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Abstract: With the growing use of quantum-dot cellular automata (QCA) nanotechnology, digital
circuits designed at the Nanoscale have a number of advantages over CMOS devices, including
the lower utilization of power, increased processing speed of the circuit, and higher density. There
are several flip flop designs proposed in the literature with their realization in the QCA technology.
However, the majority of these designs suffer from large cell counts, large area utilization, and latency,
which leads to the high cost of the circuits. To address this, this work performed a literature survey
of the D flip flop (DFF) designs and complex sequential circuits that can be designed from it. A
new design of D flip flop was proposed in this work and to assess the performance of the proposed
QCA design, an in-depth comparison with existing designs was performed. Further, sequential
circuits such as parallel-in-parallel-out (PIPO) and serial-in-parallel-out (SIPO) shift registers were
designed using the flip flop design that was put forward. A comprehensive evaluation of the energy
dissipation of all presented fundamental flip-flop circuits and other sequential circuits was also
performed using the QCAPro tool, and their energy dissipation maps were also obtained. The
suggested designs showed lower power dissipation and were cost-efficient, making them suitable for
designing higher-power circuits.

Keywords: quantum-dot cellular automata; shift register; flip flop; quantum dots; energy dissipation;
cost function

1. Introduction

CMOS technology may be severely limited by the small geometry device character-
istics, which can severely restrict transistor operation. Sub-threshold conduction, DIBL,
punch-through effect, and hot carrier channel effect are some of the small geometry con-
ditions that affect the transistor performance and can damage the device permanently.
Interconnect damage caused by electromigration, electrostatic discharge, and electrical over-
strain are also considerable apprehensions for the reliability of small geometry devices [1,2].
Researchers are moving towards substitute technologies and QCA nanotechnology is one
of the promising technologies in this area [3,4]. The fundamental principle of the exchange
of information or the information flow in QCA technology is quantum mechanical tun-
neling [5–9]. There is a repulsive effect between the electrons and is of columbic nature.
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This provides the foundation for the information flow in QCA circuits. The QCA paradigm
has some basic building blocks that are incorporated in every circuit designed. A cell in
QCA is such a building block that resides quantum dots at four positions incorporating
two itinerant electrons [10–16]. The quantum dots result in the formation of four tunnel
junctions among them, which allow the easy passage of electrons among them. These
electrons try to occupy the antipodal sites due to the mutual columbic repulsion. A cell in
QCA is defined by its polarization state, and two polarization states exist that define either
‘0′ logic or ‘1′ logic [17–20]. A basic cell in QCA and how it occupies its two polarization
states is depicted in Figure 1. This cell in QCA helps in forming other basic structures like a
basic QCA wire. The first cell acts like a driver cell which affects the polarization of the cell
next to it and so on. Cells adjust electrons so that there is minimum columbic repulsion
between them, and information is transmitted down the QCA wire in this way [21–24].
Figure 2a,b show the two types of QCA wires i.e., the 90◦ wire and the 45◦ wire, respectively.
From a 45◦ wire, the complement and uncomplimentary values of a signal can both be
obtained. A majority voter gate and an inverter gate are two important components in the
design of the circuits in QCA. These are the basic blocks for building circuits in QCA. A
majority voter gate with three inputs in QCA is presented in Figure 3 [23,25,26].
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In QCA, clocking plays a substantial part in the proper working of the circuits. It is
responsible for the control of data flow in a circuit. In addition to this, it acts as a supply
and delivers power to the cells [6,10,14]. The clock is applied in four zones to a circuit in



Electronics 2022, 11, 3237 3 of 19

QCA. Each of these zones is represented by a different color. Green is for clock 0, clock 1 is
represented by magenta, clock 2 by blue, and clock 3 is represented by white. Each clock
zone has four distinct phases, i.e., switch, hold, release, and relax. Figure 4 depicts these
different clocking zones in QCA [1,26].
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The remaining paper is organized as follows: Section 2 presents the literature review of
D Flip Flop designs and shift registers highlighting their drawbacks. Section 3 presents the
proposed design of the D flip flop along with its QCA implementation. Section 4 presents
the proposed shift register designs along with their QCA implementation followed by the
energy dissipation analysis of all designs in Section 5. Section 6 presents the performance
comparison of all designs followed by conclusion in Section 7.

