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Abstract: We derive an improved prescription for the merging of matrix elements with
parton showers, extending the CKKW approach. A flavour-dependent phase
space separation criterion is proposed. We show that this new method preserves
the logarithmic accuracy of the shower, and that the original proposal can be
derived from it. One of the main requirements for the method is a truncated
shower algorithm. We outline the corresponding Monte Carlo procedures and
apply the new prescription to QCD jet production in e+e− collisions and Drell-
Yan lepton pair production. Explicit colour information from matrix elements
obtained through colour sampling is incorporated in the merging and the influence
of different prescriptions to assign colours in the large NC limit is studied. We
assess the systematic uncertainties of the new method.

1 Introduction

With the LHC becoming fully operational in the near future, searches for new physics beyond the Standard
Model (SM) will enter a new stage. Despite all optimism, a majority of the signals currently discussed suffers
from severe backgrounds, among them many related to the production of heavy SM particles, such as the weak
gauge bosons or top quarks, accompanied with jets. Therefore, it is a central issue for many experimental
analyses to correctly describe the production of these particles in conjunction with additional jets. In many
cases, the method of choice is to employ simulation programs. In the past, such event generators have proved
to be extremely useful and versatile tools, being well capable to describe comparably simple event topologies
at sufficiently high precision. However, especially, when additional hard jets complicate the overall event
structure, a proper simulation is far from being trivial. Typically such extra radiation is approximated with
leading-logarithmic accuracy through the probabilistic description provided by the parton-shower approach.
With rising precision needs, however, improved methods become mandatory, which describe the radiation
of additional particles beyond the leading-logarithmic approximation employed by the parton showers.

The most traditional of these methods consists in reweighting QCD emissions as described by the parton
shower with respective exact matrix elements expressed through parton-shower variables [1]. Unfortunately,
the applicability of this method, however elegant, is constrained to cases, where the parton-shower expression
either exceeds the matrix element or can be modified accordingly, without hampering the event generation
efficiency too badly. This limits the method to a few cases (such as the production of a gluon in e+e− → qq̄,
top-quark decay plus emission of an additional gluon, or the production of vector bosons in hadron collisions).
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In the past years, new and powerful methods for the systematic inclusion of higher order effects into event
generation have been developed. In fact, they can be seen as a major theoretical improvement in the detailed
understanding of complicated event topologies. The first of these new methods provides means to consistently
match NLO calculations for specific processes with the parton shower and has been incorporated into the
MC@NLO program [2]. Its basic idea is to organise the counter-terms necessary to technically cancel real
and virtual infrared divergences in such a way that the first emission of the parton shower is recovered. This
allows the generation of hard kinematics configurations, which can eventually be fed into a parton-shower
Monte Carlo. Several applications of the original approach to different processes have been presented, see
for instance [3]. A further improvement, aiming at an enhanced independence of both the specific hard
process and the details of the parton-shower algorithm is provided by the POWHEG-method [4], which uses
the ratio of the actual real radiation matrix element and the original leading-order one to generate the
hardest emission. In its current formulation, this approach can be understood as a hybrid of the traditional
parton-shower reweighting and the MC@NLO-method. It has been implemented for various processes, see
for example [5].

An alternative approach, aiming at an improved description of multi-jet topologies, has been described
in [6, 7], and is often called the CKKW algorithm. It has been studied, e.g., in [8, 9] in the cases of W and
Z production and the production of pairs of these bosons at the Tevatron and the LHC. The idea here is
to separate the phase space for parton emission into two domains, a hard region of jet production and a
softer regime of intra-jet evolution. This separation is achieved through a k⊥-type jet measure [10,11]. Then
matrix elements for different parton multiplicities are used to describe the production of a corresponding
number of jets, whereas the parton shower is constrained such that it does not produce any additional jets.
Leading higher-order effects are added to the various matrix elements by reweighting them with appropriate
Sudakov form factors and with ratios of the strong coupling αs, taken at the k⊥-scales of the individual
jet emissions. Independence of the overall result at logarithmic accuracy on the cut in the jet measure
is achieved by the interplay of Sudakov form factors and the vetoed parton shower with suitable starting
conditions. The method is one of the cornerstones of the event generator SHERPA [12]. A similar approach,
formally equivalent in e+e− annihilations into hadrons and often called CKKW-L, has been formulated
in [13]. In this case a dipole shower rather than a more traditional parton cascade is used to describe
QCD radiation beyond fixed order. Recently, first steps towards a merging at NLO precision of the matrix
elements in this approach have been presented in [14]. Another, more simplified method, often called the
MLM-prescription, has been introduced in [15]. In [16] the approach was applied for the case of top-quark
production at hadron colliders. An extension of the algorithm to account for hard QCD radiation in the
production of heavy coloured states as they appear in various beyond the Standard Model scenarios was
presented in [17]. The differences between the three merging prescriptions have been investigated using the
example of W -production at the Tevatron and the LHC [18]. Although the three methods are different and
the formal relationship of the latter method with the two former ones could not be completely worked out
there, the results presented in these studies are in astonishing agreement. First steps towards such a more
formal comparison between the three algorithms has been attempted in [19].

In this paper we aim at establishing a general theory framework, in which different merging algorithms can
be compared on formal grounds. As a result of this we also describe a merging algorithm that preserves
the logarithmic accuracy of the shower. We prove this in the most general case, including initial state QCD
particles. Although the prescriptions above deal with this case, up to now no statements of the formal
accuracy beyond the most leading logarithms has been made in the literature.

Therefore, the outline of this paper is as follows: Section 2 introduces the procedures necessary to consistently
evolve parton showers from matrix elements of arbitrary final-state multiplicity, which is one of the key
ingredients of the envisaged merging approach. Section 3 presents the general merging procedure. It also
sets the theoretical background of the new approach and introduces the event generation algorithm. It
is viable for, in principle, arbitrary parton-shower algorithms. We show that the new procedure exactly
reproduces the logarithmic accuracy of the shower. The relationship of the framework presented here with
the other three algorithms named above is discussed in Appendix A.1, where we show that the original
CKKW approach as well as the CKKW-L algorithm can be derived as special cases. We also present results
of our algorithm in two relevant cases, namely e+e− annihilations into hadrons at LEP I and Drell-Yan-like
production of gauge bosons at the Tevatron. In Sec. 5 we describe the Monte Carlo programs, which are
employed in this study. Its details, mainly concerning the systematics of the merging itself are presented in
Section 6 and discussed in some detail. We conclude in Sec. 7.
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2 Prerequisites for merging matrix elements and parton showers

Merging matrix elements with parton showers combines two essentially different approaches to perturbative
QCD. Hard matrix elements are exact at some fixed perturbative order in the strong coupling αs and are
therefore efficient in describing exclusive events with fixed jet multiplicity, taking into account non-trivial
interferences between different amplitudes. Parton showers are employed to generate the QCD radiation
pattern, especially at lower scales, close to the hadronisation scale ΛQCD. Their application resums poten-
tially large logarithmic corrections due to Bremsstrahlung effects. In their description they naturally cannot
take into account all interferences, although steps towards including more quantum mechanical effects are
currently being discussed, cf. [20]. In a simulation, best results can be expected, if the two approaches are
combined consistently, such that each of them operates in those regions of phase space that it describes best.

This necessitates that parton showers can evolve from parton configurations which are given by high multi-
plicity matrix elements at certain points in phase space and colour space. In such cases the starting conditions
for parton showers are often ambiguous. We will see in Sec. 3 that for running the shower in merged samples,
it is necessary to interpret the matrix element as a core process and a series of predefined shower branch-
ings. The reason is that the parton-shower evolution can take place at any point in this branching history,
giving rise to the truncated shower prescription described in Sec. 2.4. There may be various such histories
arising from the same matrix-element configuration. Hence the most appropriate one needs to be identified.
Typically, in the spirit of the probabilistic picture underlying the parton shower, it is simply assumed that
this is the most probable one.

In this section we derive the formalism and the algorithms necessary to identify the most probable shower
history. We also explain the concept of truncated showers and elaborate on various strategies to define colour
assignments for the shower input.

2.1 Master evolution equations

To prepare for the following arguments we firstly introduce prototypical evolution equations for parton
showers [21], cf. [22] and [23] 1

∂ga(z, t)

∂ log(t/µ2)
=

∫ ζmax

z

dζ

ζ

∑

b=q,g

Kba(ζ, t) gb(z/ζ, t) − ga(z, t)

∫ ξmax

ξmin

dξ
∑

b=q,g

ξ Kab(ξ, t) . (1)

In this context, g may denote either a fragmentation function (FF) or a parton distribution function (PDF),
cf. for example [25]. The first term on the right hand side encodes resolvable emissions, while the second
(related through unitarity) describes unresolved branchings and virtual contributions. The variable t is the
evolution parameter, while ζ is the splitting variable of the scheme. The evolution kernels Kab are obtained
from ratios of appropriate N + 1- and N -particle matrix elements in the respective limit. Schematically

Kab(z, t) → 1

σ
(N)
a (ΦN )

d2σ
(N+1)
b (z, t; ΦN)

d log(t/µ2) dz
. (2)

Here ΦN denotes the respective N -particle phase space configuration, which does not play a role for the

limiting behaviour of σ
(N+1)
b (z, t; ΦN). Equation (2) conversely implies that any splitting kernel Kab can be

substituted by an appropriate ratio of matrix elements, because respective differences are always subleading.
For the most common case of standard DGLAP evolution [26], the kernels are easily identified through

Kab(z, t) → αs(z, t)

