likeness scores.

Additional �le 4. Compounds reproduced by the RNN model from test 

library.
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5 CHEMBL465326 1.4 Liver microsomes

6 CHEMBL52229 3.1 P388
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