2. Literature Review

A flip flop is a sequential circuit that has output dependency on its present input
and the past output. It is a memory unit that has the capability of storing 1 bit of binary
information [6]. For the realization of more complex sequential circuits, flip flops and
memory cells act as the characteristic building blocks. This section presents the various
D flip flop designs existing in the literature. These designs are discussed in [28–31]. The
drawbacks of these designs were highlighted, and a performance comparison was drawn
based on the various performance parameters of QCA. The design discussed in [28] used
59 cells with an area of 0.075 µm2. It showed a delay of 1.75. The design proposed in [29]
used 56 cells and had latency of 2.5. Hence the cell count, as well as the latency for this
design, were large along with the utilization of more area, which increased overall quantum
cost. The D flip flop design proposed in [30] utilized 48 QCA cells but showed a lower
latency equal to 0.75. Their design is shown in Figure 5. Further, a four-bit PIPO shift
register was designed using this D flip flop design that consisted of 260 cells in its QCA
design and showed a latency equal to 1. This shift register design is shown in Figure 6.
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The design proposed in [31] used 44 cells and showed the latency of 1. The design
discussed in [13] used 54 cells in its QCA design and increased delay equal to 1.25. This
used a larger cell area and a larger total area along with the increase in total quantum
cost. The design proposed in [19] utilized 24 cells in its QCA design. It occupied a cell
area of about 0.007776 µm2 and showed latency equal to four clock phases, i.e., one clock
cycle. Further, a four-bit shift register was designed using the presented flip flop design. It
utilized 136 cells in QCA design utilizing a total area of about 0.454 µm2. The latency for
this design was 1, and the quantum cost was 0.454.

From the broad literature review of on flip flops designed in QCA and the realization of
other more complex sequential circuits using those designs, it is found that there is a prerequisite
for optimized designs of the shift register and other sequential circuits in QCA nanotechnology.

3. Proposed QCA Design of D Flip Flop

Figure 7 shows the logic diagram of proposed design 1 of the D flip flop. This design
follows the characteristic equation given as

Qn = (D.CLK) + (Qn−1.CLK′) (1)
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From Equation (1), it is observed that when clock CLK is 1, the output of the flip flop
will be equal to the value of input D, and when clock CLK is 0, the output will not change
and will be equal to the previous state Qn−1. The proposed design of DFF utilizes 21 cells in
QCA implementation and occupies a total area of about 0.04 µm2. It has a latency of 1 and
a cell area of 0.0068 µm2. It responds to the positive level of the input clock signal C and
implementation of this design in QCA along with its simulated waveform are presented in
Figures 8 and 9, respectively. The output Q follows input D with a delay of 1. When clock
C is 1, the input sequence is 01, and therefore, output is also 01 for that duration. Then, the
output retains its previous value when the clock is 0. Further, when the next clock cycle
appears, output again follows the input. The proposed flip flop was designed using the
QCA Designer tool [32].
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4. Proposed Shift Register Designs

Flip flops and registers form the essential constituent. Many of the digital circuits
include special purpose processors and the design of memory chips. DFF and shift registers
can further be used for designing counters. In this work, new designs for different types of
registers using the proposed DFF were proposed.

4.1. PIPO Designs

When the inputs are applied in a parallel manner to the register and outputs are
obtained in a parallel manner, the register is called a parallel-input-parallel-output shift
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register. The block diagram of a simple two-bit PIPO formed using three D flip flops is
shown in Figure 10. It can be seen that all inputs enter the respective flip flops in a parallel
manner and that all the outputs are obtained parallel too.
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The two-bit PIPO shift register was constructed using two proposed DFFs. The proposed
DFF design was used here. It utilized 55 cells in its QCA design. The two parallel inputs
were D1 and D2 for stage 1 and stage 2, respectively. CLK is the clock signal applied to the
circuit. Q1 and Q2 were two parallel outputs from stages 1 and 2, respectively. Each stage
had a latency of 1 because the QCA clock zone changes four phases from respective input
to output with a delay of 0.25 for each zone. Figure 11 shows the two-bit PIPO shift register
design as employed in QCA, and Figure 12 shows its simulation graph. It can be seen that
when the positive level of the clock appears, the outputs start to follow their respective inputs
with a delay of 1 for each stage. For the first clock, the input D1 is 0011, and it can be seen that
output Q1 reflects the same sequence 01 with the delay. The second input D2 is 0101 for this
duration, and output Q2 reflects the same sequence with the delay of 1.
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The four-bit PIPO shift register is devised with the use of four proposed DFF. It utilizes
114 cells in its QCA implementation. The four parallel inputs to the four stages are D1, D2,
D3, and D4. Q1, Q2, Q3, and Q4 are the respective parallel outputs from each of these stages.
The latency for each stage is 1. Figures 13 and 14 show the four-bit PIPO shift register
design as employed in QCA and its simulation graph, respectively.