2π
Pab(z) , (3)

with Pab(z) being the standard DGLAP splitting functions. If Eq. (1) is written in inclusive form, i.e.
ξmin → 0, ξmax, ζmax → 1, the last term vanishes because of momentum sum rules for the kernels. In
exclusive form, where the ζ- and ξ-boundaries are determined by a resolution criterion for parton emission,

1 The functions g can also explicitly depend on the splitting variable ζ, like in the case of angular ordered DGLAP evo-
lution [24]. This does, however, not complicate our formalism because corresponding terms do not modify the form of the
Sudakov form factor. As far as such an evolution is concerned, the corresponding notation in the resolved term of Eq. (1) is
implicit.
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it can be written as the logarithmic derivative of the Sudakov form factor [27]

∆a(µ2, t) = exp



−

∫ t

µ2

dt̄

t̄

∫ ξmax

ξmin

dξ
∑

b=q,g

1

2
Kab(ξ, t̄)



 . (4)

The factor 1/2 is equivalent to ξ under the integral and the sum over parton species and avoids double-
counting identical decay channels. Equation (4) has the generic form of a no-emission probability between
the scales µ2 and t. Potential differences in various shower algorithms implementing QCD evolution arise
due to different evolution kernels K or a different interpretation of the evolution and splitting variables.
This in turn corresponds to the choice of a factorisation scheme. If Eq. (1) is modified accordingly, the
kernels can also incorporate more than two partons, for example in the case of dipole [28, 29, 30, 31] or
dipole-like [32, 33, 34] cascades. Therefore, in this paper the term “parton shower” also includes the dipole
or dipole-like shower algorithms.

2.2 Branching probabilities

Equation (1) is commonly rewritten in terms of g/∆. The corresponding form reads

∂

∂ log(t/µ2)

ga(z, t)

∆a(µ2, t)
=

1

∆a(µ2, t)

∫ ζmax

z

dζ

ζ

∑

b=q,g

Kba(ζ, t) gb(z/ζ, t) . (5)

This immediately yields the no-branching probabilities for unconstrained (forward) and constrained (back-
ward) shower evolution as [21]

P(F )
no, a(t, t′) =

∆a(µ2, t′)

∆a(µ2, t)
= exp




−
∫ t′

t

dt̄

t̄

∫ ζmax

ζmin

dζ
∑

b=q,g

1

2
Kab(ζ, t̄)




 , (6)

and

P(B)
no, a(z, t, t′) =

∆a(µ2, t′) ga(z, t)

∆a(µ2, t) ga(z, t′)
= exp




−
∫ t′

t

dt̄

t̄

∫ ζmax

z

dζ

ζ

∑

b=q,g

Kba(ζ, t̄)
gb(z/ζ, t̄)

ga(z, t̄)




 . (7)

The standard procedure for constructing a parton-shower algorithm is to write the differential branching
probability Pbranch, a as

Pbranch, a(t, t
′) =

∂Pno, a(t, t
′)

∂ log(t/µ2)
. (8)

Given the current evolution scale t′, at which an actual emission took place, a new scale t for the next parton
emission is chosen according to this probability.

2.3 Shower histories from matrix elements

An obvious point in the recursive algorithm sketched above is to define the first or hardest scale, at which
the parton shower starts off. In order to obtain such suitable starting conditions for parton showers from
arbitrary matrix elements, a clustering algorithm needs to be defined, which corresponds to “running the
shower evolution backwards” on the respective matrix element. It identifies how, in a parton-shower picture,
the matrix element would have originated from a lower multiplicity matrix element and a shower branching.
Applied iteratively, it leads to the definition of a core process, which cannot be further decomposed and a
sequence of shower branchings yielding the actual final state. The tasks for the algorithm are thus twofold:
Firstly, within an arbitrary n-parton final state the most probable splitting in terms of shower evolution
starting with n − 1 partons needs to be found. Secondly, corresponding partons must be recombined to
obtain the respective final state. In order to construct this algorithm, the shower evolution simply has to be
“inverted”, which gives the following recipe:
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The criterion of the cluster algorithm is defined by the shower evolution kernels.
The recombination scheme is given by the inverted shower kinematics.

A side effect of this prescription is that during backward clustering the hard matrix elements, potentially
no strict hierarchy is found in the shower evolution parameter. However, such situations can only arise for
kinematic configurations of the matrix element, which are beyond the accuracy of the shower. Therefore
they do not pose a problem here.

2.4 Truncated showering

Assume a parton-shower history constructed from a matrix element along the lines of Sec. 2.3 and consisting
of a core process plus a single additional branching at scale t, which we call matrix-element branching. As
a consequence of Eqs. (6) and (7), parton shower emissions may take place at scales t′ > t. This leads
to a situation, where, due to additional partons originating from these branchings, the kinematics of the
matrix-element branching at t needs to be redefined. This corresponds to a truncated shower, identical to the
situation discussed in [4], where a mismatch between hardest emission, in terms of transverse momentum, and
the parton-shower evolution defined in opening angles has been noted and resolved. There the solution to this
situation has been coined “truncated showering”, because the evolution stops at the lower, dynamical scale t,
unlike ordinary shower evolution, which stops at the universal cutoff scale. A prescription to unambiguously
reconstruct the kinematics of matrix-element branchings is needed. The most natural choice is to compute the
evolution, splitting and angular variables of matrix element branchings in the shower scheme and reconstruct
the branching using the shower kinematics, after the final state of the branching at t′ > t is fully determined.
In other words:

Splitting kernels introduced by Eq. (2) define evolution, splitting and angular variables in the shower
scheme, rather than the kinematics of the corresponding branching.

This coincides with the fact that such branchings are interpreted as predetermined nodes during shower
evolution. It must simply be guaranteed that the evolution stops at the corresponding scale, inserts the
node and restarts afterwards. If for any reason (e.g. energy-momentum conservation) the matrix element
branching cannot be reconstructed after a truncated shower branching, this shower branching must be vetoed.

2.5 Colour treatment

The treatment of colour is a central issue when dealing with matrix element and shower generation in
QCD processes. Shower formulations inherently are correct only at leading order in 1/NC , although in [20]
first attempts to overcome this limitation have been presented. Therefore, once matrix elements are to be
combined with showers, the treatment of colour must be adjusted. A simple and obvious way to do so is to
interpret the hard matrix element in the large-NC limit to define colour partners of splitting partons in the
shower language. This problem is more easily solved, when colours are not summed over but if an algorithm
is employed, which unambiguously assigns a certain set of colours to the external particles in the hard matrix
element. The basic idea is then to sample over colours in a Monte Carlo fashion rather than summing over
them.

It was pointed out in [35, 36] that the colour-flow decomposition of QCD amplitudes is advantageous over
both the fundamental and (if existent) the adjoint representation decomposition. The key point is that in
the colour-flow decomposition each colour octet is treated as a 3 × 3 index field whose additional degree
of freedom is removed by a projector onto the colour-octet subspace. Since this issue is central to all our
simulations incorporating fixed colour assignments in the hard matrix element, we briefly recall the basics
of the algorithm. As an example we consider an n-gluon amplitude A (1, . . . , n). This amplitude can be
decomposed in the colour-flow basis as [35]

A (1, . . . , n) =
∑

σ∈Sn−1

δi1 ̄σ2 δiσ2
̄σ3 . . . δiσn

̄1 A (1, σ2, . . . , σn) . (9)

Here iσk
and ̄σk

denote the 3- and 3̄-index of parton σk, respectively and the sum runs over all possible
permutations of the set {2, . . . , n}. The quantities A (1, σ2, . . . , σn) are called colour-ordered or partial am-
plitudes. They depend on the kinematics of the process only. All information about colour is incorporated in
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respective prefactors. Therefore any colour-ordered amplitude only contains planar diagrams, which greatly
alleviates the computation. A convenient way to interpret Eq. (9) is to consider it as the decomposition
of the full QCD amplitude into subamplitudes in the large-NC limit. Feeding the results from the matrix-
element calculation into a shower program, the corresponding colour connections are thus readily determined
if one of the terms in the sum is picked as the most probable colour structure and identify the colour flow
according to its colour factor. In this context we use the fact that interference terms between two different
colour structures are always subleading in 1/NC .2

An algorithm to identify the most probable colour structure could thus look as follows (cf. [38])

1. Compute the full matrix element with randomly assigned colours for external QCD partons.

2. Identify all possible permutations {1, ~σ}, which yield a non-zero value of

δi1 ̄σ2 δiσ2
̄σ3 · · · δiσn

̄1 . (10)

Label them by ~σi and compute the corresponding partial amplitudes A(1, ~σi).

3. If N~σ is the number of identified permutations, choose a partial amplitude with probability

P~σi
=

|A(1, ~σi)|2∑N~σ

j=1 |A(1, ~σj)|2
(11)

Because of the way potential partial amplitudes are identified in the colour-flow decomposition, this pre-
scription is similar to the following simplified strategy

1. Compute the full matrix element with randomly assigned colours for external QCD partons.

2. Assign colours in the large-NC limit at random, respecting the actual point in colour space. This
translates into two partons only being colour adjacent at large NC , if they were colour adjacent at
finite NC .

3. Identify the corresponding permutation ~σ and compute the partial amplitude A(1, ~σ). Accept the
configuration with probability

P~σ =
|A(1, ~σ)|2

|A(1, . . . , n)|2
(12)

Naively, the drawback of the latter algorithm is, that potentially many points have to be drawn for the colour
assignment at large NC . In practice, however, this is sufficiently fast compared to evaluating all possible
partial amplitudes for a single nontrivial point in colour space. Also, in principle the full amplitude squared,
|A(1, . . . , n)|, might be much smaller than the sum of partial amplitudes squared, such that acceptance
probabilities are modified. This algorithm is still sufficiently accurate, since respective differences are always
subleading in 1/NC .

