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We show that, in the heavy quark limit, the hadronic matrix elements that enter B meson decays into
two light mesons can be computed from first principles, including “nonfactorizable” strong interaction
corrections, and expressed in terms of form factors and meson light-cone distribution amplitudes. The
conventional factorization result follows in the limit when both power corrections in 1�mb and radiative
corrections in as are neglected. We compute the order-as corrections to the decays Bd ! p1p2,
Bd ! p0p0, and B1 ! p1p0 in the heavy quark limit and briefly discuss the phenomenological
implications for the branching ratios, strong phases and CP violation.
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The detailed study of B meson decays is a key source
of information for understanding CP violation and the
physics of flavor. The interest in this field is reinforced
by the numerous upcoming experiments that will test
crucial aspects of B decay properties with unprecedented
scope and precision. Among the large number of B
decay channels, two-body nonleptonic modes, such as
B ! pp, B ! pK , etc., open a particularly rich field of
phenomenological investigation. A theoretical treatment,
however, is generally complicated owing to the nontrivial
QCD dynamics related to the all-hadronic final state.

In this Letter, we describe important simplifications that
occur in the limit mb ¿ LQCD , when the b quark mass is
large compared to the strong interaction scale LQCD . We
find that in this limit the hadronic matrix elements for, say,
B̄ ! pp can be represented in the form

�ppjQjB̄� � �pjj1jB̄� �pjj2j0�

3

∑
1 1

X
rnan

s 1 O �LQCD�mb�
∏

, (1)

where Q is a local operator in the weak effective Hamil-
tonian and j1,2 are bilinear quark currents. Neglecting
power corrections in LQCD and radiative corrections in as,
the original matrix element factorizes into a form factor
times a decay constant (we call this conventional factor-
ization). At higher order in as this simple factorization
is broken, but the corrections can be calculated system-
atically in terms of short-distance coefficients and meson
light-cone distribution amplitudes. This is similar in spirit
to the well-known framework of perturbative factorization
for exclusive processes in QCD at large momentum trans-
fer [1], as applied, for example, to the electromagnetic form
factor of the pion. An interesting consequence of (1) is
that strong interaction phases are formally of order as or
LQCD�mb in the heavy quark limit. If this limit works
well, the approach discussed here allows us to calculate
these phases systematically; CP violating weak phases can
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then be disentangled. Here we present a numerical anal-
ysis of B ! pp decay amplitudes based on the heavy
quark limit. We also briefly discuss important power cor-
rections, which should eventually be estimated in order to
obtain a satisfactory phenomenology at realistic b quark
masses. Details of the argument that leads to the factoriza-
tion formula (2) below will be explained in a forthcoming
paper.

The effective weak Hamiltonian is given by [2]

Heff �
GFp

2

X
p�u,c

lp

∑
C1Q

p
1 1 C2Q

p
2 1

X
i�3...6,8

CiQi

∏
,

where lp � V �
pdVpb . The Qi are local DB � 1, DS � 0

operators, and Ci the corresponding short-distance Wilson
coefficients. We neglect electroweak penguin operators
and all terms not relevant to B̄ ! pp decays.

The essential theoretical problem for obtaining the B̄ !
pp amplitudes is the evaluation of the hadronic matrix
elements �ppjQijB̄�. Let p1 denote the pion that picks up
the light spectator quark in the B̄ meson, and p2 the pion
whose valence partons are supplied by the weak decay of
the b quark. In the heavy quark limit both pions emerge
with large energy mB�2 (in the B̄ rest frame). Power
counting based on the asymptotic form of the leading-twist
pion distribution amplitude shows that a leading-power
contribution to the �ppjQijB̄� matrix element requires
both valence quarks of p2 to carry energy of order mb .
The qq̄ pair is ejected from the weak interaction region
as a small-size color singlet object. As a consequence
soft gluons with momentum of order LQCD decouple at
leading order in LQCD�mb , and p2 can be represented
by its leading-twist light-cone distribution amplitude. On
the other hand, the spectator quark in the B̄ meson carries
momentum of order LQCD and is transferred as a soft quark
to p1, unless it undergoes a hard interaction. The end point
suppression of the pion wave function is not sufficient to
ensure the dominance of hard interactions. [We adopt the
point of view that for realistic b quark masses perturbative
© 1999 The American Physical Society
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Sudakov suppression does not cut off soft contributions
efficiently enough before one enters the nonperturbative
regime.] Therefore p1 cannot always be represented by
its light-cone distribution amplitude. At leading power
in LQCD�mb , we find that the soft interactions can be
absorbed into the B ! p1 form factor. Any interaction
of the spectator quark with the quarks of p2 is hard at
leading power and can be written as a convolution of three
light-cone distribution amplitudes. This discussion can be
summarized by the factorization formula
�p�p0�p�q� jQijB̄�p�� � fB!p �q2�
Z 1