The performance parameters of the proposed two-bit PIPO and four-bit PIPO shift
registers are given in Table 1. The PIPO designs are effectual in terms of fewer total cells
utilized in the design, the area occupied by the cells, total area, cost, and latency.
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4.2. SIPO Designs

When the input is applied serially and the output is obtained in a parallel manner,
the shift register is termed as serial-input-parallel-output. Figure 15 is the block diagram
representation of a four-bit SIPO shift register. It can be seen that all the DFF are joined in a
cascade manner where serial input is entered to the first DFF at the left and then the output
of one connects to the input of the DFF following it. Since the same CLK pulse is applied to
each of the DFF, the design is synchronous, and the output of each DFF is occupied in a
parallel manner.
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Table 1. Performance parameters of proposed PIPO shift registers.

Parameter 2-bit 4-bit

Cell count 55 114

Cell Area (µm2) 0.01782 0.0369

Total Area (µm2) 0.0459 0.0957

Latency 1 1

QCA Cost 0.0459 0.0957

The two-bit SIPO shift register is designed with the proposed design of DFF. It utilizes
73 cells in its QCA design. D is the serial input applied to the flip flop of the first stage.
Q1 is the first stage output, which connects to the input of the second stage of the SIPO
shift register. Q2 is the stage 2 output. The latency for stage 1 is 1 as the QCA clock zone
undergoes four changes from input D to output Q1. These changes are clock 1 shown in
magenta to clock 2 shown in blue and to clock 3 shown in white. The clock zone undergoes
4 changes from Q1 to output Q2, making a total of 8 changes in clock zones from serial
input D to output Q2 with each change giving rise to a delay of 0.25. Therefore, the delay
for the second stage is 2. Figure 16 is the implementation of the two-bit SIPO shift register
in QCA, and Figure 17 shows the simulation graph for this shift register. When the first
clock pulse appears, D is 0; therefore, Q1 follows the serial input and remains 0 until the
next clock pulse appears. It can be seen from the simulation graph that output appears
after a delay of 1 in Q1. Then, at the second clock pulse, Q2 follows the input going to it
through Q1, i.e., becomes 0 with the delay of 2, and at the same time Q1 goes from 0 to
1 because serial input D is 1 and has the same value until the next clock pulse appears.
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This process continues, and the input sequence of 0101 appears at the parallel outputs as it
keeps shifting with each clock pulse.
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The three-bit SIPO shift register is designed with three proposed DFF forming three
stages. It utilizes 133 cells in its QCA design. The latency is 1, 2, and 4 for stage 1, stage 2,
and stage 3, respectively. Serial input D is coupled to the input of the first stage. Q1, Q2,
and Q3 are parallel outputs. Q1 is connected to the second stage input, and Q2 is connected
to the third stage input. Figure 18 is the three-bit SIPO shift register design as implemented
in QCA followed by its simulation graph in Figure 19.