The above algorithm works for arbitrary QCD and QCD-associated matrix elements, since quark pairs can
always be reinterpreted as colour octet objects. Matrix-element configurations might exist, which do not
allow an immediate projection onto large NC because of the U(1) pseudo-gluon. In this case, a new point
in colour space can safely be assigned, because the respective contribution to the total cross section is
subleading.

3 The merging algorithm

The central idea for algorithms merging matrix elements with parton showers is to replace products of
splitting kernels related to hard emissions in the shower evolution with the appropriate matrix elements,
thus reinstalling information about the full hard process under consideration. Directly implementing a ratio
of hard matrix elements in form of a splitting kernel has the apparent disadvantage that the respective

2 This argument holds in the colour-flow decomposition and the fundamental representation decomposition. For the latter,
see for example [37].
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phase-space integration proceeds in terms of shower kinematics and is thus hard to optimise in a generic
way. A better technique is to first compute the matrix element and then reweight it such that, to the
accuracy of the parton shower, the corresponding shower expression is obtained. To pursue this strategy, the
corresponding no-emission probabilities of the parton shower, i.e. its Sudakov form factors, must be known.
This can, however easily be achieved because they emerge directly from the evolution equations on which
the shower is based.

Only one additional ingredient is eventually needed, namely a criterion, which defines how to separate
matrix-element and parton-shower domain. It will be shown in Sec. 4 that a general form of this criterion
can be found, which is based on the soft and collinear behaviour of QCD at the next-to-leading order. We
will refer to it as the “jet criterion”. At the present stage, the precise form of the jet criterion is unimportant
and it is sufficient and helpful to think of it in an abstract way.

3.1 Construction of the algorithm

The basic idea of the merging – to separate the matrix-element and parton-shower domains through a cut
in the emission phase space, defined by a jet criterion – corresponds to a simple phase-space slicing. We
therefore define the evolution kernels for the matrix-element and parton-shower domains

KME
ab (ξ, t̄) = Kab(ξ, t̄) Θ

[
Qab(ξ, t̄) − Qcut

]
and KPS

ab (ξ, t̄) = Kab(ξ, t̄) Θ
[
Qcut − Qab(ξ, t̄)

]
, (13)

where Qab denotes the jet criterion and Qcut is its cut value. Correspondingly, the two partial Sudakov form
factors are given by

∆ME/PS
a (µ2, t) = exp



−

∫ t

µ2

dt̄

t̄

∫ ξmax

ξmin

dξ
∑

b=q,g

1

2
KME/PS

ab (ξ, t̄)



 . (14)

They are related to the full Sudakov form factor, Eq. (4), through

∆a(µ2, t) = ∆PS
a (µ2, t)∆ME

a (µ2, t) . (15)

In fact, Eq. (15) effectively encodes the complete merging approach. There, ultimately KME will be replaced
with a ratio of matrix elements, according to Eq. (2). During the following rewrite of the evolution equations
we simply identify, how the factorisation property of Sudakov form factors must then be interpreted and
employed for event generation. No further proof for the correctness of the algorithm at any logarithmic order
is necessary, because this follows directly from the accuracy implemented in the parton-shower evolution. In
other words, the proposed merging scheme does not impair the logarithmic accuracy of the parton shower.

This can be summarised as:

When correcting parton-shower evolution kernels through higher-order matrix elements, the master evo-
lution equation, Eq. (1), must be respected. This ensures that the accuracy generated by the factorisation
scheme and the parton shower is fully restored.

We start by defining the conditional backward no-branching probability in the parton-shower domain3,

P̃(B) PS
no, a (z, t, t′) =

∆PS
a (µ2, t′) g̃a(z, t)

∆PS
a (µ2, t) g̃a(z, t′)

= exp



−

∫ t′

t

dt̄

t̄

∫ ζmax

z

dζ

ζ

∑

b=q,g

KPS
ba (ζ, t̄)

g̃b(z/ζ, t̄)

g̃a(z, t̄)



 . (16)

It corresponds to the modified evolution equation

∂

∂ log(t/µ2)
log

g̃a(z, t)

∆PS
a (µ2, t)

=

∫ ζmax

z

dζ

ζ

∑

b=q,g

KPS
ba (ζ, t)

g̃b(z/ζ, t)

g̃a(z, t)
. (17)

Equation (16) differs with respect to the standard parton-shower evolution because of the Θ-function, restrict-
ing emissions to Q < Qcut, i.e. the soft and collinear domain. Its interpretation is therefore straightforward
and gives a rule for the modified shower algorithm in the merging:

3From here on we focus on backward evolution. The corresponding reasoning for forward evolution follows trivially.
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Standard parton-shower evolution is implemented, but radiation with Q > Qcut is vetoed.

Note that for the case of an initial-state parton shower, typically described with a backward evolution, the
initial scale of the PDF’s is set by the core process of the event.

If Eq. (16) is employed as is, including the phase-space restriction, the newly defined functions g̃ do not obey
the same evolution as the original functions g. Factorisation is thus violated. If we want the two evolutions
to agree, we have to guarantee that the full no-branching probability in the merging approach is given by
Eq. (7). This leads to the definition of the no-emission probability in the matrix-element domain according
to

P(B)ME
no, a (t, t′) =

P(B)
no, a(z, t, t′)

P(B) PS
no, a (z, t, t′)

=
∆ME(µ2, t′)

∆ME(µ2, t)
, where P(B)PS

no, a (z, t, t′) =
∆PS

a (µ2, t′) ga(z, t)

∆PS
a (µ2, t) ga(z, t′)

. (18)

It is interesting to note that P(B)ME
no, a is independent of z, which effectively is an outcome of the factorisation

properties of PDF’s and FF’s.

If we assume that a “most probable” shower history of the hard matrix element is identified through a
backward-clustering algorithm, which employs the clustering criterion and the recombination scheme of the
shower, cf. Sec. 2.3, then we obtain the rule:

The weight, Eq. (18), is assigned to any leg with production scale t′ and decay scale t found during
backward clustering. Strong couplings are evaluated at the nodal scales of parton recombination.

The reasoning is easily explained. Hard matrix elements in the factorisation scheme of the shower have
the same limiting behaviour as the splitting kernels K, once colour-adjacent partons become close in phase
space. Backward clustering will identify a hierarchical structure for the factorisation of hard matrix elements
into lower-multiplicity matrix elements and splitting kernels. Eventually, a core process is found, which
cannot be further decomposed and which corresponds to the starting conditions for a respective shower
evolution. Matrix elements, however, do not implement the no-branching probabilities generated by parton
showers. Also the strong coupling is evaluated at a common scale, rather than the nodal scales of splittings.
Corresponding corrections must therefore be implemented.

An immediate consequence of the above defined algorithm is that the total cross section of merged samples
can only be influenced by the difference between full hard matrix elements and the corresponding product
of splitting kernels times the core process. In this respect, we obtain the rule:

To compute hadronic cross sections, PDF’s must be evaluated at the scale of the core process defined
through backward clustering.

This prescription is independent of the multiplicity of the matrix element, because showering always starts
at the scale of the core process, cf. Eq. (7). A mismatch in the two scales would lead to ill-defined backward
no-branching probabilities.

3.2 Event generation techniques

Event generation according to the above defined merging procedure proceeds along the following lines:

• Relevant multi-jet cross sections for the process under consideration are calculated with the phase-
space restriction Q > Qcut. Strong couplings are computed such that they give an overestimate, which
can later on be reweighted. PDF’s are evaluated at the scale set by the core process.

1. Events are generated according to the above defined cross sections with kinematics determined by the
respective matrix elements.

2. Matrix elements are interpreted in the large NC limit according to methods discussed in Sec. 2.5. The
most probable shower history of the final state is determined through backward clustering, cf. Sec. 2.3.
The clustering is guided by information from the matrix element, which restricts the available shower
histories to those, which correspond to a Feynman diagram.
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3. The event is accepted or rejected according to a kinematics-dependent weight, which corresponds to
evaluating strong couplings in the shower scheme and computing the no-branching probability, Eq. (18),
for each parton, internal or external, in the clustered matrix element.

4. The parton-shower evolution is started with suitably defined scales for intermediate and final-state
particles. During showering, any emission harder than Qcut is vetoed. Intermediate partons undergo
a truncated shower evolution, cf. Sec. 2.4

This algorithm has the apparent drawback, that the no-emission probability Eq. (18) must be computed
before the parton-shower evolution starts. Ideally, however, it should result as a direct consequence of
parton-shower branchings producing hard partons. Such splittings would obviously fall in the realm of
matrix elements and are thus forbidden inside the parton shower. To obtain a corresponding prescription,
the above algorithm is slightly reformulated.