0
dx T I

i �x�Fp �x� 1
Z 1

0
dj dx dy T II

i �j, x, y�FB�j�Fp �x�Fp �y� , (2)
which is valid up to corrections of relative order
LQCD�mb . Here fB!p �q2� is a B ! p form factor evalu-
ated at q2 � m2

p � 0, and Fp (FB) are leading-twist
light-cone distribution amplitudes of the pion (B meson),
normalized to 1. The T

I,II
i denote hard-scattering kernels,

which are calculable in perturbation theory. TI
i starts

at O �a0
s �; at higher order in as it contains “nonfactor-

izable” gluon exchange, including penguin topologies;
see the first two rows of Fig. 1 for the corrections at
order as. Hard, “nonfactorizable” interactions involving
the spectator quark are part of T II

i (last row of Fig. 1).
The significance of the factorization formula is that all
leading-power nonperturbative effects in the B ! pp

amplitudes can be absorbed into the form factor and the
light-cone wave functions. Annihilation topologies and
contributions from higher Fock states of the mesons that
could lead to a more complicated rearrangement of the
quarks than shown in Fig. 1 exist, but they are power-
suppressed.

The following comments are in order:
(i) When as corrections are neglected TII

i is zero and
T I

i is independent of x. Conventional factorization in
terms of the form factor and the pion decay constant
is then recovered as a rigorous prediction in the infi-
nite quark mass limit. The perturbative corrections are
process dependent, but calculable. Their inclusion can-
cels the scale dependence of the leading-order factorization
result.

(ii) The infrared finiteness of the hard scattering ampli-
tude follows because the infrared divergences in the first
four diagrams of Fig. 1 cancel in their sum. This can-
cellation is the technical manifestation of Bjorken’s color
transparency argument [3]. Color transparency does not
apply to hard gluon interactions. These, however, are sup-
pressed by as and are calculable.

(iii) The hard scattering contribution to the B ! p

form factor is suppressed by one power of as relative
to the soft contribution, in which the B meson spectator
undergoes no hard interaction. As a consequence, the
assumption that B ! pp can be treated entirely in the
hard scattering picture of [1] would miss the leading
contribution in the heavy quark limit.

(iv) The decay amplitude acquires an imaginary part
through the hard scattering kernels. In the heavy quark
limit, the strong interaction phases can therefore be com-
puted as expansions in as. In terms of hadronic in-
termediate states that saturate the unitarity relation, this
implies systematic cancellations among many interme-
diate states with potentially large individual rescattering
phases. An estimate of rescattering effects on the ba-
sis of Regge theory is not compatible with the heavy
quark limit.

(v) The factorization formula (2) generalizes to the
decays into a heavy-light final state, if the heavy par-
ticle absorbs the B meson spectator quark. Then the sec-
ond line in (2) is power suppressed and only the form
factor term survives. An expression of this form has
been used by Politzer and Wise to compute the one-loop
corrections to the decay rate ratio G�B̄ ! D�p��G�B̄ !
Dp� [4]. The factorization formula does not hold for
heavy-light final states, in which the light meson ab-
sorbs the B meson spectator quark, or for a heavy-heavy
final state.