Figure 20 shows the QCA implementation of four-bit SIPO shift register. Four proposed
DFF are used to design this four-bit SIPO shift register. It utilizes 199 cells in its QCA design.
D is the serial input that connects to the input of DFF in the first stage. Q1, Q2, Q3, and
Q4 are the parallel outputs of four stages. Output Q1 of the first stage has a connection to
the input of the second stage, output Q2 has a connection made with the input of the third
stage, and output Q3 has a connection to the input of the fourth stage. The delay is 1, 2, 4,
and 6 for stages 1, 2, 3, and 4, respectively. Figure 21 shows the simulation graph of the
four-bit SIPO shift register. It can be seen from the waveform that when the first clock pulse
appears, serial input D is 0; therefore, output Q1 follows the input and attains the value
of 0 after the delay of 1. It remains at the same value until the next clock pulse appears,
and then input D is 1; therefore, Q1 goes from 0 to 1. At the second clock pulse, the first
bit, 0, is shifted to stage 2 and is shown in the graph after the delay of 2. It remains at the
same value until the third clock pulse appears and then follows the next value of Q1, i.e.,
1. Similarly, bit 0 shifts to stages 3 and 4 at clock pulses 3 and 4. While the first bits keep
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shifting from stage 1 to 4, Q1 goes from 1 to 0 and then 1 at every clock pulse as the serial
input D appears in the same manner.

The performance parameters for the anticipated 2-bit, 2-bit, and 4-bit SIPO shift
registers are given in Table 2. These SIPO shift registers are quite efficient in terms of
various QCA performance constraints such as number of QCA cells employed in the
design, cell area utilization, total area utilized, and cost.
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Table 2. Performance parameters of SIPO shift registers.

Parameter 2-bit SIPO 3-bit SIPO 4-bit SIPO

Cell Count 73 133 199

Cell Area (µm2) 0.0236 0.0431 0.0645

Total Area (µm2) 0.0606 0.1138 0.1885

Latency 2 4 6

QCA Cost 0.2424 1.8208 6.786
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ous in QCA circuit design, QCAPro, a probabilistic modelling tool [33], was used. This 
tool uses the fast approximation technique. The tool was used to evaluate the three ener-
gies, i.e., the average leakage energy, the average switching energy, as well as the total 
leakage energy. The analysis was performed at three different tunneling energy levels, 0.5 
Ek, 1 Ek, and 1.5 Ek at T = 2K, which is the default operating temperature selected for the 
energy dissipation analysis of the proposed designs [34–36]. The thermal maps for the 
proposed DFF design at all tunnelling levels, i.e., 0.5EK, 1.0 EK, and 1.5 EK, are shown in 
Figure 22. The thermal maps for the proposed DFF based 2-bit PIPO shift register at all 
tunnelling levels, i.e., 0.5 EK, 1.0 EK, and 1.5 EK are shown in Figure 23 and for the DFF 
based four-bit PIPO shift register are shown in Figure 24. These maps show that cells in 
dark dissipate more energy than cells lightly mapped. Additionally, these maps can be 
used to optimize designs to minimize the number of dark cells, thereby reducing overall 
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5. Energy Dissipation Analysis

For the purpose of estimation of cells that cause major error i.e., exceedingly erroneous
in QCA circuit design, QCAPro, a probabilistic modelling tool [33], was used. This tool
uses the fast approximation technique. The tool was used to evaluate the three energies,
i.e., the average leakage energy, the average switching energy, as well as the total leakage
energy. The analysis was performed at three different tunneling energy levels, 0.5 Ek, 1 Ek,
and 1.5 Ek at T = 2K, which is the default operating temperature selected for the energy
dissipation analysis of the proposed designs [34–36]. The thermal maps for the proposed
DFF design at all tunnelling levels, i.e., 0.5EK, 1.0 EK, and 1.5 EK, are shown in Figure 22.
The thermal maps for the proposed DFF based 2-bit PIPO shift register at all tunnelling
levels, i.e., 0.5 EK, 1.0 EK, and 1.5 EK are shown in Figure 23 and for the DFF based four-bit
PIPO shift register are shown in Figure 24. These maps show that cells in dark dissipate
more energy than cells lightly mapped. Additionally, these maps can be used to optimize
designs to minimize the number of dark cells, thereby reducing overall power dissipation.
Tables 3–5 show the energies dissipated by proposed DFF, two-bit PIPO, and four-bit PIPO
shift registers, respectively.

Table 3. Values of energy dissipation for proposed DFF design at different γ-factor levels.

Type of Energy
Dissipation in (meV)

γ-Factor Level

0.5 Ek 1.0 Ek 1.5 Ek

Average Leakage 7.20 19.96 34.34

Average Switching 24.23 20.49 17.18

Total 31.43 40.45 51.52
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Table 4. Values of energy dissipation for proposed 2-bit PIPO design at different γ-factor levels.