Firstly, the logarithmic derivative of the no-branching probabilities P(B)ME/PS
no, a is defined as

I(B) ME/PS
a (z, t̄) =

∫ ζmax

z

dζ

ζ

∑

b=q,g

KME/PS
ba (ζ, t̄)

gb(z/ζ, t̄)

ga(z, t̄)
. (19)

From Eq. (7) one then obtains the full branching probability in terms of I(B)ME/PS,

P(B)ME⊕PS
branch, a (z, t, t′) =

[
I(B) ME

a (z, t) + I(B) PS
a (z, t)

]
exp

{
−

∫ t′

t

dt̄

t̄
I(B)

a (z, t̄)

}
, (20)

where I(B)
a = I(B)ME

a + I(B) PS
a . Equation (20) corresponds to generating an ordering parameter t in

unconstrained shower evolution, i.e. without the restriction to Q < Qcut. The first term in the square bracket
is however given by hard matrix elements through Eq. (2). In order not to double count this contribution,
corresponding branchings must lead to rejection of the entire event. This modifies the respective cross section
by

σ → σ · P(B)ME
no, a (t, t′) . (21)

Due to this event rejection, the remaining branching probability for accepted parton-shower steps is given
by (cf. the description of the veto algorithm, for example in [39])

P(B) PS
branch, a(z, t, t′) = I(B) PS

a (z, t) exp

{
−

∫ t′

t

dt̄

t̄
I(B)

a (z, t̄)

}

× exp

{ ∫ t′

t

dt̄

t̄

[
I(B)

a (z, t̄) − I(B)PS
a (z, t̄)

]}
,

(22)

which yields the vetoed shower algorithm described by Eq. (16), but with g̃ = g, as required.
We therefore obtain the modified rules

3. The event is accepted or rejected according to a kinematics dependent weight, which corresponds to
evaluating strong couplings in the parton-shower scheme.

4. The parton-shower evolution is started with suitably defined scales for intermediate and final-state
particles. Intermediate partons undergo truncated evolution. During showering, any emission harder
than Qcut leads to the rejection of the event.

Note that in prinicple these two steps could be combined through evaluating the strong couplings during the
shower evolution.

The relation of this algorithm with other merging prescriptions is discussed in Appendix A.

3.3 Highest multiplicity treatment

An apparent problem of the merging algorithm outlined so far is that only a limited final-state multiplicity
N ≤ Nmax can be generated through full matrix elements. Hence the matrix elements will not produce jet
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multiplicities N > Nmax that are in principle possible. Hence, the parton shower must account for missing
emissions above Qcut at large N . This is explained in detail in the following.

Assume a case where N = Nmax emissions in the matrix-element domain have been accounted for by the
matrix element and have been generated through the above defined algorithm. This means that up to this
point, i.e. up to the scale where the last matrix-element emission can be resolved in terms of the parton-
shower evolution parameter, the branching probability, Eq. (20) has been employed, as it should be. Beyond
this point, no further emission can be generated through matrix elements, and the branching probability
becomes

P(B)ME⊕PS
branch, a (z, t, t′) → P(B)ME

no, a (t, t′)
∂P(B)PS

no, a (z, t, t′)

∂ log(t/µ2)
. (23)

Relation (23) would obviously violate factorisation, because of missing terms, corresponding to the integrated
kernel from the matrix-element domain.

This problem can be circumvented by implementing the standard parton-shower evolution beyond the last
matrix-element emission.4 It guarantees that the parton shower respects the description of hard radiation
throughout the regime where matrix elements are applicable, while still filling the remaining phase space.

This prescription is referred to as the highest multiplicity treatment and has been suggested in a similar
form in [8]. In virtuality ordered DGLAP evolution, it approximately corresponds to setting a local veto
scale Qcut → Qmin if N = Nmax, where Qmin is the minimum jet criterion found during backward clustering.

3.4 Sources of uncertainties

The proposed merging algorithm combines two essentially different approaches to perturbative QCD. Any
simulation based on it therefore contains a number of sources of theoretical uncertainties. They can be
separated into two categories, merging-related and non-merging-related uncertainties. The latter would
occur in standard perturbative approaches as well, when using only hard matrix elements or applying only
parton showers. The merging-related uncertainties are instead specific for the combined application of matrix
elements and showers and arise from the following:

• The specific choice of the jet criterion.
Since the jet criterion separates matrix-element and parton-shower domain, a variation of its precise
definition can enhance or reduce the contribution of the hard matrix elements in certain regions of
phase space.

• The value of the phase-space separation cut, Qcut.
As for the jet criterion itself, the precise value of the separation cut enhances or reduces the amount
of phase space which is described by hard matrix elements and can therefore lead to variation of the
results.

• The maximum number of jets simulated by hard matrix elements, Nmax.
This parameter limits the number of hard partons up to which correlations can be expected to be
correctly described at tree-level.

Other uncertainties are related to the perturbative calculations carried out in the matrix-element and parton-
shower simulation itself. They include:

• Scale uncertainties from matrix elements.
They arise due to the particular choice of factorisation and renormalisation scale of the leading-order
process.

• Scale uncertainties from parton showers.
They arise due to the particular choice of coupling scales within the evolution.

• Uncertainties from the parton density functions employed.
Parton density functions not only enter the cross section calculation when considering hadronic initial

4 The term “beyond” refers to the ordering parameter t. Note that the respective scale is set globally for the event, because
the matrix element connects all parton-shower evolutions.
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states but also appear in the calculation of the branching probabilities for the initial-state parton
shower, for a detailed discussion of the latter see e.g. [40].

• Uncertainties due to the choice of the leading-order process.
These uncertainties arise in processes which potentially contain many additional jets with shower
evolution parameters above the factorisation scale of the leading-order process. Corresponding details
are discussed in Appendix B.

In this publication we focus on a study of the pure merging-related uncertainties. We will, however not vary
the jet criterion, but rather employ what we identify as the optimal choice for the merging, see Sec. 4.

4 The jet criterion

An important aspect in the QCD evolution equations, Eq. (1), is that QCD branchings are logarithmically
enhanced at small values of the evolution parameter t and/or at logarithmically large values of the evolution
kernels K. This is the manifestation of the singular infrared behaviour of QCD amplitudes in the respective
regions of phase space. In perturbative calculations employing hard matrix elements these regions therefore
must be regularised. This is typically achieved by identifying parton samples or individual partons with jets
and demanding the jets to be sufficiently isolated. Algorithms defining jets are, for example, the Durham
kT -algorithm [10] and the longitudinally invariant kT algorithms for deep inelastic scattering and hadron-
hadron collisions [11]. Extensions of those algorithms to include jet flavour have been presented in [41].
Their respective measures are often used as a variable in which phase-space separation is defined for matrix
element - parton shower merging, cf. [6, 7].

We propose a similar criterion here. However, in contrast to jet measures like the ones above, which can
be applied to experimentally observable final states and which yield experimentally well defined jets, this
criterion is designed and applied on purely theoretical grounds. It is based on the behaviour of QCD
amplitudes at the next-to-leading order and employs flavour and colour information of the respective partons.
For our purposes this criterion proved to be advantageous over standard kT algorithms as it correctly identifies
individual infrared enhanced QCD branchings.

4.1 Definition

Consider two partons i and j, which can, in terms of flavour and colour, originate from a common mother
parton (the splitter) ĩj. The following jet criterion is then proposed

Q2
ij = 2 pipj min

k 6=i,j

2

Ck
i,j + Ck

j,i

, (24)

where

Ck
i,j =





pipk

(pi + pk)pj
− m2

i

2 pipj
if j = g

1 else

. (25)

The minimum in Eq. (24) is over all possible colour partners k of the combined parton ĩj, which would then
act as spectators in the splitting process.

In the following, it is shown that this jet criterion indeed correctly identifies soft and collinear parton splittings
in QCD matrix elements and is thus suited to separate the matrix-element from the parton-shower domain
in the merging.

4.2 Soft limit

If the energy of a single gluon j tends to zero in any fixed direction q, described through pj = λq, λ → 0,
the above jet criterion behaves as

1

Q2
ij

→ 1

2 λ2

1

2 pi q
max
k 6=i,j

[
pipk

(pi + pk) q
− m2

i

2 piq

]
. (26)
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The corresponding singularity of the matrix element is thus correctly identified, cf. [42].

4.3 Quasi-collinear limit for final-state splittings

Consider two final-state partons i and j and an arbitrary spectator-parton k. Let pij = pi + pj and let the
light-like helper vectors l and n be defined by

pij = l + αij n ,

pk = n + αk l .
(27)

This system has the solution

l =
1

1 − αijαk
(pij − αij pk) , n =

1

1 − αijαk
(pk − αk pij) , (28)

where αij = p2
ij/γ, αk = p2

k/γ and γ = 2 ln = pijpk +
√

(pijpk)2 − p2
ijp

2
k, cf. [43]. The momenta pi and pj

can now be expressed in terms of l, n and a transverse component, k⊥.

pµ
i = z lµ +

m2
i + k2

⊥

z

nµ

2 ln
+ kµ

⊥ ,

pµ
j = (1 − z) lµ +

m2
j + k2

⊥

1 − z

nµ

2 ln
− kµ

⊥ .

(29)

A relation for p2
ij is immediately obtained,

p 2
ij − m2

i − m2
j =

k2
⊥

z(1 − z)
− 1 − z

z
m2

i −
z

1 − z
m2

j . (30)

Taking the quasi-collinear limit amounts to the simultaneous rescaling [44]

k⊥ →λk⊥ , mi →λmi , mj →λmj , mij →λmij . (31)

Then, 2 pipj → λ2(p 2
ij − m2

i − m2
j ) and, independent of k,

1

Q2
ij

→ 1

2 λ2

1

p 2
ij − m2

i − m2
j

(
C̃i,j + C̃j,i

)
. (32)

Here,

C̃i,j =





z

1 − z
− m2

i

2 pipj
if j = g

1 else

. (33)

Equation (33) corresponds to the leading term of the massive Altarelli-Parisi splitting function for z → 1 [44].
The corresponding term for z → 0 (if present) is generated by C̃j,i.