The result of an explicit calculation of the B̄ ! pp de-
cay amplitudes at order as can be compactly expressed as
�ppjHeffjB̄� � GF�

p
2

P
p�u,c lp�ppjTpjB̄�, where
Tp � a
p
1 �pp� �ūb�V2A ≠ �d̄u�V2A 1 a

p
2 �pp� �d̄b�V2A ≠ �ūu�V2A 1 a3�pp� �d̄b�V2A ≠ �q̄q�V2A

1 a
p
4 �pp� �q̄b�V2A ≠ �d̄q�V2A 1 a5�pp� �d̄b�V2A ≠ �q̄q�V1A 1 a

p
6 �pp� �22��q̄b�S2P ≠ �d̄q�S1P . (3)
The symbol ≠ is defined through �ppjj1 ≠ j2jB̄� �
�pjj1jB̄� �pjj2j0�. A summation over q � u, d is im-
plied. Note that the term proportional to a

p
6 �pp� results

in a power correction that should be dropped in the heavy
quark limit. We will comment further on this term below.

Together with ac
1�pp� � ac

2�pp� � 0 and the
leading-order coefficient a

p
6 �pp� � C6 1 C5�N , the

coefficients a
p
i �pp� read at next-to-leading order (NLO)
au
1 �pp� � C1 1

1
N

C2 1
as

4p

CF

N
C2F , (4)

au
2 �pp� � C2 1

1
N

C1 1
as

4p

CF

N
C1F , (5)

a3�pp� � C3 1
1
N

C4 1
as

4p

CF

N
C4F , (6)
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a
p
4 �pp� � C4 1

1
N

C3 2
as

4p

CF

N

Ω∑
4
3

C1 1
44
3

C3 1
4f
3

�C4 1 C6�
∏

ln
m

mb
1

∑
Gp�sp� 2

2
3

∏
C1

1

∑
Gp �0� 1 Gp �1� 2 fI

p 2 fII
p 1

50
3

∏
C3 1 �3Gp �0� 1 Gp �sc� 1 Gp �1�	 �C4 1 C6� 1 Gp ,8C8

æ
, (7)
a5�pp� � C5 1
1
N

C6 1
as

4p

CF

N
C6�2F 2 12� . (8)

Here CF � �N2 2 1���2N� and N � 3 (f � 5) is the
number of colors (flavors). [Note that our definition of
C1 and C2 differs from the convention of [2], where
the labels 1 and 2 are interchanged.] The internal quark
mass in penguin diagrams enters as sp , where su � 0 and
sc � m2

c�m2
b . In addition we have used (x̄ � 1 2 x)

F � 212 ln
m

mb
2 18 1 fI

p 1 fII
p ,

fI
p �

Z 1

0
dx g�x�Fp�x� , Gp ,8 �

Z 1

0
dx G8�x�Fp�x� ,

Gp �s� �
Z 1

0
dx G�s, x�Fp �x� ,

with the hard-scattering functions �ū � 1 2 u�

g�x� � 3
1 2 2x
1 2 x

lnx 2 3ip , G8�x� �
2
x̄

, (9)

G�s, x� � 24
Z 1

0
du uū ln�s 2 uūx̄ 2 ie	 . (10)

The hard spectator scattering contribution is given by

fII
p �

4p2

N
fpfB

f1�0�m2
B

Z 1

0
dj

FB�j�
j

∑Z 1

0
dx

Fp �x�
x

∏2

,

where fp (fB) is the pion (B meson) decay constant, mB

the B meson mass, f1�0� the B ! p form factor at zero
momentum transfer, and j the light-cone momentum frac-
tion of the spectator in the B meson. fII

p depends on the
wave function FB through the integral

R1
0 dj FB�j��j �

mB�lB. This introduces one new hadronic parameter lB.
Since FB�j� has support only for j of order LQCD�mB,
lB is of order LQCD .