Type of Energy
Dissipation in (meV)

γ-Factor Level

0.5 Ek 1.0 Ek 1.5 Ek

Average Leakage 19.36 54.51 94.11

Average Switching 61.39 51.91 43.40

Total 80.75 106.42 137.51

Table 5. Values of energy dissipation for proposed 4-bit PIPO design.

Types of Energy
Dissipated in (meV)

γ-Factor Level

0.5 Ek 1.0 Ek 1.5 Ek

Average Leakage 41.06 115.60 199.52

Average Switching 125.08 105.57 88.10

Total 166.14 221.17 287.62

In addition to this, the energy dissipation of two-bit SIPO, four-bit SIPO and other QCA
designs was analyzed using the QCADesigner-E tool [36]. It approximates the dissipated
energy of the circuits designed in QCA according to the method presented in [34]. Ebath_total
is estimated as the sum of all “bath” of energies (Ebath) for every cycle of clock pulse by
each cell in the design and it gives the overall value of energy dissipated in total. Eclk
is calculated as the sum of two energies, i.e., the transfer of energy within the cells of
the circuit and the clock which is separated by each clock cycle. 1.16 × 10−2 eV is the
energy dissipated by proposed DFF in total with an error of about ±1.34 × 10−3 eV and
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per cycle average energy dissipation is 1.05 × 10−3 eV for this circuit. There is an error of
±1.22 × 10−3 eV in the average energy dissipation per cycle.
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1.77× 10−2 eV is the approximate value of energy dissipated by the proposed 2-bit PIPO
shift register in total with an error of about±1.75× 10−3 eV. Additionally, per cycle average
energy dissipation is 1.61× 10−3 eV with an error of±1.59× 10−4 eV. These energy values are
calculated from the energy dissipation for the whole circuit. With an error of±3.93 × 10−3 eV,
the proposed 4-bit PIPO shift register design dissipates energy 3.96 × 10−2 eV in total, and
3.60 × 10−3 eV on average, with a deviation of ±3.57 × 10−4 eV per cycle.

With an error of ±2.10× 10−3 eV, the proposed 2-bit SIPO shift register design dis-
sipates energy 2.32 × 10−2 eV in total, and 2.11 × 10−3 eV on average, with an error of
±1.91 × 10−4 eV per cycle. With an error of ±3.52 × 10−3 eV, the proposed 3-bit SIPO
shift register circuit dissipates an energy of 3.97 × 10−2 eV in total, and per cycle en-
ergy dissipation of 3.61 × 10−3 eV on average, with an error of ±3.20 × 10−4 eV. Energy
values are calculated from the energy dissipation for the whole configuration. With an
error of ±4.13 × 10−3 eV, the proposed design of 4-bit SIPO shift register dissipates to-
tal of 5.02 × 10−2 eV energy and with an error of ±3.76 × 10−4 eV this circuit dissipates
4.56 × 10−3 eV energy on average per cycle.
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PIPO shift register in total with an error of about ±1.75 × 10−3 eV. Additionally, per cycle 
average energy dissipation is 1.61 × 10−3 eV with an error of ±1.59 × 10−4 eV. These energy 
values are calculated from the energy dissipation for the whole circuit. With an error of 
±3.93 × 10−3 eV, the proposed 4-bit PIPO shift register design dissipates energy 3.96 × 10−2 
eV in total, and 3.60 × 10−3 eV on average, with a deviation of ±3.57 × 10−4 eV per cycle. 

With an error of ±2.10× 10−3 eV, the proposed 2-bit SIPO shift register design dissi-
pates energy 2.32 × 10−2 eV in total, and 2.11 × 10−3 eV on average, with an error of ±1.91 × 
10−4 eV per cycle. With an error of ±3.52 × 10−3 eV, the proposed 3-bit SIPO shift register 

Figure 24. Map of energy dissipation for proposed 4-bit PIPO shift register at T = 2K and (a) 0.5 Ek,
(b) 1.0 Ek, (c) 1.5 Ek γ-factor.
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6. Performance Comparison

Based on the parameters that determine the performance of circuits designed in QCA,
a comparison was drawn among the proposed QCA designs with the existing designs and
overall improvement in the performance of the proposed designs is evaluated. The QCA
cost parameter was also compared. It is the product of the squared value of latency and
total area utilized. The comparison of the proposed DFF design is given in Table 6, and the
percentage improvement from existing designs is presented in Table 7. It is clearly inferred
that the proposed DFF design had a 43.24% to 64.41% lower cell count than existing designs
with a reduction of about 42.86% to 64.4% in cell area also. The total area utilized was
reduced by almost up to 78.67%. The latency or delay of the proposed design was lowered
up to 60% with an overall enhancement in performance of about 18.78% to 95.8% due to a
reduction in QCA cost.