4.4 Quasi-collinear limit for initial-state splittings

Now consider the initial-state parton a, the final-state parton j and an arbitrary spectator parton k. Let
paj = pa − pj , and let the light-like helper vectors l and n be defined by

pa = l + αa n ,

pk = n + αk l .
(34)

Then l and n are found as before, Eq. (28). The momenta paj and pj are decomposed as follows

pµ
aj = lµ +

(
p2

aj + k2
⊥

) nµ

2 ln
+ kµ

⊥ ,

pµ
j =

1 − z

z
lµ +

z

1 − z

(
m2

j + k2
⊥

) nµ

2 ln
− kµ

⊥ .

(35)
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Taking the quasi-collinear limit yields 2 papj → λ2
∣∣p 2

aj − m2
a − m2

j

∣∣ such that, independent of k

1

Q2
aj

→ 1

2 λ2

1∣∣p 2
aj − m2

a − m2
j

∣∣
(

C̃a,j + C̃j,a

)
, (36)

where C̃a,j is given by Eq. (33).

5 Monte Carlo programs for the study

In this section, we present the Monte Carlo programs that have been employed in the actual implementation
of the merging algorithm outlined in Sec. 3. As discussed in Sec. 3.4, the foremost aim for this publication
is to study the specific systematics of the proposed merging procedure.

For tree-level amplitudes there exists now a full wealth of publicly available programs that accomplish the
evaluation of (nearly) arbitrary multi-parton processes within the Standard Model and some of its most
prominent extensions. These highly automated tools, called matrix-element or parton-level generators,
either rely on the translation of Feynman diagrams into helicity amplitudes [45] or make use of recursive
relations to obtain compact expressions for the amplitudes [46,47]. In addition to the pure matrix elements
they provide suitable phase-space integrators to permit the evaluation of cross sections and the generation
of actual parton level events. In the context of this work we employ two different matrix-element generators,
the well-established program AMEGIC++ [48] and the recently released code COMIX [49]. Both codes are
integrated into the multi-purpose event generator SHERPA [12] that steers the event generation and hosts
various interfaces to parton showers, hadronisation routines, analysis methods and the like. The two programs
share the capability to simulate arbitrary Standard Model processes at tree-level. While AMEGIC++ strictly
relates Feynman diagrams to helicity amplitudes, COMIX employs colour-dressed Berends-Giele recursive
relations. The main and important difference lies in the treatment of colour, providing us with a handle on
the related systematic uncertainties. We will briefly repeat the main features of both approaches in Secs 5.1
and Sec. 5.2, respectively.

Contrary to the matrix-element generators, there exist only few publicly available implementations of parton-
shower algorithms. There is the class of PYTHIA-like parton showers using either virtuality [50] or transverse
momentum [51] as evolution variable. On the other hand there are implementations of angular-ordered parton
showers in the HERWIG and HERWIG++ generators, see for instance [52] and references therein. A shower
implementation based on colour dipoles became available with the release of the ARIADNE [29] program.

For our study we employ the parton-shower model presented in [34]. This approach relies on Catani–Seymour
dipole factorisation of QCD amplitudes and organises subsequent parton emissions in terms of an invariant
transverse momentum. Aspects of this parton-shower model relevant for combining it with matrix element
calculations will be discussed in Sec. 5.3.

5.1 The matrix-element generator AMEGIC++

AMEGIC++ [48] is a tree-level matrix-element generator, based on Feynman diagrams. It implements a
variety of physics models. Besides those for the Standard Model, Feynman rules are included for the MSSM,
the ADD model [53], effective Higgs couplings to gluons, and others. The generator has been validated in a
large number of processes, see for instance [53,54]. To evaluate the single amplitudes of a given process, the
helicity methods introduced in [55] are employed. Feynman diagrams are constructed and sorted according
to their respective colour structure. A colour matrix for the full squared matrix element is computed using
standard methods. Each single Feynman diagram is then decomposed into basic building blocks in the
helicity formalism, as explained for example in [48]. It is important to note in this context, that information
about the diagrams can be accessed during the runtime of SHERPA and therefore clustering sequences within
the merging formalism can be chosen according to the propagator structure of the contributing graphs. Thus,
unphysical combinations can be prevented. The fact that the treatment of colour in AMEGIC++ essentially
follows textbook methods is however rather problematic in the context of a matrix element - parton shower
merging. Since it is not possible within the code to access colour-ordered amplitudes, a “most probable”
colour structure must be selected on kinematic grounds. This then yields the nodal values to define starting
conditions for parton showers.
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Figure 1: Schematic view of the splitting of an initial-state parton with an initial-state spec-
tator. The blob denotes the n-parton matrix element. Incoming and outgoing
lines label initial- and final-state partons, respectively.

5.2 The matrix-element generator COMIX

COMIX is based on an extension of the colour-dressed Berends-Giele recursive relations for QCD ampli-
tudes [36] to the full Standard Model. These relations are essentially equivalent to the Dyson-Schwinger
recursion employed for instance in [46]. For any recursive calculation, the growth in computational complex-
ity of the algorithm solely depends on the number of external legs at elementary vertices of the theory. Thus
within COMIX any four-particle vertex of the Standard Model is decomposed into three-particle vertices [49].
This leads to an improved performance for large-multiplicity matrix elements, compared to AMEGIC++.
The summation (averaging) over colours in QCD and QCD-associated processes is performed in a Monte
Carlo fashion and colour-ordered amplitudes can therefore be computed. Following the reasoning of [36],
the colour-flow basis is employed throughout the code. As discussed in [35] and Sec. 2.5, this yields good
agreement between the large-NC limit employed in parton-shower simulations and full QCD results. COMIX

allows to access current information during event generation, such that, like for AMEGIC++, unphysical
clusterings in the matrix element - parton shower merging can be prevented. The corresponding algorithm
respects the actual colour assignment of external states, cf. Sec. 2.5. Phase-space integration is commonly
known to be a bottleneck for large-multiplicity processes. Ideally multi-channel integrators along the lines
of [56] are constructed and employed, where each channel samples according to the propagator structure of
one diagram contained in the hard matrix element [57]. However, this leads to a factorial growth in the
number of phase-space channels. Within COMIX a fully recursive algorithm is employed, which tames this
growth and makes it possible to efficiently integrate very high-dimensional phase spaces, while still adapting
to the peak structure of the integrand.

5.3 The Catani-Seymour subtraction based shower generator

In this work we employ a shower approach based on Catani-Seymour (CS) dipole factorisation, which will be
denoted by CSS [34]. The model was originally proposed in [32] and worked out and implemented in [33,34].
It relies on the factorisation of real-emission matrix elements in the CS subtraction framework [58, 42].
There exist four general types of CS dipole terms that capture the complete infrared singularity structure
of next-to-leading order QCD amplitudes, namely splitting initial-state particles accompanied by an initial
or final-state parton as spectator, or branching final-state lines associated with either another final-state leg
or an incoming parton as spectator. In the large-NC limit, the splitter and spectator partons are always
adjacent in colour space. The dipole functions for the various cases, taken in four dimensions and averaged
over spins, are used as shower splitting kernels. Their infrared singularities are regularised through a finite
cutoff parameter of order ΛQCD, the shower stopping scale. Consider, as an example, the case of a splitting
initial-initial CS dipole, cf. Fig. 0. Following the nomenclature used in [34], we can then, in analogy to
Eq. (3), identify

K → Ka(ai)(xi,ab,k
2
⊥) =

αs(k
2
⊥/4)

2π
〈Vai,b(xi,ab)〉 . (37)
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The actual splitting is parametrised in terms of the Lorentz invariants

xi,ab =
papb − pipa − pipb

papb
and k2

⊥ = 2p̃aipb ṽi
1 − xi,ab

xi,ab
, where ṽi =

pipa

papb
. (38)

The invariant transverse momentum k2
⊥ acts as ordering parameter for initial-state splittings in the actual

shower algorithm5. The three other CS dipole configurations are treated following a similar reasoning as just
presented for initial-initial dipoles. Corresponding Sudakov form factors for all branching types, taking into
account finite parton masses and strictly relying on Lorentz-invariant variables, have been derived in [34].

All branchings in the CSS formalism implement exact four-momentum conservation and the particles after an
evolution step are kept on their mass-shell. The phase-space maps from an n to an n + 1 particle final state
are exact and cover the whole phase space. With the only exception of splitting CS initial-initial dipoles,
the momentum recoil of a certain branching is compensated locally by the assigned spectator parton. For
splitting initial-initial dipoles the spectator momentum is kept fixed, consequently the recoil is taken by the
entire ensemble of final-state particles.

The recoil strategy in this shower scheme, in conjunction with the strictly Lorentz-invariant evolution pa-
rameters and splitting variables, eventually allows the construction of a clustering algorithm along the lines
of Sec. 2.3 and a truncated shower, cf. Sec. 2.4. Both are necessary ingredients of the merging formalism
presented in this publication. The main difference with respect to other shower formulations, in this respect,
lies in the fact that the recoil partner of a splitting parton is always a single external line of the current
initial or final state6. If this is not guaranteed, the implementation of a clustering algorithm as proposed in
Sec. 2.3 becomes cumbersome.

Another apparent advantage of this parton-shower model is that it inherently respects QCD soft colour
coherence. By construction in Catani–Seymour factorisation the eikonal factor associated to soft gluon
emission off a colour dipole, used to derive the angular ordering constrained in conventional parton showers,
is exactly mapped onto two CS dipoles. These two dipoles just differ by the role of emitter and spectator,
see [58]. Accordingly, the shower algorithm based on Catani–Seymour dipole factorisation captures the
essential contributions of the next-to-leading logarithmic corrections, beyond the naive resummation of the
leading soft and collinear enhanced terms. For a further discussion on related issues, the reader is referred
to [59]. For a comparison of the shower model at hand with experimental data sensitive to the correct
modelling of soft-gluon emission see [34].