Writing the transition operator Tp in terms of the
QCD coefficients a

p
i �pp� is a convenient notation for

FIG. 1. Order as corrections to the hard scattering kernels T I
i

(first two rows) and TII
i (last row). In the case of TI

i , the
spectator quark does not participate in the hard interaction and
is not drawn. The two lines directed upwards represent the two
quarks that make up p2.
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phenomenological applications. The notation generalizes
the conventional parameters a1,2 [5], which are seen to
be process dependent beyond leading order. We em-
phasize that in the present context the a

p
i �pp� are not

phenomenological parameters, but genuine predictions of
QCD in the heavy quark limit. The Wilson coefficients
Ci entering the a

p
i �pp� are to be taken at NLO [2],

where we consistently drop terms of O �a2
s � in (4)–(8).

The physical amplitudes derived from (3) are indepen-
dent of the renormalization scale (m) and scheme through
O �as�. The coefficients a1�pp� a5�pp� multiply scale
and scheme independent matrix elements of (axial-)vector
currents. Accordingly, the scale and scheme dependence
in the Wilson coefficients Ci is canceled by the O �as�
corrections in the hard-scattering amplitudes. In the case
of a

p
6 �pp�, a scale and scheme dependence remains,

which is precisely the one needed to cancel the cor-
responding dependence in the matrix elements of the
(pseudo-)scalar currents, multiplying a

p
6 �pp� in (3). Be-

sides the ln�m�mb� terms the hard-scattering amplitudes
contain a scheme dependent constant, which we have ob-
tained in the NDR scheme as defined in [6]. This fixes
the scheme to be used for the NLO coefficients Ci .

At NLO the factorization coefficients a
p
i �pp� acquire

complex phases, entering through the functions g�x�
and G�s, x� in (9) and (10). Being of order as, these
phases are generically small, except in cases where
the lowest order contribution is numerically suppressed.
This happens, e.g., for au

2 �pp�. Physically, the phases
arise from final state rescattering, which is due to hard
gluon exchange, and hence perturbative, in the heavy
quark limit. The generation of strong interaction phases
through the penguin function G�s, x� has been discussed
many years ago [7] and is commonly referred to as
the Bander-Silverman-Soni (BSS) mechanism. In the
present approach, the gluon virtuality k2 � x̄m2

B in the
penguin diagram, which has usually been treated as
a free phenomenological parameter, has a well-defined
meaning. The x dependence of G�s, x� is convoluted
with the pion wave function Fp �x�, leaving no ambiguity
as to the value of k2. In addition, we identify a further
source of rescattering phases, represented by the function
g�x�. This effect corresponds to hard gluon exchange
between the two outgoing pions. Together with the
BSS mechanism, it accounts for the complete asymptotic
rescattering phases in B̄ ! pp in the heavy quark limit.

Another novel result is the existence of the contribution
from hard scattering involving the spectator quark in the
B meson, expressed by fII

p . This mechanism is missed in
phenomenological models of factorization. It is particu-
larly important for the small coefficient au

2 �pp�, where it
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leads to a sizable enhancement. Using fp � 131 MeV,
fB � �180 6 20� MeV, f1�0� � 0.275 6 0.025, lB �
0.3 GeV, and the asymptotic wave function Fp �x� �
6xx̄, we find fII

p � 6.4. The poor knowledge of the pa-
rameter lB makes this number rather uncertain.

Numerical values for the a
p
i �pp� are shown in

Table I, using the pole masses mb � 4.8 GeV,
mc � 1.4 GeV, the MS masses m̄t�m̄t� � 167 GeV,
�m̄u 1 m̄d� �2 GeV� � 9 MeV and L

�5�
MS � 225 MeV

as input parameters. a
p
6 �pp� multiplies the LQCD�mb-

suppressed, but chirally enhanced combination

rx �
2m2

p1

m̄b�m� �m̄u�m� 1 m̄d�m�	
� 1.18 �at m � mb	 .

In the following analysis, we give two results, one
neglecting a

p
6 �pp� as formally power suppressed, the

other keeping the leading-order expression for a
p
6 �pp�.