Table 6. Performance comparison of proposed DFF.

Parameter [28] [29] [13] [30] [31] [37] Proposed
Design

Cell count 59 56 54 48 44 37 21

Cell Area
(µm2) 0.0191 0.0181 0.0174 0.0155 0.0142 0.0119 0.0068

Total area
(µm2) 0.075 0.061 0.058 0.049 0.046 0.035 0.016

Latency 1 2.5 1.25 1 1 0.75 1

QCA Cost 0.075 0.3813 0.0906 0.049 0.046 0.0197 0.016

Table 7. Performance comparison of proposed DFF.

Parameter [28] [29] [13] [30] [31] [37]

Cell count 64.41% 62.5% 61.11% 56.25% 52.27% 43.24%

Cell Area 64.4% 52.43% 60.92% 56.13% 52.11% 42.86%

Total area 78.67% 73.77% 72.41% 67.35% 65.22% 54.29%

Latency 0% 60% 20% 0% 0% 0%

QCA Cost 78.67% 95.8% 82.34% 67.35% 65.22% 18.78%

Table 8 presents the comparison of the proposed DFF based four-bit PIPO shift register
and Table 9 presents the percentage improvement in performance from existing designs. It
is clearly inferred that the proposed DFF based 4-bit PIPO had a 16.18% to 56.15% lower
cell count than existing designs with a reduction of about 16.25% to 56.19% in cell area
also. The total area utilized was reduced up to 94.27% with an overall enhancement in
performance of about 78.92% to 94.27% due to a reduction in QCA cost.

Table 8. Performance comparison of proposed 4-bit PIPO shift register.

Parameter PIPO in [30] PIPO in [19] Proposed PIPO

Cell Count 260 136 114

Cell Area (µm2) 0.0842 0.04406 0.0369

Total Area (µm2) 1.67 0.454 0.0957

Latency 1 1 1

QCA cost 1.67 0.054 0.0957
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Table 9. Performance improvement of proposed 4-bit PIPO shift register.

Parameter PIPO in [30] PIPO in [19]

Cell Count 56.15% 16.18%

Cell Area 56.17% 16.25%

Total Area 94.27% 78.92%

Latency 0% 0%

QCA cost 94.27% 78.92%

7. Conclusions

Numerous suitable resolutions and alternative technologies are being researched for
the design and implementation of circuits at nano scale that will be in equivalence with
CMOS technology. QCA, being one of those technologies, was presented in this work.
Numerous flip flop circuits and their implementation in QCA have been proposed in the
existing literature. However, based on the literature review, it was concluded that many of
these designs provide less efficient performance because of the higher count of cells, larger
latency, and larger utilization of area. For addressing this issue, a new D flip flop design
was proposed in this work and implemented in QCA technology using the QCADesigner
tool. It was then perceived that the count of cells is 21 for the proposed design and the
latency was 1 clock cycle. This led to the QCA cost being effectively reduced. The proposed
DFF design was then used for designing other sequential circuits such as shift registers.
The evaluation of the performance of these designs revealed that the proposed design of
DFF uses 43.24% to 64.41% fewer cells and 54.29% to 78.67% less total area and has up to
95.8% lower QCA cost in comparison with the costs of existing DFF circuits. PIPO and SIPO
shift registers were proposed using this DFF, and the proposed PIPO shift register circuits
used almost 56.15% fewer cells for 4 bits than the existing designs. The area utilization
and QCA cost improved by about 94.27% with the 4-bit PIPO shift registers. Further, the
energy dissipation of all the designs proposed in this work was analysed using QCAPro
and QCADesigner-E tool, and almost all the proposed designs were efficient in terms of
energy utilization.
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