A potential shortcoming of the shower algorithm based on Catani–Seymour dipole terms is that certain
dipole functions connecting the initial and final state may assume negative values in some non-singular
phase-space regions. This prohibits their naive interpretation in terms of splitting probabilities, cf. [33, 34].
This problem, however, can now partially be cured once shower emissions are corrected by exact matrix-
element calculations that provide the appropriate description of QCD amplitudes in these regions of phase
space.

6 Results

In this section we present results generated with the Monte Carlo programs described previously. The main
purpose of this brief study is to quantify some systematic uncertainties introduced by the proposed merging
algorithm, cf. Sec. 3.4. Therefore, three main questions are considered:

• Are observables sufficiently independent on the “unphysical” phase-space separation criterion Qcut?

• How does the description of additional jets by the matrix element improve the prediction of experi-
mentally relevant quantities?

• As a combination of the above: Is the total cross section as predicted by the lowest order unaltered to
the required accuracy?

5 Note that the actual form of k
2

⊥
is different to the one in [34], allowing to suppress an additional Jacobian factor obtained

ibidem. We employ this same quantity as ordering parameter for both dipole types with initial-state splitters, whereas the
choice for dipoles with final-state splitter remains unchanged with respect to [34], namely the invariant transverse momentum
squared of the two splitting products.

6This is also true for initial-initial dipoles, since the shower formulation is invariant and the reference frame can be chosen
as the centre-of-mass frame of the process before the splitting.
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Nmax

0 1 2 3 4

log10(Q
2
cut/s)

-1.25
40.17(1)

39.65(3) 39.66(3) 39.66(3) 39.67(3)
-1.75 39.38(5) 39.29(6) 39.13(5) 39.13(5)
-2.25 39.27(8) 38.35(9) 37.89(11) 37.60(10)

Table 1: Total cross sections for e+e− → jj at
√

s = 91.25GeV in [nb] and their
dependence on the separation criterion and the maximum number of
additional jets produced in the matrix element.

Using the two matrix-element generators AMEGIC++ and COMIX, together with the shower generator CSS in
the framework of SHERPA, we also have the opportunity to study effects of using different methods to assign
colours in the large NC limit.

In the first part of the section we focus on e+e− annihilation into hadrons. This setup allows to study
the algorithm in pure final-state QCD evolution. The influence of different colour-assignment strategies is
investigated in this configuration. The second part deals with Drell-Yan lepton pair production in hadronic
interactions, which is used to validate the algorithm in combined initial and final-state evolution.

Jets at parton level include the quark flavours d, u, s, c and b as well as gluons. The PDF set employed is
CTEQ 6L [60], which defines the corresponding αs parametrisation in hadron collisions. All other generator
parameters are left at the default values of the Monte Carlo programs, since none of them has any impact
on the QCD predictions.

Hadron-level results are produced using SHERPA with the fragmentation module AHADIC++ [61], the hadron
and τ decay package HADRONS++ [62] and a simulation of extra QED radiation through PHOTONS++ [63].
The hadronisation phases remain untuned so far and will be tuned to data at a later stage with the help of
the PROFESSOR package [64]. The RIVET package [65] is employed for analysis and comparison to data.

6.1 QCD jet production in e+e− collisions

To compare with LEP data from the Run I period, a setup with cms energy
√

s = 91.25 GeV is chosen and a
merged sample of e+e− → (N +2) jets is produced at parton level, with N denoting the number of additional
jets in the matrix element and N ≤ Nmax. We vary Nmax between zero, i.e. no merging at all, and four.

Total cross sections and jet rates

Firstly, we present a comparison of total cross sections predicted by the merging algorithm for various
values of the separation criterion Qcut and the maximum jet multiplicity Nmax. Table 0 shows only minor
deviations, i.e. up to 6.4%, between the leading-order cross section and predictions for the merged samples.
We can thus confirm that the proposed merging approach preserves the cross section of the leading-order
process.

Figure 1 shows integrated rates of jets determined with the Durham kT -algorithm [10] as a function of the
analysis cut ycut. As well as giving a fine-grained insight into the number of jets to be expected for a given
analysis cut, they also provide the assurance that the merging algorithm gives accurate predictions for the
perturbative region in which it operates. Jets found with cuts below the shower regime, ycut ≈ 10−3.5, are
influenced by hadronisation effects, and are thus not relevant within the scope of this paper. Even scales
slightly above might be populated e.g. by decays of heavy mesons. Monte Carlo results have been produced
using a merged sample for up to four additional jets in the final state, generated with COMIX and showered
with CSS with a merging cut log10(Q

2
cut/s) = 2.25.

Differential distributions

Due to the close correspondence between the jet criterion, Eq. (24), and the Durham measure for jets
in e+e− collisions (cf. also Appendix A.1), differential jet rates are particularly suited to assess merging
systematics. The rate yn n+1 shows the jet measure at which n + 1 jets are clustered into n jets according
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Figure 2: Integrated jet rates compared to data from LEP [66].
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Figure 3: Differential jet rates for three different merging cuts compared to data from LEP [66].

to the Durham kT -algorithm. The phase-space separation cut Qcut manifests itself as a narrow transition
region between matrix-element and parton-shower domain around yn n+1 ≈ Q2

cut/s. Merging systematics can
thus be inferred from deviations between samples with different phase-space separation cuts in this region.

Figure 2 shows the differential jet rates for a merged sample of up to four additional jets from the matrix
element, generated with COMIX and showered with the CSS. The merging cuts, which have been used, are
log10(Q

2
cut/s) = −2.25, log10(Q

2
cut/s) = −1.75 and log10(Q

2
cut/s) = −1.25. We observe only tiny deviations

between the predictions of the various samples.

Event-shape observables like thrust, sphericity and the energy-energy correlation are presented in Fig. 3.
Details about their definition and the corresponding data from experiment can be found in [67]. These
observables are well described by an appropriately tuned pure parton-shower setup already, and no matrix
element improvement is therefore necessary. On the other hand, the comparison between the pure parton-
shower sample and merged samples constitutes an important consistency check. We find very good agreement
of the respective predictions.
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Figure 4: Event-shape observables compared to data from LEP [67].
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Figure 5: Different approaches to colour treatment and their effects on y34, α34 and EEC. Data are taken
from [66,67].

Colour assignment at large NC

To investigate the influence of different strategies to handle colour in matrix-element generation and merging,
we compare the generators COMIX and AMEGIC++. COMIX is run in two different modes, corresponding to
the two strategies of assigning colours in the large-NC limit explained in Sec. 2.5. More precisely we denote
by

’partial σ’

selection of a colour assignment according to the proportionate squared partial amplitude corresponding
to this large-NC configuration (i.e. the first method presented in Sec. 2.5)

’random’

selection of a colour assignment according to the ratio of the squared partial amplitude corresponding
to this large-NC configuration and the total amplitude squared (i.e. the second method presented in
Sec. 2.5)

’heuristic’

heuristic colour assignment to the previously colour-summed amplitudes in AMEGIC++ (cf. Sec 5.1)

Figure 4 shows respective predictions for the three different choices. Since the first configuration where
different colour assignments could take effect arises in four-jet events, the selected observables are the 3 → 4
jet rate and the angle α34 between the two softest jets, selected on an event-by-event basis. Furthermore,
the energy-energy correlation typically shows sensitivity to the connection of the hadronisation phase to
the parton-shower output, and could thus depend on the colour setting as well. We observe no significant
differences between the various options. This encourages to proceed with even the heuristic method, which
enables us to employ the merging technique with various kinds of matrix element generators, including those
which do not allow a projection onto the large-NC limit.
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Nmax

0 1 2 3 4 5 6

Qcut

20 GeV
192.6(1)

192.1(3) 194.0(5) 192.6(6) 191.9(7) 191.3(9) 207.4(14)
30 GeV 193.3(2) 194.5(2) 194.6(3) 195.0(3) 194.7(3) 201.5(4)
45 GeV 194.2(2) 194.9(1) 195.2(1) 195.3(2) 195.1(1) 197.7(1)

Table 2: Total cross sections [pb] in pp̄ → e+e− + jets at
√

s = 1960 GeV and their dependence
on the merging cut.

6.2 Drell-Yan lepton production in pp̄ collisions

The scope of this section is to validate the proposed merging algorithm in collisions with hadronic initial
states. One of the simplest processes in this setup is Drell-Yan lepton pair production. It constitutes an
important testing ground to validate the applicability of the proposed jet criterion and the interplay of the
merging algorithm with the PDF’s.

Event generation has been set up for pp̄-collisions at a centre-of-mass energy of
√

s = 1960 GeV. For
the hard process a merged sample of pp̄ → e+e− + N jets has been produced, where N ≤ Nmax with
0 ≤ Nmax ≤ 6. In addition, a cut of 66 GeV < me+e− < 116 GeV has been applied at the matrix-element
level. The factorisation scale has been chosen as m2

e+e− . Note that the transverse mass squared of the
lepton pair, m2

T,e+e− = m2
e+e− + k2

⊥,e+e− , which is often selected as the factorisation scale in other merging
approaches, is not a proper choice for the proposed algorithm. It is non-continuous with respect to the
transverse momentum, k2

⊥,e+e− , because the leading-order configuration is generated with k2
⊥,e+e− = 0 and

the minimum transverse momentum of events with one additional jet is limited by the phase-space separation
cut.