It is now straightforward to evaluate the decay am-
plitudes and branching ratios. The latter are given
by B�B̄ °! pp� � t ��16pm � 3 jA�B̄ ! pp�j2S,
B B
TABLE I. The QCD coefficients a
p
i �pp� at NLO for three

different renormalization scales m. Leading order values are
shown in parentheses for comparison.

m � mb�2 m � mb m � 2mb

au
1 �pp� 1.047 1 0.033i 1.038 1 0.018i 1.027 1 0.010i

(1.038) (1.020) (1.010)
au

2 �pp� 0.061 2 0.106i 0.082 2 0.080i 0.108 2 0.064i
(0.066) (0.140) (0.200)

a3�pp� 0.005 1 0.003i 0.004 1 0.002i 0.003 1 0.001i
(0.004) (0.002) (0.001)

au
4 �pp� 20.030 2 0.019i 20.029 2 0.015i 20.026 2 0.013i

�20.027� �20.020� �20.014�
ac

4�pp� 20.038 2 0.009i 20.034 2 0.008i 20.031 2 0.007i
�20.027� �20.020� �20.014�

a5�pp� 20.006 2 0.004i 20.005 2 0.002i 20.003 2 0.001i
�20.005� �20.002� �20.001�

a
p
6 �pp�rx · · · · · · · · ·

�20.036� �20.030� �20.024�

where S � 1 for pp � p1p2, p2p0 and S � 1�2 for
pp � p0p0. tB are the B lifetimes: t�B1� � 1.65 ps,
t�Bd� � 1.56 ps. The amplitudes read
A�B̄d ! p1p2� � i
GFp

2
m2

Bf1�0�fp jlcj 
Rbe2ig�au
1 �pp� 1 au

4 �pp� 1 au
6 �pp�rx	 2 �ac

4�pp� 1 ac
6�pp�rx	� ,

A�B̄d ! p0p0� � i
GFp

2
m2

Bf1�0�fp jlcj 
Rbe2ig�2au
2 �pp� 1 au

4 �pp� 1 au
6 �pp�rx	 2 �ac

4�pp� 1 ac
6�pp�rx 	� ,

A�B2 ! p2p0� � i
GFp

2
m2

Bf1�0�fp jlcj �Rb�
p

2�e2ig�au
1 �pp� 1 au

2 �pp�	 .

Here Rb � �1 2 l2�2� jVub�Vcbj�l, where l � 0.22 is the sine of the Cabibbo angle, g is the phase of V �
ub , and we

will use jVcbj � 0.039 6 0.002, jVub�Vcbj � 0.085 6 0.020. We find the branching fractions

B�B̄d ! p1p2� � 6.5 �6.1	 3 1026j e2ig 1 0.09 �0.18	 ei12.7 �6.7	±j2, (11)

B�B̄d ! p0p0� � 5.2 �7.7	 3 1028j e2ig 1 0.73 �1.11	 e2i137 �149	± j 2, B�B2 ! p2p0� � 4.3 �4.3	 3 1026,
where the default values correspond to neglecting a
p
6 �pp�

and the values in brackets use a
p
6 �pp� at leading order.

While the predictions for the p1p2 and p2p0 final
states are relatively robust, with errors on the order of
630% due to the input parameters, the decay into p0p0

depends very sensitively on the parameter lB that controls
the hard spectator scattering. If it is significantly smaller
than 0.3 GeV, a branching fraction of order 1026 cannot
be excluded. Equation (11) can be converted into a result
for the time-dependent CP asymmetry as a function of the
CKM angle a. The direct CP asymmetry in the p1p2

mode is approximately 4% 3 sing.
The approach discussed here allows us to formulate,

for the first time, rigorous predictions of QCD for exclu-
sive nonleptonic B decays in the heavy quark limit. On
the other hand, as the dependence on the formally power-
suppressed coefficient a

p
6 �pp� demonstrates, the asymp-

totic limit may be problematic at mb � 5 GeV and the
applicability of the theory has to be decided on a case-
by-case basis. The most important power corrections are
those that depend on the chirally enhanced combination rx .
The as corrections to all such terms can in fact be identi-
fied. However, the factorization formula breaks down in
this case, because the relevant twist-3 wave functions do
not fall off fast enough at the end points. A detailed dis-
cussion of this will be given elsewhere.
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