Total cross sections and jet rates

Again, we first present a comparison of total cross sections predicted by the merging algorithm for various
values of the separation criterion Qcut and the maximum jet multiplicity Nmax. Table 1 shows the respective
results. Differences range up to 7.6%, between the leading-order cross section and predictions for the merged
samples. The systematic uncertainties in hadronic collisions are larger than in e+e− reactions, partly due
to PDF uncertainties and partly because the shower evolution generated by the CSS and the resummation
used to compute the PDF’s are not entirely compatible, cf. [58]. This effect could account for the slightly
larger deviations between results for the merged samples.

Figure 5 shows integrated rates of jets determined with the CDF Run II kT -algorithm [68] as a function of
the analysis cut dcut. Monte Carlo results have been produced using a merged sample for up to five jets in
the final state, generated with COMIX and showered with the CSS with a merging cut Qcut = 20GeV.

Differential distributions

To study the merging systematics in more detail, we investigate again the differential jet rates dn n+1,
describing the scales at which n+1 jets are clustered into n jets according to the CDF Run II kT -algorithm.
This algorithm has a free parameter, D, which accounts for the missing information on beam partons. Hence,
in this setup, no firm relation can be established between the jet measure of the kT -algorithm and the jet
criterion, Eq. (24). Nevertheless, a certain correspondence between the two quantities exists, making these
distributions a good testing ground for variations around the merging cuts.

To produce Fig. 6 a merged sample of up to five jets from the matrix element has been generated with COMIX

and showered with the CSS. The merging cuts, which have been used, are Qcut = 20 GeV, Qcut = 30 GeV,
and Qcut = 45 GeV. As in the case of e+e− collisions, the deviations between the predictions of the various
samples are small.

Most observables are even less sensitive to the precise value of the merging cut. As an example, Figure 7
displays the transverse momentum of the two leading jets for the three merging cut values in comparison to
data from CDF [69].
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Figure 7: Differential jet rates dn n+1 for three different merging cuts.
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Figure 8: Jet pT in Njet ≥ 1 and Njet ≥ 2 events compared to data from CDF [69].
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Figure 9: Jet multiplicity and jet pT in Njet ≥ 2 events compared to data from CDF [69].

It is also interesting to understand the influence of the maximal number of jets generated from the matrix
element, Nmax, on experimental observables. We observe that typically the predictions are fairly stable for
the Nmax − 1 leading jets. To put it another way, for a given analysis investigating the n’th jet, one should
use a Monte Carlo sample with Nmax ≥ n+1. Due to the increased phase space available for QCD radiation
at the LHC, the higher jet multiplicities will play an even more important role there.

Again, comparing to data from CDF [69] in Figure 8 and varying Nmax between zero and three, the im-
portance of correctly describing additional hard jet production by the respective matrix elements can be
estimated.

7 Conclusions

In this publication we have presented a general formal framework to discuss algorithms for the merging of
multi-jet matrix elements and parton showers. We have constructed a merging algorithm that maintains
the logarithmic accuracy provided by the parton shower in both initial and final state radiation. In this
construction, special emphasis is put on an invariant formulation of the respective phase-space separation
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criterion. Because this criterion is not identical with the parton-shower evolution parameter, the logarithmic
accuracy can only be maintained by running a truncated shower.

Hard matrix elements must be interpreted in the large-NC limit to provide an input for shower Monte Carlos.
Since the respective strategy is not unambiguous, the influence of different methods to assign colours was
studied. We find no significant difference between the proposed algorithms, which range from heuristic
assignment to the choice of a configuration with probability proportional to the respective colour ordered
subamplitude squared.

We have checked the systematics of the newly proposed algorithm in e+e− annihilation into hadrons and in
Drell-Yan lepton pair production. We find greatly reduced uncertainties, compared to previously employed
methods like the original CKKW technique. This statement holds for inclusive quantities such as total cross
sections and jet rates, as well as for differential distributions.
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A Relation to other merging methods

In this appendix we discuss, on formal grounds, the relation of the merging algorithm proposed here with
the original CKKW method [6]. Its relation with the CKKW-L method, presented in [13], and with the
MLM method [15] will also briefly be discussed, arguing on more algorithmic grounds.

A.1 Formal equivalence with the CKKW method at NLL accuracy

Let us start by showing the formal equivalence, at next-to-leading logarithmic accuracy, of the CKKW
method presented in [6] and the proposed merging algorithm. For this purpose, the generating function
φa

(
Q, q ; φ(0)

)
for a jet at scale q, produced by a jet that emerged at scale Q with initial condition φ(0) is

computed using the coherent-branching formalism. We focus on massless partons. All jet scales are given in
terms of the Durham jet measure, which is defined as [10]

Q2
ij = 2 min

{
E2

i , E2
j

}
(1 − cos θij) = 2 pipj min

{
z̃i,j

1 − z̃i,j
,
1 − z̃i,j

z̃i,j

}
, where z̃i,j =

Ei

Ei + Ej
. (39)

Note that in the collinear region and for massless particles, the jet criterion, Eq. (24), effectively encodes
the Durham measure for all splittings which are singular in z̃i,j or 1− z̃i,j. It is therefore justified to employ
the Durham measure instead throughout this computation.

Collinear factorisation is assumed while the evolution parameter is the angular variable

t → q̃ 2 =
k2
⊥

z2(1 − z)2
=

p2

z(1 − z)
, (40)

with z the light-cone momentum fraction in the splitting and p2 the virtuality of the mother parton.

Comparing the coherent-branching formalism to an arbitrary shower algorithm respecting colour coherence,
potential differences arise because coherence is implemented through angular ordering. However, with regard
to QCD evolution in the collinear regime, both methods are formally equivalent.
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The generating function is defined by the differential equation

dφa

(
q, Q0; φ

(0)
)

d log(q/Q0)
=

∫ 1

0

dz
∑

b=q,g

Kab(z, q)Θ [min {z, 1 − z} q − Q0 ]

×
[
φb

(
zq, Q0; φ

(0)
)

φc

(
(1 − z)q, Q0; φ

(0)
)
− φa

(
q, Q0; φ

(0)
) ]

.

(41)

where

Kab(z, q) =
αs(z(1 − z) q)

2π
Pa→bc(z) . (42)

The upper bounds zq and (1− z)q in φb and φc account for the modified starting conditions in the evolution
of the respective jet [70]. The functions φ(0) represent the initial condition for the evolution.

Equation (41) can be cast into a more suitable form by employing Sudakov form factors in terms of the
Durham jet measure, computed at next-to-leading logarithmic accuracy, cf. [10]. For the purpose of this
analysis we include the finite terms, such that

∆̄q(q, Q) = exp

{
−

∫ Q

q

dq̄

q̄

∫ 1−q/Q

0

dz 2Kqq(z, q)

}

∆̄g(q, Q) = exp

{
−

∫ Q

q

dq̄

q̄

[ ∫ 1−q/Q

q/Q

dz Kgg(z, q) + Nf

∫ 1

0

dz Kgq(z, q)

]}
.

(43)

Thus,

d

d log(q/Q0)

φa

(
q, Q0; φ

(0)
)

∆̄a(Q0, q)
=

1

∆̄a(Q0, q)

∫ 1

0

dz
∑

b=q,g

Kab(z, q)

× Θ [min {z, 1 − z} q − Q0 ] φb

(
zq, Q0; φ

(0)
)

φc

(
(1 − z)q, Q0; φ

(0)
)

.

(44)

For quark jets, employing that the largest contribution to the branching q → q comes from the region
1 − z ≪ 1,

d

d log(q/Q0)
log

φq

(
q, Q0; φ

(0)
)

∆̄q(Q0, q)
≈

∫ 1−Q0/q

0

dz 2Kqq(z, q)φg

(
(1 − z)q, Q0; φ

(0)
)

. (45)

Note that the lower limit on the z integration is redefined to equal zero, because the largest contribution to

the integral arises from the region z ≈ 1. Using φq

(
Q0, Q0; φ

(0)
)

= φ
(0)
q and inserting the quark Sudakov

form factor, yields

φq

(
Q, Q0; φ

(0)
)

≈ φ(0)
q exp

{∫ Q

Q0

dq

∫ 1−q/Q

0

dz 2Kqq(z, q)
[
φg

(
q, Q0; φ

(0)
)
− 1

]}
. (46)

The solution to the respective evolution equation for gluon jets can be found in [10].

As discussed in [6], a vetoed parton shower can be expressed in terms of a different starting condition,
φ(0) → φ̃(Q, Qcut, Q0; φ

(0)). Then, in order to generate the correct jet fractions at some scale Q0, the
following identity is imposed:

φa(Q, Qcut; φ̃)
!
= φa

(
Q, Q0; φ

(0)
)

. (47)

Substituting the generating function φq , Eq. (46), yields, for the quark generating function,

φq

(
Q, Q0; φ

(0)
)

= φ̃q(Q, Qcut, Q0; φ
(0))

× exp

{∫ Q

Qcut

dq

∫ 1−q/Q

0

dz 2Kqq(z, q)
[
φg

(
q, Q0; φ

(0)
)
− 1

]}
.

(48)
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Consequently, the result for the modified parton shower reads

φ̃q(Q, Qcut, Q0; φ
(0)) = φ(0) exp

{ ∫ Qcut

Q0

dq

∫ 1−q/Q

0

dz 2Kqq(z, q)
[
φg

(
q, Q0; φ

(0)
)
− 1

]}
. (49)

At next-to-leading logarithmic accuracy this is equivalent to the phase-space slicing method introduced in
Sec. 3, because Eqs. (48) and (49) can be written as

φq

(
Q, Q0; φ

(0)
)

= φ̃q(Q, Qcut, Q0; φ
(0))

× exp

{∫ Q

Q0

dq

∫ 1−q/Q

0

dz 2KME
qq (z, q)

[
φg

(
q, Q0; φ

(0)
)
− 1

]}
(50)

and

φ̃q(Q, Qcut, Q0; φ
(0)) = φ(0) exp

{ ∫ Q

Q0

dq

∫ 1−q/Q

0

dz 2KPS
qq (z, q)

[
φg

(
q, Q0; φ

(0)
)
− 1

]}
. (51)

Here, the combination of an extended integration range for q and the cutoff due to the Θ-functions contained
in KME and KPS generates exactly the same q-integral as in Eqs. (48) and (49). A similar proof holds for
the gluon-jet generating function.

Note that the extended range for z-integration in Eq. (45) would have been generated in a natural way by the
jet criterion, Eq. (24). For q → qg splittings the Θ-function corresponding to the one in Eq. (41) would read
Θ [(1 − z)q − Q0], thus setting the integration boundaries 0 ≤ z ≤ 1 − q/Q0. In any case the contribution
from the range 0 ≤ z ≤ q/Q0 is subleading.

Algorithmic differences

Arguing on more algorithmic grounds, the following differences between the CKKW method and the new
merging prescription presented in this publication can be established:

• Usually, Sudakov form factors within the CKKW approach are implemented in the form of (semi-
)analytic functions, see for example [8]. The accuracy of the method is then limited by the level of
correspondence between these functions and the respective parton-shower result.

• Truncated showers, which, according to Sec. 2.4, are mandatory to establish formal equivalence of the
evolution in the pure parton shower and the matrix-element improved Monte Carlo algorithm, are
implemented in an approximate way. They are replaced by modified starting conditions for external
partons, rather than emissions from internal lines. The net effect is, that (up to typically less important
momentum reshuffling) no redefinition of matrix element kinematics is necessary.

A.2 Correspondence to the CKKW-L method

In order to see the relation of the algorithm proposed here with the CKKW-L prescription presented in [13],
let us concentrate first on the case of pure final-state radiation. A prime example for this is e+e−-annihilations
into hadrons. In this case, CKKW-L, based on ARIADNE [29], the jet criterion and the (dipole) shower-
evolution parameter are identical. In fact, jets are defined by the dipole transverse momentum p⊥ also used
in the shower. For a splitting ĩk̃ → ijk,

p2
⊥ =

sijsjk

sĩk̃

. (52)

Because both quantities coincide, there is no need for a truncated shower: Whenever an emission is harder
than that of a node given by the hard matrix element, i.e. at a larger p⊥, then it will produce a new jet.
Since such emissions lead to vetoing the event, no intermediate emissions, which are not giving rise to a jet,
must be taken into account. In this case the algorithm for e+e− annihilations reduces to

25



• Relevant multi-jet cross sections for the process under consideration are calculated with the phase-
space restriction Q > Qcut. Strong couplings are computed such that they give an overestimate, which
can be reweighted.

1. Events are generated according to the above defined cross sections with kinematics determined by the
respective matrix elements.

2. The most probable shower history of the final state is determined through backward clustering, cf.
Sec. 2.3. The clustering is guided by information from the matrix element, which means that only
those shower histories may be identified, which have a corresponding Feynman diagram.

3. The event is accepted or rejected according to a kinematics-dependent weight, which corresponds to
evaluating strong couplings in the shower scheme and computing the no-branching probability for each
dipole. This is done by starting the shower from the scale at which the dipole emerged. If the first
emission generated by the shower is harder than the scale given by the next matrix-element generated
node related to that dipole (dipole contains at least one internal leg), or harder than Qcut (dipole made
of two external legs), then the event is rejected.

It is apparent that this is in perfect agreement with the method proposed in this paper, if the additional
complication of the truncated shower can be neglected, which becomes obsolete if the shower-evolution
parameter and the jet criterion coincide.

Comparing our method with the CKKW-L method in case of hadron collisions is not that simple. In
principle, the extension of the algorithm for the dipole shower presented above to the case of hadron collisions
is straightforward, especially with identical jet criterion and shower-evolution parameter. However, due to
the fact that ARIADNE re-interprets initial-state radiation as final-state radiation with one or both dipole
legs being the proton remnant, it is not entirely clear, how PDF effects are accounted for. An obvious way
out would be to replace this non-perturbative algorithm for initial-state radiation with a formulation that
rests entirely on the grounds of perturbation theory and the factorisation theorems, like the one presented
in [31]. This opens an arena for further interesting studies.

A.3 Relation with the MLM method

It is difficult to establish any formal correspondence between the method proposed here and the MLM
prescription [15]. This is mainly due to the fact that they indeed base on different ideas and methods.
To our understanding, though, the main difference lies in the treatment of radiation off intermediate legs.
Therefore we will very briefly describe the MLM method here and we will outline the apparent differences
with respect to the new approach.

The MLM prescription, also presented in [18] bases on using a simple cone definition as the jet criterion to
generate the parton configurations at the matrix-element level. The scales of strong couplings are recon-
structed by using a backward clustering with a k⊥ measure. Then the accepted configurations are passed
on to parton-shower routines, typically the ones of PYTHIA [71] (virtuality or p⊥-ordered shower) or of
HERWIG [52] (angular-ordered shower). These codes typically reconstruct the parton-shower starting scales
of a multi-parton configuration by directly inspecting colour connections, without any backward clustering
and therefore partially neglecting intermediate legs and the radiation originating from them. Having the
starting conditions at hand, the shower is invoked without any constraint. After it has terminated at the
hadronisation scale the original partons stemming from the matrix element are matched to the jets present
at parton-shower level, again defined by the cone algorithm. If such a match is not possible, either due to
extra, unwanted jets being produced in the parton shower or due to “loosing” jets in the parton shower, the
event is rejected.

The differences to the other algorithms are obvious:

• While the MLM prescription computes the Sudakov suppression weight in an inclusive way, the other
algorithms, the original CKKW approach, the CKKW-L method and the algorithm proposed here, de-
termine the Sudakov rejection by combining the rejection weights from the individual partons. There-
fore, the effect of “loosing” jets is not present, and only the emergence of unwanted jets leads to vetoing
the event.
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• Because the definition of starting scales for the parton shower is left to the routines provided by PYTHIA

and HERWIG it is not entirely clear in how far radiation of intermediate legs is accounted for.

In any case, however, it is clear that, at present, neither of the two codes, PYTHIA and HERWIG allows
truncated showering. This, following our argument, would be mandatory to formally guarantee the
logarithmic accuracy provided by the respective parton-shower algorithm.

Nevertheless, the astonishing agreement of predictions obtained with the CKKW method and with the MLM
method reported in [18], indicates that these differences may not be too important in the practical case of
W+jets production at the Tevatron and the LHC.

B Merging with multiple leading-order processes

In this appendix, we consider situations like Drell-Yan production at large centre-of-mass energies. In
such configurations the scale of the leading-order process – in our case the lepton pair production process
– is low compared to the potential scales of additional jets. Hence, simply applying the pure merging
prescription introduced in Sec. 3 will eventually result in missing hard radiation and therefore not lead to a
good description of experimentally relevant signatures. An example for such signatures would be a lepton
pair with mass lower than the transverse momentum of an accompanying QCD jet.

Note, that this is consistent with the proposed merging approach, since the choice of a specific factori-
sation scale at the leading order corresponds to generating additional QCD radiation up to an evolution
parameter limited by this scale. Instead, the solution lies in the dynamic definition of a leading-order
process for each event.

Let us stick to the example of Drell-Yan production. Shower branchings cannot take place at scales larger
than the factorisation scale, in this case usually the mass of the Drell-Yan pair, mll. Jets harder than this scale
should thus actually be described by a leading-order process corresponding to “Drell-Yan + jet”-production.
However, one needs to preserve the integrity of the inclusive Drell-Yan sample up to its factorisation scale.

The event-generation algorithm allows to do so. The central idea is to reinterpret the leading-order process
as soon as the scale of jet production in any matrix-element configuration with additional jets exceeds the
factorisation scale. The corresponding event is then not taken into account for the inclusive Drell-Yan
production sample, but is internally treated as part of the “Drell-Yan + hard jet”-regime. Its factorisation
scale and the corresponding shower starting conditions are redefined accordingly.

Note that the problem discussed in this appendix only occurs for leading-order configurations which do not
include any strong coupling7. Also, jets at scales lower than the mass of the Drell-Yan pair are always
well described in the merging. Such configurations can be produced by the parton shower, in principle at
arbitrary multiplicity, because of the highest multiplicity treatment introduced in Sec. 3.3.

The relevance of the problem and the difference between the pure merging approach and the refined approach
with multiple leading-order processes depends on the scales which are involved. If the phase space available
to additional parton emission is not too large, like in the case of W or Z production at the Tevatron,
resummation effects are small, because the difference between factorisation scale and the scale of hard extra
jet production is usually small. In this case, the pure merging algorithm can safely be employed, since not
too many hard jets can be generated, and this limited hard extra-jet multiplicity can be accounted for by
matrix elements.
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[13] L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements, JHEP 05

(2002), 046, [hep-ph/0112284]. N. Lavesson and L. Lönnblad, W+jets matrix elements and the dipole
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